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1

INTRODUCTION

The focus of this thesis is the exploration of architectures and design meth-
odologies for application-specific parallel systems for embedded applications in
digital signal processing (DSP). The hardware model we consider consists of mul-
tiple programmable processors (possibly heterogeneous) and multiple application-
specific hardware elements. Such a heterogeneous architecture is found in a num-
ber of embedded applications today: cellular radios, image processing boards,
music/sound cards, robot control applications, etc. In this thesis we develop sys-
tematic techniques aimed at reducing inter-processor communication and synchro-
nization costs in such multiprocessors that are designed to be application-specific.
The techniques presented in this thesis apply to DSP algorithms that involve sim-
ple control structure; the precise domain of applicability of these techniques will
be formally stated shortly.

Applications in signal processing and image processing require large com-
puting power and have real-time performance requirements. The computing
engines in such applications tend to be embedded as opposed to general-purpose.
Custom VLSI implementations are usually preferred in such high throughput
applications. However, custom approaches have the well known problems of long
design cycles (the advances in high-level VLSI synthesis notwithstanding) and

low flexibility in the final implementation. Programmable solutions are attractive
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afford to give up some processing power to the inefficiencies in the automatic
tools. In addition new techniques are being researched to make the process of auto-
matically mapping a design onto multiple processors more efficient — this thesis
is also an attempt in that direction. This situation is analogous to how logic design-
ers have embraced automatic logic synthesis tools in recent years — logic synthe-
sis tools and VLSI technology have improved to the point that the chip area saved
by manual design over automated design is not worth the extra design time
involved: one can afford to “waste” a few gates, just as one can afford to waste
processor cycles to compilation inefficiencies in a multiprocessor DSP.

Finally, there are embedded applications that are becoming increasingly
important for which programmability is in fact indispensable; set-top boxes capa-
ble of recognizing a variety of audio/video formats and compression standards,
multimedia workstations that are required to run a variety of different multimedia
software products, programmable audio/video codecs, etc.

The generalization of such a multiprocessor chip is one that has a collec-
tion of programmable processors as well as custom hardware on a single chip.
Mapping applications onto such an architecture is then a hardware/software code-
sign problem. The problems of inter-processor communication and synchroniza-
tion are identical to the homogeneous multiprocessor case. In this thesis when we
refer to a “multiprocessor” we will imply a heterogeneous architecture that may be
comprised of different types of programmable processors and may include custom
hardware elements too. All the techniques we present here apply to such a general
system architecture.

Why study application-specific parallel processing in the first place instead
of applying the ideas in general purpose parallel systems to the specific applica-
tion? The reason is that general purpose parallel computation deals with a user-
programmable computing device. Computation in embedded applications, how-
ever, is usually one-time programmed by the designer of that embedded system (a
digital cellular radio handset for example) and is not meant to be programmable by

the end user. The computation in embedded systems is specialized (the computa-
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in both these respects: the programmable core needs to be verified for correctness
only once, and design changes can be made late in the design cycle by modifying
the software program. Although verifying the embedded software to be run on a
programmable part is also a hard problem, in most situations changes late in the
design cycle (and indeed even after the system design is completed) are much eas-
ier and cheaper to make in the case of software than in the case of hardware.

Special processors are available today that employ an architecture and an
instruction set tailored towards signal processing. Such software programmable
integrated circuits are called “Digital Signal Processors” (DSP chips or DSPs for
short). The special features that these processors employ are discussed by Lee in
[Lee88a]. However, a single processor — even DSPs — often cannot deliver the
performance requirement of some applications. In these cases, use of multiple pro-
cessors is an attractive solution, where both the hardware and the software make
use of the application-specific nature of the task to be performed.

Over the past few years several companies have been offering boards con-
sisting of multiple DSP chips. More recently, semiconductor companies are offer-
ing chips that integrate multiple CPUs on a single die: Texas Instruments (the
TMS320C80 multi-DSP), Star Semiconductors (SPROC chip), Adaptive Solutions
(CNAPS processor), etc. Multiple processor DSPs are becoming popular because
of variety of reasons. First, VLSI technology today enables one to “stamp” 4-5
standard DSPs onto a single die; this trend is only going to continue in the coming
years. Such an approach is expected to become increasingly attractive because it
reduces the testing time for the increasingly complex VLSI systems of the future.
Second, since such a device is programmable, tooling and testing costs of building
an ASIC (application-specific integrated circuit) for each different application are
saved by using such a device for many different applications, a situation that is
going to be increasingly important in the future with up to a tenfold improvement
in integration. Third, although there has been reluctance in adopting automatic
compilers for embedded DSP processors, such parallel DSP products make the use

of automated tools feasible; with a large number of processors per chip, one can
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tion in a cellular radio handset involves specific DSP functions such as speech
compression, channel equalization, modulation, etc.). Furthermore, embedded
applications face very different constraints compared to general purpose computa-
tion: non-recurring design costs, power consumption, and real-time performance
requirements are a few examples. Thus it is important to study techniques that are
application-specific, and that make use of the special characteristics of the applica-
tions they target, in order to optimize for the particular metrics that are important
for that specific application. These techniques adopt a design methodology that tai-
lors the hardware and software implementation to the particular application. Some
examples of such embedded computing systems are in robot controllers [Sriv92]
and real-time speech recognition systems [Stolz91]; in consumer electronics such
as future high-definition televisions sets, compact disk players, electronic music
synthesizers and digital audio systems; and in communication systems such as dig-
ital cellular phones and base stations, compression systems for video-phones and
video-conferencing, etc.

The idea of using multiple processing units to execute one program has
been present from the time of the very first electronic computer in the nineteen for-
ties. Parallel computation has since been the topic of active research in computer
science. Whereas parallelism within a single processor has been successfully
exploited (instruction-level parallelism), the problem of partitioning a single user
program onto multiple such processors is yet to be satisfactorily solved. Instruc-
tion-level parallelism includes techniques such as pipelining (employed in tradi-
tional RISC processors), vectorization, VLIW (very large instruction word),
superscalar — these techniques are discussed in detail by Patterson and Hennessy
in [Patt90]. Architectures that employ multiple CPUs to achieve task-level paral-
lelism fall into the shared memory, message passing, or dataflow paradigms. The
Stanford DASH multiprocessor [Len92] is a shared memory machine whereas the
Thinking Machines CM-5 falls into the message passing category. The MIT Mon-
soon machine [Pap90] is an example of a dataflow architecture.

Although the hardware for the design of such multiple processor machines
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— the memory, interconnect network, 10, etc. — has received much attention,
software for such machines has not been able to keep up with the hardware devel-
opment. Efficient partitioning of a general program (written in C say) across a
given set of processors arranged in a particular configuration is still an open prob-
lem. Detecting parallelism, the overspecified sequencing in popular imperative
languages like C, managing overhead due to communication and synchronization
between processors, and the requirement of dynamic load balancing for some pro-
grams (an added source of overhead) makes the partitioning problem for a general
program hard.

If we turn away from general purpose computation to application-specific
domains, however, parallelism is easier to identify and exploit. For example, one
of the more extensively studied family of such application-specific parallel proces-
sors is the systolic array architecture [Kung88][Quin84][Rao85]; this architecture
consists of regularly arranged arrays of processors that communicate locally, onto
which a certain class of applications, specified in a mathematical form, can be sys-
tematically mapped. We discuss systolic arrays further in section 1.3.2.

The necessary elements in the study of application-specific computer archi-
tectures are: 1) a clearly defined set of problems that can be solved using the par-
ticular application-specific approach, 2) a formal mechanism for specification of
these applications, and 3) a systematic approach for designing hardware from such
a specification.

In this thesis, the applications we focus on are those that can be described
by Synchronous Dataflow GraphgSDF) [Lee87] and its extensions; we will dis-
cuss this model in detail shortly. SDF in its pure form can only represent applica-
tions that have no decision making at the task level. Extensions of SDF (such as
the Boolean dataflowfBDF) model [Lee91][Buck93]) allow control constructs, so
that data-dependent control flow can be expressed in such models. These models
are significantly more powerful in terms of expressivity, but they give up some of
the useful analytical properties that the SDF model has. For instance, Buck shows

that it is possible to simulate any Turing machine in the BDF model [Buck93]. The
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rather than at run time. Given such a schedule that is determined at compile time,
we can extract information from it with a view towards optimizing the final imple-
mentation. The main contribution of this thesis is to present techniques for mini-
mizing synchronization and inter-processor communication overhead in statically
(i.e. compile time) scheduled multiprocessors where the program is derived from a
dataflow graph specification. The strategy is to model run time execution of such a
multiprocessor to determine how processors communicate and synchronize, and

then to use this information to optimize the final implementation.

1.1 The Synchronous Dataflow model

1.1.1  Background

Dataflow is a well-known programming model in which a program is rep-
resented as a directed graph, where the verticec{ors) represent computation
and edges (aarcs) represent FIFO (first-in-first-out) queues that direct data values
from the output of one computation to the input of another. Edges thus represent
data precedences between computations. Actors consume détlefes) from
their inputs, perform computation on thefirg), and produce certain number of
tokens on their outputs.

Programs written in high-level functional languages such as pure LISP, and
in dataflow languages such as Id and Lucid can be directly converted into dataflow
graph representations; such a conversion is possible because these languages are
designed to bé&ree of side-effects.e. programs in these languages are not allowed
to contain global variables or data structures, and functions in these languages can-
not modify their arguments [Ack82]. Also, since it is possible to simulate any Tur-
ing machine in one of these languages, questions such as deadlock (or,
equivalently, terminating behaviour) and determining maximum buffer sizes
required to implement edges in the dataflow graph become undecidable. Several
models based on dataflow with restricted semantics have been proposed; these

models give up the descriptive power of general dataflow in exchange for proper-
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BDF model can therefore compute all Turing computable functions, whereas this
is not possible in the case of the SDF model. We discuss the Boolean dataflow
model further in Chapter 6.

In exchange for the limited expressivity of an SDF representation, we can
efficiently check conditions such as whether a given SDF graph deadlocks, and
whether it can be implemented using a finite amount of memory. No such general
procedures can be devised for checking the corresponding conditions (deadlock
behaviour and bounded memory usage) for a computation model that can simulate
any given Turing machine. This is because the problems of determining if any
given Turing machine halts (the halting problem), and determining whether it will
use less than a given amount of memory (or tape)ratecidablgLew81]; that is,
no general algorithm exists to solve these problems in finite time.

In this thesis we will first focus on techniques that apply to SDF applica-
tions, and we will propose extensions to these techniques for applications that can
be specified essentially as SDF, but augmented with a limited number of control
constructs (and hence fall into the BDF model). SDF has proven to be a useful
model for representing a significant class of DSP algorithms; several DSP tools
have been designed based on the SDF and closely related models. Examples of
commercial tools based on SDF are the Signal Processing Worksystem (SPW),
developed by Comdisco Systems (now the Alta group of Cadence Design Sys-
tems) [Pow92][Barr91]; and COSSAP, developed by Cadis in collaboration with
Meyr’s group at Aachen University [Ritz92]. Tools developed at various universi-
ties that use SDF and related models include Ptolemy [Pin95a], the Warp compiler
[Prin92], DESCARTES [Ritz92], GRAPE [Lauw90], and the Graph Compiler
[Veig90].

The SDF model is popular because it has certain analytical properties that
are useful in practice; we will discuss these properties and how they arise in the
following section. The property most relevant for this thesis is that it is possible to
effectively exploit parallelism in an algorithm specified in SDF by scheduling

computations in the SDF graph onto multiple processors at compile or design time
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ties that facilitate formal reasoning about programs specified in these models, and
are useful in practise, leading to simpler implementation of the specified computa-
tion in hardware or software.

One such restricted model (and in fact one of the earliest graph based com-
putation models) is theomputation graph of Karp and Miller [Karp66]. In their
seminal paper Karp and Miller establish that their computation graph model is
determinatei.e. the sequence of tokens produced on the edges of a given computa-
tion graph are unique, and do not depend on the order that the actors in the graph
fire, as long as all data dependencies are respected by the firing order. The authors
also provide an algorithm that, based on topological and algebraic properties of the
graph, determines whether the computation specified by a given computation
graph will eventually terminate. Because of the latter property, computation graphs
clearly cannot simulate all Turing machines, and hence are not as expressive as a
general dataflow language like Lucid or pure LISP. Computation graphs provide
some of the theoretical foundations for the SDF model.

Another model of computation relevant to dataflow isRe&i net model
[Peter81][Mur89]. A Petri net consists of a setrahsitions which are analogous
to actors in dataflow, and a setpiéicesthat are analogous to arcs. Each transition
has a certain number of input places and output places connected to it. Places may
contain one or mortokens A Petri net has the following semantics: a transition
fireswhen all its input places have one or more tokens and, upon firing, it produces
a certain number of tokens on each of its output places.

A large number of different kinds of Petri net models have been proposed
in the literature for modeling different types of systems. Some of these Petri net
models have the same expressive power as Turing machines: for example if transi-
tions are allowed to posses “inhibit” inputs (if a place corresponding to such an
input to a transition contains a token, then that transition is not allowed to fire) then
a Petri net can simulate any Turing machine (pp. 201 in [Peter81]). Others
(depending on topological restrictions imposed on how places and transitions can

be interconnected) are equivalent to finite state machines, and yet others are simi-
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lar to SDF graphs. Some extended Petri net models allow a notion of time, to
model execution times of computations. There is also a body of work on stochastic
extensions of timed Petri nets that are useful for modeling uncertainties in compu-
tation times. We will touch upon some of these Petri net models again in Chapter
4. Finally, there are Petri nets that distinguish between different classes of tokens
in the specificationdploredPetrinets), so that tokens can have information associ-
ated with them. We refer to [Peter81] [Mur89] for details on the extensive variety
of Petri nets that have been proposed over the years.

The particular restricted dataflow model we are mainly concerned with in
this thesis is the SDF — Synchronous Data Flow — model proposed by Lee and
Messerschmitt [Lee87]. The SDF model poses restrictions on the firing of actors:
the number of tokens produced (consumed) by an actor on each output (input)
edge is a fixed number that is known at compile time. The arcs in an SDF graph
may contairinitial tokens,which we also refer to atelays Arcs with delays can
be interpreted as data dependencies across iterations of the graph; this concept will
be formalized in the following chapter. In an actual implementation, arcs represent
buffers in physical memory.

DSP applications typically represent computations on an indefinitely long
data sequence; therefore the SDF graphs we are interested in for the purpose of
signal processing must execute in a nonterminating fashion. Consequently, we
must be able to obtain periodic schedules for SDF representations, which can then
be run as infinite loops using a finite amount of physical memory. Unbounded
buffers imply a sample rate inconsistency, and deadlock implies that all actors in
the graph cannot be iterated indefinitely. Thus for our purposes, correctly con-
structed SDF graphs are those that can be scheduled periodically using a finite
amount of memory. The main advantage of imposing restrictions on the SDF
model (over a general dataflow model) lies precisely in the ability to determine
whether or not an arbitrary SDF graph has a periodic schedule that neither dead-
locks nor requires unbounded buffer sizes [Lee87]. The buffer sizes required to

implement arcs in SDF graphs can be determined at compile time (recall that this
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SDF should not be confused wifinchronous languagefHal93][Ben91]

(e.g. LUSTRE, SIGNAL, and ESTEREL), which have very different semantics
from SDF. Synchronous languages have been proposed for formally specifying
and modeling reactive systems, i.e. systems that constantly react to stimuli from a
given physical environment. Signal processing systems fall into the reactive cate-
gory, and so do control and monitoring systems, communication protocols, man-
machine interfaces, etc. In these languages variables are possibly infinite
sequences of data of a certain type. Associated with each such sequence is a con-
ceptual (and sometimes explicit) notion aflack signal In LUSTRE, each vari-

able is explicitly associated with a clock, which determines the instants at which
the value of that variable is defined. SIGNAL and ESTEREL do not have an
explicit notion of a clock. The clock signal in LUSTRE is a sequence of Boolean
values, and a variable in a LUSTRE program assumes its th value when its corre-
sponding clock takes its th TRUE value. Thus we may relate one variable with
another by means of their clocks. In ESTEREL, on the other hand, clock ticks are
implicitly defined in terms of instants when the reactive system corresponding to
an ESTEREL program receives (and reacts to) external events. All computations
in synchronous language are defined with respect to these clocks.

In contrast, the term “synchronous” in the SDF context refers to the fact
that SDF actors produce and consume fixed number of tokens, and these numbers
are known at compile time. This allows us to obtain periodic schedules for SDF
graphs such that the average rates of firing of actors are fixed relative to one
another. We will not be concerned with synchronous languages in this thesis,
although these languages have a close and interesting relationship with dataflow

models used for specification of signal processing algorithms [Lee95].

1.1.2  Utility of dataflow for DSP

As mentioned before, dataflow models such as SDF (and other closely
related models) have proven to be useful for specifying applications in signal pro-
cessing and communications, with the goal of both simulation of the algorithm at
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is not possible for a general dataflow model); consequently, buffers can be allo-
cated statically, and run time overhead associated with dynamic memory allocation
is avoided. The existence of a periodic schedule that can be inferred at compile
time implies that a correctly constructed SDF graph entails no run time scheduling
overhead.

An SDF graph in which every actor consumes and produces only one token
from each of its inputs and outputs is calledh@amogeneous SDFgraph
(HSDFG). An HSDF graph actor fires when it has one or more tokens on all its
input edges; it consumes one token from each input edge when it fires, and pro-
duces one token on all its output edges when it completes execution. A general
(multirate) SDF graph can always be converted into an HSDF graph [Lee86]; this
transformation may result in an exponential increase in the number of actors in the
final HSDF graph (see [Pin95b] for an example of an SDF graph in which this
blowup occurs). Such a transformation, however, appears to be necessary when
constructing periodic multiprocessor schedules from multirate SDF graphs. There
is some recent work on reducing the complexity of the HSDFG that results from
transforming a given SDF graph by applying graph clustering techniques to that
SDF graph [Pin95b]. Since we are concerned with multiprocessor schedules in this
thesis, we assume we start with an application represented as a homogeneous SDF
graph henceforth, unless we state otherwise. This of course results in no loss of
generality because a multirate graph is converted into a homogeneous graph for
the purposes of multiprocessor scheduling anyway. In Chapter 6 we discuss how
the ideas that apply to HSDF graphs can be extended to graphs containing actors
that display data-dependent behaviour ¢ymamicactors).

We note that an HSDFG is very similar tonarked graph in the context
of Petri nets [Peter81]; transitions in the marked graph correspond to actors in the
HSDFG, places correspond to edges, and initial tokens (or initial marking) of the
marked graph correspond to initial tokens (or delays) in HSDFGs. We will repre-
sent delays using bullets)(on the edges of the HSDFG; we indicate more than

one delay on an edge by a number alongside the bullet, as in Fig. 1.1(a).
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the functional or behavioural level, and for synthesis from such a high level speci-
fication to a software description (e.g. a C program) or a hardware description (e.g.
VHDL) or a combination thereof. The descriptions thus generated can then be
compiled down to the final implementation, e.g. an embedded processor, or an
ASIC.

One of the reasons for the popularity of such dataflow based models is that
they provide a formalism for block-diagram based visual programming, which is a
very intuitive specification mechanism for DSP; the expressivity of the SDF model
sufficiently encompasses a significant class of DSP applications, including multi-
rate applications that involve upsampling and downsampling operations. An
equally important reason for employing dataflow is that such a specification
exposes parallelism in the program. It is well known that imperative programming
styles such as C and FORTRAN tend to over-specify the control structure of a
given computation, and compilation of such specifications onto parallel architec-
tures is known to be a hard problem. Dataflow on the other hand imposes minimal
data-dependency constraints in the specification, potentially enabling a compiler to
detect parallelism. The same argument holds for hardware synthesis, where it is
important to be able to exploit concurrency.

The SDF model has also proven useful for compiling DSP applications on
single processors. Programmable digital signal processing chips tend to have spe-
cial instructions such as a single cycle multiply-accumulate (for filtering func-
tions), modulo addressing (for managing delay lines), bit-reversed addressing (for
FFT computation); DSP chips also contain built in parallel functional units that are
controlled from fields in the instruction (such as parallel moves from memory to
registers combined with an ALU operation). It is difficult for automatic compilers
to optimally exploit these features; executable code generated by commercially
available compilers today utilizes one and a half to two times the program memory
that a corresponding hand optimized program requires, and results in two to three
times higher execution time compared to hand-optimized code [Zivo95]. There has

been some recent work on compilation techniques for embedded software target-
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ted towards DSP processors and microcontrollers [Lia095]; it is still too early to
determine the impact of these techniques on automatic compilation for large-scale
DSP/control applications, however.

Block diagram languages based on models such as SDF have proven to be
a bridge between automatic compilation and hand coding approaches; a library of
reusable blocks in a particular programming language is hand coded, this library
then constitutes the set of atomic SDF actors. Since the library blocks are reusable,
one can afford to carefully optimize and fine tune them. The atomic blocks are fine
to medium grain in size; an atomic actor in the SDF graph may implement any-
thing from a filtering function to a two input addition operation. The final program
is then automatically generated by concatenating code corresponding to the blocks
in the program according to the sequence prescribed by a schedule. This approach
is mature enough that there are commercial tools available today, for example the
SPW and COSSAP tools mentioned earlier, that employ this technique. Powerful
optimization techniques have been developed for generating sequential programs
from SDF graphs that optimize for metrics such as memory usage [Bhat94].

Scheduling is a fundamental operation that must be performed in order to
implement SDF graphs on both uniprocessor as well as multiprocessors. Unipro-
cessor scheduling simply refers to determining the sequence of execution of actors
such that all precedence constraints are met and all the buffers between actors (cor-
responding to arcs) return to their initial states. We discuss the issues involved in

multiprocessor scheduling next.

1.2 Parallel scheduling

We recall that in the execution of a dataflow graph, actors fire when suffi-
cient number of tokens are present at their inputs. The task of scheduling such a
graph onto multiple processing units therefore involves assigning actors in the
HSDFG to processors (tipeocessor assignmenstep), ordering execution of these

actors on each processor (thetor ordering step), and determining when each
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assignment and ordering performed at run time would in general lead to a more
flexible implementation (because a dynamic strategy allows for run time variations
in computation load and for operations that display data dependencies) the over-
head involved in such a strategy is usually prohibitive and real-time performance
guarantees are difficult to achieve. Lee and Ha [Lee89] define two scheduling
strategies that perform the assignment and ordering steps at compiléutiyre:

static andself-timed. We use the same terminology in this thesis.

1.2.1  Fully-static schedules

In the fully-static FS) strategy, the exact firing time of each actor is also
determined at compile time. Such a scheduling style is used in the design of sys-
tolic array architectures [Kung88], for scheduling VLIW processors [Lam88], and
in high-level VLSI synthesis of applications that consist only of operations with
guaranteed worst-case execution times [DeMich94]. Under a fully static schedule,
all processors run in lock step; the operation each processor performs on each
clock cycle is predetermined at compile time and is enforced at run time either
implicitly (by the program each processor executes, perhaps augmented with
“nop”s or idle cycles for correct timing) or explicitly (by means of a program
sequencer for example).

A fully-static schedule of a simple HSDFG s illustrated in Fig. 1.1. The
FS schedule is schematically represented as a Gantt chart that indicates the proces-
sors along the vertical axis, and time along the horizontal axis. The actors are rep-
resented as rectangles with horizontal length equal to the execution time of the
actor. The left side of each actor in the Gantt chart corresponds to its starting time.
The Gantt chart can be viewed as a processor-time plane; scheduling can then be
viewed as a mechanism to tile this plane while minimizing total schedule length
and idle time (“empty spaces” in the tiling process). Clearly, the FS strategy is via-
ble only if actor execution time estimates are accurate and data-independent or if
tight worst-case estimates are available for these execution times.

As shown in Fig. 1.1, two different types of FS schedules arise, depending
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actor fires such that all data precedence constraints are met. Each of these three
tasks may be performed either at run time (a dynamic strategy) or at compile time
(static strategy). We restrict ourselvesitm-preemptive schedules, i.e. schedules
where an actor executing on a processor can not be interrupted in the middle of its
execution to allow another task to be executed. This is because preemption entails
a significant implementation overhead and is therefore of limited use in embedded,
time-critical applications.

Lee and Ha [Lee89] propose a scheduling taxonomy based on which of the
scheduling tasks are performed at compile time and which at run time; we use the
same terminology in this thesis. To reduce run time computation costs it is advan-
tageous to perform as many of the three scheduling tasks as possible at compile
time, especially in the context of algorithms that have hard real-time constraints.
Which of these can be effectively performed at compile time depends on the infor-
mation available about the execution time of each actor in the HSDFG.

For example, dataflow computers first pioneered by Dennis [Denn80] per-
form the assignment step at compile time, but employ special hardwatekghe
matchunit) to determine, at runtime, when actors assigned to a particular proces-
sor are ready to fire. The runtime overhead of token-matching and dynamic sched-
uling (within each processor) is fairly severe, so much so that dataflow
architectures have not been commercially viable; even with expensive hardware
support for dynamic scheduling, performance of such computers has been unim-
pressive.

The performance metric of interest for evaluating schedules &/érage
iteration period T: the average time it takes for all the actors in the graph to be
executed once. Equivalently, we could use the througﬁblut (i.e. the number of
iterations of the graph executed per unit time) as a performance metric. Thus an
optimal schedule is one that minimizés

In this thesis we focus on scheduling strategies that perform both processor
assignment and actor ordering at compile time, because these strategies appear to

be most useful for a significant class of real time DSP algorithms. Although
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on how successive iterations of the HSDFG are treated. Execution times of all
actors are assumed to be one time unit (t.u.) in this example. The FS schedule in
Fig. 1.1(b) representstdocked schedulesuccessive iterations of the HSDFG in a
blocked schedule are treated separately so that each iteration is completed before
the next one begins. A more elaborate blocked schedule on five processors is
shown in Fig. 1.2. The HSDFG is scheduled as if it executes for only one iteration,
i.e. inter-iteration dependencies are ignored; this schedule is then repeated to get
an infinite periodic schedule for the HSDFG. The length of the blocked schedule
determines the average iteration peribd . The scheduling problem is then to
obtain a schedule that minimizds  (which is also callednibkespan of the
schedule). A lower bound of  for a blocked schedule is simply the length of the
critical path of the graph, which is the longest delay-free path in the graph.

Ignoring the inter-iteration dependencies when scheduling an HSDFG is
equivalent to the classical multiprocessor scheduling problem for an Acyclic Pre-

cedence Graph (APG): the acyclic precedence graph is obtained from the given
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Figure 1.2Fully-static schedule on five processors

HSDFG by eliminating all edges with delays on them (edges with delays represent
dependencies across iterations) and replacing multiple edges that are directed
between the same two vertices in the same direction with a single edge. This
replacement is done because such multiple edges represent identical precedence
constraints; these edges are taken into account individually during buffer assign-
ment, however. Optimal multiprocessor scheduling of an acyclic graph is known to
be NP-Hard [Garey79], and a number of heuristics have been proposed for this
problem. One of the earliest, and still popular, solutions to this probldist is
scheduling first proposed by Hu [Hu61]. List scheduling is a greedy approach:
whenever a task is ready to run, it is scheduled as soon as a processor is available
to run it. Tasks are assigned priorities, and among the tasks that are ready to run at
any instant, the task with the highest priority is executed first. Various researchers
have proposed different priority mechanisms for list scheduling [Adam74], some
of which use critical path based (CPM) methods [Ram72][Koh75][Blaz87]
([Blaz87] summarizes a large number of CPM based heuristics for scheduling).
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wonder whether overlapped schedules are fundamentally superior to blocked
schedules with the unfolding and retiming operations allowed. This question is set-
tled in the affirmative by Parhi and Messerschmitt [Parhi91]; the authors provide
an example of an HSDFG for which no blocked schedule can be found, even
allowing unfolding and retiming, that has a lower or equal iteration period than the
overlapped schedule they propose.

