Machinery October 1968.

[29] S. Ritz, M. Pankert, and H. Meyr, “High Level Software Synthesis for Signal Processing Sys-
tems,”Proceedings of the International Conference on Application Specific Array Processors
Berkeley, August, 1992.

[30] P. L. Shaffer, “Minimization of Interprocessor Synchronization in Multiprocessors with
Shared and Private Memoryriternational Conference on Parallel Processinig89.

[31] G. C. Sih and E. A. Lee, “Scheduling to Account for Interprocessor Communication Within
Interconnection-Constrained Processor Netwdrksrnational Conference on Parallel Process-
ing, 1990.

[32] S. Sriram and E. A. Lee, “Statically Scheduling Communication Resources in Multiproces-
sor DSP architecturesProceedings of the Asilomar Conference on Signals, Systems, and Com-
puters November, 1994.

[33] S. Sriram, E. A. Lee, “Design and Implementation of an Ordered Memory Access Architec-
ture,” Proceedings of the International Conference on Acoustics Speech and Signal Processing
April, 1993.

[34] P. P. VaidyanathaMultirate Systems and Filter Bank8rentice Hall, 1993.

[35] V. Zivojnovic, H. Koerner, and H. Meyr, “Multiprocessor Scheduling with A-priori Node
Assignment,’VLSI Signal Processing VIIEEE Press, 1994.

71

[13] A. Kalavade, and E. A. Lee, “A Hardware/Software Codesign Methodology for DSP Appli-
cations,”IEEE Design and TesSeptember 1993, vol. 10, no. 3, pp. 16-28.

[14] W. Koh, “A Reconfigurable Multiprocessor System for DSP Behavioral Simulation”, Ph.D.
Thesis, Memorandum No. UCB/ERL M90/53, Electronics Research Laboratory, University of
California at Berkeley, June, 1990.

[15] S. Y. Kung, P. S. Lewis, and S. C. Lo, “Performance Analysis and Optimization of VLSI
Dataflow Arrays,”Journal of Parallel and Distributed Computingol. 4, 1987.

[16] R. Lauwereins, M. Engels, J.A. Peperstraete, E. Steegmans, and J. Van Ginderdeuren,
“GRAPE: A CASE Tool for Digital Signal Parallel Processindg,EE ASSP Magazin®ol. 7,
No. 2 April, 1990.

[17] E. Lawler,Combinatorial Optimization: Networks and Matrojtkiolt, Rinehart and Win-
ston, pp. 65-80, 1976.

[18] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs
for Digital Signal ProcessingJEEE Transactions on Computefebruary, 1987.

[19] E. A. Lee, and S. Ha, “Scheduling Strategies for Multiprocessor Real-Time GISBgcom
November 1989.

[20] E. A. Lee, and J. C. Bier, “Architectures for Statically Scheduled Dataflmwyhal of Par-
allel and Distributed Computingdecember 1990.

[21] G. Liao, G. R. Gao, E. Altman, and V. K. AgarwalComparative Study of DSP Multipro-
cessor List Scheduling Heuristjgschnical report, School of Computer Science, McGill Univer-
sity.

[22] D. R. O’Hallaron,The Assign Parallel Program Generattdemorandum CMU-CS-91-141,
School of Computer Science, Carnegie Mellon University, May, 1991.

[23] K. K. Parhi and D. G. Messerschmitt, “Static Rate-Optimal Scheduling of Iterative Data-
Flow Programs via Optimum UnfoldinglEEE Transactions on Computeké&l. 40, No. 2, Feb-
ruary, 1991.

[24] J. L. Peterson, Petri Net Theory and the Modelling of Systems, Prentice-Hall Inc., 1981.

[25] J. Pino, S. Ha, E. A. Lee, and J. T. Buck, “Software Synthesis for DSP Using Ptaleury,”
nal of VLSI Signal Processingol. 9, No. 1, January, 1995, to appear.

[26] D. B. Powell, E. A. Lee, and W. C. Newman, “Direct Synthesis of Optimized DSP Assembly
Code from Signal Flow Block Diagramg?toceedings of the International Conference on Acous-
tics, Speech, and Signal ProcessiSgn Francisco, March, 1992.

[27] H. Printz,Automatic Mapping of Large Signal Processing Systems to a Parallel Machine
Ph.D. thesis, Memorandum CMU-CS-91-101, School of Computer Science, Carnegie Mellon
University, May, 1991.

[28] R. Reiter, Scheduling Parallel Computatioifmjrnal of the Association for Computing

70

DFG.
t(v) The execution time or estimated execution time of actor

UBS Unbounded buffer synchronization. A synchronization protocol that must be used
for feedforward edges of the synchronization graph. This protocol requires four
synchronization accesses per iteration period.

References
|

[1] S. Banerjee, D. Picker, D. Fellman, and P. M. Chau, “Improved Scheduling of Signal Flow
Graphs onto Multiprocessor Systems Through an Accurate Network Modelling TechMbgeé,”
Signal Processing VIIEEE Press, 1994.

[2] A. Benveniste and G. Berry, “The Synchronous Approach to Reactive and Real-Time Sys-
tems,”Proceedings of the IEEROI. 79, No. 9 1991, pp.1270-1282.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Static Scheduling of Multi-Rate
and Cyclo-Static DSP-ApplicationsyLSI Signal Processing VIIEEE Press, 1994.

[4] S. Borkaret. al, “iWarp: An Integrated Solution to High-Speed Parallel ComputiRg3;
ceedings of Supercomputing 1988 Confere@etando, Florida, 1988.

[5]J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systerfiggrnational Journal of Computer Simulatiot994.

[6] L-F. Chao and E. H-M. Sh&tatic Scheduling for Synthesis of DSP Algorithms on Various
Models technical report, Department of Computer Science, Princeton University, 1993.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Riva#roduction to AlgorithmsMcGraw-Hill,
1990.

[8] H. G. Dietz, A. Zaafrani, and M. T. O’keefe, “Static Scheduling for Barrier MIMD Architec-
tures,”Journal of Supercomputinyol. 5, No. 4, 1992.

[9] D. Filo, D. C. Ku, C. N. Coelho Jr., and G. De Micheli, “Interface Optimization for Concur-
rent Systems Under Timing Constraint§EE Transactions on Very Large Scale Integration
Vol. 1, No. 3 September, 1993.

[10] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing Memory Requirements in Rate-Opti-
mal Schedules,Proceedings of the International Conference on Application Specific Array Pro-
cessorsSan Francisco, August, 1994.

[11] T. C. Hu, “Parallel Sequencing and Assembly Line Proble@®pgrations Researghol. 9,
1961.

[12] J. A. Huisken et. al., “Synthesis of Synchronous Communication Hardware in a Multiproces-
sor Architecture,’Journal of VLSI Signal Processingol. 6, pp.289-299, 1993.

69

Glossary
|

p(XY) Same ap,; withthe DFG understood from context.

Ps (X y) If there is no path il fromt tg , thep, (X, y) = » ; otherwise,

pg (X, y) = Delay(p) , wherep is any minimum-delay path from yto

Delay(p) Given a patlp Delay(p) is the sum of the edge delays over all edges in

d, (u,v) Represents an edge whose source and sink vertices arev and , respectively, and

whose delay is equal to

A max Represents the maximum cycle mean of a DFG.

BBS Bounded buffer synchronization. A synchronization protocol that may be used for
feedback edges in a synchronization graph. This protocol requires two synchroni-
zation accesses per schedule period.

critical cycle A fundamental cycle in a DFG whose cycle mean is equal to the maximum cycle
mean of the DFG.

cycle mean The cycle mean of acy€le inaDFG is equied @ , Where is the sum of the
execution times of all vertices dh ,abd is the sum of delays of all ed@es in

estimated throughput Given a DFG with execution time estimates for the actors, the esti-
mated throughput is the reciprocal of the maximum cycle mean.

feedback edge An edge that is contained in at least one cycle.

feedforward edge An edge that is not contained in a cycle.

maximum cycle mean Given a DFG, the maximum cycle mean is the largest cycle mean
over all fundamental cycles in the DFG.

SCC Strongly connected component.

self-timed buffer bound Given a feedback eége in a synchronization graph, the self-timed

buffer bound is an upper bound on the number of tokens that can
simultaneously reside am (the buffer size).

synchronization access An access to shared memory that used to update or examine the sta-
tus of a synchronization variable.

synchronization cost The average number of synchronization accesses that must be per-
formed per iteration period in the self timed implementation of a

68

Z; = {x0OX| (vsrc(t), vsnk(1t)) subsumegvsrc(x), vsnk(®)} . Thus, eaclz; isamember
of T. Also, since{ d, (v;, w;) | (i0{1,2 ...,m})} isaresynchronization®f , each member

of { (vsrc(x), vsnk(®) [xO X} must be preserved by sonfe,, w;) , and thus eddiX

must be contained in sonze QED.

Proposition 2: {Z,,Z,,...,Z_} is a minimal cover foxX .

Proof: (By contraposition). Suppose there exists a cdvey, Y., ..., Y.} (among the members

of T) for X, withm'<m. Then, eaclk [X is contained in soN}e , and from Observation 2,

(vsrc(Yj) , vsnk(\J()) subsume® (x) . Thus,

{ (vsrc(Y;), vsnk(Y)) | (i0{1,2...,m})} isaresynchronization @& .Sincg <m it

follows that F' = {f,,f,, ...,f } is nota minimal resynchronization®f QED.

In summary, we have shown how to convert an arbitrary instdcé) of the set cover-

ing problem into an instand® of the pairwise resynchronization problem, and we have shown
how to convert a solutionF" = {f;,f,, ..., f } of this instance of pairwise resynchronization

m

into a solution{ Z,, Z,, ..., Z..} of(X, T) .Itis easily verified that all of the steps involved in

deriving G from (X, T) , and in derivind Z,,Z,, ..., Z } frork" can be performed in poly-

nomial time. Thus, from the NP hardness of set covering [7], we can conclude that the pairwise

resynchronization problem is NP hard.

67

X (vsrc(x),y) O {eldF|src(e) =vsrc(X} = {e(X} .

Observation 4. Foreacht 0 T , the only vertices & that have a delay-free pathridt)

are those vertices contained{ivsrc(x) | xO § . It follows that for any vertex in the sink SCC

of G, x (vsrc(t), y) Ox (vsrc(t),vsnk(t)) = {e(X|xOt} .

Now suppose that~" = {f,f,, ...,f } is a minimal resynchronizatioof . For each

id{1, 2 ...,m}, exactly one of the following two cases must apply

Case livsrc(f,) = vsrc(® forsomg X . In this case, we pick an arbitrary

that containx , and we sgt = vsrc(t) awd = vsnk(t) . From Observation 3, it follows that

X ((src(f), snk(£))) O {e(x} Ox(vw) -
Case 2:vsrc(f,) = vsrc(f) forsomed T .We sgt= vsrc(t) awd = vsnk(t)

From Observation 4, we havg ((src(f,), snk(f))) Ox (v;, w;)

Observation 5: From our definition of the;, sand, §d (v, w,) | (i0{12..,m)} is

a minimal resynchronization & . Also, ea¢ix, w;) is of the fqrmsrc (t), vsnk(t)) :

wheretO T .

Now, foreach [0 {1, 2, ..., m} , we define

Z; = {x0OX] (v, w;) subsumegvsrc(x), vsnk(x)} .

Proposition 1. {Z,,Z,,...,Z.} coversX .

Proof: From Observation 5, we have that for eZn;h , there exisish such that

66

(b). For eachx O t
* Instantiate an edge directed frararc(x) v&rc(t)

* Instantiate an edge directed frararc(t) vsrc(x) , and place one delay
on this edge.

* Instantiate an edge directed frarenk(t) v&nk(x)

* Instantiate an edge directed frorenk(x) vsnk(t) , and place one delay on
this edge.
3. For each vertex that has been instantiated, instantiate an edge directed from to itself, and

place one delay on this edge.

Observe from our construction, that whenexeér X is containedlim , there is an
edge directed fronvsrc(x) Msnk(t))tesrc(t) vénk(x)), and there is also an edge (having
unit delay) directed fronvsrc(t) Wsnk(x))tesrc(x) vénk(t)). Thus, from the assumption
stated in (13), it follows thaf vsrc(z) | zO (XO T} forms one SCC,

{vsnk(z)| 23 (X0 Y} forms another SCC, arfei= {e(X) |x U X} is the set of feedforward
edges.

Let G denote the DFG that we have constructed, and as in Section 9, define
X (p) = {el F| (psubsumegsrc(e), snk(e)))} for each ordered pair of vertices

p = (ypY,) suchthaly, is contained inthe source SCGof ,gnd is contained in the sink

SCC of G . ClearlyG gives an instance of the pairwise resynchronization problem.

Observation 2: By construction ofG , observe that
{xOX| ((vsrc(t), vsnk(1)) subsumegvsrc(x), vsnk(®))} = t,foralltdT. Thus, for
alltOT, x (vsrc(t), vsnk(t)) = {e(x|xOt} .

Observation 3. For eachx [X , all input edges wfrc(x) have unit delay on them. It follows

that for any verteyy in the sink SCC@Gf ,

65

Acknowledgment

Tom Parks at the University of California at Berkeley designed and implemented the orig-
inal version of the Karplus-Strong system in the Ptolemy design environment [5], from which the

synchronization graph of Figure 15 was obtained.

Appendix

In this appendix, we establish the NP completeness of the resynchronization problem,
which was defined in Section 9. We establish this by reducing an arbitrary instance of the set-cov-
ering problem, a well-known NP-hard problem, to an instance of the pairwise resynchronization
problem, which is a special case of the resynchronization problem that occurs when there are

exactly two SCCs. The intuition behind this reduction is explained in Section 9.
Suppose that we are given an instagzeT) of set covering, Where is a finite set, and

T is a family of subsets 0f that covets . Without loss of generality, we assume that

T doesnotcontain a proper nonempty sub3ét that satiﬁiesD tgn %D t% =0 (13)
0(T-T) oT

We can assume this without loss of generality because if this assumption does not hold, then we
can apply the construction below to each “independent subfamily” separately, and then combine

the results to get a minimal cover §r

The following steps specify how we construct a DFG frod) T) . Except where stated

otherwise, no delay is placed on the edges that are instantiated.

