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DFG.

The execution time or estimated execution time of actor .

UBS Unbounded buffer synchronization. A synchronization protocol that must be used
for feedforward edges of the synchronization graph. This protocol requires four
synchronization accesses per iteration period.
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Glossary

Same as  with the DFG  understood from context.

If there is no path in  from  to , then ; otherwise,

, where  is any minimum-delay path from  to .

Given a path ,  is the sum of the edge delays over all edges in .

Represents an edge whose source and sink vertices are  and , respectively, and

whose delay is equal to .

Represents the maximum cycle mean of a DFG.

BBS Bounded buffer synchronization. A synchronization protocol that may be used for
feedback edges in a synchronization graph. This protocol requires two synchroni-
zation accesses per schedule period.

critical cycle A fundamental cycle in a DFG whose cycle mean is equal to the maximum cycle
mean of the DFG.

cycle mean The cycle mean of a cycle  in a DFG is equal to , where  is the sum of the

execution times of all vertices on , and  is the sum of delays of all edges in .

estimated throughput Given a DFG with execution time estimates for the actors, the esti-
mated throughput is the reciprocal of the maximum cycle mean.

feedback edge An edge that is contained in at least one cycle.

feedforward edge An edge that is not contained in a cycle.

maximum cycle mean Given a DFG, the maximum cycle mean is the largest cycle mean
over all fundamental cycles in the DFG.

SCC Strongly connected component.

self-timed buffer bound Given a feedback edge  in a synchronization graph, the self-timed
buffer bound is an upper bound on the number of tokens that can
simultaneously reside on  (the buffer size).

synchronization access An access to shared memory that used to update or examine the sta-
tus of a synchronization variable.

synchronization cost The average number of synchronization accesses that must be per-
formed per iteration period in the self timed implementation of a

ρ x y,( ) ρG G

ρG x y,( ) G x y ρG x y,( ) ∞=
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. Thus, each  is a member

of . Also, since  is a resynchronization of , each member

of  must be preserved by some , and thus each

must be contained in some .QED.

Proposition 2:  is a minimal cover for .

Proof: (By contraposition). Suppose there exists a cover  (among the members

of ) for , with . Then, each  is contained in some , and from Observation 2,

 subsumes . Thus,

 is a resynchronization of . Since , it

follows that  is not a minimal resynchronization of .QED.

In summary, we have shown how to convert an arbitrary instance  of the set cover-

ing problem into an instance  of the pairwise resynchronization problem, and we have shown

how to convert a solution  of this instance of pairwise resynchronization

into a solution  of . It is easily verified that all of the steps involved in

deriving  from , and in deriving  from  can be performed in poly-

nomial time. Thus, from the NP hardness of set covering [7], we can conclude that the pairwise

resynchronization problem is NP hard.

Zi x X∈ t( )vsrc t( )vsnk,( ) x( )vsrc x( )vsnk,( )subsumes{ }= Zi

T do vi wi,( ) i 1 2 … m, , ,{ }∈( ){ } G

x( )vsrc x( )vsnk,( ) x X∈{ } vi wi,( ) x X∈
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Z1 Z2 … Zm, , ,{ } X
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T X m′ m< x X∈ Yj
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.

Observation 4: For each , the only vertices in  that have a delay-free path to

are those vertices contained in . It follows that for any vertex  in the sink SCC

of , .

Now suppose that  is a minimal resynchronization of . For each

, exactly one of the following two cases must apply

Case 1:  for some . In this case, we pick an arbitrary

that contains , and we set  and . From Observation 3, it follows that

.

Case 2:  for some . We set  and .

From Observation 4, we have .

Observation 5: From our definition of the s and s,  is

a minimal resynchronization of . Also, each  is of the form ,

where .

Now, for each , we define

.

Proposition 1:  covers .

Proof: From Observation 5, we have that for each , there exists a  such that

χ x( )vsrc y,( ) e F∈ e( )src x( )vsrc={ }⊆ e x( ){ }=

t T∈ G t( )vsrc

x( )vsrc x t∈{ } y
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(b). For each

• Instantiate an edge directed from  to .

• Instantiate an edge directed from  to , and place one delay

on this edge.

• Instantiate an edge directed from  to .

• Instantiate an edge directed from  to , and place one delay on

this edge.

3. For each vertex  that has been instantiated, instantiate an edge directed from  to itself, and

place one delay on this edge.

Observe from our construction, that whenever  is contained in , there is an

edge directed from  ( ) to  ( ), and there is also an edge (having

unit delay) directed from  ( ) to  ( ). Thus, from the assumption

stated in (13), it follows that  forms one SCC,

 forms another SCC, and  is the set of feedforward

edges.

Let  denote the DFG that we have constructed, and as in Section 9, define

 for each ordered pair of vertices

 such that  is contained in the source SCC of , and  is contained in the sink

SCC of . Clearly,  gives an instance of the pairwise resynchronization problem.

Observation 2: By construction of , observe that

, for all . Thus, for

all , .

Observation 3: For each , all input edges of  have unit delay on them. It follows

that for any vertex  in the sink SCC of ,
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Appendix

In this appendix, we establish the NP completeness of the resynchronization problem,

which was defined in Section 9. We establish this by reducing an arbitrary instance of the set-cov-

ering problem, a well-known NP-hard problem, to an instance of the pairwise resynchronization

problem, which is a special case of the resynchronization problem that occurs when there are

exactly two SCCs. The intuition behind this reduction is explained in Section 9.

Suppose that we are given an instance  of set covering, where  is a finite set, and

 is a family of subsets of  that covers . Without loss of generality, we assume that

 doesnotcontain a proper nonempty subset  that satisfies .(13)

We can assume this without loss of generality because if this assumption does not hold, then we

can apply the construction below to each “independent subfamily” separately, and then combine

the results to get a minimal cover for .

The following steps specify how we construct a DFG from . Except where stated

otherwise, no delay is placed on the edges that are instantiated.

1. For each , instantiate two vertices  and , and instantiate an edge

directed from  to .

2. For each

(a). Instantiate two vertices  and .
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T X X
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suited to addressing resynchronization in practical applications. Conceivably, there is also oppor-

tunity to devise new heuristics that exploit certain properties of applications with regards to resyn-

chronization that are not taken into account by existing set covering heuristics. We have shown

that a heuristic for general (not just pairwise) resynchronization can be derived from any given

heuristic for pairwise resynchronization by simply applying the pairwise resynchronization heu-

ristic to each pair of distinct SCCs. It appears to be a significant challenge to devise a more global

approach to the general (not just pairwise) resynchronization problem.

Finally, there is considerable room for refinement in our techniques for converting the syn-

chronization graph into a strongly connected graph. For example, currently the ordering of SCCs

in the source and sink chains is performed arbitrarily. However, their ordering can impact both the

total shared memory requirement (self-timed buffer bounds), and the number of redundant syn-

chronizations introduced by the new edges added byConvert-to-SC-graph. Thus, it would be use-

ful to study techniques to optimize the ordering of the source and sink SCCs with regard to one or

both of these criteria.

Our technique for computing the delays on the edges introduced byConvert-to-SC-graph

is optimal under the assumption that there is one source SCC or one sink SCC. Although this

assumption is frequently satisfied in practice, it may be interesting to examine whether or not an

efficient scheme can be devised to determine the delays optimally for general synchronization

graphs.

Figure 21. An example of how execution time guarantees can be used to reduce
buffer size bounds.

A B

3D
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that if the actual execution time of each actor invocation is always equal to the corresponding exe-

cution time estimate, then the throughput of an implementation that incorporates our synchroniza-

tion minimization techniques is never less than the throughput of a corresponding unoptimized

implementation — that is, we never accept an opportunity to reduce synchronization overhead if

it constrains execution in such a way that throughput is increased. Thus, our work is particularly

relevant to embedded DSP applications, where the price of synchronization is high, and accurate

execution time estimates are often available, but guarantees on these execution times do no exist

due to infrequent events such as cache misses and error handling.

13.  Further Work

Several directions for further work emerge from the study presented in this paper. Perhaps

the most significant is the incorporation of timing guarantees — for example, hard upper and

lower execution time bounds, as Dietz, Zaafrani, and O’keefe use in [8]; and handling of a mix of

actors some of which have guaranteed execution time bounds, and some that have no such guar-

antees, as Filo, Ku, Coelho Jr., and De Micheli do in [9]. Such guarantees could be used to detect

situations in which IPC data will always be available (produced) before it is needed for consump-

tion. Upper and lower bounds also make it an interesting issue to define what the objective of

“preserving estimated throughput” means — for example: How can we formulate a constraint,

incorporating guaranteed execution time upper and lower bounds, to efficiently prevent synchro-

nization optimization from introducing cycles that can significantly degrade the throughput?

Also, execution time guarantees can be used to compute tighter buffer size bounds. As a

simple example, consider Figure 21. Here, the analysis of Section 5.3 yields a buffer size

, since  is the minimum path delay of a cycle that contains . How-

ever, if  and  are guaranteed to be equal to the same constant, then it is easily verified

that a buffer size of  will suffice for . Systematically applying execution time guarantees

to derive lower buffer size bounds appears to be a promising direction for further work.

We have shown that pairwise resynchronization can be attacked with arbitrary heuristics

for set covering. It would be useful to study which of the existing set covering heuristics are best

Bfb A B,( )( ) 3= 3 A B,( )

t A( ) t B( )

1 A B,( )
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memory buffer sizes , which specifies the amount of memory

to allocate in shared memory for each IPC edge.

The pseudocode for the complete algorithm is given in Figure 20. Here,RemoveRedun-

dantSynchsis invoked twice, once at the beginning, and once again afterConvert-to-SC-graph

andDetermineDelays. It is possible that the edge(s) added byConvert-to-SC-graph can make

some of the existing synchronization edges redundant, and thus, applyingRemoveRedun-

dantSynchsafterConvert-to-SC-graphmay be beneficial.

A code generator can then accept  and , and allocate a buffer in shared memory for

each IPC edge  specified by  of size , and generate synchronization code for the

synchronization edges represented in . These synchronizations may be implemented using the

BBS protocol described in Subsection 6.1. The synchronization cost in the final implementation is

thus equal to , where  is the number of synchronization edges in .

12.  Summary

We have addressed the problem of minimizing synchronization overhead when imple-

menting self-timed, iterative dataflow programs. We have introduced a graph-theoretic analysis

framework that allows us to determine the effects on throughput and buffer sizes of modifying the

points in the target program at which synchronization functions are carried out, and we have used

this framework to extend an existing technique — removal of redundant synchronization edges —

for noniterative programs to the iterative case, and to develop two new methods for reducing syn-

chronization overhead — resynchronization and the conversion of the synchronization graph into

a strongly connected graph. Finally, we have shown how our techniques can be combined, and

how the result can be post processed to yield a format from which IPC code can easily be gener-

ated.

The premise of our work is that estimates are available for the execution times of actors

such that the actual execution time of an actor exhibits large variation from its corresponding esti-

mate only with very low frequency. Accordingly our techniques have been devised to guarantee

Bfb e( ) e is an IPC edge inGipc{ }

Gipc Gs

e Gipc Bfb e( )

Gs

2ns ns Gs
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11.  Complete Algorithm

In this section we outline our complete synchronization optimization algorithm. The input

to the algorithm is a DFG and a parallel schedule for it. The output from the algorithm is an IPC

graph , which represents buffers as IPC edges; a strongly connected synchroni-

zation graph , which represents synchronization constraints; and a set of shared-

Gipc V Eipc,( )=

Gs V Es,( )=

Function SynchronizationOptimize
Input:  A DFG  and a self-timed schedule for this DFG.