Optimal resource constrained overlapped scheduling is of course NP-Hard,
although a periodic overlapped schedule in the absence of processor constraints
can be computed efficiently and optimally [Parhi91][Gasp92].

Overlapped scheduling heuristics have not been as extensively studied as
blocked schedules. The main work in this area is by Lam [Lam88], and deGroot
[deGroot92], who propose a modified list scheduling heuristic that explicitly con-
structs an overlapped schedule. Another work related to overlapped scheduling is
the “cyclo-static scheduling” approach proposed by Schwartz. This approach
attempts to optimally tile the processor-time plane to obtain the best possible
schedule. The search involved in this process has a worst case complexity expo-
nential in the size of the input graph, although it appears that the complexity is

manageable in practice, at least for small examples [Schw85].

1.2.2  Self-timed schedules

The fully-static approach introduced in the previous section cannot be used
when actors have variable execution times; the FS approach requires precise
knowledge of actor execution times to guarantee sender-receiver synchronization.
Itis possible to use worst case execution times and still employ an FS strategy, but
this requires tight worst case execution time estimates that may not be available to
us. An obvious strategy for solving this problem is to introduce explicit synchroni-
zation whenever processors communicate. This leads to the self-timed scheduling
(ST) strategy in the scheduling taxonomy of Lee and Ha [Lee89]. In this strategy
we first obtain an FS schedule using the techniques discussed in section 1.2, mak-
ing use of the execution time estimates. After computing the FS schedule (Fig. 1.3
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The heuristics mentioned above ignore communication costs between pro-
cessors, which is often inappropriate in actual multiprocessor implementations. An
edge of the HSDFG that crosses processor boundaries after the processor assign-
ment step represents interprocessor communicati®@)( (illustrated in Fig.
1.3(a)). These communication points are usually implemented ssingand
receiveprimitives that make use of the processor interconnect hardware. These
primitives then have an execution cost associated with them that depends on the
multiprocessor architecture and hardware being employed. Fully-static scheduling
heuristics  that take communication costs into account include
[Sark89][Sih91][Prin91].

Computations in the HSDFG, however, are iterated essentially infinitely.
The blocked scheduling strategies discussed thus far ignore this fact, and thus pay
a penalty in the quality of the schedule they obtain. Two techniques that enable
blocked schedules to exploit inter-iteration parallelismur®lding andretim-
ing. The unfolding strategy schedulés iterations of the HSDFG together, where
J is called theblocking factor. Thus the schedule in Fig. 1.1(b) has= 1
Unfolding often leads to improved blocked schedules (pp. 78-100 [Lee86],
[Parhi91]), but it also implies a factor 8f increase in program memory size and
also in the size of the scheduling problem, which makes unfolding somewhat
impractical.

Retiming involves manipulating delays in the HSDFG to reduce the critical
path in the graph. This technique has been explored in the context of maximizing
clock rates in synchronous digital circuits [Lei83], and has been proposed for
improving blocked schedules for HSDFGs (“cutset transformations” in [Lee86],
and [Hoang93]).

Fig. 1.1(c) illustrates an example of awerlapped schedule Such a
schedule is explicitly designed such that successive iterations in the HSDFG over-
lap. Obviously, overlapped schedules often achieve a lower iteration period than
blocked schedules. In Fig. 1.1, for example, the iteration period for the blocked

schedule is 3 units whereas it is 2 units for the overlapped schedule. One might
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(b)), we simply discard the timing information that is not required, and only retain
the processor assignment and the ordering of actors on each processor as specified
by the FS schedule (Fig. 1.3(c)). Each processor is assigned a sequential list of
actors, some of which asendandreceiveactors, that it executes in an infinite
loop. When a processor executes a communication actor, it synchronizes with the
processor(s) it communicates with. Exactly when a processor executes each actor
depends on when, at run time, all input data for that actor are available, unlike the
fully-static case where no such run time check is needed. Conceptually, the proces-
sor sending data writes data into a FIFO buffer, and blocks when that buffer is full;
the receiver on the other hand blocks when the buffer it reads from is empty. Thus
flow control is performed at run time. The buffers may be implemented using
shared memory, or using hardware FIFOs between processors. In a self-timed
strategy, processors run sequential programs and communicate when they execute
the communication primitives embedded in their programs, as shown schemati-
cally in Fig. 1.3 (c).

Proc 1 Proc 2
start start
v v
N proc 5 (A B S
>
Procz ¢ [ '8} v ¥
/ =t A B
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send send
(b) Fully-static schedule
(a) HSDFG (c) Self-timed implementation
(schematic)

Figure 1.3Steps in a self-timed scheduling strategy

An ST strategy is robust with respect to changes in execution times of
actors, because sender-receiver synchronization is performed at run time. Such a
strategy, however, implies higher IPC costs compared to the fully-static strategy
because of the need for synchronization (e.g. using semaphore management). In

addition the ST strategy faces arbitration costs: the FS schedule guarantees mutu-
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ally exclusive access of shared communication resources, whereas shared
resources need to be arbitrated at run time in the ST schedule. Consequently,
whereas IPC in the FS schedule simply involves reading and writing from shared
memory (no synchronization or arbitration needed), implying a cost of a few pro-
cessor cycles for IPC, the ST strategy requires of the order of tens of processor
cycles, unless special hardware is employed for run time flow control. We discuss
in detail how this overhead arises in a shared bus multiprocessor configuration in
Chapter 3.

Run time flow control allows variations in execution times of tasks; in
addition, it also simplifies the compiler software, since the compiler no longer
needs to perform detailed timing analysis and does not need to adjust the execution
of processors relative to one another in order to ensure correct sender-receiver syn-
chronization. Multiprocessor designs, such as the Warp array [Ann87][Lam88] and
the 2-D MIMD (Multiple Instruction Multiple Data) array of [Ziss87], that could
potentially use fully-static scheduling, still choose to implement such run time
flow control (at the expense of additional hardware) for the resulting software sim-
plicity. Lam presents an interesting discussion on the trade-off involved between
hardware complexity and ease of compilation that ensues when we consider
dynamic flow control implemented in hardware versus static flow control enforced

by a compiler (pp. 50-68 of [Lam89]).

1.2.3  Execution time estimates and static schedules

We assume we have reasonably good estimates of actor execution times
available to us at compile time to enable us to exploit static scheduling techniques;
however, these estimates need not be exact, and execution times of actors may
even be data-dependent. Thus we allow actors that have different execution times
from one iteration of the HSDFG to the next, as long as these variations are small
or rare. This is typically the case when estimates are available for the task execu-
tion times, and actual execution times are close to the corresponding estimates

with high probability, but deviations from the estimates of (effectively) arbitrary
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ing; in fact estimation turns out to be the most time consuming step in the GRAPE
design flow. Analytical techniques can be used instead to reduce this estimation
time; for example, Li and Malik [Li95] have proposed algorithms for estimating
the execution time of embedded software. Their estimation technique, which
forms a part of a tool callecinderellg consists of two components: 1) determin-

ing the sequence of instructions in the program that results in maximum execution
time (program path analysis) and 2) modeling the target processor to determine
how much time the worst case sequence determined in step 1 takes to execute
(micro-architecture modeling). The target processor model also takes the effect of
instruction pipelines and cache activity into account. The input to the tool is a
generic C program with annotations that specify the loop bounds (i.e. the maxi-
mum number of iterations that a loop runs for). Although the problem is formu-
lated as an integer linear program (ILP), the claim is that practical inputs to the
tool can be efficiently analyzed using a standard ILP solver. The advantage of this
approach, therefore, is the efficient manner in which estimates are obtained as
compared to simulation.

It should be noted that the program path analysis component of the Li and
Malik technique is in general an undecidable problem; therefore for these tech-
niques to function, the programmer must ensure that his or her program does not
contain pointer references, dynamic data structures, recursion, etc. and must pro-
vide bounds on all loops. Li and Malik’s technique also depends on the accuracy of
the processor model, although one can expect good models to eventually evolve
for DSP chips and microcontrollers that are popular in the market.

The problem of estimating execution times of blocks is central for us to be
able to effectively employ compile time design techniques. This problem is an
important area of research in itself, and the strategies employed in Ptolemy and
GRAPE, and those proposed by Li and Malik are useful techniques, and we expect

better estimation techniques to be developed in the future.
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magnitude occasionally occur due to phenomena such as cache misses, interrupts,
user inputs or error handling. Consequently, tight worst-case execution time
bounds cannot generally be determined for such operations; however, reasonably
good execution time estimates can in fact be obtained for these operations, so that
static assignment and ordering techniques are viable. For such applications self-
timed scheduling is ideal, because the performance penalty due to lack of dynamic
load balancing is overcome by the much smaller run time scheduling overhead
involved when static assignment and ordering is employed.

The estimates for execution times of actors can be obtained by several dif-
ferent mechanisms. The most straightforward method is for the programmer to
provide these estimates when he writes the library of primitive blocks. This strat-
egy is used in the Ptolemy system, and is very effective for the assembly code
libraries, in which the primitives are written in the assembly language of the target
processor (Ptolemy currently supports the Motorola 56000 and 96000 processors).
The programmer can provide a good estimate for blocks written in such a library
by counting the number of processor cycles each instruction consumes, or by pro-
filing the block on an instruction-set simulator.

Itis more difficult to estimate execution times for blocks that contain con-
trol constructs such as data-dependent iterations and conditionals within their
body, and when the target processor employs pipelining and caching. Also, it is
difficult, if not impossible, for the programmer to provide reasonably accurate esti-
mates of execution times for blocks written in a high-level language (as in the C
code generation library in Ptolemy). The solution adopted in the GRAPE system
[Lauw90] is to automatically estimate these execution times by compiling the
block (if necessary) and running it by itself in a loop on an instruction-set simula-
tor for the target processor. To take into account data-dependent execution behav-
iour, different input data sets can be provided for the block during simulation.
Either the worst case or the average case execution time is used as the final esti-
mate.

The estimation procedure employed by GRAPE is obviously time consum-
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1.3 Application-specific parallel architectures

There has been significant amount of research on general purpose high-
performance parallel computers. These employ expensive and elaborate intercon-
nect topologies, memory and Input/Output (I/O) structures. Such strategies are
unsuitable for embedded DSP applications as we discussed earlier. In this section
we discuss some application-specific parallel architectures that have been

employed for signal processing, and contrast them to our approach.

1.3.1 Dataflow DSP architectures

There have been a few multiprocessors geared towards signal processing
that are based on the dataflow architecture principles of Dennis [Denn80]. Notable
among these are Hughes Data Flow Multiprocessor [Gau85], the Texas Instru-
ments Data Flow Signal Processor [Grim84], and the AT&T Enhanced Modular
Signal Processor [Bloch86]. The first two perform the processor assignment step at
compile time (i.e. tasks are assigned to processors at compile time) and tasks
assigned to a processor are scheduled on it dynamically; the AT&T EMPS per-
forms even the assignment of tasks to processors at runtime.

Each one of these machines employs elaborate hardware to implement
dynamic scheduling within processors, and employs expensive communication
networks to route tokens generated by actors assigned to one processor to tasks on
other processors that require these tokens. In most DSP applications, however,
such dynamic scheduling is unnecessary since compile time predictability makes
static scheduling techniques viable. Eliminating dynamic scheduling results in
much simpler hardware without an undue performance penalty.

Another example of an application-specific dataflow architecture is the
NEC pPD7281 [Chase84], which is a single chip processor geared towards image
processing. Each chip contains one functional unit; multiple such chips can be
connected together to execute programs in a pipelined fashion. The actors are stat-

ically assigned to each processor, and actors assigned to a given processor are
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scheduled on it dynamically. The primitives that this chip supports, convolution,
bit manipulations, accumulation, etc., are specifically designed for image process-

ing applications.

1.3.2  Systolic and wavefront arrays

Systolic arrays consist of processors that are locally connected and may be
arranged in different topologies: mesh, ring, torus, etc. The term “systolic” arises
because all processors in such a machine run in lock-step, alternating between a
computation step and a communication step. The model followed is usually SIMD
(Single Instruction Multiple Data). Systolic arrays can execute a certain class of
problems that can be specified as “Regular Iterative Algorithms (RIA)" [Rao85];
systematic techniques exist for mapping an algorithm specified in a RIA form onto
dedicated processor arrays in an optimal fashion. Optimality includes metrics such
as processor and communication link utilization, scalability with the problem size,
achieving best possible speedup for a given number of processors, etc. Several
numerical computation problems were found to fall into the RIA category: linear
algebra, matrix operations, singular value decomposition, etc. (see
[Kung88][Leigh92] for interesting systolic array implementations of a variety of
different numerical problems). Only fairly regular computations can be specified
in the RIA form; this makes the applicability of systolic arrays somewhat restric-
tive.

Wavefront arrays are similar to systolic arrays except that processors are
not under the control of a global clock. Communication between processors is
asynchronous or self-timed; handshake between processors ensures run time syn-
chronization. Thus processors in a wavefront array can be complex and the arrays
themselves can consist of a large number of processors without incurring the asso-
ciated problems of clock skew and global synchronization. Again, similar to FS
versus ST scheduling, the flexibility of wavefront arrays over systolic arrays
comes at the cost of extra handshaking hardware.

The Warp project at Carnegie Mellon University [Anna87] is an example
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speech recognition applications based on artificial neural networks. The RAP sys-
tem consists of several boards that are attached to a host workstation, and acts as a
coprocessor for the host. The unidirectional pipelined ring topology employed for
interprocessor communication was found to be ideal for the particular algorithms
that were to be mapped to this machine. The ring structure is similar to the
SMART array, except that no processor ID is included with the data, and processor
reads and writes into the ring are scheduled in a fully-static fashion. The ring is
used to broadcast data from one processor to all the others during one phase of the
neural net algorithm, and is used to shift data from processor to processor in a
pipelined fashion in the second phase.

The MUSIC system [Gunz92] uses Motorola DSP96000 processors, and
has been designed for neural network simulations and scientific simulations. An
“intelligent” communication network, implemented on Xilinx gate arrays, broad-
casts data generated by any processing element (PE) to all the other PEs. The PEs
are arranged in a ring topology. This kind of broadcast mechanism is suited to the
applications the MUSIC system targets: the outputs from one layer of a multi-layer
perceptron (a kind of neural net) is needed by all the “neurons” in the next layer,
making broadcasting an ideal strategy when the different net layers are executed in
a pipelined fashion. The molecular dynamics example the authors provide also
benefits from this broadcast mechanism.

1.4  Thesis overview: our approach and contributions

We argued that the self-timed scheduling strategy is suited towards parallel
implementation for DSP. The multiprocessor architectures we discussed in the pre-
vious section support this argument: the dataflow architectures in section 1.3.1 use
dynamic scheduling, but pay a high hardware cost, which makes them unsuited for
embedded applications. In the case of the NEC dataflow chips, parallelism is
mainly derived through pipelined execution. The dataflow model of execution that

is implemented in hardware in this chip, although elegant, is of limited use for the
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of a programmable systolic array, as opposed to a dedicated array designed for one
specific application. Processors are arranged in a linear array and communicate
with their neighbors through FIFO queues. Programs are written for this computer
in a language called W2 [Lam88]. The Warp project also led to the iWarp design
[Bork88], which has a more elaborate inter-processor communication mechanism
than the Warp machine. An iWarp node is a single VLSI component, composed of
a computation engine and a communication engine; the latter consists of a crossbar
and data routing mechanisms. The iWarp nodes can be connected in various single
and two dimensional topologies, and point to point message-passing type commu-

nication is supported.

1.3.3  Multiprocessor DSP architectures

In this section we discuss multiprocessors that make use of multiple off the
shelf programmable DSP chips.

The SMART architecture [Koh90] is a reconfigurable bus design com-
prised of AT&T DSP32C processors, and custom VLSI components for routing
data between processors. Clusters of processors may be connected onto a common
bus, or may form a linear array with neighbor to neighbor communication. This
allows the multiprocessor to be reconfigured depending on the communication
requirement of the particular application being mapped onto it. Scheduling and
code generation for this machine is done by the McDAS compiler [Hoang93].

The DSP3 multiprocessor [Shive92] was built at AT&T, and is comprised
of DSP32C processors connected in a mesh configuration. The mesh interconnect
is implemented using custom VLS| components for data routing. Each processor
communicates with four of its adjacent neighbors through this router, which con-
sists of input and output queues, and a crossbar that is configurable under program
control. Data packets contain headers that indicate the ID of the destination proces-
sor.

The Ring Array Processor (RAP) system [Morg92] uses TI DSP320C30

processors connected in a ring topology. This system is designed specifically for
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image processing applications that this part has been designed for; the order in
which each processor executes instructions assigned to it can potentially be fixed
at compile time without loss in parallelism.

Systolic arrays normally employ a fully-static strategy. As we discussed
before, RIA specifications and the primarily SIMD approach used in systolic array
mapping techniques restrict their domain of applicability. The approach taken by
these techniques is to use a large number of very simple processors to perform the
computation, whereas the approach we follow in this thesis is to use a small num-
ber of powerful processors. This enables us to handle algorithms specified as data-
flow graphs where the actors are tasks with a potentially large granularity. The
parallelism we employ is therefore at the task level (functional parallelism). Such a
strategy gives up some of the optimality properties that systolic array mapping
techniques guarantee in exchange for a larger application domain. Again, utilizing
a number of pretested processor cores is economically more attractive than build-
ing a systolic array implementation from scratch.

Ideally we would like to exploit the strategy of partitioning data among dif-
ferent processors (data parallelism) that systolic techniques employ, along with
task level parallelism. There has not been much work in this direction, although
the work of Printz [Prin91], and the Multidimensional SDF model proposed by
Lee in [Lee93], are two promising approaches for combining data and functional
parallelism.

The multiple DSP machines we discussed in the last section all employ
some form of self-timed scheduling. Clearly, general purpose parallel machines
like the Thinking Machines CM-5 and Stanford Dash multiprocessor can also be
programmed using the self-timed scheduling style, since these machines provide
mechanisms for run time synchronization and flow control. These machines, how-
ever, do not attempt to make use of the fact that the interprocessor communication
pattern in a self-timed implementation is fairly predictable. In this thesis we
explore techniques that optimize the parallel implementation of a self-timed sched-

ule by performing compile time analysis of the schedule to determine the pattern
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of processor communication and synchronization. We assume we are given a self-
timed schedule, i.e. we are given a processor assignment and actor ordering. This
could be obtained using any of the techniques discussed in section 1.2. For the
actual programs examples that we discuss in this thesis, we use one of three sched-
uling methods that are currently available within the Ptolemy system: Sih’s sched-
uling heuristics [Sih92], Hu's list scheduling heuristic, and manual scheduling.

The first technique we present is thedered Transaction (OT) strategy.

In the OT strategy, we impose additional constraints on the self-timed execution.
In particular we force an order in which processors communicate. Doing this
allows us to eliminate arbitration and synchronization costs, like the fully-static
strategy, but enables us to retain some of the flexibility of the self-timed schedule
in that execution times of actors need onlyebmatesather than values accurate
down to the clock cycle.

In Chapter 3 we discuss the OT strategy in detail and present the hardware
design and implementation of a four processor machine — the Ordered Memory
Access Architecture (OMA) — that employs the OT idea to achieve low cost inter-
processor communication. The OMA is a shared bus machine that uses shared
memory for IPC. The order in which processors access shared memory for the pur-
pose of communication is predetermined at compile time and enforced by a bus
controller on the board, resulting in a low cost IPC mechanism without the need
for explicit synchronization.

Reducing IPC costs is particularly important for parallel implementation of
embedded real-time applications, because there is usually a premium on processor
cycles in these situations. For example, if we process audio at a sample rate of 44
KHz on a multiprocessor that consists of processors with a 60 nanosecond cycle
time, we have about 380 instructions on average per processor to complete all
operations on each audio sample. IPC can potentially waste precious processor
cycles, negating some of the benefits of using multiple processors.

In Chapter 4 we present a graph theoretic scheme for modeling self-timed

schedules using a structure we call fR€ graph that takes into account the pro-
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cation domain for such a scheme. Indeed, the GF11 is employed mainly for scien-
tific computation applications that have a very regular communication and
computation structure (linear algebra, finite element methods, FFTs, etc.). Again,
the techniques we explore in this thesis apply to an MIMD style of computation
where we do not assume precise knowledge of execution times of tasks, or even
the availability of guaranteed worst case execution times for operations.

The second technique we present in this thesis consists of efficient algo-
rithms that minimize the overall synchronization activity in the implementation of
a given self-timed schedule. A straightforward implementation of a self-timed
schedule often includesdundant synchronization points, i.e. the objective of a
certain set of synchronizations is guaranteed as a side effect of other synchroniza-
tion points in the system. In Chapter 5 we present efficient (polynomial time) algo-
rithms for detecting and eliminating such redundant synchronization operations.
We relate our techniques to the algorithm proposed by Shaffer [Sha89] for mini-
mizing directed synchronizationis multiprocessors that are essentially executing
self-timed schedules, and to the work described by Bietl. [Dietz92] for mini-
mizing the number of barrier synchronizations in a multiprocessor that contains
barrier synchronization hardware. It is also possible to reduce the overall synchro-
nization cost of a self-timed implementation by adding synchronization points
between processors that were not present in the schedule specified originally. In
Chapter 5, we present a technique, catiesynchronization, for systematically
manipulating synchronization points in this manner. The work described in this
chapter is a part of an ongoing research effort in collaboration with Dr. Shuvra
Bhattacharyya, a research scientist at Hitachi America Ltd.

The ordered transaction strategy can be viewed as a hardware approach
that optimizes for IPC and synchronization overhead in statically scheduled multi-
processor implementations. The synchronization optimization techniques on the
other hand operate at the level of a scheduled parallel program by altering the syn-
chronization structure of a given schedule to minimize the synchronization over-
head in the final implementation.
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cessor assignment and ordering constraints that a self-timed schedule specifies. In
the context of the OT scheme, we use the IPC graph construction to determine a
transaction order that makes optimal use of actor execution time information avail-
able to us during the compilation or design phase. The idea is to predict the pattern
of processor communications using the IPC graph, and then to use this pattern to
determine the transaction order. We outline this procedure in Chapter 4. We also
discuss the effect of run time variations in execution times of actors on the perfor-
mance of a multiprocessor executing a self-timed schedule.

Determining the pattern of processor communications is relatively straight-
forward in SIMD implementations. Techniques applied to systolic arrays in fact
use the regular communication pattern to determine an optimal interconnect topol-
ogy for a given algorithm. An interesting architecture in this context is the GF11
machine built at IBM [Beet85]. The GF11 is an SIMD machine in which proces-
sors are interconnected using a Benes network, which allows the GF11 to support a
variety of different interprocessor communication topologies rather than a fixed
topology, e.g. a mesh or a ring, that most systolic arrays support.

Benes networks are non-blocking, i.e. they can provide connections from
all the network inputs to the network outputs simultaneously according to any
specified permutation. These networks achieve the functional capability of a full
crossbar switch with much simpler hardware. The drawback, however, is that in a
Benes network, computing switch settings needed to achieve a particular permuta-
tion involves a somewhat complex algorithm [Leigh92]. In the GF11, this problem
is solved by precomputing the switch settings based on the program to be executed
on the array, and reconfiguring the Benes network at runtime based on these prede-
termined switch settings.

The OT strategy is along similar lines as the static network configuration
strategy employed in the GF11. The GF11 strategy, however, applies to a FS
scheduling scenario: the communication network and the processors run synchro-
nously and the compiler must determine what the network and the processors do at

each clock cycle. As we discussed earlier, this restriction narrows down the appli-
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In Chapter 6 we discuss ideas for extending the OT strategy to models
more powerful than SDF, e.g. the Boolean dataflow model. The strategy here is to
assume we have only a small number of control constructs in the SDF graph and
explore techniques for this case. This allows us to expand the domain of applica-
bility of our techniques without having to deal with the complexity of tackling a
general BDF model. Finally, we present our conclusions in Chapter 7 and point out
future directions for this research.

In the following chapter (Chapter 2) we lay down some of the notation and

terminology we follow in the remainder of the thesis.
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2

TERMINOLOGY AND NOTATIONS

In this chapter we introduce terminology and definitions used in the
remainder of the thesis. We also formalize the scheduling concepts that were pre-

sented intuitively in the previous chapter.

2.1 HSDF graphs and associated graph theoretic nota-
tion

We represent an HSDFG by an ordered [§&fr E) , Whiere is the set of
vertices (actors) anl s the set of edges. We refer to the source and sink vertices
of a graph edge bgrc(e) amshk(e) , and we denote the delay (or the num-
ber of initial tokens) ore bydelay(e) . We say that is amtput edge of
src(e) , and thate is amnput edge of snk(e) . We will also use the notation
(Vo)) » v, v OV, for an edge directed from o

A pathin (V, E) is afinite, non-empty sequenge,, e,, ..., &,) , Where
eache, is a member & , arghk(e)) = src(e) spnk(e,) =src(g) ..,
snk(e,_;) = src(g,) . We say that the paih = (e}, e, ..., €,) containseach
€ and each subsequence (¢, e, ....e,) p; disected from src(e,) to
snk(e,) ; and each member dfsrc (e,), src(e), ..., src(e,), snk(g)} @
p. A path that is directed from a vertex to itself is callegae, and dundamen-
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Given two arbitrary sets1 anﬂ2 , we define the difference of these two
sets byS, -S, = {sO q‘sD S} , and we denote the number of elements in a
finite setS by|S . Also, ifr is a real number, then we denote the smallest integer
that is greater than or equaltto  oy]

For elaboration on any of the graph-theoretic concepts presented in this

section, we refer the reader to Cormen, Leiserson, and Rivest [Corm92].

2.2 Schedule notation

To model execution times of actors (and to perform static scheduling) we
associate execution tintg(v) oz* (non-negative integer) with each actor in
the HSDFG;t(v) assigns execution time to each actor  (the actual execution
time can be interpreted a$v) cycles of a base clock). Inter-processor communi-
cation costs are represented by assigning execution times serttiandreceive
actors. The values(v)  may be set equal to executiondstimatesvhen exact
execution times are not available, in which case results of the computations that
make use of these values (e.g. the iteration pdfiod ) are compile time estimates.

Recall that actors in an HSDFG are executed essentially infinitely. Each fir-
ing of an actor is called a@nvocation of that actor. Ariteration of the HSDFG
corresponds to one invocation of every actor in the HSDFG. A schedule specifies
processor assignment, actor ordering and firing times of actors, and these may be
done at compile time or at run time depending on the scheduling strategy being
employed. To specify firing times, we let the functistart(v, K O z* represent
the time at which thé& th invocation of the actor  starts. Correspondingly, the
function end(v B O z' represents the time at which tke th execution of the
actorv completes, at which poimt  produces data tokens at its output edges. Since
we are interested in tHe th execution of each actok fer0, 1, 2 3 ... , we set
start(v, ¥ = 0 andend(vy B = 0 fork<O as the “initial conditions”. If the
kth invocation of an actoy; takesactlyt (vl) , then we can claim:

end( v, k) = stan(vl.k) +t(vl).
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tal cycleis a cycle of which no proper subsequence is a cycle.