1. For eactkx O X , instantiate two verticesrc (x) arsthk(x) , and instantiate are¢dpe
directed fromvsrc(x) tovsnk(x)
2. ForeachtOT

(a). Instantiate two verticegsrc(t) amsnk(t)

64

suited to addressing resynchronization in practical applications. Conceivably, there is also oppor-
tunity to devise new heuristics that exploit certain properties of applications with regards to resyn-
chronization that are not taken into account by existing set covering heuristics. We have shown
that a heuristic for general (not just pairwise) resynchronization can be derived from any given
heuristic for pairwise resynchronization by simply applying the pairwise resynchronization heu-
ristic to each pair of distinct SCCs. It appears to be a significant challenge to devise a more global
approach to the general (not just pairwise) resynchronization problem.

Finally, there is considerable room for refinement in our techniques for converting the syn-
chronization graph into a strongly connected graph. For example, currently the ordering of SCCs
in the source and sink chains is performed arbitrarily. However, their ordering can impact both the
total shared memory requirement (self-timed buffer bounds), and the number of redundant syn-
chronizations introduced by the new edges addedidnyert-to-SC-graphrhus, it would be use-
ful to study techniques to optimize the ordering of the source and sink SCCs with regard to one or
both of these criteria.

Our technique for computing the delays on the edges introduc&driert-to-SC-graph
is optimal under the assumption that there is one source SCC or one sink SCC. Although this
assumption is frequently satisfied in practice, it may be interesting to examine whether or not an
efficient scheme can be devised to determine the delays optimally for general synchronization

graphs.

3D

Figure 21. An example of how execution time guarantees can be used to reduce
buffer size bounds.

63

that if the actual execution time of each actor invocation is always equal to the corresponding exe-
cution time estimate, then the throughput of an implementation that incorporates our synchroniza-
tion minimization techniques is never less than the throughput of a corresponding unoptimized
implementation — that is, we never accept an opportunity to reduce synchronization overhead if
it constrains execution in such a way that throughput is increased. Thus, our work is particularly
relevant to embedded DSP applications, where the price of synchronization is high, and accurate
execution time estimates are often available, but guarantees on these execution times do no exist

due to infrequent events such as cache misses and error handling.

13. Further Work

Several directions for further work emerge from the study presented in this paper. Perhaps
the most significant is the incorporation of timing guarantees — for example, hard upper and
lower execution time bounds, as Dietz, Zaafrani, and O’keefe use in [8]; and handling of a mix of
actors some of which have guaranteed execution time bounds, and some that have no such guar-
antees, as Filo, Ku, Coelho Jr., and De Micheli do in [9]. Such guarantees could be used to detect
situations in which IPC data will always be available (produced) before it is needed for consump-
tion. Upper and lower bounds also make it an interesting issue to define what the objective of
“preserving estimated throughput” means — for example: How can we formulate a constraint,
incorporating guaranteed execution time upper and lower bounds, to efficiently prevent synchro-
nization optimization from introducing cycles that can significantly degrade the throughput?

Also, execution time guarantees can be used to compute tighter buffer size bounds. As a

simple example, consider Figure 21. Here, the analysis of Section 5.3 yields a buffer size

By, ((A, B)) = 3,sinced isthe minimum path delay of a cycle that contéhsB) . How-

ever, ift (A) andt(B) are guaranteed to be equal to the same constant, then it is easily verified

that a buffer size of will suffice fofA, B) . Systematically applying execution time guarantees
to derive lower buffer size bounds appears to be a promising direction for further work.
We have shown that pairwise resynchronization can be attacked with arbitrary heuristics

for set covering. It would be useful to study which of the existing set covering heuristics are best

62

memory buffer size§ By, (€) |e is an IPC edge itG,c} , which specifies the amount of memory

to allocate in shared memory for each IPC edge.

The pseudocode for the complete algorithm is given in Figure 20. RenmeveRedun-
dantSynchss invoked twice, once at the beginning, and once again@devert-to-SC-graph
andDetermineDelayslt is possible that the edge(s) addeddmnvert-to-SC-graplean make
some of the existing synchronization edges redundant, and thus, appdymayeRedun-
dantSynchsfter Convert-to-SC-grapmay be beneficial.

A code generator can then accepi; énd |, and allocate a buffer in shared memory for
each IPC edge specified By, of sBg (e) , and generate synchronization code for the

synchronization edges represente®in . These synchronizations may be implemented using the
BBS protocol described in Subsection 6.1. The synchronization cost in the final implementation is

thus equal t&n, , whenms, is the number of synchronization edgés in

12. Summary
|

We have addressed the problem of minimizing synchronization overhead when imple-
menting self-timed, iterative dataflow programs. We have introduced a graph-theoretic analysis
framework that allows us to determine the effects on throughput and buffer sizes of modifying the
points in the target program at which synchronization functions are carried out, and we have used
this framework to extend an existing technique — removal of redundant synchronization edges —
for noniterative programs to the iterative case, and to develop two new methods for reducing syn-
chronization overhead — resynchronization and the conversion of the synchronization graph into
a strongly connected graph. Finally, we have shown how our techniques can be combined, and
how the result can be post processed to yield a format from which IPC code can easily be gener-
ated.

The premise of our work is that estimates are available for the execution times of actors
such that the actual execution time of an actor exhibits large variation from its corresponding esti-

mate only with very low frequency. Accordingly our techniques have been devised to guarantee

61

11. Complete Algorithm
|

In this section we outline our complete synchronization optimization algorithm. The input

to the algorithm is a DFG and a parallel schedule for it. The output from the algorithm is an IPC
graphGi,e = (V, Epc) . which represents buffers as IPC edges; a strongly connected synchroni-

zation graphGg = (V, E) , which represents synchronization constraints; and a set of shared-

Function SynchronizationOptimize
Input: ADFG G and a self-timed schedule for this DFG.
Output: Gjyc, G, and { By, (€) |eis an IPC edge iiGjpc} .

1. Extract Gj,c from G and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2. Set Gg = Gipe [* Each IPC edge is also a synchronization
edge to begin with */

3. Gy = RemoveRedundantSynghs) G
4. Gg = Resynchronizé $

5. G4 = Convert-to-SC-grapll §

6. G = DetermineDelay$ @

/* Remove any synchronization edges that have become redundant as a result of the appli-
cation of Convert-to-SC-graph. */

7. Gg = RemoveRedundantSynghs) G

8. Calculate buffer sizes By, (e) for each IPC edge e in Gj,. (to be used for implementing
the BBS protocol)
a) Compute pGS(src(e) , shk(e)) , the path delay of a minimum-delay

path in G4 directed from src(e) to snk(e)
b) Set By, (e) = pGS(src(e), snk(e)) + delay(e)

Figure 20. The complete synchronization optimization algorithm.

60

number of sink SCCs, it is obvious that< |\ . With this observation, and the observation that

|E| < |\/]2, we have thabetermineDelaysind its variations ar@B\/]‘l(log2 (vh)) 2% . Further-

more, it is easily verified that the time complexityDatermineDelayslominates that a€onvert-

to-SC-graphso the time complexity of applyim@onvert-to-SC-graplandDetermineDelays

succession is alsﬁ%l\/]d' (log, (IV1)) 2%

Although the issue of deadlock does not explicitly arise in algof@etermineDelays,
the algorithm does guarantee that the output graph is not deadlocked, assuming that the input
graph is not deadlocked. This is because (from Lemma 1) deadlock is equivalent to the existence
of a cycle that has zero path delay, and is thus equivalent to an infinite maximum cycle mean.
SinceDetermineDelaysloes not increase the maximum cycle mean, it follows that the algorithm

cannot convert a graph that is not deadlocked into a deadlocked graph.

10.3 Related Work

Converting a mixed grain DFG that contains feedforward edges into a strongly connected
graph has been studied by Zivojnovic [35] in the context of retiming when the assignment of
actors to processors is fixed beforehand. In this case, the objective is to retime the input graph so
that the number of IPC edges that have nonzero delay is maximized, and the conversion is per-
formed to constrain the set of possible retimings in such a way that an integer linear programming
formulation can be developed. The technique generates two dummy vertices that are connected by
an edge; the sink vertices of the original graph are connected to one of the dummy vertices, while
the other dummy vertex is connected to each source. It is easily verified that in a self-timed execu-
tion, this scheme requires at least four more synchronization accesses per graph iteration than the
method that we have proposed. We can obtain further relative savings if we succeed in detecting
one or more beneficial resynchronization opportunities. The effect of Zivojnovic’s retiming algo-
rithm on synchronization overhead is unpredictable since one hand an IPC edge becomes “easier
to make redundant” when its delay increases, while on the other hand, the edge becomes less use-
ful in making other IPC edges redundant since the path delay of all paths that contain the edge

increase.

59

graphs that have a single source SCC, form a widely-applicable solution for optimally determin-

ing the delays on the edges create€byvert-to-SC-graph
If we assume that there exist constahts Rnd such tiip T ,forall ,and

delay(e) < D for all edgese , then the complexity®é&limanFordis O (|V||Hlog, (|V])) [17];

1 . .
and we have\ > 5 an{t (V) <TIV ,sothgf, <DT|M . Thus, each invocatidfirud-

elayruns in O (log, (DTIM) [VI[Elog, (IVI)) = OEl\/]lH (Iog2(|V|))2E time. It follows that

DetermineDelays— and any of the variations BfetermineDelayslefined above — is

Ogml M| B (log, (IV)) 2%, wherem is the number of edges instantiateCogvert-to-SC-

graph Sincem = (n,.+ng, —1) ,where isthe number of source SCCsmpd is the
i)a . i)o
\\\al - Tay
L
=h) //
//as N

€2

Figure 19. A synchronization graph, after processing by Convert-to-SC-graph, such that
there is no m-way partition Wy, W,, ..., W, _, of the fundamental cycles introduced by Con-
vert-to-SC-graph that satisfies both (1). Each W, contains €, €,, ..., €& and (2). Each W,
does not contain any member of € .1 €40 € 1- Here, the fundamental cycles intro-
duced by Convert-to-SC-graph (the grey dashed edges are the edges instantiated by Con-
vert-to-SC-graph) are (eo, a,, a3) , (eo, e, a,, a3) , (eo, e, a, a,6) ,and

(e a4, @4, @) . Itis easily verified that these cycles cannot be decomposed into a partition

of the above form even if we are allowed to reorder the € ‘s,

58

easily verified that when it is applicable, this modified algorithm always yields an optimal solu-
tion.

As far as we are aware, there is no straightforward extensiatefmineDelay$o gen-
eral graphs (multiple source SCCs and multiple sink SCCs) that is guaranteed to yield optimal

solutions. The fundamental problem for the general case is the inability to derive the partitions

Wy, Wy, .o, W4 (Pg, Py ..., P 1) Of the fundamental cycles (IPC sink-source paths) intro-

duced byConvert-to-SC-grapBuch that eackV, (P;,) contaieg, e;,...,€ , and contains no

other members ot = { e, e, ...,e,_;} ,whei€, is the set of edges adde€wbyert-to-

SC-graph The existence of such partitions was crucial to our development of Theorem 6 because
it implied that once the minimum values fgy, e,, ..., €, are successively computed, “transfer-
ring” delay from somee, to some] i, is never beneficial. Figure 19 shows an example of a

synchronization graph that has multiple source SCCs and multiple sink SCCs, and that does not
induce a partition of the desired form for the fundamental cycles.

However,DetermineDelaysan be extended to yield heuristics for the general case in

which the original synchronization gra@);, contains more than one sourcari&gre than

one sink SCC. For example, (&, a,, ..., a,) denote edges that were instantiaGahlogrt-
to-SC-graph between” the source SCCs — with each representing the th edge created —
and similarly, (b, b,, ..., b)) denote the sequence of edges instantiated between the sink SCCs,
then algorithmDetermineDelaysan be applied with the modification tmt= k+ [+1 , and

(€ € - €p,_1) = (6,85, @, ..., 8, 0,0, _,,...,b;) , wheree, is the sink-source edge from

Convert-to-SC-graph

The derivation of alternative heuristics for general synchronization graphs appears to be
an interesting direction for further research. It should be noted, though, that practical synchroniza-
tion graphs frequently contain either a single source SCC or a single SCC, or both — such as the

example of Figure 15 — so that algoritietermineDelaysogether with its counterpart for

57

Amax = 4- Also, we see that the sé&f, — the set of fundamental cycles that ceptain , and do

m

not containe, — consists of a single cycle that contains three edges. By inspection of this
cycle, we see that the minimum delayegn required to guarantee that its cycle mean does not

exceedA ., is 1. Thus, the= 0 iteration of far loop in DetermineDelaysomputes

X

0, = 1. Next, we see that/; consists of a single cycle that contains five edges, and we see that
two delays must be present on this cycle for its cycle mean to be less than or agual to . Since

one delay has been placedegy DetermineDelaysomputesd, = 1 inthé = 1 iteration of
theFor loop. Thus, the solution determined DgtermineDelay$or Figure 18 is
(85, 0;) = (1, 1) ;the resulting self-timed buffer boundsef a®d are, respectitely, and
2;and® = 2+1 = 3.

Now (2, 0) is an alternative assignment of delays(eg, e,) that preserves the esti-

mated throughput of the original graph. However, in this assignment, we see that the self-timed

buffer bounds ok, ané, are identically equaPto , and thus; 4 , One greater than the cor-

responding sum from the delay assignmght1) computdelbyrmineDelaysThus, ifé-S
denotes the graph returned @gnvert-to-SC-grapkor the example of Figure 18, we have that
CDHéS[eO — 0y, € - 0] H< d)Hés[eo -~ 2,8, - 0] H where® (X) denotes the sum of the

self-timed buffer bounds over all IPC edges<in

Algorithm DetermineDelaysan easily be modified to optimally handle general graphs

that have only onsourceSCC. Here, the algorithm specification remains essentially the same,

with the exception that far = 1, 2, ..., (m-1) € denotes the edge directed from a vertex in

D,,_; toavertex inD

wher®,, D, ...,D is the ordering of sink SCCs generated in

m—i+1 m
Step 2 of the corresponding invocatiorGafnvert-to-SC-graple, still denotes the sink-source

edge instantiated b@onvert-to-SC-graph By adapting the reasoning behind Theorem 6, it is

56

by iterationsi = 0, 1, 2 oDetermineDelays.
After extending this analysis successively to each of the remaining iterations

i = 3,4,...,m=1 of thefor loop inDetermineDelayswe arrive at the following result.