Output: , , and .

1. Extract  from  and the given parallel schedule (which specifies actor assignment to
processors and the order in which each actor executes on a processor)

2. Set /* Each IPC edge is also a synchronization
 edge to begin with */

3.

4.

5.

6.

/* Remove any synchronization edges that have become redundant as a result of the appli-
cation of Convert-to-SC-graph. */
7.

8. Calculate buffer sizes  for each IPC edge  in . (to be used for implementing
the BBS protocol)

a) Compute , the path delay of a minimum-delay

path in  directed from  to

b) Set

G

Gipc Gs Bfb e( ) e is an IPC edge inGipc{ }

Gipc G

Gs Gipc=

Gs RemoveRedundantSynchs Gs( )=

Gs Resynchronize Gs( )=

Gs Convert-to-SC-graph Gs( )=

Gs DetermineDelays Gs( )=

Gs RemoveRedundantSynchs Gs( )=

Bfb e( ) e Gipc

ρGs
e( ) e( )snk,src( )

Gs e( )src e( )snk

Bfb e( ) ρGs
e( ) e( )snk,src( ) e( )delay+=

Figure 20. The complete synchronization optimization algorithm.
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number of sink SCCs, it is obvious that . With this observation, and the observation that

, we have thatDetermineDelays and its variations are . Further-

more, it is easily verified that the time complexity ofDetermineDelays dominates that ofConvert-

to-SC-graph,so the time complexity of applyingConvert-to-SC-graph andDetermineDelays in

succession is also .

Although the issue of deadlock does not explicitly arise in algorithmDetermineDelays,

the algorithm does guarantee that the output graph is not deadlocked, assuming that the input

graph is not deadlocked. This is because (from Lemma 1) deadlock is equivalent to the existence

of a cycle that has zero path delay, and is thus equivalent to an infinite maximum cycle mean.

SinceDetermineDelaysdoes not increase the maximum cycle mean, it follows that the algorithm

cannot convert a graph that is not deadlocked into a deadlocked graph.

10.3 Related Work

Converting a mixed grain DFG that contains feedforward edges into a strongly connected

graph has been studied by Zivojnovic [35] in the context of retiming when the assignment of

actors to processors is fixed beforehand. In this case, the objective is to retime the input graph so

that the number of IPC edges that have nonzero delay is maximized, and the conversion is per-

formed to constrain the set of possible retimings in such a way that an integer linear programming

formulation can be developed. The technique generates two dummy vertices that are connected by

an edge; the sink vertices of the original graph are connected to one of the dummy vertices, while

the other dummy vertex is connected to each source. It is easily verified that in a self-timed execu-

tion, this scheme requires at least four more synchronization accesses per graph iteration than the

method that we have proposed. We can obtain further relative savings if we succeed in detecting

one or more beneficial resynchronization opportunities. The effect of Zivojnovic’s retiming algo-

rithm on synchronization overhead is unpredictable since one hand an IPC edge becomes “easier

to make redundant” when its delay increases, while on the other hand, the edge becomes less use-

ful in making other IPC edges redundant since the path delay of all paths that contain the edge

increase.
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graphs that have a single source SCC, form a widely-applicable solution for optimally determin-

ing the delays on the edges created byConvert-to-SC-graph.

If we assume that there exist constants  and  such that , for all , and

 for all edges , then the complexity ofBellmanFordis  [17];

and we have  and , so that . Thus, each invocation ofMinD-

elayruns in  time. It follows that

DetermineDelays— and any of the variations ofDetermineDelaysdefined above — is

, where  is the number of edges instantiated byConvert-to-SC-

graph. Since , where  is the number of source SCCs, and  is the

Figure 19. A synchronization graph, after processing by Convert-to-SC-graph, such that

there is no -way partition  of the fundamental cycles introduced by Con-

vert-to-SC-graph that satisfies both (1). Each  contains and (2). Each

does not contain any member of . Here, the fundamental cycles intro-

duced by Convert-to-SC-graph (the grey dashed edges are the edges instantiated by Con-

vert-to-SC-graph) are , , , and

. It is easily verified that these cycles cannot be decomposed into a partition

of the above form even if we are allowed to reorder the ‘s.
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easily verified that when it is applicable, this modified algorithm always yields an optimal solu-

tion.

As far as we are aware, there is no straightforward extension ofDetermineDelaysto gen-

eral graphs (multiple source SCCs and multiple sink SCCs) that is guaranteed to yield optimal

solutions. The fundamental problem for the general case is the inability to derive the partitions

 ( ) of the fundamental cycles (IPC sink-source paths) intro-

duced byConvert-to-SC-graphsuch that each contains , and contains no

other members of , where  is the set of edges added byConvert-to-

SC-graph. The existence of such partitions was crucial to our development of Theorem 6 because

it implied that once the minimum values for  are successively computed, “transfer-

ring” delay from some  to some , , is never beneficial. Figure 19 shows an example of a

synchronization graph that has multiple source SCCs and multiple sink SCCs, and that does not

induce a partition of the desired form for the fundamental cycles.

However,DetermineDelays can be extended to yield heuristics for the general case in

which the original synchronization graph  contains more than one source SCCandmore than

one sink SCC. For example, if  denote edges that were instantiated byConvert-

to-SC-graph “between” the source SCCs — with each  representing the th edge created —

and similarly,  denote the sequence of edges instantiated between the sink SCCs,

then algorithmDetermineDelayscan be applied with the modification that , and

, where  is the sink-source edge from

Convert-to-SC-graph.

The derivation of alternative heuristics for general synchronization graphs appears to be

an interesting direction for further research. It should be noted, though, that practical synchroniza-

tion graphs frequently contain either a single source SCC or a single SCC, or both — such as the

example of Figure 15 — so that algorithmDetermineDelays,together with its counterpart for

W0 W1 … Wm 1–, , , P0 P1 … Pm 1–, , ,

Wi Pi( ) e0 e1 … ei, , ,
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. Also, we see that the set  — the set of fundamental cycles that contain , and do

not contain  — consists of a single cycle  that contains three edges. By inspection of this

cycle, we see that the minimum delay on  required to guarantee that its cycle mean does not

exceed  is 1. Thus, the  iteration of theFor loop inDetermineDelays computes

. Next, we see that  consists of a single cycle that contains five edges, and we see that

two delays must be present on this cycle for its cycle mean to be less than or equal to . Since

one delay has been placed on ,DetermineDelayscomputes  in the  iteration of

theFor loop. Thus, the solution determined byDetermineDelays for Figure 18 is

; the resulting self-timed buffer bounds of  and  are, respectively,  and

; and .

Now  is an alternative assignment of delays on  that preserves the esti-

mated throughput of the original graph. However, in this assignment, we see that the self-timed

buffer bounds of  and  are identically equal to , and thus, , one greater than the cor-

responding sum from the delay assignment  computed byDetermineDelays. Thus, if

denotes the graph returned byConvert-to-SC-graphfor the example of Figure 18, we have that

, where  denotes the sum of the

self-timed buffer bounds over all IPC edges in .

Algorithm DetermineDelays can easily be modified to optimally handle general graphs

that have only onesourceSCC. Here, the algorithm specification remains essentially the same,

with the exception that for ,  denotes the edge directed from a vertex in

 to a vertex in , where  is the ordering of sink SCCs generated in

Step 2 of the corresponding invocation ofConvert-to-SC-graph(  still denotes the sink-source

edge instantiated byConvert-to-SC-graph). By adapting the reasoning behind Theorem 6, it is
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λmax i 0=
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by iterations  ofDetermineDelays.

After extending this analysis successively to each of the remaining iterations

 of thefor loop inDetermineDelays, we arrive at the following result.

Theorem 6: Suppose that  is a synchronization graph that has exactly one sink SCC; let

and  be as in Figure 17; let  be the result of applying

DetermineDelaysto  and ; and let  be any sequence of  non-nega-

tive integers such that  has the same estimated throughput as

. Then ,

where  denotes the sum of the self-timed buffer bounds over all IPC edges in  induced

by the synchronization graph .

Figure 18 illustrates a solution obtained fromDetermineDelays. Here we assume that

, for each vertex , and we assume that the set of IPC edges is  (for clarity,

we are assuming in this example that the IPC edges are present in the given synchronization

graph). The grey dashed edges are the edges added byConvert-to-SC-graph. We see that  is

determined by the cycle in the sink SCC of the original graph, and inspection of this cycle yields
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Figure 18. An example used to illustrate a solution obtained by algorithm DetermineDelays.
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transformation increases the path delay of each member of  while leaving the path delay of

each member of  unchanged, and thus, from Theorem 2, such a transformation cannot reduce

the self-timed buffer bound of any IPC edge. Furthermore, apart from transferring delay from

to , the only other change that can be made to  or  — without introduc-

ing a member of  whose cycle mean exceeds  — is to increase one or both of

these values by some positive integer amount(s). Clearly, such a change cannot reduce the self-

timed buffer bound on any IPC edge.

Thus, we see that the values  and  computed byDetermineDelaysfor

and , respectively, optimally ensure that no member of  has a cycle mean

that exceeds . After computing these values,DetermineDelayscomputes the minimum delay

 on  that is required for all members of  to have cycle means less than or equal to ,

assuming that  and . Given the “configuration”

( , , ), transferring delay from  to

increases the path delay of all members of , while leaving the path delay of each member of

 unchanged; and transferring delay from  to  increases the path delay across

, while leaving the path delay across  unchanged. Thus, by an argument similar to

that given to establish the optimality of  with respect to , we can deduce that

(1). The values computed byDetermineDelaysfor the delays on  guarantee that no

member of  has a cycle mean that exceeds ; and (2). For any other assign-

ment of delays  to  that preserves the estimated throughput across

, and for any IPC edge  such that an IPC sink-source path of  is contained in

, the self-timed buffer bound of  under the assignment  is

greater than or equal to self-timed buffer bound of  under the assignment  computed
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Function DetermineDelays

Input : Synchronization graphs  and , where  is the graph computed by Con-

vert-to-SC-graph when applied to . The ordering of source SCCs generated in Step 2 of

Convert-to-SC-graph is denoted . For ,  denotes the edge

instantiated by Convert-to-SC-graph from a vertex in  to a vertex in . The sink-source

edge instantiated by Convert-to-SC-graph is denoted .

Output : Non-negative integers  such that the estimated throughput of

 equals the estimated throughput of .

BellmanFord( ) /* compute the max. cycle mean of  */

/* an upper bound on the delay required for any  */

For

/* fix the delay on  to be  */

End For
Return .

Function MinDelay( )

Input : A synchronization graph , an edge  in , a positive real number , and a positive

integer .

Output : Assuming  has estimated throughput no less than , determine the mini-

mum  such that the estimated throughput of  is no less than .

Perform a binary search in the range  to find the minimum value of

 such that BellmanFord( ) returns a value less than or equal to .

Return this minimum value of .
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Figure 17. An algorithm for determining the delays on the edges introduced by algorithm Con-

vert-to-SC-graph. This algorithm assumes that the original synchronization graph ( ) has only

one sink SCC.
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Figure 17 outlines the restricted version of our algorithm that applies when the synchroni-

zation graph  has exactly one source SCC. Here,BellmanFord is assumed to be an algorithm

that takes a synchronization graph  as input, and applies the Bellman-Ford algorithm discussed

in pp. 94-97 of [17] to return the cycle mean of the critical cycle in ; if one or more cycles exist

that have zero path delay, thenBellmanFord returns .