Ifp = (e,e,...,€) isapathinan HSDFG, then we define ta¢h de-

n
lay of p, denotedDelay (p) , byDelay(p) = z delay(g) . Since the delays on
i=1

all HSDFG edges are restricted to be non-negative, it is easily seen that between any
two verticesx, y OV , either there is no path directed foom y to , or there exists a
(not necessarily unique)inimum-delay path betweerx ang . Given an HSDFG

G, and vertices, y i1 , we defing; (x,y)  to be equal to the path delay of a
minimum-delay path fronx tg if there exist one or more paths ftromy to ,and
equal too if there is no path from o .& is understood, then we may drop

the subscript and simply writep" " in place o

By asubgraph of (V, E) , we mean the directed graph formed by any
V' OV together with the set of edgg® [ E|src(e), snk(e) OV'} . We denote
the subgraph associated with the vertex-suldset sulbwgraph(V') . We say that
(V, E) isstrongly connectedif for each pair of distinct vertices,y , there is a
path directed fronx ty and there is a path directed ffomx to . We say that a
subsetV' OV is strongly connected stibgraph(V') is strongly connected. A

strongly connected component (SCC)f (V, E) is a strongly connected subset

&

V' OV such that no strongly connected subset¥ of  properly coritains V' . If
an SCC, then when there is no ambiguity, we may also saguhgraph(V') is
an SCC. IfC; andC, are distinct SCCs (N, E) ,we say @at  piedeces-

sor SCCof C, if there is an edge directed from some vertegjn to some vertex
in C,; C, is asuccessor SC®f C, if C, is a predecessor SCC6f . An SCC

is asource SCCif it has no predecessor SCC; and an SCGsislaSCCif it has

no successor SCC. An edge ifeadforward edge of (V, E) if it is not con-
tained in an SCC, or equivalently, if it is not contained in a cycle; an edge that is

contained in at least one cycle is calldéedbackedge.

34

Recall that a fully-static schedule specifies a processor assignment, actor
ordering on each processor, and also the precise firing times of actors. We use the

following notation for a fully-static schedule:

Definition 2.1: A fully-static scheduleS (foP processors) specifies a triple:

S={0,(V).0,(v). T .
where op(v) - [1,2...,P] is the processor assignment, apd is the itera-
tion period. An FS schedule specifies the firing tirstast (v, K of all actors, and
since we want a finite representation for an infinite schedule, an FS schedule is
constrained to be periodic:

start(v, B = g, (v) +kTeg,
o,(v) is thus the starting time of the first execution of actor (i.e.

start(v,0) = o,(v) ). Clearly, the throughput for such a schedul'§;1§

The cp(v) function and the (v)  values are chosen so that all data pre-
cedence constraints and resource constraints are met. We define precedence con-

straints as follows:

Definition 2.2: An edge(vj, v.) OV inan HSDFQV, E) represents the (data)

precedence constrairt

start(v, k) = end( v, k- delay( (VJ.V,))) , Ok= delay(vj,v‘) .

The above definition arises because each actor consumes one token from each of
its input edges when it fires. Since there are alredeigy(e) tokens on each
incoming edgee of actov , anothkrdelay(e) —1  tokens must be produced
on e before thek th execution of can begin. Thus the atofe) must have
completed its K— delay(e) —1 )th execution befove can beginkits th execu-
tion. The 1 “s arise because we defisi@rt(v, K ka0 rather thard
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This is done for notational convenience.

Any schedule that satisfies all the precedence constraints specified by
edges in an HSDF@ s also calledamissible scheduldor G [Reit68]. A
valid executionof an HSDFG corresponds to a set of firing tims&aft( v, k) }
that correspond to an admissible schedule, i.e. a valid execution respects all data
precedences specified by the HSDFG.

For the purposes of the techniques presented in this thesis, we are only
interested in the precedence relationships between actors in the HSDF graph. In a
general HSDFG one or more pairs of vertices can have multiple edges connecting
them in the same “direction.” Such a situation often arises when a multirate SDF
graph is converted into a homogeneous HSDFG. Multiple edges between the same
pair of vertices in the same direction are redundant as far as precedence relation-
ships are concerned. Suppose there are multiple edges from vertex; to and
amongst these edges the edge that has minimum delay has delay edjal to
Then, if we replace all these edges by a single edge with delay ealig| to ,itis
easy to verify that this single edge maintains the precedence constraaitstier
edges that were directed fram Yo . Thus a general HSDF graph may be prepro-
cessed into a form where the source and sink vertices uniquely identify an edge in
the graph, and we may represent an edgé E by the ordered pair
(src(e), snk(€)) . The multiple edges are taken into account individually when

buffers are assigned to the arcs in the graph.

As we discussed in section 1.2.1, in some cases it is advantageotsido
a graph by a certain unfolding factor, say , and schadule iterations of the graph
together in order to exploit inter-iteration parallelism more effectively. The unfold-

ed graph containg  copies of each actor of the original graph. In this&ase and
o, are defined for all the vertices of thefoldedgraph (i.enp and, are defined

for u invocations of each actorJg is the iteration period for the unfolded graph,

37

T
and the average iteration period for the original graph is-&ﬁgn . In the remainder

of this thesis, we assume we are dealing with the unfolded graph and we refer only
to the iteration period and throughput of the unfolded graph, if unfolding is in fact
employed, with the understanding that these quantities can be scaled by the unfold-

ing factor to obtain the corresponding quantities for the original graph.

In a self-timed scheduling strategy, we determine a fully-static schedule,
(up (v),0,(v), Tegh , using the execution time estimates, but we only retain the
processor assignme% and the ordering of actors on each processor as specified
by o, and discard the precise timing information specified in the fully-static
schedule. Although we may start out with settitart(v, 0) = o, (v) , the subse-
quentstart(v, K values are determined at runtime based on availability of data at
the input of each actor; the average iteration period of a self-timed schedule is rep-
resented byTg . We analyze the evolution of a self-timed schedule further in
Chapter 4.

38



3

THE ORDERED TRANSACTION STRATEGY

The self-timed scheduling strategy in Chapter 1 introduces synchronization
checks when processors communicate; such checks permit variations in actor exe-
cution times, but they also imply run time synchronization and arbitration costs. In
this chapter we present a hardware architecture approach called Ordered Transac-
tions (OT) that alleviates some of these costs, and in doing so, trades off some of
the run time flexibility afforded by the ST approach. The ordered transactions
strategy was first proposed by Bier, Lee, and Sriram [Lee90][Bier90]. In this chap-
ter we describe the idea behind the OT approach and then we discuss the design
and hardware implementation of a shared-bus multiprocessor that makes use of
this strategy to achieve a low-cost interprocessor communication using simple
hardware. The software environment for this board is provided by the Ptolemy sys-

tem developed at the University of California at Berkeley [Buck94][Ptol94].

3.1  The Ordered Transactions strategy

In the OT strategy we first obtain a fully-static schedule using the execu-
tion time estimates, but we discard the precise timing information specified in the
fully-static schedule; as in the ST schedule we retain the processor assignment

(op) and actor ordering on each processor as specifieq by ; in addition, we also
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retain the order in which processors communicate with one another and we enforce

this order at run time. We formalize the concept of transaction order below.

Suppose there arek inter-processor communication  points
(Sp 1), (S5 15), ..y (S 1) — where each(s, ri) is send-receivgair — in
the FS schedule that we obtain as a first step in the construction of a self-timed
schedule. LeR be the set i@fceiveactors, andS be the set sgndactors (i.e.
R={r,r,..rn} andS={s;,s,, ...,5} ). We define &ansaction order to
be a sequence O = (V, Vo Vg eois Vo _ 1 Vop) where
{Vy Vo coos Vo 1, Vo b =S80 R (each communication actor is present in the
sequenced ). We say a transaction or@er  (as defined abarg)osedon a
multiprocessor if at run time the@endandreceiveactors are forced to execute in
the sequence specified y . That isQf= (v, V,, Vg, ..., Vo 15 Vo) , then
imposing O means ensuring the constraintend( \, k) < start(v,, k) ,
end( \, K) <start(vg, K) , ..., end(y _,, k) <start(y, k) ; Ok=0.

Thus the OT schedule is essentially an ST schedule with the added transac-

tion order constraints specified &y

After an FS schedule is obtained using the execution time estimates, the
transaction order is obtained from tbe  function of the FS schedule: we simply

set the transaction order@ = (Vy, V,, Vg, ..., Vo, 1, Vo), Where

0, (v)) £0,(V,) ... 20, (Vy 1) £0,(Vy) -

The transaction order can therefore be determined by sorting the set of communi-
cation actors$J R ) according to their start tinlgs . Fig. 3.1 shows an example
of how such an order could be derived from a given fully-static schedule. This FS
schedule corresponds to the HSDFG and schedule illustrated in Chapter 1 (Fig.
1.2).

The transaction order is enforced at run time by a controller implemented

in hardware. The main advantage of ordering inter-processor transactions is that it
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Proc 1 E |§J A |55|
Proc 2 B Is’l r F\ | S5
Proc3 | G | H C |56
Proc 4 D \ |;§] rJ

Proc 5 H H H

Transaction order:ﬁlv VS0 15183 13184, T4, S T S V6H
Figure 3.10ne possible transaction order derived from the fully-static schedule

allows us to restrict access to communication resources statically, based on the
communication pattern determined at compile time. Since communication
resources are typically shared between processors, run time contention for these
resources is eliminated by ordering processor accesses to them; this results in an
efficient IPC mechanism at low hardware cost. We have built a prototype four pro-
cessor DSP board, called the Ordered Memory Access (OMA) architecture, that
demonstrates the ordered transactions concept. The OMA prototype board utilizes
shared memory and a single shared bus for IPC — the sender writes data to a par-
ticular shared memory location that is allocated at compile time, and the receiver
reads that location. In this multiprocessor, a very simple controller on the board
enforces the pre-determined transaction order at run time, thus eliminating the
need for run time bus arbitration or semaphore synchronization. This results in
efficient IPC (comparable to the FS strategy) at relatively low hardware cost. As in
the ST scenario, the OT strategy is tolerant of variations in execution times of
actors, because the transaction order enforces correct sender-receiver synchroniza-
tion; however, this strategy is more constrained than ST scheduling, which allows
the order in which communication actors fire to vary at run time. The ordered
transactions strategy, therefore, falls in between fully-static and self-timed strate-
gies in that, like the ST strategy, it is tolerant of variations in execution times and,
like the FS strategy, has low communication and synchronization costs. These per-

formance issues will be discussed quantitatively in the following chapter; the rest
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of this chapter describes the hardware and software implementation of the OMA

prototype.

3.2 Shared bus architecture

The OMA architecture uses a single shared bus and shared memory for
inter-processor communication. This kind of shared memory architecture is attrac-
tive for embedded multiprocessor implementations owing to its relative simplicity
and low hardware cost and to the fact that it is moderately scalable — a fully inter-
connected processor topology, for example, would not only be much more expen-
sive than a shared bus topology, but would also suffer from its limited scalability.
Bus bandwidth limits scalability in shared bus multiprocessors, but for medium
throughput applications (digital audio, music, etc.) and the size of the machine we
are considering, a shared bus is ideal. We propose to solve the scalability problem
by using multiple busses and hierarchy of busses, for which the ideas behind the
OMA architecture directly apply. We refer to Lee and Bier [Lee90] for how the

OMA concept is extended to such hierarchical bus structures.

From Fig. 1.3 we recall that the self-timed scheduling strategy falls natu-
rally into a message passing paradigm that is implemented by the send and receive
primitives inserted in the HSDFG. Accordingly, the shared memory in an architec-
ture implementing such a scheduling strategy is used solely for message passing:
the send primitive corresponds to writes to shared memory locations, and receive
primitives correspond to reads from shared memory. Thus the shared memory is
not used for storing shared data structures or for storing shared program code. In a
self-timed strategy we can further ensure, at compile time, that each shared mem-
ory location is written by only one processor (one way of doing this is to simply
assign distinct shared buffers to each of the send primitives, which is the scheme
implemented in the Ptolemy environment); as a result, no atomic test-and-set

instruction needs to be provided by the hardware.
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Let us now consider the implementation of IPC in self-timed schedules on
such a shared bus multiprocessor. The sender has to write into shared memory,
which involves arbitration costs — it has to request access to the shared bus, and
the access must be arbitrated by a bus arbiter. Once the sender obtains access to
shared memory, it needs to perform a synchronization check on the shared memory
location to ensure that the receiver has read data that was written in the previous
iteration, to avoid overwriting previously written data. Such synchronization is
typically implemented using a semaphore mechanism; the sender waits until a
semaphore is reset before writing to a shared memory location, and upon writing
that shared memory location, it sets that semaphore (the semaphore could be a bit
in shared memory, one bit for each send operation in the parallel schedule). The
receiver on the other hand busy waits until the semaphore is set before reading the
shared memory location, and resets the semaphore after completing the read oper-
ation. It can easily be verified that this simple protocol guarantees correct sender-
receiver synchronization, and, even though the semaphore bits have multiple writ-

ers, no atomic test-and-set operation is required of the hardware.

In summary the operations of the sender are: request bus, wait for arbitra-
tion, busy wait until semaphore is in the correct state, write the shared memory
location if semaphore is in the correct state, and then release the bus. The corre-
sponding operations for the receiver are: request bus, wait for arbitration, busy
wait on semaphore, read the shared memory location if semaphore is in the correct
state, and release the bus. The IPC costs are therefore due to bus arbitration time
and due to semaphore checks. Such overhead consumes of the order of tens of
instruction cycles if no special hardware support is employed for IPC. In addition,

semaphore checks consume shared bus bandwidth.

An example of this is a four processor DSP56000 based shared bus system
designed by Dolby labs for digital audio processing applications. In this machine,
processors communicate through shared memory, and a central bus arbiter resolves

bus request conflicts between processors. When a processor gets the bus it per-
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forms a semaphore check, and continues with the shared memory transaction if the
semaphore is in the correct state. It explicitly releases the bus after completing the
shared memory transaction. A receive and a send together consume 30 instruction
cycles, even if the semaphores are in their correct state and the processor gets the
bus immediately upon request. This translates to 8% of the 380 instructions per
processor in the example of Chapter 1, section 1.4, that considered processing
samples of a high-quality audio signal at a sampling rate of 44 KHz on processors
running on a 60ns clock. Such a high cost of communication forces the scheduler
to insert as few interprocessor communication nodes as possible, which in turn

limits the amount of parallelism that can be extracted from the algorithm.

One solution to this problem is to send more than one data sample when a
processor gets access to the bus; the arbitration and synchronization costs are then
amortized over several data samples. A scheme to “vectorize” data in this manner
has been proposed by [Zivo94], where the authors use retiming [Lei91] to move
delays in the HSDFG such that data can be moved in blocks, instead of one sample
at a time. There are several problems with this strategy. First, retiming HSDFGs
has to be done very carefully: moving delays across actors can change the initial
state of the HSDFG causing undesirable transients in the algorithm implementa-
tion. This can potentially be solved by including preamble code to compute the
value of the sample corresponding to the delay when that delay is moved across
actors. This, however results in increased code size, and other associated code gen-
eration complications. Second, the work of Zivojinogical. does not apply uni-
formly to all HSDFGs: if there are tight cycles in the graph that need to be
partitioned among processors, the samples simply cannot be “vectorized”
[Messer88]. Thus presence of a tight cycle precludes arbitrary blocking of data.
Third, vectorizing samples leads to increased latency in the implementation; some
signal processing tasks such as interactive speech are sensitive to delay, and hence
the delay introduced due to blocking of data may be unacceptable. Finally, the

problem of vectorizing data in HSDFGs into blocks, even with all the above limi-
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tations, appear to be fundamentally hard; the algorithms proposed by Zivojinovic
et. al. have exponential worst case run times. Code generated currently by the
Ptolemy system does not support blocking (or vectorizing) of data for many of the

above reasons.

Another possible solution is to use special hardware. One could provide a
full interconnection network, thus obviating the need to go through shared mem-
ory. Semaphores could be implemented in hardware. One could use multiported
memories. Needless to say, this solution is not favourable because of cost, espe-

cially when targeting embedded applications.

A general-purpose shared bus machine, the Sequent Balance [Patt90] for
example, will typically use caches between the processor and the shared bus.
Caches lead to increased shared memory bandwidth due to the averaging effect
provided by block fetches and due to probabilistic memory access speedup due to
cache hits. In signal processing and other real time applications, however, there is
a stringent requirement for deterministic performance guarantee as opposed to
probabilistic speedup. In fact, the unpredictability in task execution times intro-
duced due to the use of caches may be a disadvantage for static scheduling tech-
niques that utilize compile time estimates of task execution times to make
scheduling decisions (we recall the discussion in section 1.2.3 on techniques for
estimating task execution times). In addition, due to the deterministic nature of
most signal processing problems (and also many scientific computation problems),
shared data can be deterministically prefetched because information about when
particular blocks of data are required by a particular processor can often be pre-
dicted by a compiler. This feature has been studied in [Mouss92], where the
authors propose memory allocation schemes that exploit predictability in the mem-
ory access pattern in DSP algorithms; such a “smart allocation” scheme alleviates
some of the memory bandwidth problems associated with high throughput applica-

tions.
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Processors with caches can cache semaphores locally, so that busy waiting
can be done local to the processor without having to access the shared bus, hence
saving the bus bandwidth normally expended on semaphore checks. Such a proce-
dure, however, requires special hardware (a snooping cache controller, for exam-
ple) to maintain cache coherence; cost of such hardware usually makes it

prohibitive in embedded scenarios.

Thus, for the embedded signal processing applications that we are focus-
sing on, we argue that caches do not have a significant role to play, and we claim
that the OT approach discussed previously provides a cost effective solution for

minimizing IPC overhead in implementing self-timed schedules.

3.2.1 Using the OT approach

The OT strategy, we recall, operates on the principle of determining (at
compile time) the order in which processor communications occur, and enforcing
that order at run time. For a shared bus implementation, this translates into deter-
mining the sequence of shared memory (or, equivalently, shared bus) accesses at
compile time and enforcing this predetermined order at run time. This strategy,
therefore, involves no run time arbitration; processors are simply granted the bus
according to the pre-determined access order. When a processor obtains access to
the bus, it performs the necessary shared memory transaction, and releases the bus;

the bus is then granted to the next processor in the ordered list.

The task of maintaining ordered access to shared memory is done by a cen-
tral ordered transaction controllelWhen the processors are downloaded with
code, the controller too is loaded with the pre-determined access order list. At run
time the controller simply grants bus access to processors according to this list,
granting access to the next processor in the list when the current bus owner
releases the bus. Such a mechanism is robust with respect to variations in execu-

tion times of the actors; the functionality of the system is unaffected by poor esti-
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mates of these execution times, although the real-time performance obviously

suffers.

If we are able to perform accurate compile time analysis, then each proces-
sor would obtain access to the shared bus whenever it needed it. No arbitration
needs to be done since there is no contention for the bus. In addition, no semaphore
synchronization needs to be performed, because the transaction ordering con-
straints respect data precedences in the algorithm; when a processor accesses a
shared memory location and is correspondingly allowed access to it, the data
accessed by that processor is certain to be valid. As a result, in the ideal scenario, a
shared bus access takes no more than a single read or write cycle on the processor,
and the overall cost of communicating one data sample is two or three instruction

cycles.

The performance of this scheme depends on how accurately the execution
times of the actors are known at compile time. If these compile time estimates are
reasonably accurate, then an access order can be obtained such that a processor
gains access to shared memory whenever it needs. Otherwise, a processor may
have to idle until it gets a bus grant, or, even worse, a processor when granted the
bus may not complete its transaction immediately, thus blocking all other proces-
sors from accessing the bus. This problem would not arise in normal arbitration
schemes, because independent shared memory accesses would be dynamically

reordered.

We will quantify these performance issues in the next chapter, where we
show that when reasonably good estimates of actor execution times are available,

forcing a run time access order does not in fact sacrifice performance significantly.

3.3  Design of an Ordered Memory Access multiproces-
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sor
3.3.1  High level design description

We chose Motorola DSP96002 processors for the OMA prototype.
Although the OMA architecture can be built around any programmable DSP that
has built-in bus arbitration logic, the DSP96002 is particularly suited to our design
because of its dual bus architecture and bus arbitration mechanism. In addition

these processors are powerful DSPs with floating point capability [Moto89].

A high level block diagram of such a system is depicted in Fig. 3.2. Each
DSP96002 is provided with a private memory that contains its program code; this
local memory resides on one of the processor busses (the “A” bus). The alternate
“B” bus of all processors are connected to the shared bus, and shared memory
resides on the shared bus. The transaction controller grants access to processors
using the bus grant (BG) lines on the processor. A processor attempts to perform a
shared memory access when it executes a communication actor (either send or
receive). If its BG line is asserted it performs the access, otherwise it stalls and

waits for the assertion.

After a processor obtains access to the shared bus, it performs the shared
memory operation and releases the bus. The transaction controller detects the
release of the bus and steps through its ordered list, granting the bus to the next

processor in its list.

The cost of transfer of one word of data between processors is 3 instruction
cycles in the ideal case; two of these correspond to a shared memory write (by the
sender) and a shared memory read (by the receiver), and an extra instruction cycle

is expended in bus release by the sender and bus acquisition by the receiver.

Thus for the example of Chapter 1, less than 1% of the available 380
instructions per sample are required per transaction. This is of course in the ideal
scenario where the sender and the receiver obtain access to the shared bus upon

request. Such low overhead interprocessor communication is obtained with the
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Figure 3.2Block diagram of the OMA prototype

transaction controller providing the only additional hardware support. As
described in a subsequent section, this controller can be implemented with very

simple hardware.

3.3.2 A modified design

In the design proposed above, processor to processor communication
occurs through a central shared memory; two transactions — one write and one
read — must occur over the shared bus. This situation can be improved by distrib-
uting the shared memory among processors, as shown in Fig. 3.3, where each pro-
cessor is assigned shared memory in the form of hardware FIFO buffers. Writes to
each FIFO are accomplished through the shared bus; the sender simply writes to
the FIFO of the processor to which it wants to send data by using the appropriate

shared memory address.

Use of a FIFO implies that the receiver must know the exact order in which

data is written into its input queue. This, however, is guaranteed by the ordered
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transaction strategy. Thus replacing a RAM (random access memory) based shared
memory with distributed FIFOs does not alter the functionality of the design. The
sender need only block when the receiving queue is full, which can be accom-
plished in hardware by using the ‘Transfer Acknowledge (TA) signal on the
DSP96002; a device can insert arbitrary number of wait states in the processor
memory cycle by de-asserting the TA line. Whenever a particular FIFO is
accessed, its ‘Buffer Full’ line is enabled onto the TA line of the processors (Fig.
3.4). Thus a full FIFO automatically blocks the processor trying to write into it,
and no polling needs to be done by the sender. Receiver read is local to a processor,
and does not consume shared bus bandwidth. The receiver can be made to either
poll the FIFO empty line to check for an empty queue, or we one can use the same

TA signal mechanism to block processor reads from an empty queue. The TA

50



mechanism will then use the local (*A”) bus control signals (“A” bus TA signal,
“A” address bus etc.). This is illustrated in Fig. 3.4.

Use of such a distributed shared memory mechanism has several advan-
tages. First, the shared bus traffic is effectively halved, because only writes need to
go through the shared bus. Second, in the design of Fig. 3.2, a processor that is
granted the bus is delayed in completing its shared memory access, all other pro-
cessors waiting for the bus get stalled; this does not happen for half the transac-
tions in the modified design of Fig. 3.3 because receiver reads are local. Thus there
is more tolerance to variations in the time at which a receiver reads data sent to it.
Last, a processor can broadcast data to all (or any subset) of processors in the sys-
tem by simultaneously writing to more than one FIFO buffer. Such broadcast is not

possible with a central shared memory.

The modified design, however, involves a significantly higher hardware
cost than the design proposed earlier. As a result, the OMA prototype was built
around the central shared memory design and not the FIFO based design. In addi-

tion, the DSP96002 processor has an on-chip host interface unit that can be used as
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a 2-deep FIFO; therefore, the potential advantage of using distributed FIFOs can
still be evaluated to some degree by using the chip host interface even in the

absence of external FIFO hardware.

Simulation models were written for both the above designs using the Thor
hardware simulator [Thor86] under the Frigg multi-processor simulator system
[Bier89]. Frigg allows the Thor simulator to communicate with a timing-driven
functional simulator for the DSP96002 processor provided by Motorola Inc. The
Motorola simulator also simulates Input/Output (I/O) operations of the pins of the
processor, and Frigg interfaces the signals on the pins to with the rest of the Thor
simulation; as a result, hardware associated with each processor (memories,
address decoding logic, etc.) and interaction between processors can be simulated
using Frigg. This allows functionality of the entire system to be verified by run-
ning actual programs on the processor simulators. We did not use this model for
performance evaluation, however, because with just a four processor system the
cycle-by-cycle Frigg simulation was far too slow, even for very simple programs.
A higher-level (behavioral) simulation would be more useful than a cycle-by-cycle
simulation for the purposes of performance evaluation, although we did not

attempt such high-level simulation of our designs.

The remainder of this chapter describes hardware and software design

details of an OMA board prototype.

3.4  Design details of a prototype

A proof-of-concept prototype of the OMA architecture has been designed
and implemented. The single printed circuit board design is comprised of four
DSP96002 processors; the transaction controller is implemented on a Xilinx
FPGA (Field Programmable Gate Array). The Xilinx chip also handles the host
interface functions, and implements a simple I/O mechanism. A hierarchical

description of the hardware design follows.
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3.4.1 Top level design

This section refers to Fig. 3.5. At the top level, there are four “processing
element” blocks that consist of the processor, local memory, local address decoder,
and some glue logic. Address, data, and control busses from the PE blocks are con-
nected to form the shared bus. Shared memory is connected to this bus; address
decoding is done by the “shared address decoder” PAL (programmable array logic)
chip. A central clock generator provides a common clock signal to all processing

elements.

A Xilinx FPGA (XC3090) implements the transaction controller and a sim-
ple I/O mechanism, and is also used to implement latches and buffers during
bootup, thus saving glue logic. A fast static RAM (up to 32K x 8) stores the bus
access order in the form of processor identifications (IDs). The sequence of proces-
sor IDs is stored in this “schedule RAM”, and this determines the bus access order.
An external latch is used to store the processor ID read from the schedule RAM.

This ID is then decoded to obtain the processor bus grants.

A subset of the 32 address lines connect to the Xilinx chip, for addressing
the 1/O registers and other internal registers. All 32 lines from the shared data bus
are connected to the Xilinx. The shared data bus can be accessed from the external
connector (the “right side” connector in Fig. 3.5) only through the Xilinx chip.
This feature can be made use of when connecting multiple OMA boards: shared
busses from different boards can be made into one contiguous bus, or they can be
left disconnected, with communication between busses occurring via asynchro-
nous “bridges” implemented on the Xilinx FPGAs. We discuss this further in sec-
tion 3.4.7.

Connectors on both ends of the board bring out the shared bus in its
entirety. Both left and right side connectors follow the same format, so that multi-

ple boards can be easily connected together. Shared control and address busses are
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buffered before they go off board via the connectors, and the shared data bus is
buffered within the Xilinx.

The DSP96000 processors have on chip emulation (“OnCE” in Motorola
terminology) circuitry for debugging purposes, whereby a serial interface to the
ONnCE port of a processor can be used for in-circuit debugging. On the OMA
board, the OnCE ports of the four processors are multiplexed and brought out as a
single serial port; a host may select any one of the four OnCE ports and communi-

cate to it through a serial interface.

We discuss the design details of the individual components of the prototype

system next.

3.4.2 Transaction order controller

The task of the transaction order controller is to enforce the predetermined
bus access order at run time. A given transaction order determines the sequence of
processor bus accesses that must be enforced at run time. We refer to this sequence
of bus accesses by the telos access order listSince the bus access order list is
program dependent, the controller must possess memory into which this list is
downloaded after the scheduling and code generation steps are completed, and
when the transaction order that needs to be enforced is determined. The controller
must step through the access order list, and must loop back to the first processor ID
in the list when it reaches the end. In addition the controller must be designed to

effectively use bus arbitration logic present on-chip, to conserve hardware.