Theorem 6: Suppose thaG, is a synchronization graph that has exactly one sink Ség:; let

and (e, e, ...,€,_,) beasinFigure 17;1¢d,, d,, ...,d__,) be the result of applying
DetermineDelay$o G andés ;and let(dy’, d;’,...,d_,") beanysequencerof non-nega-
tive integers such thais[eo ~dy,....,e,_; - d_ ;'] hasthe same estimated throughput as

L= , L L= L]
G,. Then®G.[e, - dy,,e,_1 > d ' 1 2 PG.[e; - dy s €1 — A9l s

where® (X) denotes the sum of the self-timed buffer bounds over all IPC edggs in induced

by the synchronization grapt

Figure 18 illustrates a solution obtained frB@termineDelaysHere we assume that

t(v) = 1, for each vertex , and we assume that the set of IPC ed@eg, ig } (for clarity,

we are assuming in this example that the IPC edges are present in the given synchronization

graph). The grey dashed edges are the edges ad@hbgrt-to-SC-graphwe see thak . is

determined by the cycle in the sink SCC of the original graph, and inspection of this cycle yields

Figure 18. An example used to illustrate a solution obtained by algorithm DetermineDelays.

55

transformation increases the path delay of each memts&gy of while leaving the path delay of
each member d?; unchanged, and thus, from Theorem 2, such a transformation cannot reduce
the self-timed buffer bound of any IPC edge. Furthermore, apart from transferring delag from

to e,, the only other change that can be madeetiay(e,) detay(e,) — without introduc-

ing a member of W, W,) whose cycle mean exceeds, — is to increase one or both of

these values by some positive integer amount(s). Clearly, such a change cannot reduce the self-

timed buffer bound on any IPC edge.
Thus, we see that the valugs d@d computelddigrmineDelay$or delay(e,)

anddelay(e,) , respectively, optimally ensure that no membei\if U W,) has a cycle mean
that exceeda . . After computing these vallEsermineDelaysomputes the minimum delay

o, one, thatis required for all members\&f, to have cycle means less than or ek to ,
assuming thatlelay(e,) = o, andelay(e;) = 9, . Given the “configuration”

(delay(e,) = 9,, delay(e;) = 9,, delay(e,) = 9J,), transferring delay frore, te,

increases the path delay of all member®pf , while leaving the path delay of each member of
(P, O P,) unchanged; and transferring delay fre;m ego increases the path delay across
(Po O P,) , while leaving the path delay acrd3s unchanged. Thus, by an argument similar to
that given to establish the optimality 68, d,) with respec{¥d, U W,) , we can deduce that
(1). The values computed IDetermineDelay$or the delays o, e;, e, guarantee that no
member of(W, 0 W, O W,) has a cycle mean that exceggls, ; and (2). For any other assign-
ment of delays(d,', 9,',0,") tde, e, e,) thatpreserves the estimated throughput across
(W, OW,; OW,) ,andforany IPC edge such that an IPC sink-source path of is contained in
(P, O P, OP,), the self-timed buffer bound @& under the assignniegt, 3,', 3,') is

greater than or equal to self-timed buffer bound of ~ under the assigrigent, d,) computed

54

Function DetermineDelays

Input : Synchronization graphs G, = (V, E) and és, where és is the graph computed by Con-
vert-to-SC-graph when applied to G,. The ordering of source SCCs generated in Step 2 of
Convert-to-SC-graph is denoted C,,C,,...,C_. For i = 1,2, ..m-1, ¢ denotes the edge
instantiated by Convert-to-SC-graph from a vertex in C; to a vertex in C, , ;. The sink-source
edge instantiated by Convert-to-SC-graph is denoted €.

Output : Non-negative integers d, d,,...,d _, such that the estimated throughput of

és[eO - dgy,e,_; - d,_;] equals the estimated throughput of G..

Xo = G[€ - ..., 8 - o]

m-1

ma= BeéllmanFord(X,) [* compute the max. cycle mean of G_ */

A
dyp = [E g\/t (x) H/)\max—‘ * an upper bound on the delay required for any g */
X
Fori=01.., m-1
o, = MinDelay(X, &, A, dup)
X1 = X[e - §] [* fix the delay on €, to be &, */
End For
Return 60, %, ...,0

m-1-

Function MinDelay(X, e A, B)
Input : A synchronization graph X, an edge e in X, a positive real number A, and a positive
integer B.

Output : Assuming X[e - B has estimated throughput no less than)_1, determine the mini-

mum d O {0, 1, ..., B} such that the estimated throughput of X[e - d is no less than A

Perform a binary search in the range [0, 1, ...,B] to find the minimum value of
ri{0,1,...,B} such that BellmanFord(X[e -]) returns a value less than or equal to A.
Return this minimum value of r.

Figure 17. An algorithm for determining the delays on the edges introduced by algorithm Con-
vert-to-SC-graph. This algorithm assumes that the original synchronization graph (G,) has only

one sink SCC.

53

Figure 17 outlines the restricted version of our algorithm that applies when the synchroni-

zation graphG, has exactly one source SCC. HegtimanFordis assumed to be an algorithm

that takes a synchronization graph as input, and applies the Bellman-Ford algorithm discussed
in pp. 94-97 of [17] to return the cycle mean of the critical cycl& in ; if one or more cycles exist

that have zero path delay, thBallmanFordreturnseo .
Algorithm DetermineDelayss based on the observations that the set of IPC sink-source

paths introduced b@onvert-to-SC-graplan be partitioned intom nonempty subsets

Py Py - P4 such that each member@f contagse;, ..., € 1 and contains no other
members of{ e,, e,, ..., €,,_;} , and similarly, the set of fundamental cycles introduced by

DetermineDelaysan be partitioned int@,, W,, ..., W_,_; such that each membéaW/of con-

tainse,, e;, ..., & and contains no other memberd{ ef, e, ..., e _,}

By construction, a nonzero delay on any of the edges, ..., € “contributes to reduc-
ing the cycle means of all memberswf . AlgoritfratermineDelaystarts (iteration = 0
of theFor loop) by determining the minimum deldy ep thatis required to ensure that none
of the cycles ilW, has a cycle mean that exceeds the maximum cycle\pgan G, of . Then
(initerationi = 1) the algorithm determines the minimum délay epn thatis required to
guarantee that no member\df has a cycle mean that exxeeds , assuming that
delay(e;) = 0.

Now, if delay(e,) = 9,, delay(e;) = 9,,andd, >0 , then for any positive integer
k<9d,, k units of delay can be “transferred frap ep " without violating the property that no

member of (W, 0 W;) contains a cycle whose cycle mean exdegds . However, such a

1. See Figure 17 for the specification of what@&e s represent.

52

cycle mean may exceed that of the critical cycl&in . Thus, we may have to insert delays on the

edges added b@onvert-to-SC-graphThe location (edge) and magnitude of the delays that we

add are significant since (from Theorem 2) they affect the self-timed buffer bounds of the IPC
edges. Since the self-timed buffer bounds determine the amount of memory that we allocate for
the corresponding buffers, it is desirable to prevent deadlock and decrease in estimated through-
put in such a way that we minimize the sum of the self-timed buffer bounds over all IPC edges. In

this subsection, we present a simple and efficient algorithm for addressing this goal. Our algo-

rithm produces an optimal result®, has only one source SCC or only one sink SCC; in other

cases, the algorithm must be viewed as a heuristic. In practice, the assumptions under which we
can expect an optimal result are frequently satisfied.

For simplicity in explaining our optimality result, we first specify a restricted version of
the algorithm that assumes only one sink SCC. After explaining the optimality of this restricted
algorithm, we discuss how it can be modified to yield an optimal algorithm for the general single-
source-SCC case, and finally, we discuss how it can be extended to provide a heuristic for arbi-

trary synchronization graphs.
We will use the following notation in the remainder of this sectio@ & (V, E) isa

DFG; (e, €, ---, €,_;) is asequence of distinct member&of ; and

JAVA PP 0{0, 1 ..., o}, thenG[g, - Ay ...,€,_; - A,_;] denotes the DFG

1Bn-1
EV, EEE— {e,e,....e,_;} ED {e). &'e,_1'} % where eacle,’ is defined by
src(g') = src(g), snk(e') = snk(e),anddelay(e') = 4, . Thus,

Gleg - Ay - 8,_1 » A,_;] issimply the DFG that results from “changing the delay” on

eache, to the corresponding new delay value

Definition 6: Suppose thaG is a synchronization graph that pres&yes IPG\sink-
source pathin G is a minimum-delay path i@ directed frank(e) dw(e) , where isan

IPC edge (inGj,c). The existence of such a path is guaranteed by Definition 3.

51

this example. Here, the dashed edges represent the synchronization edges in the synchronization
graph returned bonvert-to-SC-graphrlhe actual solution computed by a given implementation

of Convert-to-SC-graphvill depend on exactly how the ordering in Step 1 is constructed, and

thus may differ from the one shown here. However, any solution for Figure 15 generated from an
implementation ofConvert-to-SC-graphill have six synchronization edges in the result, as

shown in Figure 16.

10.2 Insertion of Delays

One issue remains to be addressed in the conversion of a synchronizatioBgraph into a

strongly connected gra;Iﬁs — the proper insertion of delays séghat is not deadlocked, and

does not have lower estimated throughput t8an . The potential for deadlock and reduced esti-

mated throughput arise because the conversion to a strongly connected graph necessarily must

introduce one or more new fundamental cycles. In general, a new cycle may be delay-free, or its

Figure 16. A possible solution obtained by applying Convert-to-SC-graph to the
example of Figure 15.

50

results from a four-processor schedule of a synthesizer for plucked-string musical instruments in

seven voices based on the Karplus-Strong technique. This graph coptairés synchronization

edges (the dashed edges), all of which are feedforward edges, so the synchronization cost is

4n, = 24 synchronization access per iteration period. Since the graph has one source SCC and

one sink SCC, only one edge is addedConvert-to-SC-graphand adding this edge reduces the

synchronization cost tén, + 2 = 14 — a 42% savings.

Figure 16 shows the topology of a possible solution computé&bhyert-to-SC-grapbn

Figure 15. The synchronization graph, after redundant synchronization edges are
removed, induced by a four-processor schedule of a music synthesizer based on
the Karplus-Strong algorithm.

49

accesses satisfies

(S,-S) =2(n,.*+n

src snk™

1) -2n,<2(n,—1-n) <2(n,—1-(n,-1)) ,

and thus,(S, —S_) <0 . We have established the following result.

Theorem 5: Suppose thaG is a synchronization graph,@nd s the graph that results from

applying algorithnConvert-to-SC-grapto G. Then the synchronization cost@f is less than or

equal to the synchronization cost®f

For example, without the edges addedCionvert-to-SC-grapfthe dashed grey edges) in
Figure 14, there ar@ feedforward edges, which require 24 synchronization accesses per iteration
period to implement. The addition of the 4 dashed edges requires 8 synchronization accesses to
implement these new edges, but allows us to use UBS for the original feedforward edges, which
leads to a savings of 12 synchronization accesses for the original feedforward edges. Thus, the net

effect achieved b onvert-to-SC-grapim this example is a reduction of the total number of syn-
chronization accesses {fl2—8) = 4 . As another example, consider Figure 15, which shows

the synchronization graph topology (after redundant synchronization edges are removed) that

D D
’
’

~
~

\ ,
\ ,
\ 7
\
\ D
€5 D ’
/
, N
’ \
/
f D

Figure 14. An illustration of a possible solution obtained by algorithm Convert-to-SC-graph.

48

graph theoretic fact that in a connected gréph] ED) |ED, must exdeep- 2) . Now, itis
easily verified that the number of new edges introduce@dnyert-to-SC-grapls equal to

(n..+tnN

sre T Nenii— 1) » wheren . is the number of source SCCs, ang is the number of sink

SCCs. Thus, the number of synchronization accesses per iteration feriod, , that is required to

implement the edges introduced @gnvert-to-SC-grapis (2 x (ng .+ N, —

1)) , while the

number of synchronization access8s, , eliminate@diyert-to-SC-grapkby allowing the

feedforward edges of the original synchronization graph to be implemented with BBS rather than

UBS) equals2n; . It follows that the net chan@®, —S.) in the number of synchronization

Function Convert-to-SC-graph

Input : A synchronization graph G that is not strongly connected.

Output : A strongly connected graph obtained by adding edges between the
SCCs of G.

1. Generate an ordering C,, C,, ..., C_ of the source SCCs of G, and similarly,
generate an ordering D,, D, ..., D, of the sink SCCs of G.
2. Select a vertex v, [0 C; that minimizes t(*) over C,.
3.Fori =23...,m
* Select a vertex v; 0 C, that minimizes t (*) over C,.
* Instantiate the edge d, (v, _,, V;) .
End For
4. Select a vertex w, [0 D, that minimizes t (*) over D, .
5.Fori =23...,n
* Select a vertex w; [1 D; that minimizes t(*) over D,.
* Instantiate the edge d, (w;_,, ;) .
End For
6. Instantiate the edge d, (w,,, v,) -

Figure 13. An algorithm for converting a synchronization graph that is not strongly
connected into a strongly connected graph.

a7

of synchronization accesses required (per iteration period) for the transformed graph is less than
or equal to the number of synchronization accesses required for the original synchronization
graph. Through a practical example, we show that this transformation can significantly reduce the
number of required synchronization accesses. Also, we develop a technique to compute the delay
that should be added to each of the new edges added in the conversion to a strongly connected
graph. This technigue computes the delays in such a way that the estimated throughput of the IPC
graph is preserved with minimal increase in the shared memory storage cost required to imple-

ment the IPC edges.

10.1 Adding Edges to the Synchronization Graph

Figure 13 presents our algorithm for transforming a synchronization graph that is not
strongly connected into a strongly connected graph. This algorithm simply “chains together” the
source SCCs, and similarly, chains together the sink SCCs. The construction is completed by con-
necting the first SCC of the “source chain” to the last SCC of the sink chain with an edge that we
call thesink-source edgeFrom each source or sink SCC, the algorithm selects a vertex that has
minimum execution time to be the chain “link” corresponding to that SCC. Minimum execution
time vertices are chosen in an attempt to minimize the amount of delay that must be inserted on
the new edges to preserve the estimated throughput of the original graph. In Subsection 10.2, We
discuss in detail the selection of delays for the edges introduc&drwert-to-SC-graph

It is easily verified that algorithi@onvert-to-SC-graphlways produces a strongly con-
nected graph, and that a conversion to a strongly connected graph cannot be attained by adding
fewer edges than the number of edges addedmyert-to-SC-graphFigure 14 illustrates a pos-
sible solution obtained by algorith@onvert-to-SC-graphHere, the black dashed edges are the

synchronization edges contained in the original synchronization graph, and the grey dashed edges

are the edges that are addeddmynvert-to-SC-graphThe dashed edge labeled s the sink-

source edge.