Algorithm DetermineDelays is based on the observations that the set of IPC sink-source

paths introduced byConvert-to-SC-graphcan be partitioned into  nonempty subsets

 such that each member of  contains 1 and contains no other

members of , and similarly, the set of fundamental cycles introduced by

DetermineDelayscan be partitioned into  such that each member of  con-

tains  and contains no other members of .

By construction, a nonzero delay on any of the edges  “contributes to reduc-

ing the cycle means of all members of ”. AlgorithmDetermineDelaysstarts (iteration

of theFor loop) by determining the minimum delay  on  that is required to ensure that none

of the cycles in  has a cycle mean that exceeds the maximum cycle mean  of . Then

(in iteration ) the algorithm determines the minimum delay  on  that is required to

guarantee that no member of  has a cycle mean that exceeds , assuming that

.

Now, if , , and , then for any positive integer

,  units of delay can be “transferred from  to ” without violating the property that no

member of  contains a cycle whose cycle mean exceeds . However, such a

1. See Figure 17 for the specification of what the s represent.
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cycle mean may exceed that of the critical cycle in . Thus, we may have to insert delays on the

edges added byConvert-to-SC-graph. The location (edge) and magnitude of the delays that we

add are significant since (from Theorem 2) they affect the self-timed buffer bounds of the IPC

edges. Since the self-timed buffer bounds determine the amount of memory that we allocate for

the corresponding buffers, it is desirable to prevent deadlock and decrease in estimated through-

put in such a way that we minimize the sum of the self-timed buffer bounds over all IPC edges. In

this subsection, we present a simple and efficient algorithm for addressing this goal. Our algo-

rithm produces an optimal result if  has only one source SCC or only one sink SCC; in other

cases, the algorithm must be viewed as a heuristic. In practice, the assumptions under which we

can expect an optimal result are frequently satisfied.

For simplicity in explaining our optimality result, we first specify a restricted version of

the algorithm that assumes only one sink SCC. After explaining the optimality of this restricted

algorithm, we discuss how it can be modified to yield an optimal algorithm for the general single-

source-SCC case, and finally, we discuss how it can be extended to provide a heuristic for arbi-

trary synchronization graphs.

We will use the following notation in the remainder of this section: if  is a

DFG;  is a sequence of distinct members of ; and

, then  denotes the DFG

, where each  is defined by

, , and . Thus,

 is simply the DFG that results from “changing the delay” on

each  to the corresponding new delay value .

Definition 6: Suppose that  is a synchronization graph that preserves . AnIPC sink-

source path in  is a minimum-delay path in  directed from  to , where  is an

IPC edge (in ). The existence of such a path is guaranteed by Definition 3.
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this example. Here, the dashed edges represent the synchronization edges in the synchronization

graph returned byConvert-to-SC-graph. The actual solution computed by a given implementation

of Convert-to-SC-graph will depend on exactly how the ordering in Step 1 is constructed, and

thus may differ from the one shown here. However, any solution for Figure 15 generated from an

implementation ofConvert-to-SC-graph will have six synchronization edges in the result, as

shown in Figure 16.

10.2 Insertion of Delays

One issue remains to be addressed in the conversion of a synchronization graph  into a

strongly connected graph  — the proper insertion of delays so that  is not deadlocked, and

does not have lower estimated throughput than . The potential for deadlock and reduced esti-

mated throughput arise because the conversion to a strongly connected graph necessarily must

introduce one or more new fundamental cycles. In general, a new cycle may be delay-free, or its

D

D

DD

Figure 16. A possible solution obtained by applying Convert-to-SC-graph to the
example of Figure 15.
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Gs
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ˆ

Gs
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results from a four-processor schedule of a synthesizer for plucked-string musical instruments in

seven voices based on the Karplus-Strong technique. This graph contains  synchronization

edges (the dashed edges), all of which are feedforward edges, so the synchronization cost is

 synchronization access per iteration period. Since the graph has one source SCC and

one sink SCC, only one edge is added byConvert-to-SC-graph, and adding this edge reduces the

synchronization cost to  — a 42% savings.

Figure 16 shows the topology of a possible solution computed byConvert-to-SC-graphon

Figure 15. The synchronization graph, after redundant synchronization edges are
removed, induced by a four-processor schedule of a music synthesizer based on
the Karplus-Strong algorithm.
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accesses satisfies

,

and thus, . We have established the following result.

Theorem 5: Suppose that  is a synchronization graph, and  is the graph that results from

applying algorithmConvert-to-SC-graphto . Then the synchronization cost of  is less than or

equal to the synchronization cost of .

For example, without the edges added byConvert-to-SC-graph(the dashed grey edges) in

Figure 14, there are  feedforward edges, which require 24 synchronization accesses per iteration

period to implement. The addition of the 4 dashed edges requires 8 synchronization accesses to

implement these new edges, but allows us to use UBS for the original feedforward edges, which

leads to a savings of 12 synchronization accesses for the original feedforward edges. Thus, the net

effect achieved byConvert-to-SC-graphin this example is a reduction of the total number of syn-

chronization accesses by . As another example, consider Figure 15, which shows

the synchronization graph topology (after redundant synchronization edges are removed) that

D D

D

D

D D
D

Figure 14. An illustration of a possible solution obtained by algorithm Convert-to-SC-graph.
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graph theoretic fact that in a connected graph ,  must exceed . Now, it is

easily verified that the number of new edges introduced byConvert-to-SC-graphis equal to

, where  is the number of source SCCs, and  is the number of sink

SCCs. Thus, the number of synchronization accesses per iteration period, , that is required to

implement the edges introduced byConvert-to-SC-graphis , while the

number of synchronization accesses, , eliminated byConvert-to-SC-graph(by allowing the

feedforward edges of the original synchronization graph to be implemented with BBS rather than

UBS) equals . It follows that the net change  in the number of synchronization

Figure 13. An algorithm for converting a synchronization graph that is not strongly
connected into a strongly connected graph.

Function Convert-to-SC-graph
Input : A synchronization graph  that is not strongly connected.
Output : A strongly connected graph obtained by adding edges between the
SCCs of .

1. Generate an ordering  of the source SCCs of , and similarly,

generate an ordering  of the sink SCCs of .

2. Select a vertex  that minimizes  over .

3. For
• Select a vertex  that minimizes  over .

• Instantiate the edge .

End For
4. Select a vertex  that minimizes  over .

5. For
• Select a vertex  that minimizes  over .

• Instantiate the edge .

End For
6. Instantiate the edge .
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of synchronization accesses required (per iteration period) for the transformed graph is less than

or equal to the number of synchronization accesses required for the original synchronization

graph. Through a practical example, we show that this transformation can significantly reduce the

number of required synchronization accesses. Also, we develop a technique to compute the delay

that should be added to each of the new edges added in the conversion to a strongly connected

graph. This technique computes the delays in such a way that the estimated throughput of the IPC

graph is preserved with minimal increase in the shared memory storage cost required to imple-

ment the IPC edges.

10.1 Adding Edges to the Synchronization Graph

Figure 13 presents our algorithm for transforming a synchronization graph that is not

strongly connected into a strongly connected graph. This algorithm simply “chains together” the

source SCCs, and similarly, chains together the sink SCCs. The construction is completed by con-

necting the first SCC of the “source chain” to the last SCC of the sink chain with an edge that we

call thesink-source edge. From each source or sink SCC, the algorithm selects a vertex that has

minimum execution time to be the chain “link” corresponding to that SCC. Minimum execution

time vertices are chosen in an attempt to minimize the amount of delay that must be inserted on

the new edges to preserve the estimated throughput of the original graph. In Subsection 10.2, We

discuss in detail the selection of delays for the edges introduced byConvert-to-SC-graph.

It is easily verified that algorithmConvert-to-SC-graphalways produces a strongly con-

nected graph, and that a conversion to a strongly connected graph cannot be attained by adding

fewer edges than the number of edges added byConvert-to-SC-graph. Figure 14 illustrates a pos-

sible solution obtained by algorithmConvert-to-SC-graph. Here, the black dashed edges are the

synchronization edges contained in the original synchronization graph, and the grey dashed edges

are the edges that are added byConvert-to-SC-graph. The dashed edge labeled  is the sink-

source edge.

Assuming the synchronization graph is connected, the number of feedforward edges

must satisfy , where  is the number of SCCs. This follows from the fundamental

es

nf

nf nc 2–>( ) nc
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Figure 12. An algorithm for resynchronization that is derived from an arbitrary algorithm Cover
for the set covering problem

Function Resynchronize
Input: A synchronization graph .

Output: A synchronization graph  that preserves .

Compute  for each ordered pair of vertices in . /* used in Pairwise */

For  each SCC  of

For  each SCC  of

If  is a predecessor SCC of Then

Compute

End If
End For

End For

Return

Function Pairwise( , , )

Input:  Two strongly connected synchronization graphs  and , and a set  of edges

whose source vertices are all in  and whose sink vertices are all in .

Output:  A resynchronization .

For  each vertex  in

For  each vertex  in

End For
End For

Return
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nomial time) such a minimal resynchronization from an arbitrary minimal synchronization. The

key here is that if  is a member of a minimal resynchronization , then there is always a mem-

ber  of  such that , and

thus, replacing  with  in  yields a minimal resynchronization.

We have pointed out that the correspondence we have established between set-covering

and pairwise resynchronization allows us to adapt any heuristic for set-covering into a heuristic

for pairwise resynchronization. Furthermore applying such a heuristic for pairwise resynchroniza-

tion to each pair of SCCs in a general synchronization graph gives a heuristic for the general

resynchronization problem. Figure 12 below shows how any algorithmCoverthat solves the set

covering problem can be applied to derive a heuristic algorithm for resynchronization.

10.  Making the Synchronization Graph Strongly Connected

In Section 6, we defined two different synchronization protocols — bounded buffer syn-

chronization (BBS), which has a cost of 2 synchronization accesses per iteration period, and can

be used whenever the associated edge is contained in a strongly connected component of the syn-

chronization graph; and unbounded buffer synchronization (UBS), which has a cost of 4 synchro-

nization accesses per iteration period. We pay the increased overhead of UBS whenever the

associated edge is a feedforward edge of the synchronization graph.

One alternative to implementing UBS for a feedforward edge  is to add synchronization

edges to the synchronization graph so that  becomes encapsulated in a strongly connected com-

ponent; such a transformation would allow  to be implemented with BBS. However, extra syn-

chronization accesses will be required to implement the new synchronization edges that are

inserted. In this section, we show that by adding synchronization edges through a certain simple

procedure, the synchronization graph can be transformed into a strongly connected graph in such

a way that the overhead of implementing the extra synchronization edges is always at least com-

pensated by the savings attained by being able to avoid the use of UBS. That is, the total number

e′ R

p∗ x∗ y∗,( )= ti( )vsrc ti( )vsnk,( ){ } χ e′( )snk e′( )snk,( ) χ p∗( )⊆

e′ d0 x∗ y∗,( ) R
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— and that the set of feedforward edges is the set of edges that correspond to members of .

Now, recall that a major correspondence between the given instance of set covering and the

instance of pairwise resynchronization defined by Figure 11(a) is that

, for each . Thus, if we can find a minimal resynchronization of

Figure 11(a) such that each edge in this resynchronization is directed from some  to the

corresponding , then the associated 's form a minimum cover of . For example, it is

easy, albeit tedious, to verify that the resynchronization illustrated in Figure 11(b),

, is a minimal resynchronization of Figure

11(a), and from this, we can conclude that  is a minimal cover for . From inspection of

the given sets  and , it is easily verified that this conclusion is correct.