3.4.2.1. Processor bus arbitration signals

We use the bus grarBG) signal on the DSP chip to allow the processor to
perform a shared bus access, and we use the bus r&@Rpstgnal to tell the con-

troller when a processor completes its shared bus access.

Each of the two ports on the DSP96002 has its own set of arbitration sig-

nals; theBG andBR signals are most relevant for our purposes, and these signals
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are relevant only for the processor port connected to the shared bus. As the name
suggests, thBG line (which is an input to the processor) must be asserted before a
processor can begin a bus cycle: the processor is forced to wa&Gfdao be
asserted before it can proceed with the instruction that requires access to the bus.
Whenever an external bus cycle needs to be performed, a processor af3Rrts its
signal, and this signal remains asserted until an instruction that does not access the
shared bus is executed. We can therefore usBRhsignal to determine when a

shared bus owner has completed its usage of the shared bus (Fig. 3.6 (a)).

Processor requests bliocessor accepts bus Bus release

- 4
BR
N
> Bus grant deasserted
any number of consecutive bus cycles\ after the bus is released

Processor granted bus

BR (common)

(b)

Figure 3.6 Using processor bus arbitration signals for controlling bus access

The rising edge of thER line is used to detect when a processor releases

the bus. To reduce the number of signals going from the processors to the control-
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ler, we multiplexed th&R signals from all processors onto a comrBéhsignal.

The current bus owner has BR output enabled onto this common reverse signal;
this provides sufficient information to the controller because the controller only
needs to observe tHeR line from the current bus owner. This arrangement is
shown in Fig. 3.6 (b); the controller grants access to a processor by asserting the
correspondinddG line, and then it waits for an upper edge on the re&Rskne.

On receiving a positive going edge on this line it grants the bus to the next proces-

sor in its list.

3.4.2.2. A simple implementation

One straightforward implementation of the above functionality is to use a a
counter addressing a RAM that stores the access order list in the form of processor
IDs. We call this counter thechedule counteasind the memory that stores the pro-
cessor IDs is called trechedule RAMDecoding the output of the RAM provides
the required3G lines. The counter is incremented at the beginning of a processor
transaction by the negative going edge of the com&Rignal and the output of
the RAM is latched at the positive going edgeB&, thus granting the bus to the
next processor as soon as the current processor completes its shared memory trans-
action. The counter is reset to zero after it reaches the end of the list (i.e. the
counter counts modulo the bus access list size). This is shown in Fig. 3.7. Incre-
menting the counter as soonBR goes low ensures enough time for the counter
outputs and the RAM outputs to stabilize. For a 33MHz processor with zero wait
statesBR width is a minimum of 60 nanoseconds. Thus the counter incrementing
and the RAM access must both finish before this time. Consequently, we need a
fast counter and fast static RAM for the schedule memory. The width of the
counter determines the maximum allowable size of the access list (a counter width
of sizen implies a maximum list size af ); a wider counter, however, implies a
slower counter. If, for a certain width, the counter (implemented on the Xilinx part
in our case) turns out to be too slow — i.e. the output of the schedule memory will

not stabilize at least one latch set up period before the positive going e8Be of
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arrives — wait states may have to be inserted in the processor bus cycle to delay
the positive edge dR. We found that a 10 bit wide counter does not require any

wait states, and allows a maximum of 1024 processor IDs in the access order list.

3.4.2.3. Presettable counter

A single bus access list implies we can only enforce one bus access pattern
at run time. In order to allow for some run time flexibility we have implemented
the OMA controller using a presettable counter. The processor that currently owns
the bus can preset this counter by writing to a certain shared memory location.
This causes the controller to jump to another location in the schedule memory,
allowing the multiple bus access schedules to be maintained in the schedule RAM
and switching between them at run time depending on the outcome of computa-
tions in the program. The counter appears as an address in the shared memory map

of the processors. The presettable counter mechanism is shown in Fig. 3.8.

An arbitrary number of lists may, in principle, be maintained in the sched-

ule memory. This feature can be used to support algorithms that display data
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Figure 3.8 Presettable counter implementation

dependency in their execution. For example, a dataflow graph with a conditional
construct will, in general, require a different access schedule for each outcome of
the conditional. Two different SDF graphs are executed in this case, depending on
the branch outcome, and the processor that determines the branch outcome can

also be assigned the task of presetting the counter, making it branch to the access
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list of the appropriate SDF subgraph. The access controller behaves as in Fig 3.8
(b).

We discuss the use of this presettable feature in detail in Chapter 6.

3.4.3 Host interface

The function of the host interface is to allow downloading programs onto
the OMA board, controlling the board, setting parameters of the application being
run, and debugging from a host workstation. The host for the OMA board connects
to the shared bus through the Xilinx chip, via one of the shared bus connectors.
Since part of the host interface is configured inside the Xilinx, different hosts (32

bit, 16 bit) with different handshake mechanisms can be used with the board.

The host that is being used for the prototype is a DSP56000 based DSP
board called the S-56X card, manufactured by Ariel Corp [Ariel91]. The S-56X
card is designed to fit into one of the Sbus slots in a Sun Sparc workstation; a user
level process can communicate with the S-56X card via a unix device driver. Thus
the OMA board too can be controlled (via the S-56X card) by a user process run-

ning on the workstation. The host interface configuration is depicted in Fig. 3.9.

Unlike the DSP56000 processors, the DSP96002 processors do not have
built in serial ports, so the S-56X board is also is used as a serial I1/0 processor for
the OMA board. It essentially performs serial to parallel conversion of data, buff-
ering of data, and interrupt management. The Xilinx on the OMA board imple-
ments the necessary transmit & receive registers, and synchronization flags — we

discuss the details of the Xilinx circuitry shortly.

The S-56X card communicates with the Sparc Sbus using DMA (direct
memory access). A part of the DSP56000 bus and control signals are brought out
of the S-56X card through another Xilinx FPGA (XC3040) on the S-56X. For the
purpose of interfacing the S-56X board with the OMA board, the Xilinx on the S-

56X card is configured to bring out 16 bits of data and 5 bits of address from the
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Figure 3.9Host interface

DSP56000 processor onto the cable connected to the OMA (see Fig. 3.9). In addi-
tion, the serial /O port (the SSI port) is also brought out, for interface with 1/O
devices such as A/D and D/A convertors. By making the DSP56000 write to
appropriate memory locations, the 5 bits of address and 16 bits of data going into
the OMA may be set and strobed for a read or a write, to or from the OMA board.
In other words, the OMA board occupies certain locations in the DSP56000 mem-
ory map; host communication is done by reading and writing to these memory

locations.

3.4.4  Processing element

Each processing element (PE) consists of a DSP96002 processor, local
memory, address buffers, local address decoder, and some address decoding logic.
The circuitry of each processing element is very similar to the design of the Motor-
ola 96000 ADS (Application Development System) board [Moto90]. The local
address, control, and data busses are brought out into a 96 pin euro-connector, fol-
lowing the format of the 96ADS. This connector can be used for local memory
expansion; we have used it for providing local I/O interface to the processing ele-
ment (as an alternative to using the shared bus for 1/0). Port A of the processor
forms the local bus, connecting to local memory and address decoding PAL. Each
PE also contains address buffers, and logic to set up the bootup mode upon reset

and powerup. Port B of the processor is connected to the shared bus.

61



| Local bus connector 96 pin Euro-connector

A A A
256K x 32 4 32 > »
SRAM Bl PAL
Addr local addr. decode
Local v Data* controly,
Memory %ﬂ%ﬂfr
Local Bus (A)
DSP96002
Shared Bus (B
Port B Host Interface (HI 4(—)'

port ‘
32 32 16
Addr Data, control

Figure 3.10Processing element

The DSP96002 processor has a Host Interface (HI) on each of its ports.
The port B HI is memory mapped to the shared bus, so that HI registers may be
read and written from the shared bus. This feature allows a host to download code
and control information into each processor through the shared bus. Furthermore a
processor, when granted the shared bus, may also access the port B HI of other
processors. This allows processors to bypass the shared memory while communi-
cating with one another and to broadcast data to all processors. In effect, the HI on
each processor can be used as a two-deep local FIFO, similar to the scheme in sec-

tion 3.3.2, except that the FIFO is internal to each processor.

3.4.5  Xilinx circuitry

As mentioned previously, the XC3090 Xilinx chip is used to implement the
transaction controller as well as a simple /O interface. It is also configured to pro-
vide latches and buffers for addressing the Host Interface (HI) ports on the
DSP96002 during bootup and downloading of code onto the processors. For this to
work, the Xilinx is first configured to implement the bootup and download related

circuitry, which consists of latches to drive the shared address bus and to access the
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schedule memory. After downloading code onto the processors, and downloading
the bus access order into the schedule RAM, the Xilinx chip is reconfigured to
implement the ordered transaction controller and the I/O interface. Thus the pro-
cess of downloading and running a program requires configuring the Xilinx chip

twice.

There are several possible ways in which a Xilinx part may be pro-
grammed. For the OMA board, the configuration bitmap is downloaded byte-wise
by the host (Sun workstation through the S-56X card). The bitmap file, generated
and stored as a binary file on a workstation, is read in by a function implemented in
the gdm software (discussed in section 3.5, which describes the OMA software
interface) and the bytes thus read are written into the appropriate memory location
on the S-56X card. The DSP56K processor on the S-56X then strobes these bytes
into the Xilinx configuration port on the OMA board. The user can reset and
reconfigure the Xilinx chip from a Sun Sparc workstation by manipulating the Xil-
inx control pins by writing to a “Xilinx configuration latch” on the OMA board.
Various configuration pins of the Xilinx chip are manipulated by writing different

values into this latch.

We use two different Xilinx circuitsbpotup.bit and momal.bit ),
one during bootup and the other during run time. The Xilinx configuration during
bootup helps eliminate some glue logic that would otherwise be required to latch
and decode address and data from the S-56X host. This configuration allows the
host to read and write from any of the HI ports of the processors, and also to access

the schedule memory and the shared memory on board.

Run time configuration on the Xilinx consists of the transaction controller
implemented as a presettable counter. The counter can be preset through the shared
bus. It addresses an external fast RAM (8 nanosecond access time) that contains
processor IDs corresponding to the bus access schedule. Output from the schedule

memory is externally latched and decoded to yield bus g8&l{nes (Fig. 3.7).
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A schematic of the Xilinx configuration at run time is given in Fig. 3.11.
This configuration is for 1/0 with an S-56X (16 bit data) host, although it can eas-
ily be modified to work with a 32 bit host.

Shared Address Bus 1 TA Shared Data Bus
1 4& A
: 32
1 Rx read% %TX wr T;ﬁ
1
1
1 RXEmp TxFull PaN Tx Reg (32 b)
1
1 1
' i ¢ % 1§
! Rx
v v 1 reg A\ A4
s 16 bit ttabl ' UO&Q’ tzﬁ7_<7 1
decode P it presettable real
> counter : (by host) 16
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Xilinx 16 | 2 .
Address ! ? 5 16
A 4 1 v
1
schedule RAM . Host Address Host Data Bus
1
4 1
1
BG latch 1
4 1
1
BGO..3 1
1
1
1
1

Transaction controller 1/0 interface

Figure 3.11.Xilinx configuration at run time

3.4.5.1. 1/O interface

The S-56X board reads data from the Transmit (Tx) register and writes into
the receive (Rx) register on the Xilinx. These registers are memory-mapped to the
shared bus, such that any processor that possesses the bus may write to the Tx reg-
ister or read from the Rx register. For a 16 bit host, two transactions are required to
perform a read or write with the 32 bit Tx and Rx registers. The processors them-
selves need only one bus access to load or unload data from the 1/O interface. Syn-
chronization on the S-56X (host) side is done by polling status bits that indicate an
Rx empty flag (if true, the host performs a write, otherwise it busy waits) and a Tx
full flag (if true, the host performs a read, otherwise it busy waits). On the OMA

side, synchronization is done by the use of the TA (transfer acknowledge) pin on
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the processors. When a processor attempts to read Rx or write Tx, the appropriate
status flags are enabled onto the TA line, and wait states are automatically inserted
in the processor bus cycle whenever the TA line is not asserted, which in our

implementation translates to wait states whenever the status flags are false. Thus
processors do not have the overhead of polling the I/O status flags; an 1/O transac-
tion is identical to a normal bus access, with zero or more wait states inserted auto-

matically.

The DSP56000 processor on the S-56X card is responsible for performing
I/0 with the actual (possibly asynchronous) data source and acts as the interrupt
processor for the OMA board, relieving the board of tasks such as interrupt servic-
ing and data buffering. This of course has the downside that the S-56X host needs
to be dedicated to “spoon-feeding” the OMA processor board, and limits other

tasks that could potentially run on the host.

3.4.6  Shared memory

Space for two shared memory modules are provided, so that up to 512K x
32 bits of shared static RAM can reside on board. The memory must have an

access time of 25ns to achieve zero wait state operation.

3.4.7  Connecting multiple boards

Several features have been included in the design to facilitate connecting
together multiple OMA boards. The connectors on either end of the shared bus are
compatible, so that boards may be connected together in a linear fashion (Fig.
3.12). As mentioned before, the shared data bus goes to the “right side connector”
through the Xilinx chip. By configuring the Xilinx to “short” the external and
internal shared data busses, processors on different boards can be made to share
one contiguous bus. Alternatively, busses can be “cleaved” on the Xilinx chip,

with communication between busses implemented on the Xilinx via an asynchro-
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nous mechanism (e.g. read and write latches synchronized by “full” and “empty”

flags).

This concept is similar to the idea used in the SMART processor array
[Koh90], where the processing elements are connected to a switchable bus: when
the bus switches are open processors are connected only to their neighbors (form-
ing a linear processor array), and when the switched are closed processors are con-
nected onto a contiguous bus. Thus the SMART array allows formation of clusters
of processors that reside on a common bus; these clusters then communicate with
adjacent clusters. When we connect multiple OMA boards together, we get a simi-
lar effect: in the “shorted” configuration processors on different boards connect to
a single bus, whereas in the “cleaved” configuration processors on different boards
reside on common busses, and neighboring boards communicate through an asyn-

chronous interface.

Fig. 3.12 illustrates the above scheme. The highest 3 bits of the shared
address bus are used as the “board ID” field. Memory, processor Host Interface
ports, configuration latches etc. decode the board ID field to determine if a shared
memory or host access is meant for them. Thus, a total of 8 boards can be hooked

onto a common bus in this scheme.

3.5 Hardware and software implementation

3.5.1 Board design

We used single sided through-hole printed circuit board technology for the
OMA prototype. The printed circuit board design was done using the ‘SIERA’ sys-
tem developed at Professor Brodersen’s group at Berkeley [Sriv92]. Under this
system, a design is entered hierarchically using a netlist language called SDL
(Structure Description Language). Geometric placement of components can be
easily specified in the SDL netlist itself. A ‘tiling’ feature is also provided to ease

compact fitting of components. The SDL files were written in a modular fashion;
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Figure 3.12Connecting multiple boards

the schematics hierarchy is shown in Fig. 3.13. The SIERA design manager
(DMoct) was then used to translate the netlists into an input file acceptable by
Racal, a commercial PCB layout tool, which was then used to autoroute the board
in ten layers, including one Vcc and one Ground plane. The files corresponding to
the traces on each layer (gerber files) were generated using Racal, and these files
were then sent to Mosis for board fabrication. Component procurement was
mainly done using the FAST service, but some components were ordered/bought
directly from electronic component distributors. Table 3.1 lists the salient physical

features of the board, and Fig. 3.14 shows a photograph of the board.
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Figure 3.13Schematics hierarchy of the four processor OMA architecture

Table 3.1.OMA board physical specs

[92)

Dimensions 30 cm. x 17 cm.
Layers 10 (including ground and Vcc plane)
Number of Components 230 parts + 170 bypass capacitor,
sdlcode 2800 lines
Memory 512K words shared, 256K words Ioca‘I
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35.2 Software interface

As discussed earlier, we use an S-56X card attached to a Sparc as a host for
the OMA board. The Xilinx chip on the S-56X card is configured to provide 16
bits of data and 5 bits of address. We usejthe[Laps91] software as an interface
for the S-56X boardgdmis a debugger/monitor that has several useful built-in
routines for controlling the S-56X board, for example data can be written and read
from any location in the DSP56000 address space through function cadlimin
Another useful feature @fdmis that it usestcl’, an embeddable, extensible, shell-
like interpreted command language [Ous94]. Tcl provides a set of built-in func-
tions (such as an expression evaluator, variables, control-flow statements etc.) that
can be executed via user commands typed at its textual interface, or from a speci-
fied command file. Tcl can be extended with application-specific commands; in our
case these commands correspond to the debugging/monitor commands imple-
mented ingdmas well as commands specific to the OMA. Another useful feature

of tcl is the scripting facility it provides; sequences of commands can be conve-
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niently integrated into scripts, which are in turn executed by issuing a single com-

mand.

Some functions specific to the OMA hardware that have been compiled

into qdmare the following:

omaxiload fileName.bit :  load OMA Xilinx with configuration
specified by file.bit
omapboot fileName.lod proc# . load bootstrap monitor code into the
specified processor
omapload fileName.lod proc# . load DSP96002 .lod file into the
specified processor

schedload accessOrder load OMA bus access schedule memory

These functions use existimgim functions for reading and writing values
to the DSP56000 memory locations that are mapped to the OMA board host inter-
face. The sequence of commands needed to download code onto the OMA board

and run it is summarized in Fig. 3.15.

proc omaDoAll {} {

xload # configure S-56X board Xilinx
omareset # reset OMA board
omaxiload bootup.bit # configure OMA Xilinx for booting procs

foreachi{0 12 3}{
omapboot $i omaMon.lod  #load bootstrap monitor routine

omapload $i $icode.lod # load code (Ocode.lod, 1code.lod etc.)
schedload access_order.dat& load bus access schedule into
} schedule memory
omaxiload momal.bit # reconfigure OMA Xilinx to implement
Transaction Controller and 1/0
load host.lod;run # run and load 1/O interrupt routines on S-
56X board
synch # start all processors synchronously

}

Figure 3.15Steps required for downloading code (tcl script omaDoAll)
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Each processor is programmed through its Host Interface via the shared
bus. First, a monitor program (omaMon.lod) consisting of interrupt routines is
loaded and run on the selected processor. Code is then loaded into processor mem-
ory by writing address and data values into the HI port and interrupting the proces-
sor. The interrupt routine on the processor is responsible for inserting data into the
specified memory location. The S-56X host forces different interrupt routines, for
specifying which of the three (X, Y, or P) memories the address refers to and for
specifying a read or a write to or from that location. This scheme is similar to that

employed in downloading code onto the S-56X card [Ariel91].

Status and control registers on the OMA board are memory mapped to the
S-56X address space and can be accessed to reset, reboot, monitor, and debug the
board. Tcl scripts were written to simplify commands that used are most often (e.g.
‘change y:fff0 Ox0’ was aliased to ‘omareset’). The entire code downloading pro-

cedure is executed by the tcl script ‘omaDoAll’ (see Fig. 3.15).

A Ptolemy multiprocessor hardware target (Chapter 12, Section 2 in
[Ptol94]) was written for the OMA board, for automatic partitioning, code genera-
tion, and execution of an algorithm from a block diagram specification. A simple
heterogeneous multiprocessor target was also written in Ptolemy for the OMA and
S-56X combination; this target generates DSP56000 code for the S-56X card, and
generates DSP96000 multiprocessor code for the OMA.

3.6  Ordered I/O and parameter control

We have implemented a mechanism whereby 1/O can be done over the
shared bus. We make use of the fact that 1/0 for DSP applications is periodic; sam-
ples (or blocks of samples) typically arrive at constant, periodic intervals, and the
processed output is again required (by, say, a D/A convertor) at periodic intervals.
With this observation, it is in fact possible to schedule the I/O operations within
the multiprocessor schedule, and consequently determine when, relative to the

other shared bus accesses due to IPC, the shared bus is required for I/O. This
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allows us to include bus accesses for I/O in the bus access order list. In our partic-
ular implementation, I/O is implemented as shared address locations that address
the Tx and Rx registers in the Xilinx chip (section 3.4.5), which in turn communi-
cate with the S-56X board; a processor accesses these registers as if they were a
part of shared memory. It obtains access to these registers when the transaction
controller grants access to the shared bus; bus grants for the purpose of 1/0O are
taken into account when constructing the access order list. Thus we order access to

shared I/O resources much as we order access to the shared bus and memory.

We also experimented with application of the ordered memory access idea
to run time parameter control. By run time parameter control we mean controlling
parameters in the DSP algorithm (gain of some component, bit-rate of a coder,
pitch of synthesized music sounds, etc.) while the algorithm is running in real time
on the hardware. Such a feature is obviously very useful and sometimes indispens-
able. Usually, one associates such parameter control with an asynchronous user
input: the user changes a parameter (ideally by means of a suitable GUI on his or
her computer) and this change causes an interrupt to occur on a processor, and the
interrupt handler then performs the appropriate operations that cause the parameter

change that the user requested.

For the OMA architecture, however, unpredictable interrupts are not desir-
able, as was noted earlier in this chapter; on the other hand shared I/0 and IPC are
relatively inexpensive owing to the OT mechanism. To exploit this trade-off, we
implemented the parameter control in the following fashion: The S-56X host han-
dles the task of accepting user interrupts; whenever a parameter is altered, the
DSP56000 on the S-56X card receives an interrupt and it modifies a particular
location in its memory (call iM ). The OMA board on the other hand receives the
contents oM on every schedule periodhetherM was actually modified or not.

Thus the OMA processors never “see” a user created interrupt; they in essence

update the parameter corresponding to the value stoéd ineveigiteration of
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the dataflow graph. Since reading in the valudMof  costs two instruction cycles,

the overhead involved in this scheme is minimal.

An added practical advantage of the above scheme is that the tcl/tk [Ous94]
based GUI primitives that have been implemented in Ptolemy for the S-56X (see
“CG56 Domain” in Volume 1 of [Ptol94]) can be directly used with the OMA

board for parameter control purposes.

3.7  Application examples

3.7.1  Music synthesis

The Karplus-Strong algorithm is a well known approach for synthesizing
the sound of a plucked string. The basic idea is to pass a noise source in a feedback
loop containing a delay, a low pass filter, and a multiplier with a gain of less than
one. The delay determines the pitch of the generated sound, and the multiplier gain
determines the rate of decay. Multiple voices can be generated and combined by
implementing one feedback loop for each voice and then adding the outputs from
all the loops. If we want to generate sound at a sampling rate of 44.1 KHz (com-
pact disc sampling rate), we can implement 7 voices on a single processor in real
time using the blocks from the Ptolemy DSP96000 code generation library
(CG96). These 7 voices consume 370 instruction cycles out of the 380 instruction

cycles available per sample period.

Using four processors on the OMA board, we implemented 28 voices in
real time. The hierarchical block diagram for this is shown in Fig. 3.16. The result-
ing schedule is shown in Fig. 3.17. The makespan for this schedule is 377 instruc-
tion cycles, which is just within the maximum allowable limit of 380. This
schedule uses 15 IPCs, and is therefore not communication intensive. Even so, a
higher IPC cost than the 3 instruction cycles the OMA architecture affords us
would not allow this schedule to execute in real time at a 44.1 KHz sampling rate,

because there is only a 3 instruction cycle margin between the makespan of this
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schedule and the maximum allowable makespan. To schedule this application, we
employed Hu-level scheduling along with manual assignment of some of the

blocks.
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Figure 3.16.Hierarchical specification of the Karplus-Strong algorithm in 28
voices.
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377 instruction cycles

Figure 3.17.Four processor schedule for the Karplus-Strong algorithm in 28
voices. Three processors are assigned 8 voices each, the fourth (Proc 1) is
assigned 4 voices along with the noise source.

3.7.2  QMF filter bank

A Quadrature Mirror Filter (QMF) bank consists of a seqmdlysisfilters

used to decompose a signal (usually audio) into frequency bands, and a bank of
synthesidilters is used to reconstruct the decomposed signal [Vai93]. In the analy-
sis bank, a filter pair is used to decompose the signal into high pass and low pass
components, which are then decimated by a factor of two. The low pass compo-
nent is then decomposed again into low pass and high pass components, and this
process proceeds recursively. The synthesis bank performs the complementary
operation of upsampling, filtering, and combining the high pass and low pass com-
ponents; this process is again performed recursively to reconstruct the input signal.
Fig. 3.18(a) shows a block diagram of a synthesis filter bank followed by an analy-

sis bank.

QMF filter banks are designed such that the analysis bank cascaded with
the synthesis bank yields a transfer function that is a pure delay (i.e. has unity
response except for a delay between the input and the output). Such filter banks are
also calledperfect reconstructiotilter banks, and they find applications in high

guality audio compression; each frequency band is quantized according to its
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energy content and its perceptual importance. Such a coding scheme is employed

in the audio portion of the MPEG standard.

We implemented a perfect-reconstruction QMF filter bank to decompose
audio from a compact disc player into 15 bands. The synthesis bank was imple-
mented together with the analysis part. There are a total of 36 multirate filters of 18
taps each. This is shown hierarchically in Fig. 3.18(a). Note that delay blocks are
required in the first 13 output paths of the analysis bank to compensate for the

delay through successive stages of the analysis filter bank.

There are 1010 instruction cycles of computation per sample period in this
example. Using Sih’s Dynamic Level (DL) scheduling heuristic, we were able to
achieve an average iteration period of 366 instruction cycles, making use of 40
IPCs. The schedule that is actually constructed (Gantt chart of Fig. 3.18(b)) oper-
ates on a block of 512 samples because these many samples are needed before all
the actors in the graph fire at least once; this makes manual scheduling very diffi-
cult. We found that the DL heuristic performs close to 20% better than the Hu-
level heuristic in this example, although the DL heuristic takes more than twice the

time to compute the schedule compared to Hu-level.

3.7.3 1024 point complex FFT

For this example, input data (1024 complex numbers) is assumed to be
present in shared memory, and the transform coefficients are written back to shared
memory. A single 96002 processor on the OMA board performs a 1024 point com-
plex FFT in 3.0 milliseconds (ms). For implementing the transform on all four pro-
cessors, we used the first stage of a radix four, decimation in frequency FFT
computation, after which each processor independently performs a 256 point FFT.
In this scheme, each processor reads all 1024 complex inputs at the beginning of
the computation, combines them into 256 complex numbers on which it performs
a 256 point FFT, and then writes back its result to shared memory using bit

reversed addressing. The entire operation takes 1.0 ms. Thus we achieve a speedup
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Figure 3.18(a) Hierarchical block diagram for a 15 band analysis and synthesis
filter bank. (b) Schedule on four processors (using Sih’s DL heuristic [Sih90]).

of 3 over a single processor. This example is communication intensive; the
throughput is limited by the available bus bandwidth. Indeed, if all processors had
independent access to the shared memory (if the shared memory were 4-ported for
example), we could achieve an ideal speedup of four, because each 256 point FFT

is independent of the others except for data input and output.
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For this example, data partitioning, shared memory allocation, scheduling,
and tuning the assembly program was done by hand, using the 256 point complex
FFT block in the Ptolemy CG96 domain as a building block. The Gantt chart for

the hand generated schedule is shown in Fig. 3.19.
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read by each processor /' r T'(

read .
Proc 1 input 256 point FFT ) { \
Proc 2 read i /

input 256 point FFT
read 256 point FFT
Proc 3 input poin
read )

Proc 4 input 256 point FFT

Figure 3.19Schedule for the FFT example.