Assuming the synchronization graph is connected, the number of feedforwardnedges

must satisfy (n;>n_—2) , where_ is the number of SCCs. This follows from the fundamental

46

Function Resynchronize
Input: A synchronization graph G = (V, E) .

Output: A synchronization graph G that preserves G.

E=E
Compute ps(x,y) for each ordered pair of vertices in G. /* used in Pairwise */
For each SCC C, of G
For each SCC C; of G
If C, is a predecessor SCC of C; Then

Compute E; = {el E|(src(e) O C)) and (snk(e) O G)}

F = Pairwise(subgraph(C), subgraph(G), B

E= ((E-E) OF)

End If
End For
End For

Return (V, E)

Function Pairwise(G,, G,, F)
Input: Two strongly connected synchronization graphs G, and G,, and a set F of edges
whose source vertices are all in G, and whose sink vertices are all in G,,.

Output: A resynchronization F'.

For each vertex u in G,

For each vertex v in G,
X ((u,v))={ed F|(pg(src(e), u =0) and (pg (v, snk(e)) =0)}

End For
End For
T={x((uv))|(uisinG;andvisinG,)}
= = Cover(F)

Return {d,(u, V) |x ((u,v)) Oz}

Figure 12. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem

45

nomial time) such a minimal resynchronization from an arbitrary minimal synchronization. The

key here is that i€’ is a member of a minimal resynchroniz&ion , then there is always a mem-

berpt = (xHyD) of { (vsrc(t), vsnk(t))} such thag (snk(e'), snk(€)) Ox(pb ,and

thus, replacing’ withd, (xlyD) iR yields a minimal resynchronization.

We have pointed out that the correspondence we have established between set-covering
and pairwise resynchronization allows us to adapt any heuristic for set-covering into a heuristic
for pairwise resynchronization. Furthermore applying such a heuristic for pairwise resynchroniza-
tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general
resynchronization problem. Figure 12 below shows how any algo@itbwarthat solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

10. Making the Synchronization Graph Strongly Connected

In Section 6, we defined two different synchronization protocols — bounded buffer syn-
chronization (BBS), which has a cost of 2 synchronization accesses per iteration period, and can
be used whenever the associated edge is contained in a strongly connected component of the syn-
chronization graph; and unbounded buffer synchronization (UBS), which has a cost of 4 synchro-
nization accesses per iteration period. We pay the increased overhead of UBS whenever the
associated edge is a feedforward edge of the synchronization graph.

One alternative to implementing UBS for a feedforward ezlge is to add synchronization

edges to the synchronization graph so that becomes encapsulated in a strongly connected com-

ponent; such a transformation would allew to be implemented with BBS. However, extra syn-
chronization accesses will be required to implement the new synchronization edges that are
inserted. In this section, we show that by adding synchronization edges through a certain simple
procedure, the synchronization graph can be transformed into a strongly connected graph in such
a way that the overhead of implementing the extra synchronization edges is always at least com-

pensated by the savings attained by being able to avoid the use of UBS. That is, the total number

44

— and that the set of feedforward edges is the set of edges that correspond to mekibers of
Now, recall that a major correspondence between the given instance of set covering and the

instance of pairwise resynchronization defined by Figure 11(a) is that

X ((vsrc(t), vsnk(t))) =t for eachi . Thus, if we can find a minimal resynchronization of
Figure 11(a) such that each edge in this resynchronization is directed fronvsate) to the

correspondingssnk(t,) , then the associatgd s form a minimum covér of . For example, it is

easy, albeit tedious, to verify that the resynchronization illustrated in Figure 11(b),

{dy(vsrc(ty), vsnk(t)),d,(vsrc(ty), vsnk(ty))} , is a minimal resynchronization of Figure

11(a), and from this, we can conclude thaf, t;} is a minimal covef for . From inspection of

the given setX an@l |, itis easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed
(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-
wise resynchronization can easily be converted into a solution of the set covering instance. Our
proof of the NP-hardness of pairwise resynchronization, presented in the appendix, is a formal-

ized generalization of this example. We summarize with the following theorem.

Theorem 4: The pairwise resynchronization problem is NP-hard, and thus, the resynchroniza-

tion problem is NP-hard.

Proof: A formal proof is given in the appendix.

Two natural questions that arise when studying the example of Figure 11 are “How do we

know that a minimal resynchronization exists such that each edge is directedvisonitg) to

the correspondingsnk(t,) 2" and “If such a minimal resynchronization exists, how can we

obtain one efficiently from an arbitrary minimal resynchronization?” In the appendix, we will

show that such a minimal synchronization always exists, and that we can always derive (in poly-

43

graph contains two SCCs %{ src(x;)} O {vsrc(t)} E a%i snk(x)} O { vsnk(t,)} E

vsrc(t;) vsrc(t,) vsrc(ts)

vsnk(t,) vsnk(t,) vsnk(t,)
M) M) M

(@)

vsrc(t,)

vsnk(t,) vsnk(t,)
%ﬁ U
D D D D D D
(b)

Figure 11. (a). An instance of the pairwise resynchronization problem that is
derived from an instance of the set covering problem.
(b). The DFG that results from a solution to this instance.

1. In general, these edges will not be sufficient to ensure that the resulting graph has exactly two SCCs. In the
appendix, we will show that for our reduction of set covering to pairwise resynchronization, we can assume
without loss of generality that the family is such that the construction outlined here guarantees a graph with
exactly two SCCs.

42

implement a zero-delay synchronization edge directed from the first vertex of the ordeped pair

to the second vertex @f . Clearly thefe,', e,', ..., €'} is a resynchronization if and only if

eache [l F is contained in at least gpe(src(g'), snk(g'))) — that is, if and only if
{x((src(e'),snk(g"))) |1 <i<n} coversF . Thus, solving the pairwise resynchronization

problem forG is equivalent to finding a minimal cover For given the family of subsets

{(X(xy) [(xOC,yOCy)} .

Figure 11 helps to illustrate this intuition and our method (defined formally in the appen-

dix) for converting an instance of the set covering problem to an instance of pairwise resynchroni-

zation. Suppose that we are given theXset { x;, X, X3, X,} , and the family of subsets

T = {t,t,t3} ,wheret; = {x;, X3} t, = {X, %} ,and; = {x,,%,} .To constructan

instance of the pairwise resynchronization problem, we first create two vertices and an edge
directed between these vertides eachmember ofX ; we label each of the edges created in this
step with the corresponding membenof . Then for eachi , We create two vesicéy

andvsnk(t) . Next, for each relatiog [t (there are six such relations in this example), we cre-
ate two zero-delay edges — one directed from the source of the edge corresgonding to
vsrc(tj) , and another directed fromsnk(tj) to the sink of the edge corresponding to . This
last step has the effect of making each gamrc(t;), vsnk(t)) preserve exactly those edges
that correspond to memberstpf ; in other words, after this construction,

X ((vsrc(t), vsnk(t))) =t foreach .Finally, for each edge created in the previous step, we

create a corresponding feedback edge oriented in the opposite direction, and having a tnit delay

Figure 11 shows the graph that results from this construction process. Observe that the

41

applying such a heuristic to each pair of SCCs in a general synchronization graph yields a heuris-
tic for the general (not just pairwise) resynchronization problem. This is fortunate since the set
covering problem has been studied in great depth, and efficient heuristic methods have been
devised [7].

The following definition facilitates the developments of this section and the appendix.
Definition 5: Given a synchronization gragh , 1€x,, X,) aqyh, y,) be two ordered pairs

of vertices inG . We say thdly,, y,) subsumes(x,,x,) in G if p(x;,y;) = p(y,Xx,) =0.

We may omit the qualification “i& ” if the graph in question is understood from context.

Intuitively, every ordered pair of vertices subsumes itself, arfe,ifx,) (3mdy,)
are distinct, then(y,,y,) subsumgs,, X,) If a zero-delay synchronization edge directed from

y, toy, would make a synchronization edge (regardless of its delay) directed fronx, to

redundant.

The following fact is easily verified from Definitions 4 and 5.

Fact 1. Suppose tha is a synchronization graph that contains exactly two BCCs, is the set
of feedforward edges i@ ,arid is a resynchronizatic@d of . Then foredadh , there exists

e OF' suchthat(src(€e'), snk(€)) subsumgsrc(e),snk(e) @&

An intuitive correspondence between the pairwise resynchronization problem and the set
covering problem can be derived from Fact 1. Supposéxhat is a synchronization graph with

exactly two SCCEL,; an@, such that each feedforward edge is directed from a me@per of

to a member o€, . We start by viewing the Bet of feedforward edgés in as the finite set that
we wish to cover, and with each memiper {dfx,y) | (xU C,,yO C,)} , We associate the

subset o defined by (p) = {eO F| (psubsumegsrc(e), snk(e)))} . Thug,(p) is the

set of feedforward edges & whose corresponding synchronizations can be eliminated if we

40

Definition 4: Given a synchronization gragh = (V, E) consisting of feedforward edges

F={e;e, ..., e} ,aresynchronizationof G is a finite se¥' = {e,",e,’, ..., e} of edges

that are not necessarily containedin , but whose source and sink vertice® are in , such that (a).
e, e, ...,e, arefeedforward edges in the DEESI= (V, ((E-F) +F')) ; and @) pre-

servesG — that ispGD(src(ei), snk(g)) < delay(e) foralld {1,2 ...,n}

If we let G denote the graph in Figure 10, then the set of feedforward edges is

F={(BG),(EJ};F = {dy(C,H)} isaresynchronization & ; Figure 10(b) shows

the DFGGU = (V, ((E-F) +F")) ;and from Figure 10(b), it is easily verified thaF’ , , and

GU satisfy conditions (a) and (b) of Definition 4.

We refer to the problem of finding a resynchronization with the fewest number of ele-
ments as theesynchronization problem. In the appendix, we formally show that the resynchro-
nization problem is NP-hard, and in this section, we explain the intuition behind this result. To
establish the NP-hardness of the resynchronization problem, we examine a special case of the
problem that occurs when there are exactly two SCCs, which we cphitiagse resynchroni-
zation problem, and we derive a polynomial-time reduction from the classicovering prob-
lem[7], a well-known NP-hard problem, to the pairwise resynchronization problem. In the set

covering problem, one is given a finite ¥et and a fafily of subséts of , and asked to find a

minimal (fewest number of members) subfamilyl] T such thatt = X . A subfamily of
toT,

is said tocover X if each member oK is contained in some member of the subfamily. Thus, the
set covering problem is the problem of finding a minimal cover.

Although the correspondence that we establish between the resynchronization problem
and set covering shows that the resynchronization problem probably cannot be attacked optimally
with a polynomial-time algorithm, we will show that the correspondence allows any heuristic for

set covering to be adapted easily into a heuristic for the pairwise resynchronization problem, and

39

edged, (C, H) , then two of the original synchronization edge¢B:--G) (@nd) —

become redundant. Since redundant synchronization edges can be removed from the synchroniza-

tion graph to yield an equivalent synchronization graph, we see that the net effect of adding the

synchronization edgd, (C, H) s to reduce the number of synchronization edges that need to be
implemented byl . In Figure 10(b), we show the synchronization graph that results from inserting
theresynchronization edgé, (C, H) into Figure 10(a), and then removing the redundant syn-

chronization edges that result.

Definition 4 gives a formal definition of resynchronization that we will use throughout the
remainder of this paper. This considers resynchronization only “across” feedforward edges.
Resynchronization that includes inserting edges into the SCCs is also possible; however, for our
objectives, it must be verified that each new synchronization edge introduced in an SCC does not

decrease the estimated throughput. To avoid this complication, which requires a check of signifi-

cant complexity O (|VI|Elog, (|V])) , whergV, E) is the modified synchronization graph —

this is using the Bellman Ford algorithm described in [fof]pachcandidate resynchronization

edge, we focus only on feedforward resynchronization in this paper.

(a) (b)

Figure 10. An example of resynchronization.

38

synchronization along only one of the 8 synchronization edges — @&ig@.,) . In contrast, if
we applyRemoveRedundantSynche can detect the redundancy(ef;, B,) as well as four
additional redundant synchronization edges(A5, B;) (A,,B;) (B, E,) , @B E,)

Thus,RemoveRedundantSynekduces the number of synchronizations from 8 down to 3 — a
reduction of 62%. Figure 9 shows the synchronization graph of Figure 8 (d) after all redundant
synchronization edges are removed. It is easily verified that the synchronization edges that remain

in this graph are not redundant; explicit synchronizations need only be implemented for these
edges.

9. Resynchronization

It is sometimes possible to reduce the total number of irredundant synchronization edges
by adding new synchronization edges to a synchronization graph. We refer to the process of add-
ing one or more new synchronization edges and removing the redundant edges that result as
resynchronizatiorfdefined more precisely below). Figure 10(a) illustrates this concept. Here, the

dashed edges represent synchronization edges. Observe that if we insert the new synchronization

D

Figure 9. The synchronization graph of Figure 8(d) after all redundant synchroni-
zation edges are removed.

37

clarity, the actors are drawn as boxes, rather than circles. Aktors F and represent the sub-
systems that, respectively, supply and consume data to/from the filter bank &/stenC and each
represents a parallel combination of decimating high and low pass FIR analysishilters= and
represent the corresponding pairs of interpolating synthesis filters. The amount of delay on the
edge directed frolB tB is equal to the sum of the filter orde@s of Dand . For more details on
the application represented by Figure 8(a), we refer the reader to [34].

To construct a periodic, parallel schedule we must first determine the number of times
g (N) that each actoN must be invoked in the periodic schedule. Systematic techniques to
compute these values are presented in [18]. Next, we must determine the precedence relationships
between the actor invocations. In determining the exact precedence relationships, we must take
into account the dependence of a given filter invocation on not only the invocation that produces

the token that is “consumed” by the filter, but also on the invocations that produce the preced-

ing tokens, wher@ is the order of the filter. Such dependence can easily be evaluated with an

additional dataflow parameter on each actor input that specifies the nurphst tokenshat are
accessed [2#] Using this information, together with the invocation counts specifiegl by , we
obtain the precedence relationships specified by the graph of Figure 8(b), in which the th invoca-

tion of actorN is labeledN, , and each edge specifies that invocatiqe) requires data

produced by invocatiosrc (e) delay(e) iteration periods after the iteration period in which the
data is produced.