This example illustrates how an instance of pairwise resynchronization can be constructed

(in polynomial time) from an instance of set covering, and how a solution to this instance of pair-

wise resynchronization can easily be converted into a solution of the set covering instance. Our

proof of the NP-hardness of pairwise resynchronization, presented in the appendix, is a formal-

ized generalization of this example. We summarize with the following theorem.

Theorem 4: The pairwise resynchronization problem is NP-hard, and thus, the resynchroniza-

tion problem is NP-hard.

Proof: A formal proof is given in the appendix.

Two natural questions that arise when studying the example of Figure 11 are “How do we

know that a minimal resynchronization exists such that each edge is directed from a  to

the corresponding ?” and “If such a minimal resynchronization exists, how can we

obtain one efficiently from an arbitrary minimal resynchronization?” In the appendix, we will

show that such a minimal synchronization always exists, and that we can always derive (in poly-

X
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graph contains two SCCs —  and

1. In general, these edges will not be sufficient to ensure that the resulting graph has exactly two SCCs. In the
appendix, we will show that for our reduction of set covering to pairwise resynchronization, we can assume
without loss of generality that the family  is such that the construction outlined here guarantees a graph with
exactly two SCCs.

T

Figure 11. (a). An instance of the pairwise resynchronization problem that is
derived from an instance of the set covering problem.

(b). The DFG that results from a solution to this instance.
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implement a zero-delay synchronization edge directed from the first vertex of the ordered pair

to the second vertex of . Clearly then,  is a resynchronization if and only if

each  is contained in at least one  — that is, if and only if

 covers . Thus, solving the pairwise resynchronization

problem for  is equivalent to finding a minimal cover for  given the family of subsets

.

Figure 11 helps to illustrate this intuition and our method (defined formally in the appen-

dix) for converting an instance of the set covering problem to an instance of pairwise resynchroni-

zation. Suppose that we are given the set , and the family of subsets

, where , , and . To construct an

instance of the pairwise resynchronization problem, we first create two vertices and an edge

directed between these verticesfor each member of ; we label each of the edges created in this

step with the corresponding member of . Then for each , we create two vertices

and . Next, for each relation  (there are six such relations in this example), we cre-

ate two zero-delay edges — one directed from the source of the edge corresponding to

, and another directed from  to the sink of the edge corresponding to . This

last step has the effect of making each pair  preserve exactly those edges

that correspond to members of ; in other words, after this construction,

, for each . Finally, for each edge created in the previous step, we

create a corresponding feedback edge oriented in the opposite direction, and having a unit delay1.

Figure 11 shows the graph that results from this construction process. Observe that the

p
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applying such a heuristic to each pair of SCCs in a general synchronization graph yields a heuris-

tic for the general (not just pairwise) resynchronization problem. This is fortunate since the set

covering problem has been studied in great depth, and efficient heuristic methods have been

devised [7].

The following definition facilitates the developments of this section and the appendix.

Definition 5: Given a synchronization graph , let  and  be two ordered pairs

of vertices in . We say that subsumes  in  if .

We may omit the qualification “in ” if the graph in question is understood from context.

Intuitively, every ordered pair of vertices subsumes itself, and if  and

are distinct, then  subsumes  if a zero-delay synchronization edge directed from

 to  would make a synchronization edge (regardless of its delay) directed from  to

redundant.

The following fact is easily verified from Definitions 4 and 5.

Fact 1: Suppose that  is a synchronization graph that contains exactly two SCCs,  is the set

of feedforward edges in , and  is a resynchronization of . Then for each , there exists

 such that  subsumes  in .

An intuitive correspondence between the pairwise resynchronization problem and the set

covering problem can be derived from Fact 1. Suppose that  is a synchronization graph with

exactly two SCCs  and  such that each feedforward edge is directed from a member of

to a member of . We start by viewing the set  of feedforward edges in  as the finite set that

we wish to cover, and with each member  of , we associate the

subset of  defined by . Thus,  is the

set of feedforward edges of  whose corresponding synchronizations can be eliminated if we
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Definition 4: Given a synchronization graph  consisting of feedforward edges

, aresynchronizationof  is a finite set  of edges

that are not necessarily contained in , but whose source and sink vertices are in , such that (a).

 are feedforward edges in the DFG ; and (b).  pre-

serves  — that is,  for all .

If we let  denote the graph in Figure 10, then the set of feedforward edges is

;  is a resynchronization of ; Figure 10(b) shows

the DFG ; and from Figure 10(b), it is easily verified that , , and

 satisfy conditions (a) and (b) of Definition 4.

We refer to the problem of finding a resynchronization with the fewest number of ele-

ments as theresynchronization problem. In the appendix, we formally show that the resynchro-

nization problem is NP-hard, and in this section, we explain the intuition behind this result. To

establish the NP-hardness of the resynchronization problem, we examine a special case of the

problem that occurs when there are exactly two SCCs, which we call thepairwise resynchroni-

zation problem, and we derive a polynomial-time reduction from the classicset covering prob-

lem[7], a well-known NP-hard problem, to the pairwise resynchronization problem. In the set

covering problem, one is given a finite set  and a family  of subsets of , and asked to find a

minimal (fewest number of members) subfamily  such that . A subfamily of

is said tocover if each member of  is contained in some member of the subfamily. Thus, the

set covering problem is the problem of finding a minimal cover.

Although the correspondence that we establish between the resynchronization problem

and set covering shows that the resynchronization problem probably cannot be attacked optimally

with a polynomial-time algorithm, we will show that the correspondence allows any heuristic for

set covering to be adapted easily into a heuristic for the pairwise resynchronization problem, and
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edge , then two of the original synchronization edges —  and  —

become redundant. Since redundant synchronization edges can be removed from the synchroniza-

tion graph to yield an equivalent synchronization graph, we see that the net effect of adding the

synchronization edge  is to reduce the number of synchronization edges that need to be

implemented by . In Figure 10(b), we show the synchronization graph that results from inserting

theresynchronization edge  into Figure 10(a), and then removing the redundant syn-

chronization edges that result.

Definition 4 gives a formal definition of resynchronization that we will use throughout the

remainder of this paper. This considers resynchronization only “across” feedforward edges.

Resynchronization that includes inserting edges into the SCCs is also possible; however, for our

objectives, it must be verified that each new synchronization edge introduced in an SCC does not

decrease the estimated throughput. To avoid this complication, which requires a check of signifi-

cant complexity ( , where  is the modified synchronization graph —

this is using the Bellman Ford algorithm described in [17])for eachcandidate resynchronization

edge, we focus only on feedforward resynchronization in this paper.
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Figure 10. An example of resynchronization.
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synchronization along only one of the 8 synchronization edges — edge . In contrast, if

we applyRemoveRedundantSynchs, we can detect the redundancy of  as well as four

additional redundant synchronization edges — , , , and .

Thus,RemoveRedundantSynchsreduces the number of synchronizations from 8 down to 3 — a

reduction of 62%. Figure 9 shows the synchronization graph of Figure 8 (d) after all redundant

synchronization edges are removed. It is easily verified that the synchronization edges that remain

in this graph are not redundant; explicit synchronizations need only be implemented for these

edges.

9.  Resynchronization

It is sometimes possible to reduce the total number of irredundant synchronization edges

by adding new synchronization edges to a synchronization graph. We refer to the process of add-

ing one or more new synchronization edges and removing the redundant edges that result as

resynchronization (defined more precisely below). Figure 10(a) illustrates this concept. Here, the

dashed edges represent synchronization edges. Observe that if we insert the new synchronization

A1 B2,( )

A1 B2,( )

A3 B1,( ) A4 B1,( ) B2 E1,( ) B1 E2,( )

A1 A2 B1 C1 D1 E1 F1 F2

D

A3 A4 B2 E2 F3 F4

Figure 9. The synchronization graph of Figure 8(d) after all redundant synchroni-
zation edges are removed.
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clarity, the actors are drawn as boxes, rather than circles. Actors  and  represent the sub-

systems that, respectively, supply and consume data to/from the filter bank system;  and  each

represents a parallel combination of decimating high and low pass FIR analysis filters; and

represent the corresponding pairs of interpolating synthesis filters. The amount of delay on the

edge directed from  to  is equal to the sum of the filter orders of  and . For more details on

the application represented by Figure 8(a), we refer the reader to [34].

To construct a periodic, parallel schedule we must first determine the number of times

 that each actor  must be invoked in the periodic schedule. Systematic techniques to

compute these values are presented in [18]. Next, we must determine the precedence relationships

between the actor invocations. In determining the exact precedence relationships, we must take

into account the dependence of a given filter invocation on not only the invocation that produces

the token that is “consumed” by the filter, but also on the invocations that produce the  preced-

ing tokens, where  is the order of the filter. Such dependence can easily be evaluated with an

additional dataflow parameter on each actor input that specifies the number ofpast tokens that are

accessed [27]1. Using this information, together with the invocation counts specified by , we

obtain the precedence relationships specified by the graph of Figure 8(b), in which the th invoca-

tion of actor  is labeled , and each edge  specifies that invocation  requires data

produced by invocation  iteration periods after the iteration period in which the

data is produced.

A self-timed schedule for Figure 8(b) that can be obtained from Hu’s well-known list

scheduling method [11] is specified in Figure 8(c), and the synchronization graph that corre-

sponds to the IPC graph of Figure 8(b) and Figure 8(c) is shown in Figure 8(d). All of the dashed

edges in Figure 8(d) are synchronization edges. If we apply Shaffer’s method, which considers

only those synchronization edges that do not have delay, we can eliminate the need for explicit

1. It should be noted that some SDF-based design environments choose to forego parallelization across mul-
tiple invocations of an actor in favor of simplified code generation and scheduling. For example, in the
GRAPE system, this restriction has been justified on the grounds that it simplifies inter-processor data man-
agement, reduces code duplication, and allows the derivation of efficient scheduling algorithms that operate
directly on general SDF graphs without requiring the use of the acyclic precedence graph (APG) [3].
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Figure 8. (a). A multi-resolution QMF filter bank used to illustrate the benefits of removing
redundant synchronizations. (b). The precedence graph for (a). (c). A self-timed, two-pro-
cessor, parallel schedule for (a). (d). The initial synchronization graph for (c).
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there is a path from the source of the edge to the sink — here we only need “reachability” infor-

mation; no notion of path delay is required. As in the context of our problem, the removal of a

redundant synchronization edge in Shaffer’s synchronization graph cannot negate the redundancy

of another redundant synchronization edge, and consequently, the order in which synchronization

edges are tested for redundancy is not significant. Shaffer’s algorithm begins by computing a

boolean value  for each ordered pair of vertices  that is set totrue if and only if

there is a path directed from  to . Then, the algorithm proceeds in a manner equivalent to Step

3 of RemoveRedundantSynchs, with the exception that the predicate of theif statement is changed

from  to . Thus,

RemoveRedundantSynchs can be viewed as a direct extension of Shaffer’s algorithm to handle

pure self-timed, iterative execution of a DFG; Shaffer’s algorithm accounts for self-timed execu-

tion only within a graph iteration, and in general, it can be applied to iterative dataflow programs

only if all processors are forced to synchronize between graph iterations.

Shaffer states that the complexity of his algorithm is ; however, the complexity

can be improved (at least for sparse graphs) by using a more efficient technique to compute the

function . The function  in Shaffer’s method can be computed in  time [7], and

using this method, Shaffer’s algorithm achieves a time complexity of . Thus, in

exchange for its dependence on a less flexible execution model, Shaffer’s solution, with appropri-

ate choice of , attains a slightly more favorable asymptotic complexity than ourRemoveRedun-

dantSynchs.