3.8  Summary

In this chapter we discussed the ideas behind the Ordered Transactions
scheduling strategy. This strategy combines compile time analysis of the IPC pat-
tern with simple hardware support to minimize interprocessor communication
overhead. We discussed the hardware design and implementation details of a pro-
totype shared bus multiprocessor — the Ordered Memory Access architecture —
that uses the ordered transactions principle to statically assign the sequence of pro-
cessor accesses to shared memory. External I/O and user control inputs can also be
taken into account when scheduling accesses to the shared bus. We also discussed
the software interface details of the prototype and presented some applications that

were implemented on the OMA prototype.
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A

AN ANALYSIS OF THE OT STRATEGY

In this chapter we systematically analyze the limits of the OT scheduling
strategy. Recall that the ST schedule is obtained by first generating a fully-static
(FS) schedule{ cp(v),ct(v),TFS} , and then ignoring the exact firing times
specified by the FS schedule; the FS schedule itself is derived using compile time
estimates of actor execution times of actors. The OT strategy is essentially the self-
timed strategy with the added ordering constraints  that force processors to com-
municate in an order predetermined at compile time. The questions we try to ad-
dress in this chapter are: What exactly are we sacrificing by imposing such a
restriction? Is it possible to choose a transaction such that this penalty is minimized?
What is the effect of variations of task (actor) execution times on the throughput

achieved by a self-timed strategy and by an OT strategy?

The effect of imposing a transaction order on a self-timed schedule is best
illustrated by the following example. Let us assume that we use the dataflow graph
and its schedule that was introduced in Chapter 1 (Fig. 1.2), and that we enforce the

transaction order of Fig. 3.1; we reproduce these for convenience in Fig. 4.1 (a) and
(b).
If we observe how the scheduled “evolves” as it is executed in a self-timed

manner (essentially a simulation in time of when each processor executes actors as-
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Figure 4.1 Fully-static schedule on five processors

signed to it), we get the “unfolded” schedule of Fig. 4.2; successive iterations of the
HSDFG overlap in a natural manner. This is of course an idealized scenario where
IPC costs are ignored; we do so to avoid unnecessary detail in the diagram, since
IPC costs can be included in our analysis in a straightforward manner. Note that the
ST schedule in Fig. 4.2 eventually settles to a periodic pattern consisting of two it-
erations of the HSDFG; the average iteration period under the self-timed schedule
is 9 units. The average iteration period (which we will refer tdas ) for such an
idealized (zero IPC cost) self-timed schedule represdatges bound on the iter-

ation period achievable any schedule that maintains the same processor assign-
ment and actor ordering. This is because the only run time constraint on processors
that the ST schedule imposes is due to data dependencies: each processor executes
actors assigned to it (including the communication actors) according to the compile
time determined order. An actor at the head of this ordered list is executed as soon
as data is available for it. Any other schedule that maintains the same processor as-
signment and actor ordering, and respects data precederes in , cannot result in
an execution where actors fire earlier than they do in the idealized ST schedule. In
particular, the overlap of successive iterations of the HSDFG in the idealized ST

schedule ensures theg < T  in general.

The ST schedule allows reordering among IPCs at run time. In fact we ob-

serve from Fig. 4.2 that once the ST schedule settles into a periodic pattern, IPCs in
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Figure 4.2 Self-timed schedule
successive iterations are ordered differently: in the first iteration the order in which
IPCs occur is indeeds,, '}, S5, I'5, S3, 3, Sy, 4, S5, 5, S )+ Once the schedule

settles into a periodic pattern, the order alternates between:

(37381 11150 T2 S4 T4 S T S5 1)

and

(S11 715307384 T 43 S0 T35 S5 I, Sgn [) -

In contrast, if we impose the transaction order in Fig. 3.1 that enforces the
order (S, I, Sy, I, S3: 3, S M4, S5, s, S ) » the resulting OT schedule evolves
as shown in Fig. 4.3. Notice that enforcing this schedule introduces idle time
(hatched rectangles); as a restiff,; , the average iteration period for the OT sched-

ule, is 10 units, which is (as expected) larger than the iteration period of the ideal

ST scheduleTg; (9 units) but is smaller thdpg (11 units). In general
Proc 1 L E | A E E Al
Proc2[ B /| L | 1 LB F B B
Proc3[ G P cl|TG C [€
Proc 4 D b Y b ¥ b ]
Proc5| H ¥ H ¥y 1 F v [ v ]
< 50 >
Tor =10 [ = idle time due to ordering
constraint

Figure 4.3 Schedule evolution when the transaction order of Fig. 3.1 is enforced
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Tes2 Ty 2 Toqi the ST schedule only has assignment and ordering constraints,
the OT schedule has the transaction ordering constraints in addition to the con-
straints in the ST schedule, whereas the FS schedule has exact timing constraints
that subsume the constraints in the ST and OT schedules. The question we would
like to answer is: is it possible to choose the transaction ordering more intelligently

than the straightforward one (obtained by sorting) chosen in Fig. 3.17?

As a first step towards determining how such a “best” possible access order
might be obtained, we attempt to model the self-timed execution itself and try to de-
termine the precise effect (e.g. increase in the iteration period) of adding transaction
ordering constraints. Note again that as the schedule evolves in a self-timed manner
in Fig. 4.2, it eventually settles into a periodic repeating pattern that spans two iter-
ations of the dataflow graph, and the average iteration péfrigd, , 15 9. We would

like to determine these properties of self-timed schedules analytically.

4.1  Inter-processor Communication graph ( Giyo)

In a self-timed strategy a schedBe specifies the actors assigned to each
processor, including the IPC act@endandreceive and specifies the order in
which these actors must be executed. At run time each processor executes the actors
assigned to it in the prescribed order. When a processor executes a send it writes
into a certain buffer of finite size, and when it executes a receive, it reads from a
corresponding buffer, and it checks for buffer overflow (on a send) and buffer un-
derflow (on a receive) before it performs communication operations; it blocks, or

suspends execution, when it detects one of these conditions.

We model a self-timed schedule using an HSDEg. = (V, Ey) de-
rived from the original SDF grapG = (V, E)  and the given self-timed schedule.
The graphGj,. , which we will refer to as tier-processor communication
modelling graph, or IPC graph for short, models the fact that actor€<®»f assigned

to the same processor execute sequentially, and it models constraints due to inter-
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processor communication. For example, the self-timed schedule in Fig. 4.1 (b) can
be modelled by the IPC graph in Fig. 4.4.

critical
cycle

send

receive

Figure 4.4The IPC graph for the schedule in Fig. 4.1.

The IPC graph has the same vertex\6et Gas , corresponding to the set of
actors inG . The self-timed schedule specifies the actors assigned to each processor,
and the order in which they execute. For example in Fig. 4.1, processor 1 executes
A and therE repeatedly. We model thisGg, by drawing a cycle around the ver-
tices correspondingtA aril , and placing a delay on the edgefronA to . The
delay-free edge from\ t& represents the fact thakthe th executién of pre-
cedes thé& th execution & , and the edge flom Ato with a delay represents the
fact that thek th execution & can occur only after {tke- 1) th executién of
has completed. Thus if actovs, v,, ...,v,,  are assigned to the same processor in
that order, then G
(v Vo), (Vo Vg) o (V1 V) s (Y, Vq)) , with delay((v,,v;)) =1 (be-

causev, is executed first). If there &e  processors in the schedule, then we have

ipc would have a cycle

P such cycles corresponding to each processor. The additional edges due to these

constraints are shown dashed in Fig. 4.4.
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As mentioned before, edges @& that cross processor boundaries after
scheduling represent inter-processor communication. Communication aetaas (

andreceivg are inserted for each such edge; these are shown in Fig. 4.1.

The IPC graph has the same semantics as an HSDFG, and its execution
models the execution of the corresponding self-timed schedule. The following def-
initions are useful to formally state the constraints represented by the IPC graph.

Time is modelled as an integer that can be viewed as a multiple of a base clock.

Recall that the functiorstart(v, K [ z" represents the time at which the
kth execution of actorv starts in the self-timed schedule. The function
end(v R O z" represents the time at which tke th execution of the actor ends
andv produces data tokens at its output edges, and vetasgty, § = 0 and
end(v B = 0 for k<O as the “initial conditions”. Thestart(v,0) values are

specified by the schedulstart(v, 0) = o, (V)

Recall from Definition 2.2, as per the semantics of an HSDFG, each edge

(vj, v;) of Giyc represents the following data dependence constraint:

start( v, k) = end( 't k — delay( (vj, vi))),
O (vj, v;) U Ejpe, k= delay(vj, ) (4-1)

The constraints in (Eqn. 4-1) are due both to communication edges (representing
synchronization between processors) and to edges that represent sequential execu-

tion of actors assigned to the same processor.

Also, to model execution times of actors we associate executior (e
with each vertex of the IPC graph(v) assigns a positive integer execution time
to each actov (which can be interpreted @8 cycles of a base clock). Inter-pro-
cessor communication costs can be represented by assigning execution times to the
sendandreceiveactors. Now, we can substitigad( 't k) = start(vj, K) +t(vj)
in (Egn. 4-1) to obtain
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start(v, k) = start(v, k—delay((v;,v;))) +t(v) O(v;,v,) OEp.  (4-2)

In the self-timed schedule, actors fire as soon as data is available at all their

input edges. Such an “as soon as possible” (ASAP) firing pattern implies:
start(v, k) = max%{ start(vj, k—delay((vj,v.))) +t(vj) | (vj,v.) U Ejpc} E
In contrast, recall that in the FS schedule we would force actors to fire periodically

according tostart(v, K = o, (v) +kTg .

The IPC graph has the same semantics as a Timed Marked graph in Petri net
theory [Peter81][Ram80] — theeansitionsof a marked graph correspond to the
nodes of the IPC graph, tpéacesof a marked graph correspond to edges, and the
initial marking of a marked graph corresponds to initial tokens on the edges. The
IPC graph is also similar to Reiter's computation graph [Reit68]. The same proper-
ties hold for it, and we state some of the relevant properties here. The proofs here
are similar to the proofs for the corresponding properties in marked graphs and

computation graphs in the references above.

Lemma 4.1: The number of tokens in any cycle of the IPC graph is always con-
served over all possible valid firings of actors in the graph, and is equal to the path

delay of that cycle.

Proof. For each cycleC in the IPC graph, the number of token€ on  can only
change when actors that are on it fire, because actors i@t on  remove and place
tokens only on edges that are not part ofC : If

C= ((vpVy), (Vo V3),s ooy (Voo V) (Vo vy)), and any actorv,  Y<ksn )
fires, then exactly one token is moved from the edgg ;,Vv,) to the edge

(Vi Vs 1) » Wherevg=v, andv,,,=v, . This conserves the total number of

n+1 1

tokens onC QED.
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Definition 4.1: An HSDFGG is said to bdeadlockedif at least one of its actors
cannot fire an infinite number of times in any valid sequence of firings of actors in
G. Thus in a deadlocked HSDFG, some aestor fiteso number of times, and

is never enabled to fire subsequently.

Lemma 4.2: An HSDFGG (in particular, an IPC graph) is free of deadlock if and

only if it does not contain delay free cycles.

Proof: Suppose there is a delay free cycle

C= ((vpVy), (Vo V3), ooy (V_1u V), (Vi vy)) in G (i.e. Delay(C) = 0). By
Lemma 4.1 none of the edgdw,,V,), (V, V3), ..., (V,_1, V), (V,, V) , can
contain tokens during any valid execution®f . Then each of the agtars, v,

has at least one input that never contains any data. Thus none of the a&ors on

are ever enabled to fire, and heli¢e is deadlocked.

Conversely, suppos€ is deadlocked, i.e. there is onegctor  that never
fires after a certain sequence of firings of actor&in . Thus, after this sequence of
firings, there must be an input edge,, v,) that never contains data. This implies
that the actow,, in turn never gets enabled to fire, which in turn implies that there
must be an edggv,, v,)  that never contains data. In this manner we can trace a
pathp = ((Vy,V,_1)s--ms (V3 V), (V, V) forn = |V back fromv, tor,
that never contains data on its edges after a certain sequence of firing of actors in
G. SinceG containsonlyM actogs, must visit some actor twice, and hence must
contain a cycle&C . Since the edgegof do not contain @ata, is a delay free cycle.

QED.

Definition 4.2: A scheduleS is said to leadlockedif after a certain finite time

at least one processor blocks (on a buffer full or buffer empty condition) and stays
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blocked.

If the specified schedule is deadlock free then the corresponding IPC graph
is deadlock free. This is because a deadlocked IPC graph would imply that a set of
processors depend on data from one another in a cyclic manner, which in turn im-

plies a schedule that displays deadlock.

Lemma 4.3: The asymptotic iteration period fors&rongly connectetPC graph

G when actors execute as soon as data is available at all inputs is given by:

o> tMg
T = max MisonC [l (4_3)
cycleC in G UDelay(C) U

Note thatDelay(C) >0 for an IPC graph constructed from an admissible sched-
ule. This result has been proved in so many different contexts
([Kung87a][Peter81][Ram80][Reit68][Renf81]) that we avoid presenting another

proof of this fact here.

The quotient in Eqn. 4-3 is called tbycle meanof the cycleC . The entire
guantity on the right hand side of Eqn. 4-3 is called the “maximum cycle’noéan
the strongly connected IPC gragh . If the IPC graph contains more than one SCC,
then different SCCs may have different asymptotic iteration periods, depending on
their individual maximum cycle means. In such a case, the iteration period of the
overall graph (and hence the self-timed schedule) isnBe@émumover the maxi-
mum cycle means of all the SCCs@f. , because the execution of the schedule is
constrained by the slowest component in the system. Henceforth, we will define the

maximum cycle mean as follows.

Definition 4.3: The maximum cycle meanof an IPC graphG;,. , denoted by

MCM (Gy,c) , is the maximal cycle mean over all strongly connected components
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of Gjpc: Thatiis,

t(v)
MCM(Gi ) — max Dyiszonc E
P& cycleCin Gy, UDelay(C) O

Note thatMCM (G) may be a non-integer rational quantity. We will use the term
MCM instead ofMCM(G) when the graph being referred to is clear from the
context. A fundamental cycle @, ~ whose cycle mean is equabl is called

acritical cycle of Gy, . Thus the throughput of the system of processors executing

a particular self-timed schedule is equal to the corresporﬁ%ﬁ value.

For example, in Figure 4.G;,c  has one SCC, and its maximal cycle mean
is 7 time units. This corresponds to the critical cycle
((B,E), (E, 1), (I,G), (G, B)) . We have not included IPC costs in this calcu-
lation, but these can be included in a straightforward manner by appropriately set-
ting the execution times of tleendandreceiveactors.

The maximum cycle mean can be calculated in time

O(|\/]| Eipc|logz(|V| +D+T)), whereD andT are such thdelay( @ <D

UeO E\.pc andt(v) <T OvOV [Law76].

4.2 Execution time estimates

If we only have execution time estimates available instead of exact values,
and we set (v) inthe previous section to be these estimated values, then we obtain

theestimatedteration period by calculatinglCM . Henceforth we will assume that

we know theestimated throughput Mcle calculated by setting thig(v)  values

to the available timing estimates. As mentioned in Chapter 1, for most practical sce-
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narios, we can only assume such compile time estimates, rather than clock-cycle ac-
curate execution time estimates. In fact this is the reason we had to rely on self-
timed scheduling, and we proposed the ordered transaction strategy as a means of
achieving efficient IPC despite the fact that we do not assume knowledge of exact

actor execution times.

4.3  Ordering constraints viewed as edges added to Gipc

The ordering constraints can be viewed as edges added to the IPC graph: an
edge (vj, v;) with zero delays represents the constegant (v, k) > end( 't K)
The ordering constraints can therefore be expressed as a set of edges between com-

munication actors. For example, the constraints

transa_ction _
ordering constraints

critical cycle -——-

(r) receive

Figure 4.5Transaction ordering constraints

O = (8,11, S3 13,8, 4 S 15, S I'g) applied to the IPC graph of Fig. 4.4
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is represented by the graph in Fig. 4.5. If we call these additional ordering constraint
edgesE,; (solid arrows in Fig. 4.5), then the grdiph . U Eq) represents
constraints in the OT schedule, as it evolves in Fig. 4.3. Thus the maximum cycle
mean of (V, B, U Egq) represents the effect of adding the ordering constraints.
The critical cycleC of this graph is drawn in Fig. 4.5; it is different from the critical
cycle in Fig. 4.4 because of the added transaction ordering constraints. Ignoring
communication costs, tHdCM is 9 units, which was also observed from the evo-

lution of the transaction constrained schedule in Fig. 4.3.

The problem of finding an “optimal” transaction order can therefore be stat-
ed as: Determine a transaction or@er  such that the resultant constrainEgdges

do not increase theICM | i.e.

MCM ((V, Ecpc) ) = MCM((V, Epc U Eop)) -

4.4  Periodicity

We noted earlier that as the ST schedule in Fig. 4.2 evolves, it eventually
settles into a periodic repeating pattern that spans two iterations of the dataflow
graph. It can be shown that a ST schedule always settles down into a periodic exe-
cution pattern; in [Bacc92] the authors show that the firing times of transitions in a
marked graph are periodic asymptotically. Interpreted in our notation, for any

strongly connected HSDFG:

[K, N s.t.
start(v, k+N) = start(v, k) + MCM(Gp) xN  Dv; 0OV, Ok>K

Thus after a “transient” that lasts K iterations, the ST schedule evolves into a peri-
odic pattern. The periodic pattern itself spans N iterations; we call petialic-
ity. The periodicity depends on the number of delays in the critical cyclgg of ;

it can be as high as the number least common multiple of the number of delays in
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the critical cycles ofGj,. [Bacc92]. For example, the IPC graph of Fig. 4.4 has
one critical cycle with two delays on it, and thus we see a periodicity of two for the
schedule in Fig. 4.2. The “transient” region definedkby  (which is 1 in Fig. 4.2)

can also be exponential.

The effect of transients followed by a periodic regime is essentially due to
properties of longest paths in weighted directed graphs. These effects have been
studied in the context of instruction scheduling for VLIW processors
[Aik88][Zaky89], as-soon-as-possible firing of transitions in Petri nets [Chre83],
and determining clock schedules for sequential logic circuits [Shen92]. In [Aik88]
the authors note that if instructions in an iterative program for a VLIW processor
(represented as a dependency graph) are scheduled in an as-soon-as-possible fash-
ion, a pattern of parallel instructions “emerges” after an initial transient, and the au-
thors show how determining this pattern (essentially by simulation) leads to
efficient loop parallelization. In [Zaky89], the authors propose a max-algebra
[Cun79] based technique for determining the “steady state” pattern in the VLIW
program. In [Chre83] the author studies periodic firing patterns of transitions in
timed Petri nets. The iterative algorithms for determining clock schedules in
[Shen92] have convergence properties similar to the transients in self-timed sched-
ules (their algorithm converges when an equivalent self-timed schedule reaches a

periodic regime).

Returning to the problem of determining the optimal transaction order, one
possible scheme is to derive the transaction order from the repeating pattern that the
ST schedule settles into. That is, instead of using the transaction order of Fig. 3.1,
if we enforce the transaction order that repeats over two iterations in the evolution
of the ST schedule of Fig. 4.2, the OT schedule would “mimic” the ST schedule ex-
actly, and we would obtain an OT schedule that performs as well as the ideal ST
schedule, and yet involves low IPC costs in practice. However, as pointed out
above, the number of iterations that the repeating pattern spans depends on the crit-

ical cycles ofG;,; , and it can be exponential in the size of the HSDFG [Bacc92].
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In addition the “transient” region before the schedule settles into a repeating pattern
can also be exponential. Consequently the memory requirements for the controller
that enforces the transaction order can be prohibitively large in certain cases; in fact,
even for the example of Fig. 4.2, the doubling of the controller memory that such a

strategy entails may be unacceptable. We therefore restrict ourselves to determining
and enforcing a transaction order that spans only one iteration of the HSDFG; in the
following section we show that there is no sacrifice in imposing such a restriction

and we discuss how such an “optimal” transaction order is obtained.

4.5  Optimal order

In this section we show how to determine an oi@er on the IPCs in the
schedule such that imposi@  yields an OT schedule that has iteration period
within one unit of the ideal ST schedulB (< Ty, < |'TST"| ). Thus imposing the
order we determine results in essentially no loss in performance over an unre-

strained schedule, and at the same time we get the benefit of cheaper IPC.

Our approach to determining the transaction ofdfer  is to modify a given
fully-static schedule so that the resulting FS scheduld pas eo[u‘éé{;a? , and
then to derive the transaction order from that modified schedule. Intuitively it ap-
pears that, for a given processor assignment and ordering of actors on processors,
the ST approachalways performs better than the FS or OT approaches
(Tes>To7> Tgp) simply because it allows successive iterations to overlap. The
following result, however, tells us that it is always possible to modify any given ful-
ly-static schedule so that it performs nearly as well as its self-timed counterpart.

Stated more precisely:

Claim 4.1: Given a fully-static schedulg= {op(v) , O, (v), TFS} , Ié’[ST be

the average iteration period for the corresponding ST schedule (as mentioned
before, Tog=Tg; ). Supposd.o>Tg; ; then, there exists a valid fully-static
scheduleS that has the same processor assignmg&nt as , the same order of execu-

tion of actors on each processor, but an iteration perioﬁTgﬂ . That is,
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S = {op(v) , 0" (V), |'TST'|} where, if actorsy, vy, areon the same processor
(i.e. cp(vi) = op(vj) ) then o, (v;) >0t(vj) 0 o' (v) >0’t(vj) . Further-
more,S' is obtained by solving the following set of linear inequalities for

o’t(vj) -0’ (v < |'TST"| xd (vj, v;) —t (vj) for each edgdvj, V) in G-

Proof: Let S’ have a period equal © . Then, under the scheflule Kk, the th start-

ing time of actowv; is given by:

start(v, k) = o', (v;) +KT (4-4)

Also, data precedence constraints imply (as in Eqn. 4-2):

start( v, k) 2start(vj, k—delay(vj,vi)) +t(vj) D(Vj,vi) O Eipc (4-5)

Substituting Eqgn. 4-4 in Egn. 4-5:

o' (vy) +kT= c’t(vj) + (k—delay(vj,vi))T+t(vj) D(vj,vi) U Ejpc

That is:

o’t(vj) -0’ (V) £Tx d(vj,vi) —t(vj) D(vj,vi

)t Eipc (4-6)

Note that the construction @&;,c  ensures that processor assignment constraints
are automatically met: icfrp(vi) =0, (vj) ang is to be executed immediately
aftervj then there is an edg(ej, V) @ - Therelations in Eqn. 4-6 represent a

system oflEj,¢| inequalities ifV|  unknowns (the quantitiég(v;) ).

The system of inequalities in Egn. 4-6 is a difference constraint problem that
can be solved in polynomial tim®©((|Ep|VI) ) using the Bellman-Ford shortest-
path algorithm [Law76][Corm92]. The details of this approach are well described
in [Corm92]; the essence of it is to construct a constraint graph that has one vertex

for each unknowro’ (v;) . Each difference constraint is then represented by an
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edge between the vertices corresponding to the unknowns, and the weight on that
edge is set to be equal to the RHS of the difference constraint. A “dummy” vertex
is added to the constraint graph, and zero weight edges are added from the dummy
vertex to each of the remaining vertices in the constraint graph. Then, setting the
value ofo’, (v,) to be the weight of the shortest path from the dummy vertex to the
vertex that corresponds &, (v;)  inthe constraint graph results in a solution to the
system of inequalities, if indeed a solution exists. A feasible solution exists if and
only if the constraint graph does not contain a negative weight cycle [Corm92],

which is equivalent to the following condition:

Dg t(v) 0
max vITc -

T2 cycle CinGjpc [1 D (C) 0’
T> TST'

and, from Eqn. 4-3, this is equivalent to

If we setT = |'TST"| , then the right hand sides of the system of inequalities
in 4-6 are integers, and the Bellman-Ford algorithm yields integer solutions for
o', (v) . This is because the weights on the edges of the constraint graph, which are
equal to the RHS of the difference constraints, are integé@rs if  is an integer; con-

sequently, the shortest paths calculated on the constraint graph are integers.

ThusS = {a,(v), 0" (V), |'TST"|} is a valid fully-static schedul@ED.

Remark:Claim 4.1 essentially states that an FS schedule can be modified by skew-
ing the relative starting times of processors so that the resulting schedule has itera-
tion period less tharfTq+ 1) ; the resulting iteration period lies within one time
unit of its lower bound for the specified processor assignment and actor ordering.
It is possible to unfold the graph and generate a fully-static schedule with average
period exactlyTo , but the resulting increase in code size is usually not worth the
benefit of (at most) one time unit decrease in the iteration period. Recall that a
“time unit” is essentially the clock period; therefore, one time unit can usually be

neglected.
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For example the static schedul®e corresponding to Fig. 4.1 has
Teg = 11>Tg; = 9 units. Using the procedure outlined in Claim , we can skew
the starting times of processors in the sche8Bule to obtain a sci®dule , as shown
in (4-5), that has a period equal to 9 units (Fig. 4.6). Note that the processor assign-
ment and actor ordering in the schedule of Fig. 4.6 is identical to that of the schedule
in Fig. 4.1. The valuess’, (V) areo’ . (A) =9 ¢ (B) =0 (G) =2 ,

Proc 1 ke [ Al kL e [ al e | Al k& e |

o o R D ] O T s 4 A ]

roc G | C G G

Proc 4 > ’f_ [I o ] $—/I b T | i_‘

Proc 5 H Fon | H Yy v |
4—9—>

Figure 4.6 Modified schedule S’

o' (C) =6,0 (D) =0,0'(E) =5,0' (F) =8,ando’ (H) = 3.

Claim 4.1 may not seem useful at first sight: why not obtain a fully-static
schedule that has a peri{ia‘sﬂ to begin with, thus eliminating the post-process-
ing step suggested in Claim 4.1? Recall that an FS schedule is usually obtained us-
ing heuristic techniques that are either based on blocked non-overlapped scheduling
(which use critical path based heuristics) [Sih91] or are based on overlapped sched-
uling techniques that employ list scheduling heuristics [deGroot92][Lam88]]. None
of these techniques guarantee that the generated FS schedule will have an iteration
period within one unit of the period achieved if the same schedule were run in a self-
timed manner. Thus for a schedule generated using any of these techniques, we
might be able to obtain a gain in performance, essentially for free, by performing
the post-processing step suggested in Claim 4.1. What we propose can therefore be
added as an efficient post-processing step in existing schedulers. Of course, an ex-
haustive search procedure like the one proposed in [Schw85] will certainly find the

scheduleS directly.
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We set the transaction ord®f  to be the transaction order suggested by the
modified schedul& (as opposed to the transaction order&om  used in Fig. 3.1).
ThusO" = (S},1,S3 13, S5 5, S5 M4, Sz I S I'5) - Imposing the transaction or-
derO" asin Fig. 4.6 results iy, of 9 units instead of 10 that we get if the trans-
action order of Fig. 3.1 is used. Under the transaction order specifiéfl by

sT=
within one unit of the unconstrained ST strategy. Again, unfolding may be required

TgrsTors |'TST"|; thus imposing the ord€d” ensures that the average period is

to obtain a transaction ordered schedule that has period exactly equal to , but
the extra cost of a larger controller (to enforce the transaction ordering) outweighs
the small gain of at most one unit reduction in the iteration period. Thus for all prac-
tical purposeD” is theptimaltransaction order. The “optimality” is in the sense
that the transaction ord€”  we determine statically is the best possible one, given

the timing information available at compile time.

4.6  Effects of changes in execution times

We recall that the execution times we use to determine the actor assignment
and ordering in a self-timed schedule are compile time estimates, and we have been
stating that static scheduling is advantageous when we have “reasonably good”
compile time estimates of execution time of actors. Also, intuitively we expect an
ordered transaction schedule to be more sensitive to changes in execution times
than an unconstrained ST schedule. In this section we attempt to formalize these no-
tions by exploring the effect of changes in execution times of actors on the through-

put achieved by a static schedule.