A self-timed schedule for Figure 8(b) that can be obtained from Hu’s well-known list
scheduling method [11] is specified in Figure 8(c), and the synchronization graph that corre-
sponds to the IPC graph of Figure 8(b) and Figure 8(c) is shown in Figure 8(d). All of the dashed
edges in Figure 8(d) are synchronization edges. If we apply Shaffer’s method, which considers

only those synchronization edges that do not have delay, we can eliminate the need for explicit

1. It should be noted that some SDF-based design environments choose to forego parallelization across mul-
tiple invocations of an actor in favor of simplified code generation and scheduling. For example, in the
GRAPE system, this restriction has been justified on the grounds that it simplifies inter-processor data man-
agement, reduces code duplication, and allows the derivation of efficient scheduling algorithms that operate
directly on general SDF graphs without requiring the use of the acyclic precedence graph (APG) [3].

36

12 > 2 1
2 1
) —| C p D — >
(@ ArBLE 11 ’—’1'5 i

Proc. 1A, A, B,,C,,D,E;,F,F,

Proc. 2A3, A4, Bz, EZ, F3, F4

(©

Figure 8. (a). A multi-resolution QMF filter bank used to illustrate the benefits of removing
redundant synchronizations. (b). The precedence graph for (a). (c). A self-timed, two-pro-
cessor, parallel schedule for (a). (d). The initial synchronization graph for (c).

35

there is a path from the source of the edge to the sink — here we only need “reachability” infor-
mation; no notion of path delay is required. As in the context of our problem, the removal of a
redundant synchronization edge in Shaffer’s synchronization graph cannot negate the redundancy
of another redundant synchronization edge, and consequently, the order in which synchronization
edges are tested for redundancy is not significant. Shaffer’s algorithm begins by computing a
boolean value (x,y) for each ordered pair of verti¢esy) that is setetdf and only if

there is a path directed fromm yo . Then, the algorithm proceeds in a manner equivalent to Step
3 of RemoveRedundantSyncivith the exception that the predicate of fh&atement is changed

from (delay(e,) +p (snk(e,),snk(g) < delay(e)) to (r (snk(e,),snk(g)) . Thus,
RemoveRedundantSyndan be viewed as a direct extension of Shaffer’s algorithm to handle

pure self-timed, iterative execution of a DFG; Shaffer’s algorithm accounts for self-timed execu-
tion only within a graph iteration, and in general, it can be applied to iterative dataflow programs

only if all processors are forced to synchronize between graph iterations.

Shaffer states that the complexity of his algorithrﬁ)ﬁ\/lsH : however, the complexity
can be improved (at least for sparse graphs) by using a more efficient technique to compute the
functionr . The functiomr in Shaffer's method can be computed (M| B) time [7], and
using this method, Shaffer’s algorithm achieves a time complexi®/ (¢¥/| B) . Thus, in
exchange for its dependence on a less flexible execution model, Shaffer’s solution, with appropri-
ate choice of , attains a slightly more favorable asymptotic complexity th&eouveRedun-

dantSynchs

8.4 An Example

In this subsection, we illustrate the benefits of removing redundant synchronizations
through a practical example. Figure 8(a) shows an abstraction of a three channel, multi-resolution
quadrature mirror (QMF) filter bank, which has applications in signal compression [34]. This rep-
resentation is based on the general (not homogeneous) SDF model, and accordingly, each edge is

annotated with the number of tokens produced and consumed by its source and sink actors. For

34

From the definition of a redundant synchronization edge, it is easily verified that the

removal of a redundant synchronization edge does not alter any of the minimum-delay path val-

ues (path delays). That is, given a redundant synchronizatioreedgé&s, in , and two arbitrary
verticesx, yOo Vv , if we IeéS = B\/ EE— {e} % ,thepés(x, y) = st(x, y) . Thus, none of

the minimum-delay path values computed in Step 1 need to be recalculated after removing a
redundant synchronization edge in Step 3.
Observe that the complexity of FunctiBemoveRedundantSynetslominated by Step 1

and Step 3. Since all edge delays are non-negative, we can repeatedly apply Dijkstra’s algorithm

Lo 3L . e N .
(once for each vertex) to carry out Step Dml\/]sg time; a modification of Dijkstra’s algorithm

can be used to reduce the complexity of StepCL%)/]zlog2 (IV]) + |V||E|E [7]. In Ste&p 3, is

an upper bound for the number of synchronization edges, and in the worst case, each vertex has
all members ol in its set of successors. Thus, the time complexity of St&€p(BM$H) , and

if we use the modification to Dijkstra’s algorithm mentioned above for Step 1, then the time com-

plexity of RemoveRedundantSynass

0 Mlog, (IV)) +MIE +MIEH = 05Wlog, (V) + MIE .

8.3 Comparison with Shaffer's Approach

In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza-
tions in the self-timed execution of a dataflow graph under the (implicit) assumption that the exe-
cution of successive iterations of the dataflow graph are not allowed to overlap. In Shaffer’s
technique, a construction identical to our synchronization graph is used with the exception that
there is no feedback edge that connects the last actor executed on a processor to the first actor exe-
cuted on the same processor. Also, in Shaffer’s construction, edges that have delay are ignored
since only dependences within the same graph iteration are significant. Thus, Shaffer’s synchroni-
zation graph can be assumed to be acyclic.

In the context of Shaffer’s problem, a synchronization edge is redundant if and only if

33

dancy is equivalent to the check that is performed bif gtatement ilRemoveRedundantSynchs

one might ask “What ig, satisfies the inequality in ifhr&tatement, but all of the minimum-
delay paths fronsnk(e,) tenk(e) contam ?" To see thatitftetatement is indeed equiva-

lent to checking the redundancyef , observe thptif is a pathd$rofe) snkie) that
contains more than one edge and that conmins jhen mustcontain@acycle suchthat does
not containe ; and since all cycles (from Lemma 1) must have positive path delay, the path delay

of such a patlp must exceeélay(e) . Thusggjf satisfies the inequality ihsttaéement of
RemoveRedundantSynchsd pl is a path fronsnk(e,) tenk(e) such that

Delay(pl) = p(snk(e,), snk(§) , thenpl cannot contaia

Function RemoveRedundantSynchs
Input : A synchronization graph G, = (V, E) such that | O E is the set of synchro-

nization edges.
Output : The synchronization graph GU = (V, (E-E,)) , where E, is the set of

redundant synchronization edges in G..

1. Compute p(x, y) for each ordered pair of vertices in G,.
2. Initialize: E, = O.
3. For each e |
For each output edge e, of src(e) except for e
If delay(e,) +p (snk(e,), snk() < delay(e)
Then
E, = EUO{e}
Break [* exit the innermost enclosing For loop */
End If

End For
End For

4. Return (V, (E-E)).

Figure 7. An algorithm that optimally removes redundant synchronization edges.

32

Now, if p does not contaie, , them exists(ﬁg , and we are done. Otherwise, let
p' = (X;, X, ..., X)) ; observe thap is of the form
p= (y]_a y2’ raey yk_l; el’ yk, yk+1, . ym) ; and define

P" = (Yo Yor oo Y1 X0 Xor oo X Yio Yiw 10 0 Vi) -

~

Clearly,p” is a path fronsrc (e,) tenk(e,) i, . Also,

Delay(p") = % delay(x) + delay(y,)

= Delay(p') + (Delay(p —delay(e))

<Delay(p) (from (12))
<delay(e,) (from (11)).QED.

Theorem 3 tells us that we can avoid implementing synchronizatiafl fedundant syn-
chronization edges since the “redundancies” are not interdependent. Thus, an optimal removal of
redundant synchronizations can be obtained by applying a straightforward algorithm that succes-
sively tests the synchronization edges for redundancy in some arbitrary sequence, ambgince

est pathcomputation is a tractable problem, we can expect such a solution to be practical.

8.2 An Algorithm for Removing Redundant Synchronizations

Figure 7 presents an efficient algorithm, based on the ideas presented in the previous sub-

section, for optimal removal of redundant synchronization edges. In this algorithm, we first com-
pute the path delay of a minimum-delay path from y to for each ordered pair of véKiggs ;
here, we assign a path delayoof whenever there is no pathkxfrom to . This computation is
equivalent to solving an instance of the well kn@adirpoints shortest paths problem]. Then,

we examine each synchronization eege — in some arbitrary sequence — and determine whether
or not there is a path frosrc(e) tnk(e) that does not corgain , and that has a path delay

that does not exceatklay(e) . Now, at first, it may not be obvious that this check for redun-

31

{A, B, C, D} does not need to synchronize with the processor that exechtds G, H}

because due to the synchronization exige , the corresponding invocdtion of is guaranteed to
complete before each invocationdf is begun. Thys, is redundant in Figure 6. It is easily ver-
ified that the pattp = ((F, G), (G, H),x,;, (B,C), (C,D)) is directed frosmc(x,) to

snk(x,) , and has a path delay (zero) that is equal to the delay on

In this section we develop an efficient algorithm to optimally remove redundant synchro-

nization edges from a synchronization graph.

8.1 The Independence of Redundant Synchronizations

The following theorem establishes that the order in which we remove redundant synchro-
nization edges is not important, and thus, we need not implement synchronization for any of the

redundant synchronization edges in a synchronization graph.
Theorem 3: Suppose thaG, = (V, E) is asynchronization gragh, @nd are distinct
redundant synchronization edgesGp aégd: EV E-{e} % .Téen s redundé;t in

Proof: Sincee, isredundanti®, ,thereisappth(e,) G directed fsonfe,) to

snk(e,) such that

Delay(p) < delay(e) . (11)

Similarly, there is a path’ # (e;) , contained in b@h &d |, thatis directedsroie,)

to snk(e;) , and that satisfies

Delay(p’) < delay(eg) . (12)

30

zation is explored in sections 9 and in the appendix. Finally, in Section 10, we examine the utility
of adding additional synchronization edges to convert a synchronization graph that is not strongly
connected into a strongly connected graph. Such a conversion allows us to implement all synchro-
nization edges with BBS. We address optimization criteria in performing such a conversion, and
we will show that the extra synchronization accesses required for such a conversion are always (at
least) compensated by the number of synchronization accesses that are saved (by the UBSs that

get converted to BBSSs).

8. Removing Redundant Synchronizations
|

The first technique that we explore for reducing synchronization overhead is the removal

of redundant synchronization edgesthe synchronization graph. Formally, a synchronization
edge isredundant in a synchronization grap8 if its removal yields a synchronization graph
that preserve§& . Equivalently, from definition 3, a synchronization edge is redundant in the
synchronization graple if thereis a patt () QGn directed feva(e) srik(e) such
that Delay (p) < delay(© .

Thus, the synchronization function associated with a redundant synchronization edge

“comes for free” as a by product of other synchronizations. Figure 6 shows an example of a

redundant synchronization edge. Here, before executing@ctor , the processor that executes

®
&y -
D @P RN D
/<\
@ ~

Figure 6. An example of a redundant synchronization edge.

29

of actors in the schedule.

7. Problem Statement
|
We refer to each access of the shared memory “synchronization vasalfi” by
src(e) andsnk(e) as aynchronization accessto shared memory. If synchronization for s
implemented using UBS, then we see that on average, synchronization accesses are required
for e in each iteration period, while BBS impli@s synchronization accesses per iteration period.

We define thesynchronization costof a synchronization grap@, to be the average number of
synchronization accesses required per iteration period. Thas, if denotes the number of syn-
chronization edges i®_ that are feedforward edgespgnd denotes the number of synchroniza-
tion edges that are feedback edges, then the synchronization st of can be expressed as

(4n, +2n,) . In the remainder of this paper we will develop techniques that apply the results

and the analysis framework developed in Sections 4-6 to minimize the synchronization cost of a
self-timed implementation of a DFG without sacrificing the integrity of any inter-processor data
transfer or reducing the estimated throughput.

We will explore three mechanisms for reducing synchronization accesses. The first is the
detection and removal oédundantsynchronization edges, which are synchronization edges
whose respective synchronization functions are subsumed by other synchronization edges, and
thus need not be implemented explicitly. The second mechanism is the insertion of new synchro-
nization edges in such a way that the number of original synchronization edges that become

redundant exceeds the number of new edges added. This mechanism, whichesgraditoni-

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available to us,
we use thdest caseiumber of accesses — the number of shared memory accesses required for synchroni-
zation assuming that IPC data on an edge is always produced before the corresponding sink invocation at-
tempts to execute — as an approximation.

28

as a final step after all the transformationsxn are complete, instead oGyging itself to cal-
culate these bounds. This is because addition of the &dges = may reduce these buffer bounds. It
is easily verified that removal of the edg€s () cannot change the buffer bounds in (5) as long as

the synchronizations i, ~ are preserved. Thus, in the interest of obtaining minimum possible
shared buffer sizes, we compute the bounds using the optimized synchronization graph. The fol-

lowing theorem tells us how to compute the self-timed buffer bounds@pm

Theorem 2: If Gg preservesG,. and the synchronization edgeSdn are implemented, then
for each feedback IPC edge @}, , the self-timed buffer boured &, (¢) — an upper

bound on the number of data tokens that can ever be presert-ois given by:

Brp (€) = pg (snk(§,src(g)) + delay(e) ,
Proof: By Lemma 4, if there is a pafh froemk(g soc(e @y ,then
start(src(e, k =end(snk(g, k—Delay(p) .

Takingp to be an arbitrary minimum-delay path fremk(§ sta(e Gn , we get
start(src(e, K =end(snk(9, k—pGS(snk(9,src(e)) .

That is,src(e) cannot be more tha&s(snk(g,src(e) iterations “aheadsrd{(e) . Thus
there can never be more thugs(snk(8,src(e) tokens more than the initial number of

tokens ore — delay(e) . Since the initial number of tokens en waeay(e) , the size of the

buffer corresponding te is bounded aboveBgy(e) = pGS(snk(8,src(e) + delay(e)
QED.

The quantitiespGS(snk(6,src(e) can be computed using Dijkstra’s algorithm [7] to

solve the all-pairs shortest path problem on the synchronization graph iﬁ)ﬁMSH . Thus the

problem of determining thBg, (e) values has complexity at most cubic in the size of the number

27

that is,

start((snk(e), B =end(src(g), k—Delay(p)) . (20)

If Delay(p) < delay(¢g), thenend(src(€), k—Delay(p) =end(src(€), k—delay(g)) .
Substituting this in (10) we get
start((snk(e), B =end(src(g), k—delay(g))) .

The above relation is identical to (9), and this proves the TheQEID.