8.4 An Example

In this subsection, we illustrate the benefits of removing redundant synchronizations

through a practical example. Figure 8(a) shows an abstraction of a three channel, multi-resolution

quadrature mirror (QMF) filter bank, which has applications in signal compression [34]. This rep-

resentation is based on the general (not homogeneous) SDF model, and accordingly, each edge is

annotated with the number of tokens produced and consumed by its source and sink actors. For
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From the definition of a redundant synchronization edge, it is easily verified that the

removal of a redundant synchronization edge does not alter any of the minimum-delay path val-

ues (path delays). That is, given a redundant synchronization edge  in , and two arbitrary

vertices , if we let , then . Thus, none of

the minimum-delay path values computed in Step 1 need to be recalculated after removing a

redundant synchronization edge in Step 3.

Observe that the complexity of FunctionRemoveRedundantSynchs is dominated by Step 1

and Step 3. Since all edge delays are non-negative, we can repeatedly apply Dijkstra’s algorithm

(once for each vertex) to carry out Step 1 in  time; a modification of Dijkstra’s algorithm

can be used to reduce the complexity of Step 1 to  [7]. In Step 3,  is

an upper bound for the number of synchronization edges, and in the worst case, each vertex has

all members of  in its set of successors. Thus, the time complexity of Step 3 is , and

if we use the modification to Dijkstra’s algorithm mentioned above for Step 1, then the time com-

plexity of RemoveRedundantSynchs is

.

8.3 Comparison with Shaffer’s Approach

In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza-

tions in the self-timed execution of a dataflow graph under the (implicit) assumption that the exe-

cution of successive iterations of the dataflow graph are not allowed to overlap. In Shaffer’s

technique, a construction identical to our synchronization graph is used with the exception that

there is no feedback edge that connects the last actor executed on a processor to the first actor exe-

cuted on the same processor. Also, in Shaffer’s construction, edges that have delay are ignored

since only dependences within the same graph iteration are significant. Thus, Shaffer’s synchroni-

zation graph can be assumed to be acyclic.

In the context of Shaffer’s problem, a synchronization edge is redundant if and only if
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dancy is equivalent to the check that is performed by theif statement inRemoveRedundantSynchs:

one might ask “What if  satisfies the inequality in theif statement, but all of the minimum-

delay paths from  to  contain ?” To see that theif statement is indeed equiva-

lent to checking the redundancy of , observe that if  is a path from  to  that

contains more than one edge and that contains , then  must contain a cycle  such that  does

not contain ; and since all cycles (from Lemma 1) must have positive path delay, the path delay

of such a path  must exceed . Thus, if  satisfies the inequality in theif statement of

RemoveRedundantSynchs,and  is a path from  to  such that

, then  cannot contain .

Function  RemoveRedundantSynchs
Input : A synchronization graph  such that  is the set of synchro-

nization edges.

Output : The synchronization graph , where  is the set of

redundant synchronization edges in .

1. Compute  for each ordered pair of vertices in .

2. Initialize: .

3. For  each

For  each output edge  of  except for

If

Then

Break /* exit the innermost enclosing For  loop */
End If

End For
End For
4. Return .
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Figure 7. An algorithm that optimally removes redundant synchronization edges.
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Now, if  does not contain , then  exists in , and we are done. Otherwise, let

; observe that  is of the form

; and define

.

Clearly,  is a path from  to  in . Also,

(from (12))

(from (11)).QED.

Theorem 3 tells us that we can avoid implementing synchronization forall redundant syn-

chronization edges since the “redundancies” are not interdependent. Thus, an optimal removal of

redundant synchronizations can be obtained by applying a straightforward algorithm that succes-

sively tests the synchronization edges for redundancy in some arbitrary sequence, and sinceshort-

est path computation is a tractable problem, we can expect such a solution to be practical.

8.2 An Algorithm for Removing Redundant Synchronizations

Figure 7 presents an efficient algorithm, based on the ideas presented in the previous sub-

section, for optimal removal of redundant synchronization edges. In this algorithm, we first com-

pute the path delay of a minimum-delay path from  to  for each ordered pair of vertices ;

here, we assign a path delay of  whenever there is no path from  to . This computation is

equivalent to solving an instance of the well knownall points shortest paths problem[7]. Then,

we examine each synchronization edge — in some arbitrary sequence — and determine whether

or not there is a path from  to  that does not contain , and that has a path delay

that does not exceed . Now, at first, it may not be obvious that this check for redun-
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 does not need to synchronize with the processor that executes

because due to the synchronization edge , the corresponding invocation of  is guaranteed to

complete before each invocation of  is begun. Thus,  is redundant in Figure 6. It is easily ver-

ified that the path  is directed from  to

, and has a path delay (zero) that is equal to the delay on .

In this section we develop an efficient algorithm to optimally remove redundant synchro-

nization edges from a synchronization graph.

8.1 The Independence of Redundant Synchronizations

The following theorem establishes that the order in which we remove redundant synchro-

nization edges is not important, and thus, we need not implement synchronization for any of the

redundant synchronization edges in a synchronization graph.

Theorem 3: Suppose that  is a synchronization graph,  and  are distinct

redundant synchronization edges in , and . Then  is redundant in .

Proof: Since  is redundant in , there is a path  in  directed from  to

 such that

. (11)

Similarly, there is a path , contained in both  and , that is directed from

to , and that satisfies

. (12)
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zation, is explored in sections 9 and in the appendix. Finally, in Section 10, we examine the utility

of adding additional synchronization edges to convert a synchronization graph that is not strongly

connected into a strongly connected graph. Such a conversion allows us to implement all synchro-

nization edges with BBS. We address optimization criteria in performing such a conversion, and

we will show that the extra synchronization accesses required for such a conversion are always (at

least) compensated by the number of synchronization accesses that are saved (by the UBSs that

get converted to BBSs).

8.  Removing Redundant Synchronizations

The first technique that we explore for reducing synchronization overhead is the removal

of redundant synchronization edges of the synchronization graph. Formally, a synchronization

edge is redundant in a synchronization graph  if its removal yields a synchronization graph

that preserves . Equivalently, from definition 3, a synchronization edge  is redundant in the

synchronization graph  if there is a path  in  directed from  to  such

that .

Thus, the synchronization function associated with a redundant synchronization edge

“comes for free” as a by product of other synchronizations. Figure 6 shows an example of a

redundant synchronization edge. Here, before executing actor , the processor that executes

G

G e

G p e( )≠ G e( )src e( )snk
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Figure 6. An example of a redundant synchronization edge.
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of actors in the schedule.

7.  Problem Statement

We refer to each access of the shared memory “synchronization variable”  by

 and  as asynchronization access1 to shared memory. If synchronization for  is

implemented using UBS, then we see that on average,  synchronization accesses are required

for  in each iteration period, while BBS implies  synchronization accesses per iteration period.

We define thesynchronization cost of a synchronization graph  to be the average number of

synchronization accesses required per iteration period. Thus, if  denotes the number of syn-

chronization edges in  that are feedforward edges, and  denotes the number of synchroniza-

tion edges that are feedback edges, then the synchronization cost of  can be expressed as

. In the remainder of this paper we will develop techniques that apply the results

and the analysis framework developed in Sections 4-6 to minimize the synchronization cost of a

self-timed implementation of a DFG without sacrificing the integrity of any inter-processor data

transfer or reducing the estimated throughput.

We will explore three mechanisms for reducing synchronization accesses. The first is the

detection and removal ofredundantsynchronization edges, which are synchronization edges

whose respective synchronization functions are subsumed by other synchronization edges, and

thus need not be implemented explicitly. The second mechanism is the insertion of new synchro-

nization edges in such a way that the number of original synchronization edges that become

redundant exceeds the number of new edges added. This mechanism, which we callresynchroni-

1. Note that in our measure of the number of shared memory accesses required for synchronization, we ne-
glect the accesses to shared memory that are performed while the sink actor is waiting for the required data
to become available, or the source actor is waiting for an “empty slot” in the buffer. The number of accesses
required to perform these “busy-wait” or “spin-lock” operations is dependent on the exact relative execution
times of the actor invocations. Since in our problem context, this information is not generally available to us,
we use thebest casenumber of accesses — the number of shared memory accesses required for synchroni-
zation assuming that IPC data on an edge is always produced before the corresponding sink invocation at-
tempts to execute — as an approximation.
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as a final step after all the transformations on  are complete, instead of using  itself to cal-

culate these bounds. This is because addition of the edges  may reduce these buffer bounds. It

is easily verified that removal of the edges ( ) cannot change the buffer bounds in (5) as long as

the synchronizations in  are preserved. Thus, in the interest of obtaining minimum possible

shared buffer sizes, we compute the bounds using the optimized synchronization graph. The fol-

lowing theorem tells us how to compute the self-timed buffer bounds from .

Theorem 2: If  preserves  and the synchronization edges in  are implemented, then

for each feedback IPC edge  in , the self-timed buffer bound of  ( )— an upper

bound on the number of data tokens that can ever be present on— is given by:

,

Proof: By Lemma 4, if there is a path  from  to  in , then

.

Taking  to be an arbitrary minimum-delay path from  to  in , we get

.

That is,  cannot be more that  iterations “ahead” of . Thus

there can never be more that  tokens more than the initial number of

tokens on — . Since the initial number of tokens on  was , the size of the

buffer corresponding to  is bounded above by .

QED.

The quantities  can be computed using Dijkstra’s algorithm [7] to

solve the all-pairs shortest path problem on the synchronization graph in time . Thus the

problem of determining the  values has complexity at most cubic in the size of the number
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that is,

. (10)

If , then .

Substituting this in (10) we get

.

The above relation is identical to (9), and this proves the Theorem.QED.

The above theorem motivates the following definition.

Definition 3: If  and  are synchronization graphs with the same

vertex-set, we say that  preserves  if , we have

.

Thus, Theorem 1 states that the synchronization constraints of  imply the synchroniza-

tion constraints of  if  preserves .

Observation 1: Given an IPC graph , and a synchronization graph  such that  pre-

serves , suppose that we implement the synchronizations corresponding to the synchroniza-

tion edges of . Then, the iteration period of the resulting system is determined by the maximum

cycle mean of . This is because the synchronization edges alone determine the interaction

between processors; an IPC edge without synchronization does not constrain the execution of the

corresponding processors in any way.

6.3 Computing Buffer Bounds from  and

After all the optimizations are complete we have a final synchronization graph

 that preserves . Since the synchronization edges in  are the

ones that are finally implemented, it is advantageous to calculate the self-timed buffer bound

start ε( )snk k,( ) end ε( )src k p( )Delay–,( )≥( )
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. (7)

Similarly,

.

Noting that  is the same as , we get

.

Causality implies , so we get

. (8)

Substituting (7) in (8),

.

Continuing along  in this manner, it can easily be verified that

;

that is,

. QED.

Proof of Theorem 1: If , then the synchronization constraint due to the edge

holds in both graphs. But for each  we need to show that the constraint due to :

(9)

holds in  provided , which implies there is at least one path

 from  to  in  (  and

) such that .