Compile time estimates of actor execution times may be different from their
actual values at run time due to errors in estimating execution times of actors that
otherwise have fixed execution times, and due to actors that display run time vari-
ations in their execution times, because of conditionals or data-dependent loops
within them for example. The first case is simple to model, and we will show in sec-

tion 4.6.1 how the throughput of a given self-timed schedule changes as a function
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of actor execution times. The second case is inherently difficult; how do we model
run time changes in execution times due to data-dependencies, or due to events such
as error handling, cache misses, and pipeline effects? In section 4.6.2 below we
briefly discuss a very simple model for such run time variations; we assume actors
have random execution times according to some known probability distribution.
We conclude that analysis of even such a simple model for the expected value of
the throughput is often intractable, and we discuss efficiently computable upper and

lower bounds for the expected throughput.

46.1 Deterministic case

Consider the IPC graph in Fig. 4.7, which is the same IPC graph as in Fig.
4.4 except that we have used a different execution time for actor H to make the ex-
ample more illustrative. The numbers next to each actor represents execution times
of the actors. We let the execution time of actor €(&) = t. , and we determine

the iteration period as a function of given a particular valug oflf o (t.) ). The

Figure 4-7-Gipc’ actor C has execution time t, constant over all invocations of C

iteration period is given bMCM (Gy,c) , the maximum cycle mean. The function
Tgr(ty) is shown in Fig. 4.8. When O<t.<1 , the cycle
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slope=1

11

slope=1/2

i i i i > Ic
0 1 2 4 6 8 9

Figure 4.8 Tg+(tc)

((A' ) (s ry) (ry, E) (E, A)) is critical, and theMICM s constant at 7; when
1<t.<9, the cycle

((Bis) (s,ry) (r, BE) (B sy (s4,1y) (1, D) (D, y) (S5,13) (13, C) (G s5)

(S5 r5) (rs: B))

is critical, and since this cycle has two delays, the slofig,pft ) is half in this
region; finally, wher<t. the cycl¢(C, s;) (s;, G) (G, C)) becomes critical,
and the slope now is one because on that cycle.

Thus the effect of changes in execution times of each actor is piecewise lin-
ear, and the slope depends on the number of delays on the critical cycle that the ac-
tor lies on. The slope is at most one (when the critical cycle containing the particular
actor has a single delay on it). The iteration periodderavex function of actor

execution times.

Definition 4.4: A functionf (x) is said to be convex over an interyal b) if for

every X1, %, O (&, b) and OsA<1,

FOAX,+ (L=A) X)) SAF(X) + (L=A)F(x,) .
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Geometrically, if we plot a convex functidr{x) alorg , a line drawn between
two points on the curve lies above the curve (but it may overlap sections of the

curve).

It is easily verified geometrically thats(t.) is convex: since this func-
tion is piecewise linear with a slope that is positive and non-decreasing, a line join-

ing two points on it must lie above (but may coincide with) the curve.

We can also plotg, as afunction of execution times of more than one actor
(e.9.Tg1(ty, tg, ...) ); this function will be a convex surface consisting of intersect-
ing planes. Slices of this surface along each variable look like Fig. 4.8, which is a
slice parallel to the. axis, with the other execution times held constart 8 ,
ty = 3, etc.).

The modelling described in this section is useful for determining how “sen-
sitive” the iteration period is to fixed changes in execution times of actors, given a
processor assignment and actor ordering. We observe that the iteration period in-
creases linearly (with slope one) at worst, and does not change at all at best, when

execution time of an actor is increased beyond its compile time estimate.

4.6.2 Modeling run time variations in execution times

The effect of variations in execution times of actors on the performance of
statically scheduled hardware is inherently difficult to quantify, because these vari-
ations could occur due to a large number of factors — conditional branches or data
dependent loops within an actor, error handling, user interrupts etc. — and because
these variations could have a variety of different characteristics, from being period-
ic, to being dependent on the input statistics, and to being completely random. As a
result thus far we have had to resort to statements like “for a static scheduling strat-
egy to be viable, actors must not show significant variations in execution times.” In
this section we point out the issues involved in determining the effects of variations

in execution times of actors.
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A very simple model for actors with variable execution times is to assign to
each actor an execution time that is a random variable (r.v.) with a discrete proba-
bility distribution (p.d.f.); successive invocations of each actor are assumed statis-
tically independent, execution times of different actors are assumed independent,
and the statistics of the random execution times are assumed to be time invariant.
Thus, for example, an actdr  could have execution time  with probability (w.p.)

p and execution tim¢, w.p(1-p) .The modelis essentiallyghat flips a coin
each time it is invoked to decide what its execution time should be for that invoca-
tion. Such a model could describe a data-dependent conditional branch for example,

but it is of course too simple to capture many real scenarios.

Dataflow graphs where actors have such random execution times have been
studied by Olsdeet. al.[OIs89][OIs90] in the context of modeling data-driven net-
works (also called wave-front arrays [Kung87a]) where the multiply operations in
the array display data-dependent execution times. The authors show that the behav-
iour of such a system can be described by a discrete-time Markov chain. The idea
behind this, briefly, is that such a system is described by a state space consisting of
a set of state vectoss . Entries in each vestor represeri the th starting time of

each actor normalized with respect to one (any arbitrarily chosen) actor:

0 0 O
%tart( v, K) —start(v;, k) E

S = Eﬁtart(vs, K) —start( v, k)%
O 0

i -
[start( v, k) —start(v;, k)U

The normalization (with respect to acter in the above case) is done to
make the state space finite; the number of distinct values that the sector (as de-

fined above) can assume is shown to be finite in [OIs90]. The states of the Markov
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chain correspond to each of the distinct values of . The average iteration period,

which is defined as:
start(v, K
T = lim —( )
K - oo K
can then be derived from the stationary distribution of the Markov chain. There are

several technical issues involved in this definition of the average iteration period,;
how do we know the limit exists, and how do we show that the limit is in fact the
same for all actors (assuming that the HSDFG is strongly connected)? These ques-
tions are fairly non-trivial because the random procgssart (v, k) } may not
even be stationary. These questions are answered rigorously in [i3a0092], where it
is shown that:

start( v, K)

T = lim ——2 = E[T] Ov,0V.
K - o K !

Thus the limitT is in fact a constaalimost surely

The problem with such exact analysis, however, is the very large state space
that can result. We found that for an IPC Graph similar to Fig. 4.4, with certain
choices of execution times, and assuming that gnly  is random (takes two differ-
ent values based on a weighted coin flip), we could get several thousand states for
the Markov chain. A graph with more vertices leads to an even larger state space.
The upper bound on the size of the state space is exponential in the number of ver-
tices (exponential ifV| ). Solving the stationary distribution for such Markov
chains would require solving a set of linear equations equal in number to the num-
ber of states and is highly compute intensive. Thus we conclude that this approach
has limited use in determining effects of varying execution times; even for unreal-

istically simple stochastic models, computation of exact solutions is prohibitive.

If we assume that all actors have exponentially distributed execution times,
then the system can be analyzed using continuous-time Markov chains [Moll82].
This is done by exploiting the memoryless property of the exponential distribution:
when an actor fires, the state of the system at any moment does not depend on how
long that actor has spent executing its function; the state changes only when that ac-

tor completes execution. The number of states for such a system is equal to the num-
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ber of different valid token configurations on the edges of the dataflow graph,
where by “valid” we imply any token configuration that can be reached by a se-
guence of firings of enabled actors in the HSDFG. This is also equal to the number
of valid retimingg[Lei91] that exist for the HSDFG. This number, unfortunately, is

again exponential in the size of the HSDFG.

Analysis of such graphs with exponentially distributed execution times has
been extensively studied in the area of stochastic Petri nets (in [Mur89] Murata pro-
vides a large and comprehensive list of references on Petri nets — 315 in all — a
number of which focus on stochastic Petri nets). There is a considerable body of
work that attempts to cope with the state explosion problem. Some of these works
attempt to divide a given Petri net into parts that can be solved separately (e.g.
[Ya093]), some others propose simplified solutions when the graphs have particular
structures (e.g. [Cam92]), and others propose approximate solutions for values such
as the expected firing rate of transitions (e.g. [Hav91]). None of these methods are
general enough to handle even a significant class of IPC graphs. Again, exponen-
tially distributed execution times fail actors is clearly a crude approximation to
any realistic scenario to make the computations involved in exact calculations

worthwhile.

As an alternative to determining the exact valu& ¢T| we discuss how

to determine efficiently computable bounds for it.

Definition 4.5: Given an HSDFGG = V, E that has actors with random execu-

tion times, definez, = (V, E) to be an equivalent graph with actor execution

times equal to the expected value of their execution timés in

Fact 4.1: [Durr91] (Jensen’s inequality) K(x) is a convex functionxof , then:

E[f(X)] 2f(E[N]) .
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In [Rajs94] the authors use Fact 4.1 to show tpT] > MCM (G, )
This follows from the fact tha¥’lCM (G, ) is a convex function of the execution
times of each of its actors. This result is interesting because of its generality; it is
true no matter what the statistics of the actor execution times are (even the various

independence assumptions we made can be relaxed!).

One might wonder what the relationship betwedh[ T] and
E[MCM(G)] might be. We can again use Fact 4.1along with the fact that the

maximum cycle mean is a convex function of actor execution times to show the fol-

lowing:

E[MCM(G)] zMCM[G,,d -
However, we cannot say anything ab&jtT] in relatiok fMCM(G) ] ;we
were able to construct some graphs whefel] >E[MCM(G)] , and others

whereE[T] <E[MCM(GQ)] .

If the execution times of actors are all bounded (v) <t(v) <t__. (V)
Ov OV, e.qg. if all actors have execution times uniformly distributed in some inter-

val [a, b] ) then we can say the following:

MCM (G, ) 2E[T] 2MCM (G, ) =MCM (G (4-7)

min)
whereG, . = (V,E) issame a exceptthe random actor execution times are
replaced by their upper bounds, (. (v) ), and simil€8y. = (V, E) is the
same ass except the random actor execution times are replaced by their lower
bounds €, (V) ).

Equation (4-7) summarizes the useful bounds we know for expected value
of the iteration period for graphs that contain actors with random execution times.
It should be noted that good upper bound&¢i] are not known. Rajshaum and
Sidi propose upper bounds for exponentially distributed execution times [Rajs94];
these upper bounds are typically more than twice the exact vald¢ Tf , and

hence not very useful in practice. We attempted to simplify the Markov chain model
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(i.e. reduce the number of states) for the self-timed execution of a stochastic HSD-
FG by representing such an execution by a set of self-timed schedules of determin-
istic HSDFGs, between which the system makes transitions randomly. This
representation reduces the number of states of the Markov chain to the number of
different deterministic graphs that arise from the stochastic HSDFG. We were able
to use this idea to determine a upper boundefpr] ; however, this bound also
proved to be too loose in general (hence we omit the details of this construction

here).

4.6.3 Implications for the OT schedule

Intuitively, an OT schedule is more sensitive to variations in execution
times; even though the computations performed using the OT schedule are robust
with respect to execution time variations (the transaction order ensures correct
sender-receiver synchronization), the ordering restriction makes the iteration period
more dependent on execution time variations than the ideal ST schedule. This is ap-
parent from our IPC graph model; the transaction ordering constraints add addition-
al edges Eyr ) toGjpc . The IPC graph with transaction ordering constraints
represented as dashed arrows is shown in Fig. 4.9 (we use the transaction order
O = (S;,71,S3 13,85, 1% S, 11, Se I Ssi [5)  determined in section 4.5 and,
again, communication times are not included). The grapfife«(t.) is now dif-
ferent and is plotted in Fig. 4.8. Note that e, (t.) curve for the OT schedule
(solid) is “above” the corresponding curve for the unconstrained ST schedule
(dashed): this shows precisely what we mean by an OT schedule being more sensi-
tive to variations in execution times of actors. The “optimal”’ transaction @der
we determined ensures that the transaction constraints do not sacrifice throughput
(ensuresT 4, = Tqr ) when actor execution times egaal to their compile time
estimates;O" was calculated using. = 3  in section 4.5, and sure enough,
Tor(te) = Tgp(ty) whent. = 3.
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Figure 4.10 TST(tC) andTOT(tc)

Modeling using random variables for the OT schedule can again be done as
before, and since we have more constraints in this schedule, the expected iteration

period will in some cases be larger than that for an ST schedule.

Figure 4-9-Gipc with transaction ordering constraints represented as dashed
lines
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4.7  Summary

In this chapter we presented a quantitative analysis of ST and OT schedules
and showed how to determine the effects of imposing a transaction order on an ST
schedule. If the actual execution times do not deviate significantly from the estimat-
ed values, the difference in performance of the ST and OT strategies is minimal. If
the execution times do in fact vary significantly, then even an ST strategy is not
practical; it then becomes necessary to use a more dynamic strategy such as static
assignment or fully dynamic scheduling [Lee89] to make the best use of computing
resources. Under the assumption that the variations in execution times are small
enough so that an ST or an OT strategy is viable, we argue that it is in fact wiser to
use the OT strategy rather than ST because of the cheaper IPC of the OT strategy.
This is because we can determine the transaction @der such that the ordering
constraints do not sacrifice performance; if the execution times of actors are close
to their estimates, the OT schedule with  as the transaction order has iteration pe-
riod close to the minimum achievable peribd, . Thus we make the best possible

use of compile time information when we determine the transaction Ofder

We also presented the complexities involved in modeling run time varia-
tions in execution times of actors; even highly simplified stochastic models are dif-
ficult to analyze precisely. We pointed out bounds that have been proposed in Petri
net literature for the value of the expected iteration period, and concluded that al-
though a lower bound is available for this quantity for rather general stochastic
models (using Jensen’s inequality), tight upper bounds are still not known, except
for the trivial upper bound using maximum execution times of actors
(MCM (G, )
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MINIMIZING SYNCHRONIZATION COSTS IN
SELF-TIMED SCHEDULES

The previous three chapters dealt with the Ordered Transactions strategy,
which is a hardware approach to reducing IPC and synchronization costs in self-
timed schedules. In this chapter we present algorithms that minimize synchroniza-
tion costs in the final implementation of a given self-timed schedule, and we do not
assume the availability of any hardware support for employing the OT approach.

Recall that the self-timed scheduling strategy introduces synchronization
checks whenever processors communicate. A straightforward implementation of a
self-timed schedule would require that for each inter-processor communication
(IPC), the sending processor ascertain that the buffer it is writing to is not full, and
the receiver ascertain that the buffer it is reading from is not empty. The processors
block (suspend execution) when the appropriate condition is not met. Such sender-
receiver synchronization can be implemented in many ways depending on the par-
ticular hardware platform under consideration: in shared memory machines, such
synchronization involves testing and setting semaphores in shared memory; in
machines that support synchronization in hardware (such as barriers), special syn-
chronization instructions are used; and in the case of systems that consist of a mix
of programmable processors and custom hardware elements, synchronization is
achieved by employing interfaces that support blocking reads and writes.

In each type of platform, each IPC that requires a synchronization check
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costs performance, and sometimes extra hardware complexity. Semaphore checks
cost execution time on the processors, synchronization instructions that make use
of special synchronization hardware such as barriers also cost execution time, and
blocking interfaces between a programmable processor and custom hardware in a
combined hardware/software implementations require more hardware than non-
blocking interfaces [Huis93].

In this chapter we present algorithms and techniques that reduce the rate at
which processors must access shared memory for the purpose of synchronization
in multiprocessor implementations of SDF programs. One of the procedures we
present, for example, detects when the objective of one synchronization operation
is guaranteed as a side effect of other synchronizations in the system, thus enabling
us to eliminate such superfluous synchronization operations. The optimization pro-
cedure that we propose can be used as a post-processing step in any static schedul-
ing technique (any one of the techniques presented in Chapter 1, section 1.2) for
reducing synchronization costs in the final implementation. As before we assume
that “good” estimates are available for the execution times of actors and that these
execution times rarely display large variations so that self-timed scheduling is via-
ble for the applications under consideration. If additional timing information is
available, such as guaranteed upper and lower bounds on the execution times of
actors, it is possible to use this information to further optimize synchronizations in
the schedule. However, use of such timing bounds will be left as future work; we
mention this again in Chapter 7.

This chapter is a part of ongoing research in collaboration with Dr. Shuvra

Bhattacharyya, who is a Research Scientist at Hitachi America Ltd.

5.1 Related work

Among the prior art that is most relevant to this chapter idbé#nger-
MIMD principle of Dietz, Zaafrani, and O’Keefe, which is a combined hardware

and software solution to reducing run-time synchronization overhead [Dietz92]. In
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this approach, a shared-memory MIMD computer is augmented with hardware
support that allows arbitrary subsets of processors to synchronize precisely with
respect to one another by executing a synchronization operation chietea If

a subset of processors is involved in a barrier operation, then each processor in this
subset will wait at the barrier until all other processors in the subset have reached
the barrier. After all processors in the subset have reached the barrier, the corre-
sponding processes resume executiagxaect synchrony.

In [Dietz92], the barrier mechanism is applied to minimize synchronization
overhead in a self-timed schedule with hard lower and upper bounds on the task
execution times. The execution time ranges are used to detect situations where the
earliest possible execution time of a task that requires data from another processor
is guaranteed to be later than the latest possible time at which the required data is
produced. When such an inference cannot be made, a barrier is instantiated
between the sending and receiving processors. In addition to performing the
required data synchronization, the barrier resets (to zero) the uncertainty between
the relative execution times for the processors that are involved in the barrier, and
thus enhances the potential for subsequent timing analysis to eliminate the need for
explicit synchronizations.

The techniques of barrier MIMD do not apply to the problem that we
address because they assume that a hardware barrier mechanism exists; they
assume that tight bounds on task execution times are available; they do not address
iterative, self-timed execution, in which the execution of successive iterations of
the dataflow graph can overlap; and even for non-iterative execution, there is no
obvious correspondence between an optimal solution that uses barrier synchroni-
zations and an optimal solution that employs decoupled synchronization checks at
the sender and receiver erdir¢cted synchronizatior). This last point is illus-
trated in Fig. 5.1. Here, in the absence of execution time bounds, an optimal appli-
cation of barrier synchronizations can be obtained by inserting two barriers — one
barrier acros#\; andé; , and the other barrier ackgss Agnd . This is illus-

trated in Figure 5.1(c). However, the corresponding collection of directed synchro-
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nizations @; toA; ,and\; W, )is notsufficient since it does not guarantee that
the data required b¥, froy, is available befée begins execution.

In [Sha89], Shaffer presents an algorithm that minimizes the number of
directed synchronizations in the self-timed execution of a dataflow graph. How-
ever, this work, like that of Dietet al, does not allow the execution of successive
iterations of the dataflow graph to overlap. It also avoids having to consider data-
flow edges that have delay. The technique that we present for removing redundant
synchronizations can be viewed as a generalization of Shaffer’s algorithm to han-
dle delays and overlapped, iterative execution, and we will discuss this further in
section 5.6. The other major techniques that we present for optimizing synchroni-
zation — handling the feedforward edges of fiyachronization grapl{to be
defined in section 5.4.2), discussed in section 5.7, and “resynchronization”,
defined and addressed in sections 5.9 and the appendix — are fundamentally dif-

ferent from Shaffer’s technique since they address issues that are specific to our

Proc 1:A1, A2
@ @ @ Proc 2:A3, A,
Proc 3:A5, Ag
@ (b)
Proc 1 start—A—» f?‘ A,
r
|
Proc 2 startt———» |¢ A—> $ A,
[
|
Proc 3 start—A. > |F A,
()

Figure 5.1(a) An HSDFG (b) A three-pro(a) An HSDFG (b) A three-proces-
sor self-timed schedule for (a). (c) An illustration of execution under the
placement of barriers.
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more general context of overlapped, iterative execution.

As discussed in Chapter 1, section 1.2.2, a multiprocessor executing a self-
timed schedule is one where each processor is assigned a sequential list of actors,
some of which arsendandreceiveactors, which it executes in an infinite loop.
When a processor executes a communication actor, it synchronizes with the pro-
cessor(s) it communicates with. Thus exactly when a processor executes each actor
depends on when, at run time, all input data for that actor is available, unlike the
fully-static case where no such run time check is needed. In this chapter we use
“processor” in slightly general terms: a processor could be a programmable com-
ponent, in which case the actors mapped to it execute as software entities, or it
could be a hardware component, in which case actors assigned to it are imple-
mented and execute in hardware. See [Kala93] for a discussion on combined hard-
ware/software synthesis from a single dataflow specification. Examples of
application-specific multiprocessors that use programmable processors and some
form of static scheduling are described in [Bork88][Koh90], which were also dis-
cussed in Chapter 1, section 1.3.

Inter-processor communication between processors is assumed to take
place via shared memory. Thus the sender writes to a particular shared memory
location and the receiver reads from that location. The shared memory itself could
be global memory between all processors, or it could be distributed between pairs
of processors (as a hardware FIFO queues or dual ported memory for example).
Each inter-processor communication edge in our HSDFG thus translates into a
buffer of a certain size in shared memory.

Sender-receiver synchronization is also assumed to take place by setting
flags in shared memory. Special hardware for synchronization (barriers, sema-
phores implemented in hardware, etc.) would be prohibitive for the embedded
multiprocessor machines for applications such as DSP that we are considering.
Interfaces between hardware and software are typically implemented using mem-
ory-mapped registers in the address space of the programmable processor (again a

kind of shared memory), and synchronization is achieved using flags that can be
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tested and set by the programmable component, and the same can be done by an
interface controller on the hardware side [Huis93].

Under the model above, the benefits that our proposed synchronization
optimization techniques offer become obvious. Each synchronization that we elim-
inate directly results in one less synchronization check, or, equivalently, one less
shared memory access. For example, where a processor would have to check a flag
in shared memory before executingeeeiveprimitive, eliminating that synchroni-
zation implies there is no longer need for such a check. This translates to one less
shared memory read. Such a benefit is especially significant for simplifying inter-
faces between a programmable component and a hardware compaegitioraa
receive without the need for synchronization implies that the interface can be
implemented in a non-blocking fashion, greatly simplifying the interface control-
ler. As a result, eliminating a synchronization directly results in simpler hardware
in this case.

Thus the metric for the optimizations we present in this chapter is the total
number of accesses to shared memory that are needed for the purpose of synchro-
nization in the final multiprocessor implementation of the self-timed schedule.

This metric will be defined precisely in section 5.5.

5.2  Analysis of self-timed execution

We model synchronization in a self-timed implementation using the IPC
graph model introduced in the previous chapter. As before, an IPC graph
Gipc (V, Eppc) is extracted from a given HSDFG  and multi-processor schedule;
Fig. 5.2 shows one such example, which we use throughout this chapter.

We will find it useful to partition the edges of the IPC graph in the follow-
ing manner:Ejgc = Ejnt U Ecomm , WheréEgomy — are theommunication edges
(shown dotted in Fig. 5.2(d)) that are directed from the send to the receive actors in
Gipc

to a particular processor (actors internal to that processor) are executed sequen-

andEj,; are the “internal” edges that represent the fact that actors assigned
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Figure 5.2 Self-timed execution

tially according to the order predetermined by the self-timed schedule. A commu-
nication edgee J E;omm  IMGjpe  represents two functions: 1) reading and writing

of data values into the buffer represented by that edge; and 2) synchronization
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between the sender and the receiver. As mentioned before, we assume the use of
shared memory for the purpose of synchronization; the synchronization operation
itself must be implemented using some kind of softwamocol between the

sender and the receiver. We discuss these synchronization protocols shortly.

5.2.1  Estimated throughput

Recall from Eqgn. 4-3 that the average iteration period corresponding to a
self-timed schedule with an IPC gra@f), is given by the maximum cycle mean
of the graphMCM (Gjpc) . If we only have execution time estimates available
instead of exact values, and we set the execution times of a¢wrs to be equal
to these estimated values, then we obtairesitienatedteration period by comput-
ing MCM (G,¢) . Henceforth we will assume that we know testimated
throughput MCM ™" calculated by setting thigv)  values to the available timing
estimates.

In all the transformations that we present in the rest of the chapter, we will
preserve the estimated throughput by preserving the maximum cycle mean of
Gipc’

more precise timing information, this is the best we can hope to do.

with eacht (v) set to the estimated execution timg of . In the absence of

5.3 Strongly connected components and buffer size
bounds

In dataflow semantics, the edges between actors represent infinite buffers.
Accordingly, the edges of the IPC graph are potentially buffers of infinite size.
However, from Lemma 4.1, everfgedback edge(an edge that belongs to a
strongly connected component, and hence to some cycle) can only have a finite
number of tokens at any time during the execution of the IPC graph. We will call
this constant theelf-timed buffer bound of that edge, and for a feedback edge
we will represent this bound bBg, (e) . Lemma 4.1 yields the following self-

timed buffer bound:
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By, (€) = min({ Delay(C) | Cis a cycle that containg} ) (5-1)

Feedforward edges(edges that do not belong to any SCC) have no such
bound on buffer size; therefore for practical implementations we nesghtsea
bound on the sizes of these edges. For example, Figure 5.3(a) shows an IPC graph
where the communication eddgss, r) could be unbounded when the execution

time of A is less than that @ , for example. In practice, we need to bound the

Figure 5.3.An IPC graph with a feedforward edge: (a) original graph (b)
imposing bounded buffers.

buffer size of such an edge; we will denote such an “imposed” bound for a feedfor-
ward edgee byBg(e) . Since the effect of placing such a restriction includes
“artificially” constraining src(e) from getting more thaB (€) invocations
ahead ofsnk(e) , its effect on the estimated throughput can be modelled by add-
ing a reverse edge that has  delays on it, where By (e) —delay(e) , to
Gipc (grey edge in Fig. 5.3(b)). Since the addition of this edge introduces a new
cycle in Gjyc , it has the potential to reduce the estimated throughput; to prevent
such a reductiorBg (e)  must be chosen to be large enough so that the maximum
cycle mean remains unchanged upon adding the reverse edge with  delays.
Sizing buffers optimally such that the maximum cycle mean remains
unchanged has been studied by Kubgwis and Lo in [Kung87], where the
authors propose an integer linear programming formulation of the problem, with
the number of constraints equal to the number of fundamental cycles in the

HSDFG (potentially an exponential number of constraints).
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An efficient albeit suboptimal procedure to deterntize is to note that if
By (e) z{g gvt(x)g((mcwl(qpa)]
holds for each feedforward edxge , then the maximum cycle mean of the resulting
graph does not exceddCM

Then, a binary search @ (e)  for each feedforward edge, while comput-
ing the maximum cycle mean at each search step and ascertaining that it is less
than MCM (G,¢) , results in a buffer assignment for the feedforward edges.
Although this procedure is efficient, it is suboptimal because the order that the
edgese are chosen is arbitrary and may effect the quality of the final solution.

As we will see in section 5.7, however, imposing such a bdjnd IS a
naive approach for bounding buffer sizes, because such a bound entails an added
synchronization cost. In section 5.7 we show that there is a better technique for
bounding buffer sizes; this technique achieves bounded buffer sizes by transform-
ing the graph into a strongly connected graph by adding a minimal number of addi-
tional synchronization edges. Thus, in our final algorithm, we will not in fact find

it necessary to use or compute these bolads

5.4  Synchronization model

5.4.1  Synchronization protocols

We define two basic synchronization protocols for a communication edge
based on whether or not the length of the corresponding buffer is guaranteed to be
bounded from the analysis presented in the previous section. Given an IPC graph
G, and a communication edge @ , if the length of the corresponding buffer is
not bounded — that is, & is a feedforward edgesof = — then we apply a syn-
chronization protocol callednbounded buffer synchronization (UBS) which
guarantees that (a) an invocationsoik(e) never attempts to read data from an
empty buffer;and (b) an invocation ofsrc(e) never attempts to write data into
the buffer unless the number of tokens in the buffer is less than some pre-specified

limit B (€), which is the amount of memory allocated to the buffer as discussed
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in the previous section.