The above theorem motivates the following definition.

Definition 3: If G; = (V, E)) andG, = (V, E,) are synchronization graphs with the same
vertex-set, we say th&, preservesG, if [e [E,, € 0 E;, we have

pGl(src(s), snk(e)) < delay(g) .

Thus, Theorem 1 states that the synchronization constrair(é, &) imply the synchroniza-

tion constraints of(V, E,) if(V, E;) preserves/, E))

Observation 1: Given an IPC graplg;,. , and a synchronization graph suclGthat pre-
servesGj,. , suppose that we implement the synchronizations corresponding to the synchroniza-
tion edges of55 . Then, the iteration period of the resulting system is determined by the maximum

cycle mean of5 . This is because the synchronization edges alone determine the interaction
between processors; an IPC edge without synchronization does not constrain the execution of the

corresponding processors in any way.

6.3 Computing Buffer Bounds from apd Gy,
After all the optimizations are complete we have a final synchronization graph
Gs = (V. (Bpc—F +F')) that preserve§;,. . Since the synchronization edg€ in are the

ones that are finally implemented, it is advantageous to calculate the self-timed buffeBgound

26

start(snk(e)), B =end(src(g), k—delay(g)) . (7)

Similarly,

start(snk(e), B 2end(src(e), k—delay(e)) .
Noting thatsrc (e,) is the same ask(e;) ,we get

start(snk(e,), B =end(snk(g), k—delay(g)) .

Causality impliesend(v B >start(v, K , so we get
start(snk(e,), B =start(snk(g), k—delay(s)) . (8)
Substituting (7) in (8),

start(snk(e,), B 2end(src(g), k—delay(e) —delay(e;)) .

Continuing alongp in this manner, it can easily be verified that
start(snk(e,), B 2end(src(g), k—delay(g) —delay(e,_,) —... —delay(e,)) ;
that is,
start((snk(g,), B =end(src(g), k—Delay(p)) . QED.

Proof of Theorem 1If € [E,, € 0 E,, then the synchronization constraint due to the edge

holds in both graphs. But for eaelil E,, e 1 E; we need to show that the constraintadue to

start(snk(e), B >end(src(g), k—delay(g)) (9)

holds inG, providechl(src(s), snk(g)) < delay(g) , whichimplies there is at least one path
p= (e,e,e;...,e) fromsrc(e) tosnk(e) inG, (src(e;) = src(e) and
snk(e,) = snk(e)) such thatDelay(p) < delay(¢)

From Lemma 4, existence of such a path implies
start((snk(g,), B =end(src(¢g), k—Delay(p)) .
25

the two, then no synchronization needs to be done before accessing the shared buffer. If there is a
synchronization edge between two actors but no IPC edge, then no shared buffer is allocated

between the two actors; only the corresponding synchronization protocol is invoked.
Thus, initially, the synchronization graj@y is identical3g. . Then we perform trans-

formations on the synchronization graph in order to reduce synchronization costs. The cost mea-

sure and the transformations will be discussed in the following sections of this paper. All of these
transformations must respect the synchronization constraints impli€gby . If we ensure this,

then we only need to implement the synchronization edges of the optimized synchronization

graph. The following theorem is useful to formalize the concept of when the synchronization con-

straints represented by one synchronization gfaph imply the synchronization constraints of

another graplG, . This theorem provides a useful constraint for synchronization optimization,

and it underlies the validity of the main techniques that we will present in this paper.

Theorem 1: The synchronization constraints in a synchronization gapts (V, E,) imply
the synchronization constraints of the synchronization g&apk (V, E,)) if the following con-
dition holds:Ue O E,, e O E, Pg, (src(g), snk(g)) < delay(e) ,thatis, if for each edge that

is presentirG, butnoti, thereis a minimum delay path feonfe) sniqe) Gjin that

has total delay of at mosielay(¢) (number of delays on edge).

(Note that since the vertex sets for the two graphs are identical, it is meaningful to se¢diejo

andsnk(e) as being vertices &, eventhowgh E,, e O E,)

First we prove the following lemma.

Lemma4: Ifthereisapatip = (e,e, e, ...,e) iG, ,then

start(snk(e,), k) =end(src(g),k—Delay(p)) .
Proof of Lemmat:

The following constraints hold along such a path (as per (6))

24

bound smaller thaBg, (e) is imposed on a feedback edge , then a protocol identical to UBS
must be used. The problem of optimally choosing which edges should be subject to stricter buffer
bounds when there is a shortage of shared memory, and the selection of these stricter bounds is an

interesting area for further investigation.

6.2 The Synchronization Graph G = (V, E)

An IPC edge inGj,; represents two functions: 1) reading and writing of data values into
the buffer represented by that edge; and 2) synchronization between the sender and the receiver,
which could be implemented with the UBS protocol or with the BBS protocol. We find it useful to
differentiate these two functions by creating another graph calleyticéronization graph

(Gg), in which edges between actors assigned to different processorssgaltadonization

edges represensynchronization constraints onlRecall from Subsection 5.1 that an IPC edge

(vj v;) of Gjyc represents theynchronization constraint

start(v, k) 2end(\f, k—delay((vj,v.))) Ok > delay(vj,vi) : (6)

Thus, before we perform any optimization on synchronizations, the synchronization graph
is identical to the IPC graph, because every IPC edge represents a synchronization point. How-
ever, we will modify the synchronization graph in certain “valid” ways (which will be defined
shortly) by adding some edges and deleting some others. Thus, at the end of our optimizations,
the synchronization graph may look very different from the IPC graph: it is of the form

(V, (Bpc—F +F')) , whereF is the set of edges deleted from the IPC grapk'and s the set of
edges added to it. At this point the IPC edgeS;jj represent buffer activity, and must be imple-

mented as buffers in shared memory, whereas the synchronization edges represent synchroniza-
tion constraints, and are implemented using the UBS and BBS protocols introduced in the

previous section. If there is an IPC edge as well as a synchronization edge between the same pair
of actors, then the synchronization protocol is executed before the buffers corresponding to the

IPC edge are accessed so as to ensure sender-receiver synchronization. On the other hand, if there

is an IPC edge between two actors in the IPC graph, but there is nho synchronization edge between

23

executessrc (e) ; aad pointerrd (e) for e is maintained on the processor that executes
snk(e) ; and a copy oWr (e) is maintained in some shared memory locstite) . The point-
ersrd (e) andwr (e) are initialized to zero addlay(e) , respectively. Just after each execu-
tion of src (e) , the new data value produced oato is written into the shared memory buffer for
e at offsetwr (e) ;wr (e) is updated by the following operation —
wr (e) « (wr(e) +1) modBg,(e) ; andsv(e) is updated to contain the new valuevofe)
Just before each executionsik(e) , the value containsd () is repeatedly examined until
it is found to benot equalto rd (€) ; then the data value residing at offez{ e) of the shared
memory buffer fore isread; andl (e) is updated by the operation
rd (e) « (rd(e) +1) modBy,(e) .

UBS This mechanism also uses the read/write pointe(g) wairie) , and these are
initialized the same way; however, rather than maintaining a copy 6¢) in the shared mem-

ory locationsv(e) , we maintain a count (initializeddelay(e)) of the number of unread

tokens that currently reside in the buffer. Just adtei(e) execsnés) is repeatedly exam-
ined until its value is found to be less thBg(e) ; then the new data value produced onto is
written into the shared memory buffer fer at offset(e) wr;(e) is updated as in BBS
(except that the new value is not written to shared memory); and the caw{ien is incre-
mented. Just before each executiorsi(e) , the value contairsd &) is repeatedly exam-
ined until it is found to be nonzero; then the data value residing at adfge} of the shared
memory buffer fore is read; the countsv(e) is decremented;rdrie) is updated as in
BBS.

Note that we are assuming that there is enough shared memory to hold a separate buffer of
sizeBy (e) for each feedforward IPC edge @&f. , and a separate buffer dsia for
each feedback IPC edge . When this assumption does not hold, smaller bounds on some of the

buffers must be imposed, possibly for feedback edges as well as for feedforward edges, and in

general, this may require some sacrifice in estimated throughput. Note that whenever a buffer

22

maximum cycle mean at each search step and ascertaining that it is legg than results in a

buffer assignment for the feedforward edges. Although this procedure is efficient, it is greedy (and
suboptimal) because the order that the edges are chosen is arbitrary and may effect the quality
of the final solution.

However, as we will see in Section 10, imposing such a bBynd nais@approach for

bounding buffer sizes and, in terms of synchronization costs, there is a better technique for bound-

ing buffers. Thus, in our final algorithm, we will not in fact find it necessary to use or compute

these bound8

6. Synchronization Model
|

6.1 Synchronization Protocols

We define two basic synchronization protocols for an IPC edge based on whether or not

the length of the corresponding buffer is guaranteed to be bounded from the analysis presented in
the previous section. Given an IPC grdph , and an IPCedg& in | if the length of the corre-
sponding buffer is not bounded — that isgif is a feedforward ed@e of — then we apply a syn-
chronization protocol callednbounded buffer synchronization (UBS) which guarantees that
(a) an invocation oénk(e) never attempts to read data from the buffer unless the buffer contains
at least one tokemnd (b) an invocation okrc (e) never attempts to write data into the buffer
unless the number of tokens in the buffer is less than some pre-specifiesi;|(i@)jit , Which is
the amount of memory allocated to the buffer as discussed in subsection 5.3.

On the other hand, if the topology of the IPC graph guarantees that the buffer lergth for
is bounded by some valugg, (€) (the self-timed buffer boural of), then we use a simpler pro-

tocol, calledbounded buffer synchronization (BBS) that only explicitly ensures (a) above.

Below, we outline the mechanics of the two synchronization protocols that we have defined.

BBS In this mechanism,arite pointerwr (e) for eis maintained on the processor that

21

IPC graph where the IPC eddé, B) could be unbounded when the execution Ame of is less

than that oB , for example. In practice, we need to bound the buffer size of such an edge; we will

CEHo, (R,

D
(@)

Figure 5. An IPC graph with a feedforward edge: (a). original graph (b). imposing bounded
buffers.

denote such an “imposed” bound for a feedforward edge Bylfg) . Since the effect of placing
such a restriction includes “artificially” constrainisg (€) from getting more Ba(e)
invocations ahead afnk(e) , its effect on the estimated throughput can be modelled by adding

the reverse edge, (snk(e), src(9) , wheme = By (e) —delay(e) Bgy (grey edge in

Figure 5(b)). Since the addition of this edge introduces a new cy@gdn , it has the potential to
reduce the estimated throughput; to prevent such a reduBjj@e) must be chosen to be large
enough so that the maximum cycle mean remains unchanged upona@gdsrdk(e) , src(9)

Sizing buffers optimally such that the maximum cycle mean remains unchanged has been
studied by KungLewis and Lo in [15], where the authors propose an integer linear programming
formulation of the problem, with the number of constraints equal to the number of fundamental

cycles in the DFG (potentially an exponential number of constraints).

An efficient albeit suboptimal procedure to deterntize is to note that if

By (€) = ngt () E(Amax]

holds for each feedforward edge , then the maximum cycle mean of the resulting graph does not

exceedAm ax -

Then, doing a binary search 8¢ (e) for each feedforward edge, and computing the

20

by repeated applications of the Bellman-Ford shortest-path algorithm.[Blere, T and are such

thatdelay(e <D Oe[Eipc andt(v) <T OvOV .IfD andl are constants, the complexity

of determiningA, . is simphO (IV]|E|log, (V1))

5.2 Execution Time Estimates

If we only have execution time estimates available instead of exact values, and we set
t (v) in the previous section to be these estimated values, then we obtstirtretedteration

period by calculating\ . Henceforth we will assume that we knowshmated throughput

max

N calculated by setting thigv) values to the available timing estimates.

max
In all the transformations that we present in the rest of the paper, we will preserve the esti-
mated throughput by preserving the maximum cycle me&;ef , withtéagh set to the esti-
mated execution time of . In the absence of more precise timing information, this is the best we

can hope to do.

5.3 Strongly Connected Components and Buffer Size Bounds

In dataflow semantics, the edges between actors represent infinite buffers. Accordingly,
the edges of the IPC graph are potentially buffers of infinite size. However, from Lemma 2, every
feedback edge (an edge that belongs to a strongly connected component, and hence to some

cycle) can only have a finite number of tokens at any time during the execution of the IPC graph.
We will call this constant theelf-timed buffer bound of that edge, and for a feedback edge we

will represent this bound by, (e) . Lemma 2 yields the following self-timed buffer bound:
By, (€) = min({ Delay(C) | Cis a cycle that containe}) (5)

Feedforward edges have no such bound on buffer size; therefore for practical implementa-

tions we need tonposea bound on the sizes of these edges. For example, Figure 5(a) shows an

19

Note thatDelay(C) >0 from Lemma 1.
The quotient in (4) is called tloycle meanof the cycleC . That is, the cycle mean®f

is the sum of the execution times of all verticeson divided by the path delay of . The entire
guantity on the RHS of (4) is called the “maximum cycle meaarthe strongly connected IPC
graphG . If the IPC graph contains more than one SCC, then different SCCs may have different
asymptotic iteration periods, depending on their individual maximum cycle means. In such a case,
the iteration period of the overall graph (and hence the self-timed scheduleiaxineumover

the maximum cycle means of all the SCC%pt . This is because the execution of the schedule
is constrained by the slowest component in the system. Henceforth, we will use the following def-

inition for the maximum cycle mean.

Definition 2: Themaximum cycle meanof an IPC graplG;,. , denoted By, .., is the maxi-

mal cycle mean over all strongly connected componen@ef : That is,

t(v)
— max Dy iszonC E

A .
max cycleC in G ODelay(C) O

A fundamental cycle i5j,. whose cycle mean is equal o, is calieitial cycle of Gy .

Thus the throughput of the system of processors executing a particular self-timed schedule is

equal to the correspondir;\gl— value.
max
For example, in Figure 45, has one SCC, and its maximal cycle mean is 7 time units.
This corresponds to the critical cyclé(B, E), (E, 1), (1,G), (G,B)) t(B) =t(E) =3 ,
t(l) = t(G) = 4 time units, so the total time along this cycle is 14, and there are two delays on
this cycle. Thus the average iteration period for this schedule is 7 time units. We have not

included IPC costs in this calculation, but these can be included in a straightforward manner by

adding thesendandreceivecosts to the corresponding actors performing these operations.