From Lemma 4, existence of such a path  implies

.

start e1( )snk k,( ) end e1( )src k e1( )delay–,( )≥

start e2( )snk k,( ) end e2( )src k e2( )delay–,( )≥

e2( )src e1( )snk

start e2( )snk k,( ) end e1( )snk k e2( )delay–,( )≥

end v k,( ) start v k,( )≥

start e2( )snk k,( ) start e1( )snk k e2( )delay–,( )≥

start e2( )snk k,( ) end e1( )src k e2( ) e1( )delay–delay–,( )≥

p

start en( )snk k,( ) end e1( )src k en( ) en 1–( ) …–delay– e1( )delay–delay–,( )≥

start en( )snk k,( ) end e1( )src k p( )Delay–,( )≥( )

ε E2 ε E1∈,∈ ε

ε E2 ε E1∉,∈ ε

start ε( )snk k,( ) end ε( )src k ε( )delay–,( )>

G1 ρG1
ε( )src ε( )snk,( ) ε( )delay≤

p e1 e2 e3 … en, , , ,( )= ε( )src ε( )snk G1 e1( )src ε( )src=

en( )snk ε( )snk= p( )Delay ε( )delay≤

p

start en( )snk k,( ) end e1( )src k p( )Delay–,( )≥( )



24

the two, then no synchronization needs to be done before accessing the shared buffer. If there is a

synchronization edge between two actors but no IPC edge, then no shared buffer is allocated

between the two actors; only the corresponding synchronization protocol is invoked.

Thus, initially, the synchronization graph  is identical to . Then we perform trans-

formations on the synchronization graph in order to reduce synchronization costs. The cost mea-

sure and the transformations will be discussed in the following sections of this paper. All of these

transformations must respect the synchronization constraints implied by . If we ensure this,

then we only need to implement the synchronization edges of the optimized synchronization

graph. The following theorem is useful to formalize the concept of when the synchronization con-

straints represented by one synchronization graph  imply the synchronization constraints of

another graph . This theorem provides a useful constraint for synchronization optimization,

and it underlies the validity of the main techniques that we will present in this paper.

Theorem 1: The synchronization constraints in a synchronization graph  imply

the synchronization constraints of the synchronization graph  if the following con-

dition holds: , , that is, if for each edge  that

is present in  but not in  there is a minimum delay path from  to  in  that

has total delay of at most  (number of delays on edge ).

(Note that since the vertex sets for the two graphs are identical, it is meaningful to refer to

and  as being vertices of  even though .)

First we prove the following lemma.

Lemma 4: If there is a path  in , then

.

Proof of Lemma 4:

The following constraints hold along such a path  (as per (6))
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bound smaller than  is imposed on a feedback edge , then a protocol identical to UBS

must be used. The problem of optimally choosing which edges should be subject to stricter buffer

bounds when there is a shortage of shared memory, and the selection of these stricter bounds is an

interesting area for further investigation.

6.2 The Synchronization Graph

An IPC edge in  represents two functions: 1) reading and writing of data values into

the buffer represented by that edge; and 2) synchronization between the sender and the receiver,

which could be implemented with the UBS protocol or with the BBS protocol. We find it useful to

differentiate these two functions by creating another graph called thesynchronization graph

( ), in which edges between actors assigned to different processors, calledsynchronization

edges, representsynchronization constraints only. Recall from Subsection 5.1 that an IPC edge

 of  represents thesynchronization constraint:

. (6)

Thus, before we perform any optimization on synchronizations, the synchronization graph

is identical to the IPC graph, because every IPC edge represents a synchronization point. How-

ever, we will modify the synchronization graph in certain “valid” ways (which will be defined

shortly) by adding some edges and deleting some others. Thus, at the end of our optimizations,

the synchronization graph may look very different from the IPC graph: it is of the form

, where  is the set of edges deleted from the IPC graph and  is the set of

edges added to it. At this point the IPC edges in  represent buffer activity, and must be imple-

mented as buffers in shared memory, whereas the synchronization edges represent synchroniza-

tion constraints, and are implemented using the UBS and BBS protocols introduced in the

previous section. If there is an IPC edge as well as a synchronization edge between the same pair

of actors, then the synchronization protocol is executed before the buffers corresponding to the

IPC edge are accessed so as to ensure sender-receiver synchronization. On the other hand, if there

is an IPC edge between two actors in the IPC graph, but there is no synchronization edge between

Bfb e( ) e
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executes ; aread pointer  for  is maintained on the processor that executes

; and a copy of  is maintained in some shared memory location . The point-

ers  and  are initialized to zero and , respectively. Just after each execu-

tion of , the new data value produced onto  is written into the shared memory buffer for

 at offset ;  is updated by the following operation —

; and  is updated to contain the new value of .

Just before each execution of , the value contained in  is repeatedly examined until

it is found to benot equalto ; then the data value residing at offset  of the shared

memory buffer for  is read; and  is updated by the operation

.

UBS. This mechanism also uses the read/write pointers  and , and these are

initialized the same way; however, rather than maintaining a copy of  in the shared mem-

ory location , we maintain a count (initialized to ) of the number of unread

tokens that currently reside in the buffer. Just after  executes,  is repeatedly exam-

ined until its value is found to be less than ; then the new data value produced onto  is

written into the shared memory buffer for  at offset ;  is updated as in BBS

(except that the new value is not written to shared memory); and the count in  is incre-

mented. Just before each execution of , the value contained in  is repeatedly exam-

ined until it is found to be nonzero; then the data value residing at offset  of the shared

memory buffer for  is read; the count in  is decremented; and  is updated as in

BBS.

Note that we are assuming that there is enough shared memory to hold a separate buffer of

size  for each feedforward IPC edge  of , and a separate buffer of size  for

each feedback IPC edge . When this assumption does not hold, smaller bounds on some of the

buffers must be imposed, possibly for feedback edges as well as for feedforward edges, and in

general, this may require some sacrifice in estimated throughput. Note that whenever a buffer
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maximum cycle mean at each search step and ascertaining that it is less than  results in a

buffer assignment for the feedforward edges. Although this procedure is efficient, it is greedy (and

suboptimal) because the order that the edges  are chosen is arbitrary and may effect the quality

of the final solution.

However, as we will see in Section 10, imposing such a bound  is anaive approach for

bounding buffer sizes and, in terms of synchronization costs, there is a better technique for bound-

ing buffers. Thus, in our final algorithm, we will not in fact find it necessary to use or compute

these bounds .

6.  Synchronization Model

6.1 Synchronization Protocols

We define two basic synchronization protocols for an IPC edge based on whether or not

the length of the corresponding buffer is guaranteed to be bounded from the analysis presented in

the previous section. Given an IPC graph , and an IPC edge  in , if the length of the corre-

sponding buffer is not bounded — that is, if  is a feedforward edge of  — then we apply a syn-

chronization protocol calledunbounded buffer synchronization (UBS), which guarantees that

(a) an invocation of  never attempts to read data from the buffer unless the buffer contains

at least one token;and (b) an invocation of  never attempts to write data into the buffer

unless the number of tokens in the buffer is less than some pre-specified limit , which is

the amount of memory allocated to the buffer as discussed in subsection 5.3.

On the other hand, if the topology of the IPC graph guarantees that the buffer length for

is bounded by some value  (the self-timed buffer bound of ), then we use a simpler pro-

tocol, calledbounded buffer synchronization (BBS), that only explicitly ensures (a) above.

Below, we outline the mechanics of the two synchronization protocols that we have defined.

BBS. In this mechanism, awrite pointer for is maintained on the processor that

λmax
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IPC graph where the IPC edge  could be unbounded when the execution time of  is less

than that of , for example. In practice, we need to bound the buffer size of such an edge; we will

denote such an “imposed” bound for a feedforward edge  by . Since the effect of placing

such a restriction includes “artificially” constraining  from getting more than

invocations ahead of , its effect on the estimated throughput can be modelled by adding

the reverse edge , where , to  (grey edge in

Figure 5(b)). Since the addition of this edge introduces a new cycle in , it has the potential to

reduce the estimated throughput; to prevent such a reduction,  must be chosen to be large

enough so that the maximum cycle mean remains unchanged upon adding .

Sizing buffers optimally such that the maximum cycle mean remains unchanged has been

studied by Kung, Lewis and Lo in [15], where the authors propose an integer linear programming

formulation of the problem, with the number of constraints equal to the number of fundamental

cycles in the DFG (potentially an exponential number of constraints).

An efficient albeit suboptimal procedure to determine  is to note that if

holds for each feedforward edge , then the maximum cycle mean of the resulting graph does not

exceed .

Then, doing a binary search on  for each feedforward edge, and computing the
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Figure 5. An IPC graph with a feedforward edge: (a). original graph (b). imposing bounded
buffers.
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by repeated applications of the Bellman-Ford shortest-path algorithm. Here,  and  are such

that  and . If  and  are constants, the complexity

of determining  is simply .

5.2 Execution Time Estimates

If we only have execution time estimates available instead of exact values, and we set

 in the previous section to be these estimated values, then we obtain theestimated iteration

period by calculating . Henceforth we will assume that we know theestimated throughput

 calculated by setting the  values to the available timing estimates.

In all the transformations that we present in the rest of the paper, we will preserve the esti-

mated throughput by preserving the maximum cycle mean of , with each  set to the esti-

mated execution time of . In the absence of more precise timing information, this is the best we

can hope to do.

5.3 Strongly Connected Components and Buffer Size Bounds

In dataflow semantics, the edges between actors represent infinite buffers. Accordingly,

the edges of the IPC graph are potentially buffers of infinite size. However, from Lemma 2, every

feedback edge (an edge that belongs to a strongly connected component, and hence to some

cycle) can only have a finite number of tokens at any time during the execution of the IPC graph.

We will call this constant theself-timed buffer bound of that edge, and for a feedback edge  we

will represent this bound by . Lemma 2 yields the following self-timed buffer bound:

(5)

Feedforward edges have no such bound on buffer size; therefore for practical implementa-

tions we need toimpose a bound on the sizes of these edges. For example, Figure 5(a) shows an

D T
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Note that  from Lemma 1.

The quotient in (4) is called thecycle meanof the cycle . That is, the cycle mean of

is the sum of the execution times of all vertices on  divided by the path delay of . The entire

quantity on the RHS of (4) is called the “maximum cycle mean” of the strongly connected IPC

graph . If the IPC graph contains more than one SCC, then different SCCs may have different

asymptotic iteration periods, depending on their individual maximum cycle means. In such a case,

the iteration period of the overall graph (and hence the self-timed schedule) is themaximum over

the maximum cycle means of all the SCCs of . This is because the execution of the schedule

is constrained by the slowest component in the system. Henceforth, we will use the following def-

inition for the maximum cycle mean.

Definition 2: Themaximum cycle mean of an IPC graph , denoted by , is the maxi-

mal cycle mean over all strongly connected components of : That is,

.

A fundamental cycle in  whose cycle mean is equal to  is called acritical cycle of .

Thus the throughput of the system of processors executing a particular self-timed schedule is

equal to the corresponding  value.

For example, in Figure 4,  has one SCC, and its maximal cycle mean is 7 time units.

This corresponds to the critical cycle :  ,

 time units, so the total time along this cycle is 14, and there are two delays on

this cycle. Thus the average iteration period for this schedule is 7 time units. We have not

included IPC costs in this calculation, but these can be included in a straightforward manner by

adding thesend andreceive costs to the corresponding actors performing these operations.

The maximum cycle mean can be calculated in time  [17]
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Such an “as soon as possible” (ASAP) firing pattern implies:

. (3)

The IPC graph can also be looked upon as a Marked graph [24] or Reiter’s computation

graph [28]. The same properties hold for it, and we state some of the relevant properties here.

Some of the proofs are omitted.

Lemma 1: [28] Every cycle  in the IPC graph has a path delay of at least one if and only if

the static schedule it is constructed from is free of deadlock. That is, for each cycle ,

.

Lemma 2: The number of tokens in any cycle of the IPC graph is always conserved over all

possible valid firings of actors in the graph, and is equal to the path delay of that cycle.

Proof: For each cycle  in the IPC graph, the number of tokens on  can only change when

actors that are on it fire, because actors not on  remove and place tokens only on edges that are

not part of . If , and any actor

( ) fires, then in a valid firing exactly one token is moved from the edge  to

the edge , where  and . This conserves the total number of tokens on

. QED.