On the other hand, if the topology of the IPC graph guarantees that the
buffer length fore is bounded by some vaBg (€) (the self-timed buffer bound
of e), then we use a simpler protocol, callesinded buffer synchronization
(BBS), that only explicitly ensures (a) above. Below, we outline the mechanics of
the two synchronization protocols defined so far.

BBS In this mechanism, warite pointer wr (e) for eis maintained on the
processor that executesc (e)  remd pointerrd (e) for e is maintained on the
processor that executesk(e) ; and a copywof(e) is maintained in some
shared memory locatiosv(e) . The pointeds(e) and(e) are initialized to
zero anddelay(e) , respectively. Just after each executiosrofe) , the new
data value produced on&o is written into the shared memory buffer for at offset
wr(e); wr(e is updated by the following operation —
wr (e) « (wr(e) +1) modByg,(e) ; andsv(e) is updated to contain the new
value of wr (e) . Just before each executionsok(e) , the value contained in
sv(e) is repeatedly examined until it is found torim equalto rd (e) ; then the
data value residing at offsed (e) of the shared memory buffex for is read; and
rd (e) is updated by the operatiod (e) —~ (rd (€) +1) modBg, (€)

UBS This mechanism also uses the read/write pointerge) and
wr (e) , and these are initialized the same way; however, rather than maintaining a
copy of wr (e) in the shared memory locatism(€) , We maintain a count (ini-
tialized to delay(e) ) of the number of unread tokens that currently reside in the
buffer. Just aftesrc(e) executesy(e) is repeatedly examined until its value is
found to be less thaBs () ; then the new data value producedeonto is written
into the shared memory buffer fer  at offset (e) wr (e) IS updated as in
BBS (except that the new value is not written to shared memory); and the count in
sv(e) is incremented. Just before each executiosndf( e) , the value contained
in sv(e) is repeatedly examined until it is found to be nonzero; then the data
value residing at offsatd (e)  of the shared memory buffeefor is read; the count

in sv(e) is decremented; andl (e) is updated as in BBS.
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Note that we are assuming that there is enough shared memory to hold a
separate buffer of sizBx(e)  for each feedforward communication edge  of
Gipc, and a separate buffer of sigg, (e) for each feedback communication edge
e. When this assumption does not hold, smaller bounds on some of the buffers
must be imposed, possibly for feedback edges as well as for feedforward edges,
and in general, this may require some sacrifice in estimated throughput. Note that
whenever a buffer bound smaller thBp, (e) is imposed on a feedbacleedge
then a protocol identical to UBS must be used. The problem of optimally choosing
which edges should be subject to stricter buffer bounds when there is a shortage of
shared memory, and the selection of these stricter bounds is an interesting area for

further investigation.

5.4.2  The synchronization graph  Gg

As we discussed in the beginning of this chapter, some of the communica-
tion edges inGj,c need not have explicit synchronization, whereas others require
synchronization, which need to be implemented either using the UBS protocol or
the BBS protocol. All communication edges also represent buffers in shared mem-
ory. Thus we divide the set of communication edges as follBwg,m= Es U E; :
where the edgeBg need explicit synchronization operations to be implemented,
and the edgeEk, need no explicit synchronization. We call the &Jgaschro-
nization edges

Recall that a communication edgej, Vi) @y representsythehro-

nization constraint:

start( v, k) = end( 't k —delay( (vj, vi))) Ok> delay(vj, V:) (5-2)

Thus, before we perform any optimization on synchronizations,
Ec.omm= Es andE; = ¢ , because every communication edge represents a synchro-
nization point. However, in the following sections we describe how we can move

certain edges frorkg t&, , thus reducing synchronization operations in the final
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implementation. At the end of our optimizations, the communication edges of the
IPC graph fall into eitheEs  OE, . At this point the eddges] E,  Gjp. repre-
sent buffer activity, and must be implemented as buffers in shared memory,
whereas the edgds;  represent synchronization constraints, and are implemented
using the UBS and BBS protocols introduced in the previous section. For the
edges inEg the synchronization protocol is executed before the buffers corre-
sponding to the communication edge are accessed so as to ensure sender-receiver
synchronization. For edges By , however, no synchronization needs to be done
before accessing the shared buffer. Sometimes we will also find it useful to intro-
duce synchronization edges without actually communicating data between the
sender and the receiver (for the purpose of ensuring finite buffers for example), so
that no shared buffers need to be assigned to these edges, but the corresponding
synchronization protocol is invoked for these edges.

All optimizations that move edges frofy B  must respect the synchro-
nization constraints implied bg;,. . If we ensure this, then we only need to
implement the synchronization protocols for the edgeBqn . We call the graph
Gs = (V, By U Eg) thesynchronization graph The graphGg represents the
synchronization constraints iG;,;  that need to be explicitly ensured, and the
algorithms we present for minimizing synchronization costs opera@ on . Before
any synchronization related optimizations are perforni&g= Giyc , because
E.omm= Es at this stage, but as we move communication edgesBtomE, G5 ,
has fewer and fewer edges. Thus moving edges Egm E; to can be viewed as
removal of edges frontsg . Whenever we remove edges f&gm we have to
ensure, of course, that the synchronization gri@égh at that step respects all the
synchronization constraints &, , because we only implement synchronizations
represented by the edges @3 . The following theorem is useful to formalize
the concept of when the synchronization constraints represented by one synchroni-
zation grathS1 imply the synchronization constraints of another g@yz)h
This theorem provides a useful constraint for synchronization optimization, and it

underlies the validity of the main techniques that we will present in this chapter.
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Theorem 5.1: The synchronization constraints in a synchronization graph

L. o . :
GS1 = E\/ Ent U Eslg imply the synchronization constraints of the synchroniza-

tion graph G = OV, E, 0 EZF if the following condition holdsTe st

el ESZ, el Esl, Ps: (src(g), snk(g)) < delay(¢) ; that is, if for each edge

that is present iIGSZ but not 'Gsl there is a minimum delay path Bae)

to snk(g) in GS1 that has total delay of at madlay(¢)

(Note that since the vertex sets for the two graphs are identical, it is meaningful to
refertosrc(e) andsnk(e) as being vertices(é;1 even though there are edges

estel Esz, el ES1 )

First we prove the following lemma.

Lemma 5.1: If there is a patlp = (el, €5, €y, - e) ierl , then

- E

start(snk(e,), k) =end(src(g),k—Delay(p)) .
Proof of Lemmd. 1

The following constraints hold along such a ppth  (as per Eqgn. 4-1)

start(snk(e), B 2end(src(g), k—delay(g)) . (5-3)

Similarly,

start(snk(e)), B 2end(src(e), k—delay(e)) .
Noting thatsrc (e,) is the same ank(e,) ,we get
start(snk(e,), B =end(snk( g), k—delay(g)) .

Causality implieend( v B >start(v, K , so we get
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start(snk(e,), B =start(snk(e), k—delay(s)) . (5-4)

Substituting Egn. 5-3 in Eqn. 5-4,
start(snk(e,), B 2end(src(g), k—delay(e) —delay(e;)) .

Continuing alongp in this manner, it can easily be verified that

start(snk(e,), B 2end(src(g), k—delay(e) —delay(e,_;) —
... —delay(e,))

that is,
start( (snk(g,), B =end(src(g), k—Delay(p)) . QED.

Proof of Theorem 5.1f € [J Esz, el Esl, then the synchronization constraint due

to the edge holds in both graphs. But for each s@tESZ, el ES1 we need to

show that the constraint duedo

start(snk(g), B >end(src(g), k—delay(g)) (5-5)

holds inGsl provideq)G .(src(g), snk(g)) < delay(e) ,whichimplies there is

at least one path = (e, e, €, ...,e,) fromrc(e) tank(e) @Sl

R

(src(e;) = src(e) andsnk(e,) = snk(e) )such thabelay(p) < delay(¢)

From Lemma 5.1, existence of such a gath  implies
start( (snk(g,), B =end(src(¢g), k—Delay(p)) .
that is,

start( (snk(e), B =end(src(g), k—Delay(p)) . (5-6)
If Delay(p) < delay(¢g), then

121



end(src(g), k—Delay(p ) =end(src(g), k—delay(€)) . Substituting this in
Eqgn. 5-6 we get

start( (snk(e), B =end(src(g), k—delay(g))) .
The above relation is identical to Egn. 5-5, and this proves the TheQEn.

The above theorem motivates the following definition.

Definition 5.1: If GS1 = E\/ Ent U EslH and GS2 = E\/ Ent U ESZH are syn-

chronization graphs with the same vertex-set, we sayGQlaupreservesGS2 if

Oe st.eOE, edE, ,we havqa)G L(src(g), snk(g)) < delay(g)

o : L
Thus, Theorem 5.1 states that the synchronization constralﬁs &, U Eslg
. N : L L
imply the synchronization constraints , Ent U ESZD Hﬁ/ Ent U Eslg pre-

servesE\/, Ent U Eszﬁ .

Given an IPC grapl@,. , and a synchronization grégh suchGpat
preservesG,. , suppose we implement the synchronizations corresponding to the
synchronization edges @y . Then, the iteration period of the resulting system is
determined by the maximum cycle mean@f MGM (Gy) ). This is because the
synchronization edges alone determine the interaction between processors; a com-
munication edge without synchronization does not constrain the execution of the

corresponding processors in any way.

5.5 Formal problem statement

We refer to each access of the shared memory “synchronization variable”
sv(e) by src(e) andsnk(e) as aynchronization accessto shared memory.
If synchronization fore is implemented using UBS, then we see that on average,

4 synchronization accesses are requirecefor in each iteration period, while BBS
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implies 2 synchronization accesses per iteration period. We defisgribleroni-
zation costof a synchronization grap@_,  to be the average number of synchroni-
zation accesses required per iteration period. Thus; if denotes the number of
synchronization edges @, that are feedforward edgespgnd denotes the num-
ber of synchronization edges that are feedback edges, then the synchronization
cost of G, can be expressed &4n, + 2n,, ) . In the remainder of this paper we
develop techniques that apply the results and the analysis framework developed in
sections 4.1 and sections 5.2-5.4 to minimize the synchronization cost of a self-
timed implementation of an HSDFG without sacrificing the integrity of any inter-
processor data transfer or reducing the estimated throughput.

We will explore three mechanisms for reducing synchronization accesses.
The first (presented in section 5.6) is the detection and remokedwidantsyn-
chronization edges, which are synchronization edges whose respective synchroni-
zation functions are subsumed by other synchronization edges, and thus need not
be implemented explicitly. This technique essentially detects the set of edges that
can be moved from theg  to the gt . In section 5.7, we examine the utility of
adding additional synchronization edges to convert a synchronization graph that is
not strongly connected into a strongly connected graph. Such a conversion allows
us to implement all synchronization edges with BBS. We address optimization cri-
teria in performing such a conversion, and we will show that the extra synchroni-
zation accesses required for such a conversion are always (at least) compensated
by the number of synchronization accesses that are saved by the more expensive
UBSs that are converted to BBSs. Finally, in section 5.9 we outline a mechanism,

which we callresynchronizationfor inserting synchronization edges in a way that

1. Note that in our measure of the number of shared memory accesses required for synchro-
nization, we neglect the accesses to shared memory that are performed while the sink actor
is waiting for the required data to become available, or the source actor is waiting for an
“empty slot” in the buffer. The number of accesses required to perform these “busy-wait”
or “spin-lock” operations is dependent on the exact relative execution times of the actor in-
vocations. Since in our problem context this information is not generally available to us,
we use théest casaumber of accesses — the number of shared memory accesses required
for synchronization assuming that IPC data on an edge is always produced before the cor-
responding sink invocation attempts to execute — as an approximation.
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the number of original synchronization edges that become redundant exceeds the

number of new edges added.

5.6 Removing redundant synchronizations

The first technique that we explore for reducing synchronization overhead
is removal ofredundant synchronization edgésm the synchronization graph,
i.e. finding a minimal set of edg&s  that need explicit synchronization. Formally,
a synchronization edge isdundant in a synchronization grap@  if its removal
yields a synchronization graph that preser@@es . Equivalently, from definition 5.1,
a synchronization edge is redundant in the synchronization @aph if there is a
path p#(e) in G directed from src(e) to snk(e) such that
Delay(p) < delay(9 .

Thus, the synchronization function associated with a redundant synchroni-
zation edge “comes for free” as a by product of other synchronizations. Fig. 5.4
shows an example of a redundant synchronization edge. Here, before executing
actor D , the processor that execufes, B, C, D} does not need to synchronize
with the processor that execut¢g, F, G, H} because, due to the synchroniza-

tion edgex, , the corresponding invocationFof  is guaranteed to complete before

each invocation oD is begun. Thus, is redundant in Fig. 5.4 and can be
removed from Eg into the se, . It is easily verified that the path
®
O, o
©
@ ~

-— - synch. edges
— internal edges

Figure 5.4x, is an example of a redundant synchronization edge.
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p=((FG), (GH),x, (B C),(CD)) is directed from src(x,) to
snk(x,) , and has a path delay (zero) that is equal to the delay on
In this section we develop an efficient algorithm to optimally remove

redundant synchronization edges from a synchronization graph.

5.6.1 The independence of redundant synchronizations

The following theorem establishes that the order in which we remove
redundant synchronization edges is not important; therefore all the redundant syn-

chronization edges can be removed together.

Theorem 5.2: Suppose thaGs = (V, E O Eg) is a synchronization gragh,

ande, are distinct redundant synchronization edgéx; in (i.e. these are edges that

could be individually moved t&, ), anG, = 5V, E, 0 BE—{e} B . Then
e, is redundant iréS .Thusboty amegd can be movedHpttogether

Proof: Sincee, isredundanti®, ,thereisappth (e,) Gn directed from

src(e,) tosnk(e,) such that

Delay(p) < delay(e) . (5-7)

Similarly, there is a patp’ # (e;) , contained in b@h &d |, thatis directed

from src(e;) tosnk(e;) , and that satisfies

Delay(p') < delay(g) . (5-8)

Now, if p does not contaie, , them exists(ﬁg , and we are done. Otherwise,

let p’ = (Xp, Xy, ..., X)) ; observe thap is of the form
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p = (y]_! y21 "'1yk_11 el; yk1 yk+ 1! ,ym) , and deﬁne

P" = (Yo Yor -0 Y1 X Xor oo X Yio Yiw 10 -+ Vi) -

Clearly,p"” is a path fronsrc (e,) tsnk(e,) i, . Also,

Delay(p") =} delay(x) + delay(y)

= Delay(p') + (Delay(p —delay(g))

<Delay(p) (from Eqgn. 5-8)

<delay(e,) (from Egn. 5-7).
QED.

Theorem 5.2 tells us that we can avoid implementing synchronization for
all redundant synchronization edges since the “redundancies” are not interdepen-
dent. Thus, an optimal removal of redundant synchronizations can be obtained by
applying a straightforward algorithm that successively tests the synchronization
edges for redundancy in some arbitrary sequence, and since computing the weight
of the shortest path in a weighted directed graph is a tractable problem, we can

expect such a solution to be practical.

5.6.2 Removing redundant synchronizations

Fig. 5.5 presents an efficient algorithm, based on the ideas presented in the
previous subsection, for optimal removal of redundant synchronization edges. In
this algorithm, we first compute the path delay of a minimum-delay pathfrom to
y for each ordered pair of vertice,y) ; here, we assign a path delay of
whenever there is no path froom Yo . This computation is equivalent to solving

an instance of the well knowall points shortest paths problef@orm92]. Then,

we examine each synchronization edge — in some arbitrary sequence — and
determine whether or not there is a path frera(e) smé(e) that does not
containe , and that has a path delay that does not extay(e) . This check for

redundancy is equivalent to the check that is performed byf tstatement in
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RemoveRedundantSyndiecause ib is a path frosrc(e) ®&nk(e)  that con-
tains more than one edge and that contains ,phen must contain & cycle such
thatc does not contai@ ; and since all cycles must have positive path delay (from
Lemma 4.1), the path delay of such a path must exde&y(e) . Theys, if
satisfies the inequality in thiestatement oRemoveRedundantSyncasdpl is a
path fromsnk(e,) tosnk(e) such thaDelay (pD) = p(snk(ey),snk(g)
then pl cannot contaie . This observation allows us to avoid having to recom-
pute the shortest paths after removing a candidate redundant edge_from

From the definition of a redundant synchronization edge, it is easily veri-
fied that the removal of a redundant synchronization edge does not alter any of the
minimum-delay path values (path delays). That is, given a redundant synchroniza-
and two arbitrary verticeg,yOV , if we let

tion edge e, in G,

és = B\/ Ent U EE— { er} % then pés(x, y) = pGS(x, y) . Thus, none of the

Function RemoveRedundantSynchs
Input : A synchronization graph G, = Ejy; [ Eg

Output : The synchronization graph GU = (V, B, O (Es—E;))

1. Compute pg (x,y) for each ordered pair of vertices in G..

2. E, - O
3. For each el E
For each output edge e, of src(e) except for e
If delay(e,) +pg (snk(e,), snk( §) < delay(e)
Then
E, -« E O {e}
Break [* exit the innermost enclosing For loop */
Endif

Endfor
Endfor

4. Return (V, E U (Es—E)) .

Figure 5.5.An algorithm that optimally removes redundant synchronization
edges.
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minimum-delay path values computed in Step 1 need to be recalculated after
removing a redundant synchronization edge in Step 3.

Observe that the complexity of the functiBemoveRedundantSynaks
dominated by Step 1 and Step 3. Since all edge delays are non-negative, we can
repeatedly apply Dijkstra’s single-source shortest path algorithm (once for each
vertex) to carry out Step 1 Hl\/]‘?H time; a modification of Dijkstra’s algorithm
can be used to reduce the complexity of Step D%)\/lzlogzﬂvl) + |V||E|E
[Corm92]. In Step 3]E| is an upper bound for the number of synchronization
edges, and in the worst case, each vertex has an edge connecting it to every other
member ofV . Thus, the time complexity of Step ®ifV||B) , and if we use the
modification to Dijkstra’s algorithm mentioned above for Step 1, then the time

complexity ofRemoveRedundantSynéhs

ofMlog, (V) +MIE +MIEH = 05Vlog, (V) + MIE.

5.6.3 Comparison with Shaffer’'s approach

In [Sha89], Shaffer presents an algorithm that minimizes the number of
directed synchronizations in the self-timed execution of an HSDFG under the
(implicit) assumption that the execution of successive iterations of the HSDFG are
not allowed to overlap. In Shaffer’s technique, a construction identical to our syn-
chronization graph is used except that there is no feedback edge connecting the last
actor executed on a processor to the first actor executed on the same processor, and
edges that have delay are ignored since only intra-iteration dependencies are sig-
nificant. Thus, Shaffer's synchronization graph is acyclkRemoveRedun-
dantSynchgan be viewed as an extension of Shaffer’s algorithm to handle self-
timed, iterative execution of an HSDFG; Shaffer’s algorithm accounts for self-
timed execution only within a graph iteration, and in general, it can be applied to
iterative dataflow programs only if all processors are forced to synchronize

between graph iterations.
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5.6.4  An example

In this subsection, we illustrate the benefits of removing redundant syn-
chronizations through a practical example. Fig. 5.6(a) shows an abstraction of a
three channel, multi-resolution quadrature mirror (QMF) filter bank, which has
applications in signal compression [Vai93]. This representation is based on the
general (not homogeneous) SDF model, and accordingly, each edge is annotated
with the number of tokens produced and consumed by its source and sink actors.
Actors A andF represent the subsystems that, respectively, supply and consume

data to/from the filter bank systef®; a@d each represents a parallel combina-

tion of decimating high and low pass FIR analysis filtérs; Bnd represent the
corresponding pairs of interpolating synthesis filters. The amount of delay on the
edge directed frolB t& is equal to the sum of the filter orde@s of Dand . For
more details on the application represented by Fig. 5.6(a), we refer the reader to
[Vai93].

To construct a periodic, parallel schedule we must first determine the num-
ber of timesg (N) that each actbr  must be invoked in the periodic schedule.
Systematic techniques to compute these values are presented in [Lee87]. Next, we
must determine the precedence relationships between the actor invocations. In
determining the exact precedence relationships, we must take into account the
dependence of a given filter invocation on not only the invocation that produces
the token that is “consumed” by the filter, but also on the invocations that produce
then preceding tokens, wheme is the order of the filter. Such dependence can

easily be evaluated with an additional dataflow parameter on each actor input that

specifies the number phst tokenshat are accessed [Prind1ysing this infor-

1. It should be noted that some SDF-based design environments choose to forego parallel-
ization across multiple invocations of an actor in favor of simplified code generation and
scheduling. For example, in the GRAPE system, this restriction has been justified on the
grounds that it simplifies inter-processor data management, reduces code duplication, and
allows the derivation of efficient scheduling algorithms that operate directly on general
SDF graphs without requiring the use of the acyclic precedence graph (APG) [Bil94].
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Proc. 1A, A, B, C,,D,,E;,F,F,
Proc. 2A;, A, B, E, F,, F,

(€)

—@

(d) - - - synch. edges
—® internal edges

Figure 5.6(a) A multi-resolution QMF filter bank used to illustrate the benefits of
removing redundant synchronizations. (b) The precedence graph for (a). (c) A
self-timed, two-processor, parallel schedule for (a). (d) The initial synchroniza-

tion graph for (c).
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mation, together with the invocation counts specifiedjby , we obtain the prece-
dence relationships specified by the graph of Fig. 5.6(b), in whiah the th

invocation of actoiN is labeleN, , and each edge specifies that invocation

snk(e) requires data produced by invocatieng (e) delay(e) iteration periods
after the iteration period in which the data is produced.

A self-timed schedule for Fig. 5.6(b) that can be obtained from Hu’s list
scheduling method [Hu61] (described in is specified in Chapter 1 section 1.2) is
specified in Fig. 5.6(c), and the synchronization graph that corresponds to the IPC
graph of Fig. 5.6(b) and Fig. 5.6(c) is shown in Fig. 5.6(d). All of the dashed edges
in Fig. 5.6(d) are synchronization edges. If we apply Shaffer’s method, which con-
siders only those synchronization edges that do not have delay, we can eliminate
the need for explicit synchronization along only one of the 8 synchronization
edges — edggA;, B,) . In contrast, if we applgmoveRedundantSynchnee
can detect the redundancy (A, B,) as well as four additional redundant syn-
chronization edges— (A; B,), (A, B;), (B,E;), and (B;,E,) .Thus,
RemoveRedundantSynehduces the number of synchronizations from 8 down to
3 — a reduction of 62%. Fig. 5.7 shows the synchronization graph of Fig. 5.6(d)
after all redundant synchronization edges are removed. It is easily verified that the
synchronization edges that remain in this graph are not redundant; explicit syn-

chronizations need only be implemented for these edges.

5.7 Making the synchronization graph strongly con-
nected

In section 5.4.1, we defined two different synchronization protocols —
bounded buffer synchronization (BBS), which has a cost of 2 synchronization
accesses per iteration period, and can be used whenever the associated edge is con-
tained in a strongly connected component of the synchronization graph; and
unbounded buffer synchronization (UBS), which has a cost of 4 synchronization

accesses per iteration period. We pay the additional overhead of UBS whenever
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the associated edge is a feedforward edge of the synchronization graph.

One alternative to implementing UBS for a feedforward eglge is to add
synchronization edges to the synchronization graph soethat becomes encapsu-
lated in a strongly connected component; such a transformation wouldeallow to
be implemented with BBS. However, extra synchronization accesses will be
required to implement the new synchronization edges that are inserted. In this sec-
tion, we show that by adding synchronization edges through a certain simple pro-
cedure, the synchronization graph can be transformed into a strongly connected
graph in a way that the overhead of implementing the extra synchronization edges
is always compensated by the savings attained by being able to avoid the use of
UBS. That is, our transformations ensure that the total number of synchronization
accesses required (per iteration period) for the transformed graph is less than or
equal to the number of synchronization accesses required for the original synchro-
nization graph. Through a practical example, we show that this transformation can
significantly reduce the number of required synchronization accesses. Also, we
discuss a technique to compute the delay that should be added to each of the new

edges added in the conversion to a strongly connected graph. This technique com-

SR~

4

AN I
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N

-— - synch. edges
—®» internal edges

Figure 5.7 The synchronization graph of Fig. 5.6(d) after all redundant synchro-
nization edges are removed.
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putes the delays in a way that the estimated throughput of the IPC graph is pre-
served with minimal increase in the shared memory storage cost required to

implement the communication edges.

5.7.1 Adding edges to the synchronization graph

Fig. 5.8 presents our algorithm for transforming a synchronization graph
that is not strongly connected into a strongly connected graph. This algorithm sim-
ply “chains together” the source SCCs, and similarly, chains together the sink
SCCs. The construction is completed by connecting the first SCC of the “source
chain” to the last SCC of the sink chain with an edge that we calnkesource

edge From each source or sink SCC, the algorithm selects a vertex that has mini-

Function Convert-to-SC-graph

Input : A synchronization graph G that is not strongly connected.

Output : A strongly connected graph obtained by adding edges between the
SCCsof G.

1. Generate an ordering C,, C,, ..., C_ of the source SCCs of G, and similarly,
generate an ordering D;, D,, ..., D, of the sink SCCs of G.
2. Select a vertex v, [0 C; that minimizes t(*) over C;.
3.Fori =23...,m
* Select a vertex v, J C, that minimizes t (*) over C,.
* Instantiate the edge d, (v;_,,V;) .
End For
4. Select a vertex w, 0 D, that minimizes t(*) over D, .
5.Fori =2,3...,n
* Select a vertex w; I D, that minimizes t (*) over D, .
* Instantiate the edge d, (w;_;, w;) .
End For
6. Instantiate the edge d, (w,, V) .

Figure 5.8.An algorithm for converting a synchronization graph that is not
strongly connected into a strongly connected graph.
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mum execution time to be the chain “link” corresponding to that SCC. Minimum
execution time vertices are chosen in an attempt to minimize the amount of delay
that must be inserted on the new edges to preserve the estimated throughput of the
original graph. In section 5.7.2, we discuss the selection of delays for the edges
introduced byConvert-to-SC-graph

It is easily verified that algorithi@onvert-to-SC-graplalways produces a
strongly connected graph, and that a conversion to a strongly connected graph can-
not be attained by adding fewer edges than the number of edges adttmu/byt-
to-SC-graph Fig. 5.9 illustrates a possible solution obtained by algori@on-
vert-to-SC-graphHere, the black dashed edges are the synchronization edges con-
tained in the original synchronization graph, and the grey dashed edges are the
edges that are added Bpnvert-to-SC-graphThe dashed edge labeled is the
sink-source edge.

Assuming the synchronization graph is connected, the number of feedfor-
ward edges, must satisfy, > (n.—1)) ,wherg is the number of SCCs. This
follows from the fundamental graph theoretic fact that in a connected graph
(VOED , |[ED must be at least|V] —1) . Now, it is easily verified that the

new edges

- — ® synch. edges
i} E —® internal edges
- ‘35 ‘({ )

I

b D

Figure 5.9 An illustration of a possible solution obtained by algorithm Convert-to-
SC-graph.
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number of new edges introduced bgonvert-to-SC-graphis equal to

(nsrc Mgk~

ber of sink SCCs. Thus, the number of synchronization accesses per iteration

1) , wheren,, . is the number of source SCCs, ang is the num-

C
period, S, , that is required to implement the edges introducéciobyert-to-SC-
graphis (2x (n_..+n

src snk
S , eliminated byConvert-to-SC-graplby allowing the feedforward edges of the

—1)) , while the number of synchronization accesses,

original synchronization graph to be implemented with BBS rather than UBS)
equals2n, . It follows that the net changg, —S ) in the number of synchroni-

zation accesses satisfies

(S,-S) =2(n,,.*+n

src snk™

1) -2n,=2(n,-1-n) <2(n.,-1-(n,-1)),

and thus,(S, —S_) <0 . We have established the following result.