The maximum cycle mean can be calculated in mn(de\/]| E”OC|Iog2 (IM+D+T)) [17]

18

Such an “as soon as possible” (ASAP) firing pattern implies:
start(v, k) = maxg{s(vj, k=delay((v, v;))) +t(v)) | (v, v;) O Eipc} E. (3)

The IPC graph can also be looked upon as a Marked graph [24] or Reiter’'s computation
graph [28]. The same properties hold for it, and we state some of the relevant properties here.

Some of the proofs are omitted.

Lemma 1: [28] Every cycleC in the IPC graph has a path delay of at least one if and only if
the static schedule it is constructed from is free of deadlock. That is, for eaciCcycle

Delay(C) >0.

Lemma 2: The number of tokens in any cycle of the IPC graph is always conserved over all

possible valid firings of actors in the graph, and is equal to the path delay of that cycle.

Proof. For each cyclec inthe IPC graph, the number of tokers on can only change when
actors that are on it fire, because actors n@don remove and place tokens only on edges that are

not part ofC . If C = ((v, V), (VuVy), ..., (Vo_pu V), (Vi vy)) , and any actag

(1<k<n) fires, then in a valid firing exactly one token is moved from the €ege,, v,) to
the edge(v,, v, ,,) ,where,=v, and ,=v, .Thisconserves the total number of tokens on
C. QED.

Lemma 3: The asymptotic iteration period fos&rongly connectetPC graphG when actors

execute as soon as data is available at all inputs is given by [28]:

t(v)
T - max D& iSZOI’]C El (4)
cycleCin G ODelay(C) O

17

Definition 1: The functionstart(v, K [z" (non-negative integer) represents the time at which

the k th execution of the actor starts in the self-timed schedule. The fueatiigry R [z"
represents the time at which tke th execution of the &ctor endsg, and produces data tokens at
its output edges. Since we are interested ikthe th execution of each akter for2, 3 ... , we

setstart(v, K = 0 andend(vy B = 0 fok<0 as the “initial conditions”.

As per the semantics of a DFG, each edqevi) Gigd represents the following data

dependency constraint:
start(v, k) = end('t k — delay((vj, vi))), D(vj, v;) U Ejpe, Uk> delay(vj, Vi) . (1)

This is because each actor consumes one token from each of its input edges when it fires. Since
there are alreadglelay(e) tokens on each incoming édge ofwactor , aketlimlay(e)
tokens must be produced en beforelkhe th execution of can begin. Thus thea@pr

must have completed itek — delay(€)) th execution befere can begin its th execution. The
constraints in (1) are due both to IPC edges (representing synchronization between processors)

and to edges that represent serialization of actors assigned to the same processor.

To model execution times of actors we associate executiort {ime with each vertex of
the IPC grapht (v) assigns a positive integer execution time to eactvactor (again, the actual
execution time can be interpretedtds) cycles of a base clock)(@&nd includes the time
taken to execute all IPC operatiossiid andreceives) that the actov performs. Thus the IPC
graph isGjpc = (V, Eppe, t) . Now, we can substitute

end('t k) = start(vj, k) +1t (vj)

in (1) to obtain
start(v, k) zstart(vj, k—delay((vj,vi))) +t(vj) for each edgg(v;, v;) in Gjpc. (2)

M

In the self-timed schedule, actors fire as soon as data is available at all their input edges.

16

completed. Thus if actons,, v,, ..., v,, are assigned to the same processor in that ordgp,then

n

would have a cyclg (vy, V,), (V,, V3), ooy (V_1: V), (V,,Vp)) , witldelay((v, v,)) =1

If there areP processors in the schedule, then we Rave such cycles corresponding to each pro-
cessor.

As mentioned before, edges@ that cross processor boundaries after scheduling repre-
sent inter-processor communication. We will call such etR€sedges Instead of explicitly
introducing speciadendandreceiveprimitives at the ends of the IPC edges, we will model these
operations as part of the sending and receiving actors themselves. For example, in Figure 3, data
produced by actoB is sent from processor 2 to processor 1; instead of inserting explicit commu-

nication primitives in the schedule, the send is modelled within &tor while the receive is mod-

elled as part of actde . This is done so as not to cl@jgr with extra communication actors.
Even if the actual implementation uses explicit send and receive actors, communication can still
be modelled in the above fashion because we are simply clustering the source of an IPC edge with

the corresponding send actor and the sink with the receive actor.

Foreach IPC edge 8 we add an IPC eelge Gji between the same actors. We also
set the delay on this edge equal to the dalalay(e) , on the corresponding &lge in . Thus,
we add an IPC edge frofd to @), with a single delay on it. The delay corresponds to the

fact that execution oE is allowed to lag the execution of by one iteration. An IPC edge repre-
sents a buffer implemented in shared memory, and initial tokens on the IPC edge are used to ini-
tialize the shared buffer. In a straightforward self-timed implementation, each such IPC edge
would also be a synchronization point between the two communicating processors. Part of our
goal is to identify IPC edges that do not require sender synchronization or receiver synchroniza-
tion.

The IPC graph has the same semantics as a DFG, and its execution models the execution
of the corresponding self-timed schedule. The following definitions are useful to formally state
the constraints represented by the IPC graph. Time is modelled as an integer that can be viewed as

a multiple of a base clock.

15

We model a self-timed schedule using a D&fg. = (V, Eyc) derived from the original
SDF graphG = (V, B) and the given self-timed schedule. The g&ph , which we will refer
to as thanter-processor communication modelling graphor IPC graph for short, models the
fact that actors o assigned to the same processor execute sequentially, and it models con-
straints due to inter-processor communication. For example, the self-timed schedule in Figure 3

can be modelled by the IPC graph in Figure 4. The IPC edges are shown using dashed arrows. The

rest of this subsection describes the construction of the IPC graph in detalil.

The IPC graph has the same vertex\6et Gas , corresponding to the set of &tors in
The self-timed schedule specifies the actors assigned to each processor, and the order in which
they execute. For example in Figure 3, processor 1 exeutes artel then repeatedly. We model
this in Gj, by drawing a cycle around the vertices correspondifig to Eand , and placing a
delay on the edge frole #® . The delay-free edge ffom E to represents the fact khat the th

execution ofA precedes tlke th executiorEof , and the edgeHromA to with a delay repre-

sents the fact that tHe th executionfof can occur only aftefkhel) th execukBon of has
D D
e‘.@ __b_ *Cﬁ@
Proc 1| ! Proc 4
: |
! I
|
G
D D
Proc 2 Proc 3

Figure 4. The IPC graph for the schedule in Figure 3.

14

period, represent the sequential execution of actors assigned to a single processor, and represent

dependencies across iterations of the DFG.

5.1 Inter-processor Communication Modelling Graph

Proc 4
Proc 1 @‘\
Execution Time Estimates

4 ’/ ACHF :2

B, E 03
<‘D—@<—‘® ol 4
oroc 2 @ Proc 3

(a) DFG “G”
ot (T € -
Proc2 | B F| - Recei
Proc3| C | S B = Receive
Proc 4 | H | |:| = ldle
(b) Schedule on four processors
A E [A E Al E [A E Al E |
B F | B [F] B | F | FI1] B [F1 |
c | G C G c | G C G cl | o |
| H | | H | ! H] | H | | | H]
-t -

14

(c) Self-timed execution

Figure 3. Self-timed execution.

13

etc.) would be prohibitive for the embedded multiprocessor machines for applications such as
DSP that we are considering.

Interfaces between hardware and software are typically implemented using memory-
mapped registers in the address space of the programmable processor (again a kind of shared
memory), and synchronization is achieved using flags that can be tested and set by the program-
mable component, and the same can be done by an interface controller on the hardware side [12].

Under the model above, the benefits that our proposed synchronization optimization tech-
niques offer become abundantly clear. Each synchronization that we eliminate directly results in
one less synchronization check, or a shared memory access. For example, where a processor
would have to check a flag in shared memory before executeageprimitive, eliminating
that synchronization implies there is no longer need for such a check. This translates to one less
shared memory read. Such a benefit is especially significant for simplifying interfaces between a
programmable component and a hardware componeatdor areceivewithout the need for
synchronization implies that the interface can be implemented in a non-blocking fashion, greatly
simplifying the interface controller. As a result, eliminating a synchronization directly results in
simpler hardware in this case.

Thus the metric for the optimizations we present in this paper is the total number of
accesses to shared memory that are needed for the purpose of synchronization in the final multi-
processor implementation of the self-timed schedule. This metric will be defined precisely in Sec-

tions 6 and 7.

5. Analysis of Self-Timed Execution
|

In this section we develop an analytical model to study the execution of a self-timed
schedule. To motivate this section, let us consider the execution of the four-processor schedule in
Figure 3. Inter-processor communication is ignored in the self-timed execution in Figure 3(c). If
the timing estimates are accurate, the schedule execution settles into a repeating pattern spanning
two iterations ofG , and the average estimated iteration period is 7 time units.

We would like to model such a self-timed execution and determine the average iteration

12

have multiple edges connecting them in the same “direction”. Such graphs can very easily be pre-

processed into a form to which the techniques of this paper can be applied; the details are beyond

the scope of this paper. Finallyxfy are verticegih E) , we define, y) to represent an

edge (that is not necessarilyin) whose source and sink vertices arey and , respectively, and

whose delay im (assumed non-negative).
For elaboration on any of the graph-theoretic concepts presented in this section, we refer

the reader to [7].

4. Model of a Multiprocessor Executing a Self-timed Schedule
|

We model a multiprocessor executing a self-timed schedule as follows. Each processor is
assigned a sequential list of actors, some of whicBerdandreceiveactors, which it executes
in an infinite loop. When a processor executes a communication actor, it synchronizes with the
processor(s) it communicates with. Thus exactly when a processor executes each actor depends
on when, at run time, all input data for that actor is available, unlike the fully-static case where no
such run time check is needed. In this paper we use “processor” in slightly general terms: a pro-
cessor could be a programmable component, in which case the actors mapped to it execute as
software entities, or it could be a hardware component, in which case actors assigned to it are
implemented and execute in hardware. See [13] for a discussion on combined hardware/software
synthesis from a single dataflow specification. Examples of application specific multiprocessors
that use programmable processors and some form of static scheduling are described in [4, 14, 33].

Inter-processor communication between processors is assumed to take place via shared
memory. Thus the sender writes to a particular shared memory location and the receiver reads
from that location. The shared memory itself could be global memory between all processors, or it
could be distributed between pairs of processors (as a hardware first-in-first-out (FIFO) queues or
dual ported memory for example). Each inter-processor communication edge in our DFG thus
translates into a buffer of a certain size (which we will discuss later) in shared memory.

Sender-receiver synchronization is also assumed to take place by setting flags in shared

memory. Special hardware for synchronization (barriers, semaphores implemented in hardware,

11

Delay(p') = Delay(p , for all pathsp’ directed from tp .Givena D& |, and vertices

X,y in G, we definep; (%, y) tobeequalto if there is no path foomy to , and equal to the

path delay of a minimum-delay path from o if there exist one or more pathxfrom to .If

G is understood, then we may drop the subscript and simply varite “ " in plagg;of “

By asubgraphof (V, E) , we mean the directed graph formed by ®hy1 V together
with the set of edge§e U E|src(e), snk(€) OV} . We denote the subgraph associated with
the vertex-subset" bgubgraph(V') .We say th@at, E) stiongly connectedif for each
pair of distinct vertices, y , there is a path directed from y to and there is a path directed from
y to x. We say that a subsét 1V s strongly connectadliigraph(V') is strongly con-
nected. Astrongly connected component (SCQO)f (V, E) is a strongly connected subset
V' 0V such that no strongly connected subse¥ of properly cortains V' . If is an SCC, then
when there is no ambiguity, we may also say tddgraph(V') is an SAL;. If Cand are

distinct SCCs in(V, E) ,we sayth@, ipeedecessor SC®f C, if there is an edge directed
from some vertex i€, to some vertex@ C; istzcessor SCOf C, if C, is a predeces-
sor SCC ofC, . An SCC issource SCCif it has no predecessor SCC; and an SCGsiska

SCCifit has no successor SCC. An edge fisaalforward edge of(V, E) ifitis not contained
in an SCC, or equivalently, if it is not contained in a cycle; an edge that is contained in at least one

cycle is called é&eedbackedge.

Given two arbitrary set§;, arf, , we define the difference of these two sets by
S-S, = {sO §|s 0 S} , and we denote the number of elements in a finit§ set|§ by . Also,

if r is a real number, then we denote the smallest integer that is greater than or equaltd by
In this paper, we assume that the source and sink vertices uniquely identify an edge in a
DFG, and thus we may represent an eelgeE by the ordereispaire) , snk(e)) . Itis con-

ceivable, however, that a practical system may have a DFG in which one or more pairs of vertices

10

and “resynchronization”, defined and addressed in Sections 9 and the appendix — are fundamen-
tally different from Shaffer’s technique since they address issues that are specific to our more gen-

eral context of overlapped, iterative execution.

3. Background Terminology and Notation
|
We frequently represent a DFG by an ordered p¥irE) , Wiere is the set of vertices
andE is the set of edges. We refer to the source and sink vertices of a graph edge (eby
andsnk(e) , and we denote the delay®n dslay(e) . We sayahat ositpot edgeof
src(e) , and thate is amput edgeof snk(e) .
Givenx, yOV , we say that is@redecessoinof y if there existee [E such that
src(e) = xandsnk(e) = y;we saythat issuccessoofy ifyis a predecessorof .A

pathin (V, E) is afinite, nonempty sequen¢e,, e,, ..., €,) , Where each is a memker of ,

andsnk(e,) = src(eg) ,snk(e,) = src(eg) ,...,snk(e,_,) = src(g) .We say that the

pathp = (e,e, ...,e) containseache, and each subsequencdefe,,....,.e) p ; is

directed from src(e,) to snk(e,) ; and each member of

{src(e),src(e), ..., src(e,), snk(g,)} isonp. A path thatis directed from some vertex to

itself is called aycle, and afundamental cycleis a cycle of which no proper subsequence is a
cycle.