Lemma 3: The asymptotic iteration period for astrongly connected IPC graph  when actors

execute as soon as data is available at all inputs is given by [28]:

. (4)
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Definition 1: The function  (non-negative integer) represents the time at which

the th execution of the actor  starts in the self-timed schedule. The function

represents the time at which the th execution of the actor  ends, and  produces data tokens at

its output edges. Since we are interested in the th execution of each actor for , we

set  and  for  as the “initial conditions”.

As per the semantics of a DFG, each edge  of  represents the following data

dependency constraint:

, . (1)

This is because each actor consumes one token from each of its input edges when it fires. Since

there are already  tokens on each incoming edge  of actor , another

tokens must be produced on  before the th execution of  can begin. Thus the actor

must have completed its th execution before  can begin its th execution. The

constraints in (1) are due both to IPC edges (representing synchronization between processors)

and to edges that represent serialization of actors assigned to the same processor.

To model execution times of actors we associate execution time  with each vertex of

the IPC graph;  assigns a positive integer execution time to each actor  (again, the actual

execution time can be interpreted as  cycles of a base clock), and  includes the time

taken to execute all IPC operations (sends andreceives) that the actor  performs. Thus the IPC

graph is . Now, we can substitute

in (1) to obtain

. (2)

In the self-timed schedule, actors fire as soon as data is available at all their input edges.
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completed. Thus if actors  are assigned to the same processor in that order, then

would have a cycle , with .

If there are  processors in the schedule, then we have  such cycles corresponding to each pro-

cessor.

As mentioned before, edges in  that cross processor boundaries after scheduling repre-

sent inter-processor communication. We will call such edgesIPC edges. Instead of explicitly

introducing specialsend andreceive primitives at the ends of the IPC edges, we will model these

operations as part of the sending and receiving actors themselves. For example, in Figure 3, data

produced by actor  is sent from processor 2 to processor 1; instead of inserting explicit commu-

nication primitives in the schedule, the send is modelled within actor  while the receive is mod-

elled as part of actor . This is done so as not to clutter  with extra communication actors.

Even if the actual implementation uses explicit send and receive actors, communication can still

be modelled in the above fashion because we are simply clustering the source of an IPC edge with

the corresponding send actor and the sink with the receive actor.

For each IPC edge in  we add an IPC edge  in  between the same actors. We also

set the delay on this edge equal to the delay, , on the corresponding edge in . Thus,

we add an IPC edge from  to  in  with a single delay on it. The delay corresponds to the

fact that execution of  is allowed to lag the execution of  by one iteration. An IPC edge repre-

sents a buffer implemented in shared memory, and initial tokens on the IPC edge are used to ini-

tialize the shared buffer. In a straightforward self-timed implementation, each such IPC edge

would also be a synchronization point between the two communicating processors. Part of our

goal is to identify IPC edges that do not require sender synchronization or receiver synchroniza-

tion.

The IPC graph has the same semantics as a DFG, and its execution models the execution

of the corresponding self-timed schedule. The following definitions are useful to formally state

the constraints represented by the IPC graph. Time is modelled as an integer that can be viewed as

a multiple of a base clock.
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We model a self-timed schedule using a DFG  derived from the original

SDF graph  and the given self-timed schedule. The graph , which we will refer

to as theinter-processor communication modelling graph, or IPC graph for short, models the

fact that actors of  assigned to the same processor execute sequentially, and it models con-

straints due to inter-processor communication. For example, the self-timed schedule in Figure 3

can be modelled by the IPC graph in Figure 4. The IPC edges are shown using dashed arrows. The

rest of this subsection describes the construction of the IPC graph in detail.

The IPC graph has the same vertex set  as , corresponding to the set of actors in .

The self-timed schedule specifies the actors assigned to each processor, and the order in which

they execute. For example in Figure 3, processor 1 executes  and then  repeatedly. We model

this in  by drawing a cycle around the vertices corresponding to  and , and placing a

delay on the edge from  to . The delay-free edge from  to  represents the fact that the th

execution of  precedes the th execution of , and the edge from  to  with a delay repre-

sents the fact that the th execution of  can occur only after the th execution of  has
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period, represent the sequential execution of actors assigned to a single processor, and represent

dependencies across iterations of the DFG.

5.1 Inter-processor Communication Modelling Graph
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etc.) would be prohibitive for the embedded multiprocessor machines for applications such as

DSP that we are considering.

Interfaces between hardware and software are typically implemented using memory-

mapped registers in the address space of the programmable processor (again a kind of shared

memory), and synchronization is achieved using flags that can be tested and set by the program-

mable component, and the same can be done by an interface controller on the hardware side [12].

Under the model above, the benefits that our proposed synchronization optimization tech-

niques offer become abundantly clear. Each synchronization that we eliminate directly results in

one less synchronization check, or a shared memory access. For example, where a processor

would have to check a flag in shared memory before executing areceive primitive, eliminating

that synchronization implies there is no longer need for such a check. This translates to one less

shared memory read. Such a benefit is especially significant for simplifying interfaces between a

programmable component and a hardware component: asend or areceive without the need for

synchronization implies that the interface can be implemented in a non-blocking fashion, greatly

simplifying the interface controller. As a result, eliminating a synchronization directly results in

simpler hardware in this case.

Thus the metric for the optimizations we present in this paper is the total number of

accesses to shared memory that are needed for the purpose of synchronization in the final multi-

processor implementation of the self-timed schedule. This metric will be defined precisely in Sec-

tions 6 and 7.

5.  Analysis of Self-Timed Execution

In this section we develop an analytical model to study the execution of a self-timed

schedule. To motivate this section, let us consider the execution of the four-processor schedule in

Figure 3. Inter-processor communication is ignored in the self-timed execution in Figure 3(c). If

the timing estimates are accurate, the schedule execution settles into a repeating pattern spanning

two iterations of , and the average estimated iteration period is 7 time units.

We would like to model such a self-timed execution and determine the average iteration

G
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have multiple edges connecting them in the same “direction”. Such graphs can very easily be pre-

processed into a form to which the techniques of this paper can be applied; the details are beyond

the scope of this paper. Finally, if  are vertices in , we define  to represent an

edge (that is not necessarily in ) whose source and sink vertices are  and , respectively, and

whose delay is  (assumed non-negative).

For elaboration on any of the graph-theoretic concepts presented in this section, we refer

the reader to [7].

4.  Model of a Multiprocessor Executing a Self-timed Schedule

We model a multiprocessor executing a self-timed schedule as follows. Each processor is

assigned a sequential list of actors, some of which aresend andreceive actors, which it executes

in an infinite loop. When a processor executes a communication actor, it synchronizes with the

processor(s) it communicates with. Thus exactly when a processor executes each actor depends

on when, at run time, all input data for that actor is available, unlike the fully-static case where no

such run time check is needed. In this paper we use “processor” in slightly general terms: a pro-

cessor could be a programmable component, in which case the actors mapped to it execute as

software entities, or it could be a hardware component, in which case actors assigned to it are

implemented and execute in hardware. See [13] for a discussion on combined hardware/software

synthesis from a single dataflow specification. Examples of application specific multiprocessors

that use programmable processors and some form of static scheduling are described in [4, 14, 33].

Inter-processor communication between processors is assumed to take place via shared

memory. Thus the sender writes to a particular shared memory location and the receiver reads

from that location. The shared memory itself could be global memory between all processors, or it

could be distributed between pairs of processors (as a hardware first-in-first-out (FIFO) queues or

dual ported memory for example). Each inter-processor communication edge in our DFG thus

translates into a buffer of a certain size (which we will discuss later) in shared memory.

Sender-receiver synchronization is also assumed to take place by setting flags in shared

memory. Special hardware for synchronization (barriers, semaphores implemented in hardware,

x y, V E,( ) dn x y,( )

E x y

n
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, for all paths  directed from  to . Given a DFG , and vertices

 in , we define  to be equal to  if there is no path from  to , and equal to the

path delay of a minimum-delay path from  to  if there exist one or more paths from  to . If

 is understood, then we may drop the subscript and simply write “ ” in place of “ ”.

By asubgraph of , we mean the directed graph formed by any  together

with the set of edges . We denote the subgraph associated with

the vertex-subset  by . We say that  isstrongly connectedif for each

pair of distinct vertices , there is a path directed from  to  and there is a path directed from

 to . We say that a subset  is strongly connected if  is strongly con-

nected. Astrongly connected component (SCC)of is a strongly connected subset

 such that no strongly connected subset of  properly contains . If  is an SCC, then

when there is no ambiguity, we may also say that  is an SCC. If  and  are

distinct SCCs in , we say that  is apredecessor SCCof  if there is an edge directed

from some vertex in  to some vertex in ;  is asuccessor SCC of  if  is a predeces-

sor SCC of . An SCC is asource SCC if it has no predecessor SCC; and an SCC is asink

SCC if it has no successor SCC. An edge  is afeedforward edge of  if it is not contained

in an SCC, or equivalently, if it is not contained in a cycle; an edge that is contained in at least one

cycle is called afeedbackedge.

Given two arbitrary sets  and , we define the difference of these two sets by

, and we denote the number of elements in a finite set  by . Also,

if  is a real number, then we denote the smallest integer that is greater than or equal to  by .

In this paper, we assume that the source and sink vertices uniquely identify an edge in a

DFG, and thus we may represent an edge  by the ordered pair . It is con-

ceivable, however, that a practical system may have a DFG in which one or more pairs of vertices
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and “resynchronization”, defined and addressed in Sections 9 and the appendix — are fundamen-

tally different from Shaffer’s technique since they address issues that are specific to our more gen-

eral context of overlapped, iterative execution.

3.  Background Terminology and Notation

We frequently represent a DFG by an ordered pair , where  is the set of vertices

and  is the set of edges. We refer to the source and sink vertices of a graph edge  by

and , and we denote the delay on  by . We say that  is anoutput edgeof

, and that  is aninput edgeof .

Given , we say that  is apredecessorof  if there exists  such that

 and ; we say that  is asuccessorof  if  is a predecessor of . A

path in  is a finite, nonempty sequence , where each  is a member of ,

and , , …, . We say that the

path containseach  and each subsequence of ;  is

directed from  to ; and each member of

 is on . A path that is directed from some vertex to

itself is called acycle, and afundamental cycleis a cycle of which no proper subsequence is a

cycle.

If  is a path in a DFG, then we define thepath delayof , denoted

, by . Since the delays on all DFG edges are restricted to

be non-negative, it is easily seen that between any two vertices , either there is no path

directed from  to , or there exists a (not necessarily unique)minimum-delay path between

and . That is, if there is a path from  to , then there exists a path  from  to  such that

V E,( ) V

E e e( )src

e( )snk e e( )delay e
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In [30], Shaffer presents an algorithm that minimizes the number of directed synchroniza-

tions in the self-timed execution of a dataflow graph. However, this work, like that of Dietzet al.,

does not allow the execution of successive iterations of the dataflow graph to overlap. It also

avoids having to consider dataflow edges that have delay. The technique that we present for

removing redundant synchronizations can be viewed as a generalization of Shaffer’s algorithm to

handle delays and overlapped, iterative execution, and we will discuss this further in Section 8.

The other major techniques that we present for optimizing synchronization — handling the feed-

forward edges of thesynchronization graph (to be defined in Section 6), discussed in Section 10,
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A4

A5A6

Proc. 1:

Proc. 2:

Proc. 3:
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A5 A6,

Figure 2. (a). A DFG.
(b). A three-processor self-timed schedule for (a).
(c). An illustration of execution under the placement of barriers.
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run-time synchronization overhead [8]. In this approach, a shared-memory MIMD computer is

augmented with hardware support that allows arbitrary subsets of processors to synchronize pre-

cisely with respect to one another by executing a synchronization operation called abarrier. If a

subset of processors is involved in a barrier operation, then each processor in this subset will wait

at the barrier until all other processors in the subset have reached the barrier. After all processors

in the subset have reached the barrier, the corresponding processes resume execution inexact syn-

chrony.

In [8], the barrier mechanism is applied to minimize synchronization overhead in a self-

timed schedule with hard lower and upper bounds on the task execution times. The execution time

ranges are used to detect situations where the earliest possible execution time of a task that

requires data from another processor is guaranteed to be later than the latest possible time at

which the required data is produced. When such an inference cannot be made, a barrier is instanti-

ated between the sending and receiving processors. In addition to performing the required data

synchronization, the barrier resets (to zero) the uncertainty between the relative execution times

for the processors that are involved in the barrier, and thus enhances the potential for subsequent

timing analysis to eliminate the need for explicit synchronizations.

The techniques of barrier MIMD do not apply to the problem that we address because they

assume that a hardware barrier mechanism exists; they assume that tight bounds on task execution

times are available; they do not address iterative, self-timed execution, in which the execution of

successive iterations of the dataflow graph can overlap; and even for non-iterative execution,

there is no obvious correspondence between an optimal solution that uses barrier synchroniza-

tions and an optimal solution that employs decoupled synchronization checks at the sender and

receiver end (directed synchronization). This last point is illustrated in Figure 2. Here, in the

absence of execution time bounds, an optimal application of barrier synchronizations can be

obtained by inserting two barriers — one barrier across  and , and the other barrier across

 and . This is illustrated in Figure 2(c). However, the corresponding collection of directed

synchronizations (  to , and  to ) is not sufficient since it does not guarantee that the

data required by  from  is available before  begins execution.

A1 A3

A4 A5

A1 A3 A5 A4

A6 A1 A6
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times rarely display large variations so that self-timed scheduling is viable for the applications

under consideration. If additional timing information is available, such as guaranteed upper and

lower bounds on the execution times of actors, it is possible to use this information to further opti-

mize synchronizations in the schedule. However, use of such timing bounds is beyond the scope

of this paper.

Our paper is organized as follows. In Section 2 we review some of the related work in syn-

chronization optimization, and in Section 3 we list some of the notation and terminology used in

this paper. Sections 4, 5 and 6 present our graph-theoretic framework for analyzing and optimiz-

ing synchronization. In Section 7, we formally define the optimization problem addressed in this

paper in terms of the model and results developed in Sections 4-6. Sections 8, 9 and 10 present the

algorithms used for our proposed synchronization optimization scheme. Finally, in Section 11 we

present the complete synchronization algorithm, and then end with conclusions in Section 12, and

discuss directions for future work in Section 13. For reference, some of the terminology and nota-

tion used in this paper is summarized in a glossary at the end of the paper.

2.  Related Work

Numerous research efforts have focused on constructing efficient parallel schedules for

DFGs. Parhi and Messerschmitt [23], and Chao and Sha [6] have developed systematic tech-

niques for exploiting overlapped execution to generate schedules that have optimal throughput,

assuming zero cost for IPC. Other work has focused on taking IPC costs into account during

scheduling, such as that described in [1, 21, 27, 31]; these efforts have not attempted to exploit

overlapped execution of dataflow graph iterations. Similarly, in [10], Govindarajan and Gao

develop techniques to simultaneously maximize throughput, possibly using overlapped execution,

and minimize buffer memory requirements under the assumption of zero IPC cost. Our work can

be used as a post-processing step to improve the performance of implementations that use any of

these scheduling techniques when the goal is a self-timed implementation.

Among the prior work that is most relevant to this paper is thebarrier-MIMD principle of

Dietz, Zaafrani, and O’keefe, which is a combined hardware and software solution to reducing
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actors  and  are estimates that are used to determine the processor assignment and ordering for

the schedule. However, the processors need to explicitly synchronize at each communication

point since the estimated execution times may not be exact or may vary from one iteration of the

DFG to the next. Clearly, if these times were known precisely, we could eliminate the need for

explicit synchronization by determining precisely when each actor fires and when the send and

the receive primitives are executed. If we ignore communication costs, that is, we assumesends

andreceives take zero time, then the estimated iteration period ( ) for this example is 4 time

units.

A straightforward implementation of a self-timed schedule would require that for each

inter-processor communication (IPC) the sending processor ascertains that the buffer it is writing

to is not full, and the receiver ascertains that the buffer it is reading from is not empty. The proces-

sors block (suspend execution) when the appropriate condition is not met. Such sender-receiver

synchronization can be implemented in many ways depending on the particular hardware plat-

form under consideration: in shared memory machines, such synchronization involves testing and

setting semaphores in shared memory; in machines that support synchronization in hardware

(such as barriers), special synchronization instructions are used; and in the case of systems that

consist of a mix of programmable processors and custom hardware elements, synchronization is

achieved by employing interfaces that support blocking reads and writes.

In each kind of platform, every IPC that requires a synchronization check costs perfor-

mance, and sometimes extra hardware complexity: semaphore checks cost execution time on the

processors, synchronization instructions that make use of synchronization hardware also cost exe-

cution time, and blocking interfaces in hardware/software implementations require more hard-

ware than non-blocking interfaces [12].

The main goal of this paper is to present algorithms and techniques that reduce the rate at

which processors must access shared memory for the purpose of synchronization in embedded,

shared-memory multiprocessor implementations of iterative dataflow programs. Thus the optimi-

zation procedure that we propose can be used as a post-processing step in any static scheduling

technique for reducing synchronization costs in the final implementation. In this paper we assume

that “good” estimates are available for the execution times of actors and that these execution

A B

T
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might be compiled from a high-level language, which makes estimation of exact execution time

difficult, or the processor itself might take a non-deterministic number of cycles to complete an

instruction, if it employs a cache for instance. These estimates may not even have guaranteed

worst case bounds, if, for example, at run time a processor has to respond to events that require

error handling or has to process user inputs, which are infrequent (rare) compared to the sample

rate at which the DFG executes.

Under such an assumption on timing, it is best to discard the exact timing information

from the fully static schedule, but still retain the processor assignment and actor ordering speci-

fied by the fully static schedule. This results in theself-timed scheduling strategy of [19]. Each

processor executes the actors assigned to it in the order specified at compile time. Before firing an

actor, a processor waits for the data needed by that actor to become available. Thus in self-timed

scheduling processors are required to perform run-time synchronization when they communicate

data. Such synchronization is not necessary in the fully-static case because exact (or guaranteed

worst case) times could be used to determine firing times of actors such that processor synchroni-

zation was ensured. As a result, the self-timed strategy incurs greater run-time cost than the fully-

static case because of the synchronization overhead.

An example of a DFG and a corresponding self-timed schedule are shown in Figure 1.

Note that inter-processor communication primitives (send andreceive actors) need to be inserted

when data cross processor boundaries. As a result, a multiprocessor schedule for a DFG falls nat-

urally into a message passing inter-processor communication model. The execution times for the

D

D

A B

Execution times: A: 4, B: 2 time units

B
A

B
A

...Proc 1
Proc 2

: Send

: Receive

: Idle

4 time units

Figure 1. An example of a self-timed schedule.
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ple, if tokens produced by the th execution of actor  are consumed by the th execution

of actor , then the edge from  to  will contain two initial tokens, or delays. We will represent

an edge with  delays by annotating it with the symbol “ ” in the dataflow graph representa-

tion (see Figure 1).

Multiprocessor implementation of an algorithm specified as a DFG involves scheduling

computations in the algorithm. By “scheduling” we collectively refer to the task of assigning

actors in the DFG to processors, ordering execution of these actors on each processor, and deter-

mining when each actor fires (begins execution) such that all data precedence constraints are met.

Each of these three tasks may be performed either at run time (a dynamic strategy) or at compile

time (a static strategy). In [19] and [20] the authors propose a scheduling taxonomy based on

which of these tasks are performed at compile time and which at run time; in this paper we will

use the same terminology that was introduced there. To reduce run time computation costs it is

advantageous to perform as many of the three scheduling tasks as possible at compile time.

Which of these can be effectively performed at compile time depends on the information avail-

able about the execution time of each actor — that is, on the amount of time it takes for each actor

to complete execution once it fires.

The performance metric that is of interest for evaluating schedules is the average iteration

period , which is the average time that it takes for all the actors in the graph to be executed once.

Equivalently, we could use the throughput  (that is, the number of iterations of the graph exe-

cuted per unit time) as a performance metric. Thus an optimal schedule is one that minimizes .

In thefully-static scheduling strategy of [4], all the three scheduling tasks assigning

actors to processors, ordering their execution on each processor, as well as determining exactly

when an actor fires are performed at compile time. This strategy involves the least possible

amount of runtime overhead. All the processors run in lock step and no explicit synchronization is

required when they exchange data. However, this strategy assumes that exact execution times of

actors are known. Such an assumption is in general not practical. A more realistic assumption for

DSP algorithms is that good estimates for the execution times of actors can be obtained. These

estimates may not be accurate down to the clock cycle, because the object code for the processors
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1.  Introduction

In this paper, we address the problem of minimizing the overhead of inter-processor syn-

chronization for aniterative synchronous dataflow programthat is implemented on a shared-

memory multiprocessor system. This study is motivated by the widespread popularity of the syn-

chronous dataflow (SDF) model in DSP design environments; the suitability of this model for

exploiting parallelism; and the high overhead of run-time synchronization, which can severely

limit the speedup obtained by moving an implementation of an SDF program from a uniprocessor

implementation to a multiprocessor implementation. Our work is particularly relevant when esti-

mates are available for the task execution times, and actual execution times are usually close to

the corresponding estimates, but deviations from the estimates of (effectively) arbitrary magni-

tude can occasionally occur due to phenomena such as cache misses or error handling.

SDF and closely related models have been used widely as foundations for numerous

graphical DSP design environments, in which signal processing applications are represented as

hierarchies of block diagrams. Some examples are described in [16, 22, 25, 26, 29]. In SDF, as in

other forms of dataflow, a program is represented as a directed graph in which the vertices, called

actors, represent computations, and the edges specify FIFO channels for communication between

actors. The termsynchronous refers to the requirement that the number of data values produced

(consumed) by each actor onto (from) each of its output (input) edges is a fixed value that is

known at compile time [18] and should not be confused with the use of “synchronous” in syn-

chronous languages [2]. The techniques developed in this paper assume that the input SDF graph

is homogeneous, which means that the numbers of data values produced or consumed are identi-

cally unity. However, since efficient techniques have been developed to convert general SDF

graphs into equivalent (for our purposes) homogeneous SDF graphs [18], our techniques apply

equally to general SDF graphs. In the remainder of this paper, when we refer to adataflow graph

(DFG) we imply a homogeneous SDF graph.

It is sometimes necessary to insertdelays on the edges of a dataflow graph, to represent

initial tokens on the edges. These delays (which can also be interpreted as registers) specify

dependencies between iterations of the actors in iteratively executed dataflow graphs. For exam-
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ABSTRACT

This paper is concerned with multiprocessor implementations of embedded applications
specified as iterative dataflow programs, in which synchronization overhead tends to be signifi-
cant. We develop techniques to alleviate this overhead by determining a minimal set of processor
synchronizations that are essential for correct execution. Our study is based in the context ofself-
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We introduce a new graph-theoretic framework for analyzing and optimizing synchroniza-
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