If p= (e,e,...,e,) isapathin a DFG, then we define theth delay of p, denoted

n
Delay(p) , by Delay(p) = Z delay(g) . Since the delays on all DFG edges are restricted to
i=1

be non-negative, it is easily seen that between any two vexiigesV , either there is no path
directed fromx toy , or there exists a (not necessarily unigiug@num-delay path betweenx

andy . That is, if there is a path framm yo , then there exists gopath xfrolg to such that

In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza-
tions in the self-timed execution of a dataflow graph. However, this work, like that ofeDadtz
does not allow the execution of successive iterations of the dataflow graph to overlap. It also
avoids having to consider dataflow edges that have delay. The technique that we present for
removing redundant synchronizations can be viewed as a generalization of Shaffer’s algorithm to
handle delays and overlapped, iterative execution, and we will discuss this further in Section 8.
The other major techniques that we present for optimizing synchronization — handling the feed-

forward edges of theynchronization grapkto be defined in Section 6), discussed in Section 10,

Proc. 2: Az A,

Proc.1: A
(@)

Proc. 3: A Ag
(b)
Proc. 1 start > A » | A,
E
Proc. 2 start B A—»> 2 A,
?
|
Proc. 3 start > A, |7 A,
(c)

Figure 2. (a). ADFG.
(b). A three-processor self-timed schedule for (a).
(c). An illustration of execution under the placement of barriers.

run-time synchronization overhead [8]. In this approach, a shared-memory MIMD computer is
augmented with hardware support that allows arbitrary subsets of processors to synchronize pre-
cisely with respect to one another by executing a synchronization operation dmlea If a

subset of processors is involved in a barrier operation, then each processor in this subset will wait
at the barrier until all other processors in the subset have reached the barrier. After all processors
in the subset have reached the barrier, the corresponding processes resume exegatibayin-
chrony.

In [8], the barrier mechanism is applied to minimize synchronization overhead in a self-
timed schedule with hard lower and upper bounds on the task execution times. The execution time
ranges are used to detect situations where the earliest possible execution time of a task that
requires data from another processor is guaranteed to be later than the latest possible time at
which the required data is produced. When such an inference cannot be made, a barrier is instanti-
ated between the sending and receiving processors. In addition to performing the required data
synchronization, the barrier resets (to zero) the uncertainty between the relative execution times
for the processors that are involved in the barrier, and thus enhances the potential for subsequent
timing analysis to eliminate the need for explicit synchronizations.

The techniques of barrier MIMD do not apply to the problem that we address because they
assume that a hardware barrier mechanism exists; they assume that tight bounds on task execution
times are available; they do not address iterative, self-timed execution, in which the execution of
successive iterations of the dataflow graph can overlap; and even for non-iterative execution,
there is no obvious correspondence between an optimal solution that uses barrier synchroniza-
tions and an optimal solution that employs decoupled synchronization checks at the sender and
receiver enddirected synchronization). This last point is illustrated in Figure 2. Here, in the

absence of execution time bounds, an optimal application of barrier synchronizations can be

obtained by inserting two barriers — one barrier ackgss Agnd , and the other barrier across
A, andA; . This is illustrated in Figure 2(c). However, the corresponding collection of directed
synchronizationsA, té; ,anfl; Aq) is not sufficient since it does not guarantee that the

data required bA; fromA; is available befdkg begins execution.

times rarely display large variations so that self-timed scheduling is viable for the applications
under consideration. If additional timing information is available, such as guaranteed upper and
lower bounds on the execution times of actors, it is possible to use this information to further opti-
mize synchronizations in the schedule. However, use of such timing bounds is beyond the scope
of this paper.

Our paper is organized as follows. In Section 2 we review some of the related work in syn-
chronization optimization, and in Section 3 we list some of the notation and terminology used in
this paper. Sections 4, 5 and 6 present our graph-theoretic framework for analyzing and optimiz-
ing synchronization. In Section 7, we formally define the optimization problem addressed in this
paper in terms of the model and results developed in Sections 4-6. Sections 8, 9 and 10 present the
algorithms used for our proposed synchronization optimization scheme. Finally, in Section 11 we
present the complete synchronization algorithm, and then end with conclusions in Section 12, and
discuss directions for future work in Section 13. For reference, some of the terminology and nota-

tion used in this paper is summarized in a glossary at the end of the paper.

2. Related Work
|

Numerous research efforts have focused on constructing efficient parallel schedules for
DFGs. Parhi and Messerschmitt [23], and Chao and Sha [6] have developed systematic tech-
niques for exploiting overlapped execution to generate schedules that have optimal throughput,
assuming zero cost for IPC. Other work has focused on taking IPC costs into account during
scheduling, such as that described in [1, 21, 27, 31]; these efforts have not attempted to exploit
overlapped execution of dataflow graph iterations. Similarly, in [10], Govindarajan and Gao
develop techniques to simultaneously maximize throughput, possibly using overlapped execution,
and minimize buffer memory requirements under the assumption of zero IPC cost. Our work can
be used as a post-processing step to improve the performance of implementations that use any of
these scheduling techniques when the goal is a self-timed implementation.

Among the prior work that is most relevant to this paper i®énger-MIMD principle of

Dietz, Zaafrani, and O’keefe, which is a combined hardware and software solution to reducing

actorsA and are estimates that are used to determine the processor assignment and ordering for
the schedule. However, the processors need to explicitly synchronize at each communication

point since the estimated execution times may not be exact or may vary from one iteration of the
DFG to the next. Clearly, if these times were known precisely, we could eliminate the need for
explicit synchronization by determining precisely when each actor fires and when the send and

the receive primitives are executed. If we ignore communication costs, that is, we sssdme
andreceives take zero time, then the estimated iteration pefiod () for this example is 4 time

units.

A straightforward implementation of a self-timed schedule would require that for each
inter-processor communication (IPC) the sending processor ascertains that the buffer it is writing
to is not full, and the receiver ascertains that the buffer it is reading from is not empty. The proces-
sors block (suspend execution) when the appropriate condition is not met. Such sender-receiver
synchronization can be implemented in many ways depending on the particular hardware plat-
form under consideration: in shared memory machines, such synchronization involves testing and
setting semaphores in shared memory; in machines that support synchronization in hardware
(such as barriers), special synchronization instructions are used; and in the case of systems that
consist of a mix of programmable processors and custom hardware elements, synchronization is
achieved by employing interfaces that support blocking reads and writes.

In each kind of platform, every IPC that requires a synchronization check costs perfor-
mance, and sometimes extra hardware complexity: semaphore checks cost execution time on the
processors, synchronization instructions that make use of synchronization hardware also cost exe-
cution time, and blocking interfaces in hardware/software implementations require more hard-
ware than non-blocking interfaces [12].

The main goal of this paper is to present algorithms and techniques that reduce the rate at
which processors must access shared memory for the purpose of synchronization in embedded,
shared-memory multiprocessor implementations of iterative dataflow programs. Thus the optimi-
zation procedure that we propose can be used as a post-processing step in any static scheduling
technique for reducing synchronization costs in the final implementation. In this paper we assume

that “good” estimates are available for the execution times of actors and that these execution

might be compiled from a high-level language, which makes estimation of exact execution time
difficult, or the processor itself might take a non-deterministic number of cycles to complete an
instruction, if it employs a cache for instance. These estimates may not even have guaranteed
worst case bounds, if, for example, at run time a processor has to respond to events that require
error handling or has to process user inputs, which are infrequent (rare) compared to the sample
rate at which the DFG executes.

Under such an assumption on timing, it is best to discard the exact timing information
from the fully static schedule, but still retain the processor assignment and actor ordering speci-
fied by the fully static schedule. This results ingb#-timed scheduling strategy of [19]. Each
processor executes the actors assigned to it in the order specified at compile time. Before firing an
actor, a processor waits for the data needed by that actor to become available. Thus in self-timed
scheduling processors are required to perform run-time synchronization when they communicate
data. Such synchronization is not necessary in the fully-static case because exact (or guaranteed
worst case) times could be used to determine firing times of actors such that processor synchroni-
zation was ensured. As a result, the self-timed strategy incurs greater run-time cost than the fully-
static case because of the synchronization overhead.

An example of a DFG and a corresponding self-timed schedule are shown in Figure 1.
Note that inter-processor communication primitiv@sn@dandreceiveactors) need to be inserted
when data cross processor boundaries. As a result, a multiprocessor schedule for a DFG falls nat-

urally into a message passing inter-processor communication model. The execution times for the

D
Proc 1 B | B |
@ e Procd A] A]
\D/(< Z time units

|:| : Send
Execution times: A: 4, B: 2 time units
B : Receive

[] :1dle

Figure 1. An example of a self-timed schedule.

ple, if tokens produced by the th execution of aétor are consumed ik th2) th execution
of actorB , then the edge frod B will contain two initial tokens, or delays. We will represent

an edge witm delays by annotating it with the symlmd“ " in the dataflow graph representa-

tion (see Figure 1).

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling
computations in the algorithm. By “scheduling” we collectively refer to the task of assigning
actors in the DFG to processors, ordering execution of these actors on each processor, and deter-
mining when each actor fires (begins execution) such that all data precedence constraints are met.
Each of these three tasks may be performed either at run time (a dynamic strategy) or at compile
time (a static strategy). In [19] and [20] the authors propose a scheduling taxonomy based on
which of these tasks are performed at compile time and which at run time; in this paper we will
use the same terminology that was introduced there. To reduce run time computation costs it is
advantageous to perform as many of the three scheduling tasks as possible at compile time.
Which of these can be effectively performed at compile time depends on the information avail-
able about the execution time of each actor — that is, on the amount of time it takes for each actor

to complete execution once it fires.

The performance metric that is of interest for evaluating schedules is the average iteration

periodT , which is the average time that it takes for all the actors in the graph to be executed once.

Equivalently, we could use the throughﬂ'ﬁiL (that is, the number of iterations of the graph exe-

cuted per unit time) as a performance metric. Thus an optimal schedule is one that mihimizes

In thefully-static scheduling strategy of [4], all the three scheduling tasksssigning
actors to processors, ordering their execution on each processor, as well as determining exactly
when an actor firels are performed at compile time. This strategy involves the least possible
amount of runtime overhead. All the processors run in lock step and no explicit synchronization is
required when they exchange data. However, this strategy assumes that exact execution times of
actors are known. Such an assumption is in general not practical. A more realistic assumption for
DSP algorithms is that good estimates for the execution times of actors can be obtained. These

estimates may not be accurate down to the clock cycle, because the object code for the processors

3

1. Introduction
|

In this paper, we address the problem of minimizing the overhead of inter-processor syn-
chronization for arterative synchronous dataflow prograhat is implemented on a shared-
memory multiprocessor system. This study is motivated by the widespread popularity of the syn-
chronous dataflow (SDF) model in DSP design environments; the suitability of this model for
exploiting parallelism; and the high overhead of run-time synchronization, which can severely
limit the speedup obtained by moving an implementation of an SDF program from a uniprocessor
implementation to a multiprocessor implementation. Our work is particularly relevant when esti-
mates are available for the task execution times, and actual execution times are usually close to
the corresponding estimates, but deviations from the estimates of (effectively) arbitrary magni-
tude can occasionally occur due to phenomena such as cache misses or error handling.

SDF and closely related models have been used widely as foundations for numerous
graphical DSP design environments, in which signal processing applications are represented as
hierarchies of block diagrams. Some examples are described in [16, 22, 25, 26, 29]. In SDF, as in
other forms of dataflow, a program is represented as a directed graph in which the vertices, called
actors, represent computations, and the edges specify FIFO channels for communication between
actors. The terrsynchronousefers to the requirement that the number of data values produced
(consumed) by each actor onto (from) each of its output (input) edges is a fixed value that is
known at compile time [18] and should not be confused with the use of “synchronous” in syn-
chronous languages [2]. The techniques developed in this paper assume that the input SDF graph
is homogeneoysvhich means that the numbers of data values produced or consumed are identi-
cally unity. However, since efficient techniques have been developed to convert general SDF
graphs into equivalent (for our purposes) homogeneous SDF graphs [18], our techniques apply
equally to general SDF graphs. In the remainder of this paper, when we refiatafl@v graph
(DFG) we imply a homogeneous SDF graph.

It is sometimes necessary to ingtayson the edges of a dataflow graph, to represent
initial tokens on the edges. These delays (which can also be interpreted as registers) specify

dependencies between iterations of the actors in iteratively executed dataflow graphs. For exam-

— Technical report, University of California Berkeley: UCB/ERL M95/2, 1/5/95 —

OPTIMIZING SYNCHRONIZATION IN MULTIPROCESSOR
IMPLEMENTATIONS OF ITERATIVE DATAFLOW PROGRAMS

|
Shuvra S. Bhattacharyya, Sundararajan Sriram, and Edward A. Lee

January 5, 1995

ABSTRACT

This paper is concerned with multiprocessor implementations of embedded applications
specified as iterative dataflow programs, in which synchronization overhead tends to be signifi-
cant. We develop techniques to alleviate this overhead by determining a minimal set of processor
synchronizations that are essential for correct execution. Our study is based in the caetéxt of
timedexecution ofterative dataflowprograms. An iterative dataflow program consists of a data-
flow representation of the body of a loop that is to be iterated an indefinite number of times; data-
flow programming in this form has been studied and applied extensively, particularly in the
context of signal processing software. Self-timed execution refers to a combined compile-time/
run-time scheduling strategy in which processors synchronize with one another only based on
inter-processor communication requirements, and thus, synchronization of processors at the end
of each loop iteration does not generally occur.

We introduce a new graph-theoretic framework for analyzing and optimizing synchroniza-
tion overhead in self-timed, iterative dataflow programs. This framework is based on a data struc-
ture, which we call thenter-processor communicatiqiPC) graph that was first proposed in
[32] for analyzing the throughput of self-timed systems. We show that the comprehensive tech-
niques that have been developed for removéaigindant synchronizatioms non-iterative pro-
grams can be extended in this framework to optimally remove redundant synchronizations in our
context. We also introduce two new optimizations for reducing synchronization overhead in self-
timed, iterative dataflow programs resynchronizatiomnd the conversion of the synchroniza-
tion graph into a strongly connected graph.

This research was partially funded as part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U. S. Air Force (under the RASSP program, contract
F33615-93-C-1317), Semiconductor Research Corporation (project 94-DC-008), National Science Foun-
dation (MIP-9201605), Office of Naval Technology (via Naval Research Laboratories), the State of Cali-
fornia MICRO program, and the following companies: Bell Northern Research, Cadence, Dolby, Hitachi,
Mentor Graphics, Mitsubishi, NEC, Pacific Bell, Philips, Rockwell, Sony, and Synopsys.

S. S. Bhattacharyya is with the Semiconductor Research Laboratory, Hitachi America, Ltd., 179
East Tasman Drive., San Jose, California 95134, USA.

S. Sriram and E. A. Lee are with the Department of Electrical Engineering and Computer Sci-
ences, University of California at Berkeley, California 94720, USA.