Theorem 5.3: Suppose tha® is a synchronization graph,@nd is the graph that

results from applying algorithi@onvert-to-SC-grapto G. Then the synchroniza-

tion cost ofG is less than or equal to the synchronization cdst of

For example, without the edges addedCiopnvert-to-SC-graplthe dashed
grey edges) in Fig. 5.9, there &@e feedforward edges, which require 24 synchro-
nization accesses per iteration period to implement. The addition of the 4 dashed
edges requires 8 synchronization accesses to implement these new edges, but
allows us to use UBS for the original feedforward edges, which leads to a savings
of 12 synchronization accesses for the original feedforward edges. Thus, the net
effect achieved b onvert-to-SC-grapim this example is a reduction of the total
number of synchronization accesses(iz—8) = 4 . As another example, con-
sider Fig. 5.10, which shows the synchronization graph topology (after redundant
synchronization edges are removed) that results from a four-processor schedule of
a synthesizer for plucked-string musical instruments in seven voices based on the

Karplus-Strong technique. This algorithm was also discussed in Chapter 3, as an
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example application that was implemented on the ordered memory access archi-
tecture prototype. This graph contaims= 6 synchronization edges (the dashed
edges), all of which are feedforward edges, so the synchronization cost is
4n, = 24 synchronization access per iteration period. Since the graph has one
source SCC and one sink SCC, only one edge is add€wmyert-to-SC-graph

and adding this edge reduces the synchronization c@st to2 = 14 —ad2%
savings. Fig. 5.11 shows the topology of a possible solution computeonwert-
to-SC-graphon this example. Here, the dashed edges represent the synchroniza-

tion edges in the synchronization graph returne@amyvert-to-SC-graph

Proc 1 Proc 2 Proc 3 Proc 4

@ - — #® synch. edges

—® internal edges

Figure 5.10The synchronization graph, after redundant synchronization edges
are removed, induced by a four-processor schedule of a music synthesizer
based on the Karplus-Strong algorithm.
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5.7.2 Insertion of delays

One issue remains to be addressed in the conversion of a synchronization
graphG, into a strongly connected graég — the proper insertion of delays so
that és is not deadlocked, and does not have lower estimated throughp@®_than
The potential for deadlock and reduced estimated throughput arise because the
conversion to a strongly connected graph must necessarily introduce one or more
new fundamental cycles. In general, a new cycle may be delay-free, or its cycle
mean may exceed that of the critical cycleGp . Thus, we may have to insert
delays on the edges added@®gnvert-to-SC-graphThe location (edge) and mag-
nitude of the delays that we add are significant since they effect the self-timed
buffer bounds of the communication edges, as shown subsequently in Theorem
5.4. Since the self-timed buffer bounds determine the amount of memory that we
allocate for the corresponding buffers, it is desirable to prevent deadlock and
decrease in estimated throughput in a way that the sum of the self-timed buffer
bounds over all communication edges is minimized. In this section, we outline a

simple and efficient algorithm for addressing this problem. Our algorithm pro-

&~ new edges

- — #® synch. edges

Figure 5.11A possible solution obtained by applying Convert-to-SC-graph to the
example of Figure 5.10.
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duces an optimal result &,  has only one source SCC or only one sink SCC; in
other cases, the algorithm must be viewed as a heuristic.

Fig. 5.12 outlines the restricted version of our algorithm that applies when
the synchronization grapG,  has exactly one source SCC. BhmanFordis
assumed to be an algorithm that takes a synchronization graph  as input, and
repeatedly applies the Bellman-Ford algorithm discussed in pp. 94-97 of [Law76]
to return the cycle mean of the critical cycleZin ; if one or more cycles exist that
have zero path delay, th@&®llmanFordreturnse . Details of this procedure can
be found in [Bhat95a].

Fig. 5.13 illustrates a solution obtained fr@etermineDelaysHere we
assume that(v) = 1 for each vertex , and we assume that the set of communi-
cation edges are, argl . The grey dashed edges are the edges added by
vert-to-SC-graphWe see thaiCM is determined by the cycle in the sink SCC of
the original graph, and inspection of this cycle yieM€M = 4 . The solution
determined bybetermineDelaysor Fig. 5.13 is one delay ag, ~ and one delay on
e, (04 0, = 1); the resulting self-timed buffer boundsef a;d are, respec-
tively, 1 and2 ; the total buffer sizes for the communication edges is thus 3 (sum
of the self-timed buffer bounds).

DetermineDelaysan be extended to yield heuristics for the general case in

which the original synchronization gra@.  contains more than one source SCC

z) € i} new edges

N /

ey - d - — ® synch. edges

Figure 5.13.An example used to illustrate a solution obtained by algorithm
DetermineDelays.
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Function DetermineDelays

Input : Synchronization graphs G, = (V,E) and G., where és is the graph

s
computed by Convert-to-SC-graph when applied to G,. The ordering of source
SCCs generated in Step 2 of Convert-to-SC-graphis denoted C,, C,, ..., C_ . For
i =12 ..m-1, e denotes the edge instantiated by Convert-to-SC-graph from
avertex in C, toavertexin C, , ,. The sink-source edge instantiated by Convert-
to-SC-graph is denoted €.

Output : Non-negative integers d,, d,, ...,d_ _, such that the estimated through-

put when delay(e;) = d;, 0<i<m-1, equals estimated throughput of Gq.

Xy = és[e0 -, .., e , - o] [*setdelays on each edge to be infinite */

A= BellmanFord(X,) [* compute the max. cycle mean of G, */

d,, = [E gvt (x) E(MCM—‘ /* an upper bound on the delay required for any
X

e */
Fori =01 .., m-1

o, = MinDelay( X, &, MCM, d_,)

X1 = Xlg - 93] [* fix the delay on g, to be &, */
End For
Return &, 93, ..., 0

m-1-

Function MinDelay(X, e A, B)
Input: A synchronization graph X, an edge e in X, a positive real number A,
and a positive integer B.

Output : Assuming X[ e -~ B has estimated throughput no less than )\_1, deter-
mine the minimum d0O {0, 1, ...,B} such that the estimated throughput of

X[e - d isno less than AT

Perform a binary search in the range [0, 1, ..., B] to find the minimum value of
rd{o0,1, ...,B} such that BellmanFord(X[e - 1] ) returns a value less than or
equal to A . Return this minimum value of r.

Figure 5.12An algorithm for determining the delays on the edges introduced by
algorithm Convert-to-SC-graph.
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and more than one sink SCC. For example(d;, a,, ..., a,) denote edges that
were instantiated bfonvert-to-SC-graph Between” the source SCCs — with
eacha, representing the th edge created — and simildlyb,, ..., b)) denote
the sequence of edges instantiated between the sink SCCs, then al@aténm
mineDelayscan be applied with the modification that = k+1+1 , and
(€€ - €_q1) = (6,88, ...,8,0,0,_4,...,b;), wheree_, is the sink-
source edge fror@onvert-to-SC-graphFurther details related to these issues can
be found in [Bhat95a].

DetermineDelays and its variations have complexity
OH\/]A'(Iog2 (v1)) 2% [Bhat95a]. It is also easily verified that the time complex-
ity of DetermineDelayslominates that o€onvert-to-SC-graplso the time com-
plexity of applyingConvert-to-SC-graptand DetermineDelaysn succession is
againOFM* (log, (IV1)) 3.

Although the issue of deadlock does not explicitly arise in algofbter-
mineDelaysthe algorithm does guarantee that the output graph is not deadlocked,
assuming that the input graph is not deadlocked. This is because (from Lemma
4.1) deadlock is equivalent to the existence of a cycle that has zero path delay, and
is thus equivalent to an infinite maximum cycle mean. SetrmineDelays
does not increase the maximum cycle mean, it follows that the algorithm cannot
convert a graph that is not deadlocked into a deadlocked graph.

Converting a mixed grain HSDFG that contains feedforward edges into a
strongly connected graph has been studied by Zivojnovic [Zivo94b] in the context
of retiming when the assignment of actors to processors is fixed beforehand. In this
case, the objective is to retime the input graph so that the number of communica-
tion edges that have nonzero delay is maximized, and the conversion is performed
to constrain the set of possible retimings in such a way that an integer linear pro-
gramming formulation can be developed. The technique generates two dummy
vertices that are connected by an edge; the sink vertices of the original graph are
connected to one of the dummy vertices, while the other dummy vertex is con-

nected to each source. It is easily verified that in a self-timed execution, this
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scheme requires at least four more synchronization accesses per graph iteration
than the method that we have proposed. We can obtain further relative savings if
we succeed in detecting one or more beneficial resynchronization opportunities.
The effect of Zivojnovic’s retiming algorithm on synchronization overhead is
unpredictable since one hand a communication edge becomes “easier to make
redundant” when its delay increases, while on the other hand, the edge becomes
less useful in making other communication edges redundant since the path delay of

all paths that contain the edge increase.

5.8 Computing buffer bounds from  Gsand G,

After all the optimizations are complete we have a final synchronization
graphGs = (V, By U Eg) that preserveS;,; . Since the synchronization edges
in G4 are the ones that are finally implemented, it is advantageous to calculate the
self-timed buffer boundy, as a final step after all the transformatio&on  are
complete, instead of usin@;,;  itself to calculate these bounds. This is because
addition of the edges in th@onvert-to-SC-graptand Resynchronizeteps may
reduce these buffer bounds. It is easily verified that removal of edges cannot
change the buffer bounds in Eqn. 5-1 as long as the synchronizatiGgg in are
preserved. Thus, in the interest of obtaining minimum possible shared buffer sizes,
we compute the bounds using the optimized synchronization graph. The following

theorem tells us how to compute the self-timed buffer bounds @gm

Theorem 5.4: If G preservesGj,. and the synchronization edgesin are
implemented, then for each feedback communication edge Gjyjn , the self-
timed buffer bound ofe By, (e) )}— an upper bound on the number of data

tokens that can be present®r— is given by:

Brp (€) = pg, (snk(§,src(g)) +delay(e) ,
Proof: By Lemma 5.1, if there isa pafh  froemk(g§ doc(e) @ ,then
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start(src(e, K =end(snk( g, k—Delay(p) .

Takingp to be an arbitrary minimum-delay path fremk( g sta(e¢ Gn
we get
start(src(e, kK =end(snk( 9, k—st(snk( g,src(e)).

That is,src(e) cannot be more thag;S (snk(9,src(e) iterations “ahead” of
snk(e) . Thus there can never be more tpég(snk( 8,src(e) tokens more

than the initial number of tokens en— delay(e) . Since the initial number of
tokens ore waslelay(e) |, the size of the buffer correspondireg to is bounded

above byBg, (e) = st(snk( 8,src(e) +delay(e) QED.

The quantitiespGS(snk( 8,src(e) can be computed using Dijkstra’s
algorithm [Corm92] to solve the all-pairs shortest path problem on the synchroni-

: . L. 3L
zation graph in tlmeODMSD :

5.9 Resynchronization

It is sometimes possible to reduce the total number of synchronization
edgesEg by adding new synchronization edges to a synchronization graph. We
refer to the process of adding one or more new synchronization edges and remov-
ing the redundant edges that resultresynchronizationFig. 5.14(a) illustrates
this concept, where the dashed edges represent synchronization edges. Observe
that if we insert the new synchronization edfyéC, H) , then two of the original
synchronization edges (B, G) and, J) — become redundant, and the net
effect is that we require one less synchronization edge to be implemented. In Fig.
5.14(b), we show the synchronization graph that results from insertimngsye
chronization edgel, (C, H) (grey edge) into Fig. 5.14(a), and then removing the
redundant synchronization edges that result.

We refer to the problem of finding a resynchronization with the fewest

number of final synchronization edges as tegynchronization problem. In
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[Bhat95a] we formally establish that the resynchronization problem is NP-hard by
deriving a polynomial time reduction from the clagsimimal set covering prob-

lem which is known to be NP-hard [Garey79], to the pair-wise resynchronization
problem. The complexity remains the same whether we consider a general resyn-
chronization problem that also attempts to insert edges within SCCs, or a restricted
version that only adds feed-forward edges between SCCRésanchronizero-
cedure in [Bhat95a] restricts itself to the latter, because in this case it is simpler to
ensure that the estimated throughput is unaffected by the added edges).

Although the correspondence that we establish between the resynchroniza-
tion problem and set covering shows that the resynchronization problem probably
cannot be attacked optimally with a polynomial-time algorithm, the correspon-
dence allows any heuristic for set covering to be adapted easily into a heuristic for
the pair-wise resynchronization problem, and applying such a heuristic to each pair
of SCCs in a general synchronization graph yields a heuristic for the general (not
just pair-wise) resynchronization problem [Bhat95a]. This is fortunate since the set

covering problem has been studied in great depth, and efficient heuristic methods

(a) (b)

new edge

- — - synch. edges

Figure 5.14 An example of resynchronization.
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have been devised for it [Corm92].

For a certain class of IPC graphs (formally defined in [Bhat95b]) a prov-
ably optimum resynchronization can be obtained, using a procedure similar to
pipelining. This procedure, however, leads to an implementation that in general
has a larger latency than the implementation we start out with. The resynchroniza-
tion procedure as outlined in [Bhat95a] in general can lead to implementations
with increased latency. Latency is measured as the time delay between when an
input data sample is available and when the corresponding output is generated. In
[Bhat95b] we show how we can modify the resynchronization procedure to trade
off synchronization cost with latency. An optimal latency constrained synchroniza-
tion, however, is again shown to be NP-hard.

The work on resynchronization is very much ongoing research, a brief out-

line of which we have presented in this section.

5.10 Summary

We have addressed the problem of minimizing synchronization overhead in
self-timed multiprocessor implementations. The metric we use to measure syn-
chronization cost is the number of accesses made to shared memory for the pur-
pose of synchronization, per schedule period. We used the IPC graph framework
introduced in the previous chapter to extend an existing technique — detection of
redundant synchronization edges — for noniterative programs to the iterative case.
We presented a method for the conversion of the synchronization graph into a
strongly connected graph, which again results in reduced synchronization over-
head. Also, we briefly outlined the resynchronization procedure, which involves
adding synchronization points in the schedule such that the overall synchroniza-
tion costs are reduced. Details of resynchronization can be found in [Bhat95a] and
[Bhat95b]. We demonstrated the relevance of our techniques through practical
examples.

The input to our algorithm is an HSDFG and a parallel schedule for it. The
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outputis an IPC grap@i,. = (V, Epc) , which represents buffers as communica-
tion edges; a strongly connected synchronization giaptr (V, B, U Eg) ,

which represents synchronization constraints; and a set of shared-memory buffer

sizes { By, (€) |eis an IPC edge itGj,c} . Fig. 5.15 specifies the complete algo-

rithm.
A code generator can then acceif. @éd |, allocate a buffer in shared
memory for each communication edge  specifiedj of Bjg¢€e) , and

generate synchronization code for the synchronization edges represefgd in
These synchronizations may be implemented using the BBS protocol. The result-
ing synchronization cost n_ , wheng is the number of synchronization edges

in the synchronization grapBg that is obtained after all optimizations are com-

Function MinimizeSynchCost
Input: An HSDFG G and a self-timed schedule S for this HSDFG.
Output: Gjpc, Gg, and { By, (€) |eis an IPC edge iy} .

1. Extract G;

ipc from G and S

2. Gg « Gjpc [* Each communication edge is also a synchronization
edge to begin with */

3. G5 — Resynchronizé &

4. Gg ~ Convert-to-SC-grapk G

5. G — DetermineDelay$ @

6. G5 — RemoveRedundantSyng¢hs) G

7. Calculate the buffer size By, (e) for each communication edge e in

Gipc -

a) Compute pGS(src(e), snk(e))
b) By, (€) pGS(src(e), snk(e)) + delay(e)

Figure 5.15The complete synchronization optimization algorithm.
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EXTENSIONS

The techniques of the previous chapters apply compile time analysis to
static schedules for HSDF graphs that have no decision making at the dataflow
graph level. In this chapter we consider graphs with data dependent control flow.
Recall that atomic actors in an HSDF graph are allowed to perform data-dependent
decision making within their body, as long as their input/output behaviour respects
SDF semantics. We show how some of the ideas we explored previously can still
be applied to dataflow graphs containing actors that display data-dependent firing

patterns, and therefore are not SDF actors.

6.1 The Boolean Dataflow model

The Boolean Dataflow (BDF)model was proposed by Lee [Lee91] and
was further developed by Buck [Buck93] for extending the SDF model to allow
data-dependent control actors in the dataflow graph. BDF actors are allowed to
contain acontrol input, and the number of tokens consumed and produced on the
arcs of a BDF actors can be a two-valued function of a token consumed at the con-
trol input. Actors that follow SDF semantics, i.e. that consume and produce fixed
number of tokens on their arcs, are clearly a subset of the set of allowed BDF

actors (SDF actors simply do not have any control inputs). Two basic dynamic
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actors in the token flow model are the SWITCH and SELECT actors shown in Fig.
6.1. The switch actor consumes one Boolean-valued control token and another
input token; if the control token is TRUE, the input token is copied to the output
labelled T, otherwise it is copied to the output labelled F. The SELECT actor per-
forms the complementary operation; it reads an input token from its T input if the
control token is TRUE, otherwise it reads from its F input; in either case, it copies

the token to its output. Constructs such as conditionals and data-dependent itera-

SWITCH T F
control T E control SELECT

Figure 6.1BDF actors SWITCH and SELECT

tions can easily be represented in a BDF graph, as illustrated in Fig. 6.2. The verti-
ces A, B, C, etc. in Fig. 6.2 need not be atomic actors; they could also be arbitrary
SDF graphs. A BDF graph allows SWITCH and SELECT actors to be connected
in arbitrary topologies. Buck [Buck93] in fact shows that any Turing machine can
be expressed as a BDF graph, and therefore the problems of determining whether
such a graph deadlocks and whether it uses bounded memory are undecidable.
Buck proposes heuristic solutions to these problems based on extensions of the

techniques for SDF graphs to BDF model.

6.1.1  Scheduling

Buck presents techniques for statically scheduling BDF graphs on a single
processor; his methods attempt to generate a sequential program without a
dynamic scheduling mechanism, usifithen-else anddo-while  control
constructs where required. Because of the inherent undecidability of determining

deadlock behaviour and bounded memory usage, these techniques are not always

148



T F
SELECT

@ (b)

Figure 6.2(a) Conditional (if-then-else) dataflow graph. The branch outcome
is determined at run time by actor B. (b) Graph representing data-dependent
iteration. The termination condition for the loop is determined by actor D.

guaranteed to generate a static schedule, even if one exists; a dynamically sched-
uled implementation, where a run time kernel decides which actors to fire, can be
used when a static schedule cannot be found in a reasonable amount of time.
Automatic parallel scheduling of general BDF graphs is still an unsolved
problem. Anaive mechanism for scheduling graphs that contain SWITCH and
SELECT actors is to generate an Acyclic Precedence Graph (APG), similar to the
APG generated for SDF graphs discussed in section 1.2.1, for every possible
assignment of the Boolean valued control tokens in the BDF graph. For example,

the if-then-else graph in Fig. 6.2(a) could have two different APGs, shown in Fig.
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6.3, and APGs thus obtained can be scheduled individually using a self-timed

T
T
T
T

SWITCH

_|
SELECT

SWITCH

_|
SELECT

—

—

© O,

(@) (b)

Figure 6.3 Acyclic precedence graphs corresponding to the if-then-else graph of
Fig. 6.2. (a) corresponds to the TRUE assignment of the control token, (b) to the
FALSE assignment.

strategy; each processor now gets several lists of actors, one list for each possible
assignment of the control tokens. The problem with this approach is that for a
graph withn different control tokens, there &b possible distinct APGs, each
corresponding to each execution path in the graph. Such a set of APGs can be com-
pactly represented using the so called Annotated Acyclic Precedence Graph
(AAPG) of [Buck93] in which actors and arcs are annotated with conditions under
which they exist in the graph. Buck uses the AAPG construct to determine whether
a bounded-length uniprocessor schedule exists. In the case of multiprocessor
scheduling, it is not clear how such an AAPG could be used to explore scheduling
options for the different values that the control tokens could take, without explic-
itly enumerating all possible execution paths.

The main work in parallel scheduling of dataflow graphs that have dynamic
actors has been thQuasi-static schedulingapproach, first proposed by Lee
[Lee88b] and extended by Ha [Ha92]. In this work, techniques have been devel-
oped that statically schedule standard dynamic constructs such as data-dependent
conditionals, data-dependent iterations, and recursion. These constructs must be
identified in a given dataflow graph, either manually or automatically, before Ha’s
techniques can be applied. These techniques make the simplifying assumption that

the control tokens for different dynamic actors are independent of one another, and
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that each control stream consists of tokens that take TRUE or FALSE values ran-
domly and are independent and identically distributed (i.i.d.) according to statistics
known at compile time. Such a quasi-static scheduling approach clearly does not
handle a general BDF graph, although it is a good starting point for doing so.

Ha’s quasi-static approach constructs a blocked schedule for one iteration
of the dataflow graph. The dynamic constructs are scheduled in a hierarchical fash-
ion; each dynamic construct is scheduled on a certain number of processors, and is
then converted into a single node in the graph and is assigned a ereution
profile. A profile of a dynamic construct consists of the number of processors
assigned to it, and the schedule of that construct on the assigned processors; the
profile essentially defines the shape that a dynamic actor takes in the processor-
time plane. When scheduling the remainder of the graph, the dynamic construct is
treated as an atomic block, and its profile is used to determine how to schedule the
remaining actors around it; the profile helps tiling actors in the processor-time
plane with the objective of minimizing the overall schedule length. Such a hierar-
chical scheme effectively handles nested control constructs, e.g. nested condition-
als.

One important aspect of quasi-static scheduling is determining execution
profiles of dynamic constructs. Ha [Ha92] studies this problem in detail and shows
how one can determine optimal profiles for constructs such as conditionals, data-
dependent iteration constructs, and recursion, assuming certain statistics are
known about the run time behaviour of these constructs.

We will consider only the conditional and the iteration construct here. We
will assume that we are given a quasi-static schedule, obtained either manually or
using Ha’s techniques. We then explore how the techniques proposed in the previ-
ous chapters for multiprocessors that utilize a self-timed scheduling strategy apply
when we implement a quasi-static schedule on a multiprocessor. First we propose
an implementation of a quasi-static schedule on a shared memory multiprocessor,
and then we show how we can implement the same program on the OMA architec-

ture, using the hardware support provided in the OMA prototype for such an
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implementation

6.2  Parallel implementation on shared memory machines

6.2.1  General strategy

A quasi-static schedule ensures that the pattern of processor availability is
identical regardless of how the data-dependent construct executes at runtime; in
the case of the conditional construct this means that irrespective of which branch is
actually taken, the pattern of processor availability after the construct completes
execution is the same. This has to be ensured by inserting idle time on processors
when necessary. Fig. 6.4 shows a quasi-static schedule for a conditional construct.
Maintaining the same pattern of processor availability allows static scheduling to
proceed after the execution of the conditional; the data-dependent nature of the

control construct can be ignored at that point. In Fig. 6.4 for example, the schedul-

CODE FOR f(+) conditional branch instructions
proc 1
TRUE  proc2
Branch
proc 3 f
pattern of processor availability
proc 1
FALSE
Branch Proc?2

proc 3

subgraph-1

}

f NO-OPS
schedule for

CODE FOR g(*) subgraph-1

Figure 6.4.Quasi-static schedule for a conditional construct (adapted
from [Lee88b])

ing of subgraph-1 can proceed independent of the conditional construct because
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the pattern of processor availability after this construct is the same independent of
the branch outcome; note that “nops” (idle processor cycles) have been inserted to
ensure this.

Multiprocessor implementation of a quasi-static schedule directly, how-
ever, implies enforcing global synchronization after each dynamic construct in
order to ensure a particular pattern of processor availability. We therefore use a
mechanism similar to the self-timed strategy; we first determine a quasi-static
schedule using the methods of Lee and Ha, and then discard the timing informa-
tion and the restrictions of maintaining a processor availability profile. Instead, we
only retain the assignment of actors to processors, the order in which they execute,
and also under what conditions on the Boolean tokens in the system the actor
should execute. Synchronization between processors is done at run time whenever
processors communicate. This scheme is analogous to constructing a self-timed
schedule from a fully-static schedule, as discussed in section 1.2.2. Thus the quasi-
static schedule of Fig. 6.4 can be implemented by the set of programs in Fig. 6.5,

for the three processors. Herér.q, rep 1y, ro} are the receive actors, and

Proc 1 Proc 2 Proc 3
A B D
receive ¢ (r,;) <4— send ¢ (s;;) — receive c (cp)

if (¢) { C if () {

E if (c) H
receive (r;)) —————— send (s) } else
F G L
}else { else send (sp)
I K <code for subgraph-1>
receive (ry) <code for subgraph-1>
J

}

<code for subgraph-1>

Figure 6.5Programs on three processors for the quasi-static schedule
of Fig. 6.4

{s.1:S1: Sy} are the send actors. The subscrgitrefers to actors that communi-
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cate control tokens.

The main difference between such an implementation and the self-timed
implementation we discussed in earlier chapters are the control tokens. Whenever
a conditional construct is partitioned across more than one processor, the control
token(s) that determine its behaviour must be broadcast to all the processors that
execute that construct. Thus in Fig. 6.4 the value , which is computed by Proces-
sor 2 (since the actor that produaes is assigned to Processor 2), must be broad-
cast to the other two processors. In a shared memory machine this broadcast can be
implemented by allowing the processor that evaluates the control token (Processor
2 in our example) to write its value to a particular shared memory location preas-
signed at compile time; the processor will then update this location once for each
iteration of the graph. Processors that require the value of a particular control token
simply read that value from shared memory, and the processor that writes the value
of the control token needs to do so only once. In this way actor executions can be
conditioned upon the value of control tokens evaluated at run time. In the previous
chapters we discussed synchronization associated with data transfer between pro-
cessors. Synchronization checks must also be performed for the control tokens; the
processor that writes the value of a token must not overwrite the shared memory
location unless all processors requiring the value of that token have in fact read the
shared memory location, and processors reading a control token must ascertain
that the value they read corresponds to the current iteration rather than a previous
iteration.

The need for broadcast of control tokens creates additional communication
overhead that should ideally be taken into account during scheduling. The methods
of Lee and Ha, and also prior research related to quasi-static scheduling that they
refer to in their work, do not take this cost into account. Static multiprocessor
scheduling applied to graphs with dynamic constructs taking costs of distributing

control tokens into account is thus an interesting problem for further study.
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6.2.2 Implementation on the OMA

Recall that the OMA architecture imposes an order in which shared mem-
ory is accessed by processors in the machine. This is done to implement the OT
strategy, and is feasible because the pattern of processor communications in a self-
timed schedule of an HSDF graph is in fact predictable. What happens when we
want to run a program derived from a quasi-static schedule, such as the parallel
program in Fig. 6.5, which was derived from the schedule in Fig. 6.47? Clearly, the
order of processor accesses to shared memory is no longer predictable; it depends
on the outcome of run time evaluation of the control token . The quasi-static
schedule of Fig. 6.4 specifies the schedules for the TRUE and FALSE branches of
the conditional. If the value af were always TRUE, then we can determine from
the quasi-static schedule that the transaction order would be
(Sc1s Fers Fear Syp g, <@ccess order for subgraphjl>and if the value ot were
always FALSE, the transaction order would be
(Seqs Feps Teor Sov Iy, <access order for subgraphjl>Note that writing the con-

trol tokenc once to shared memory is enough since the same shared location can

schedule for
subgraph-1

proc 1

TRUE proc 2
Branch

proc 3

proc 1

FALSE

Branch PO 2

proc 3
(Sepr Fepr Foar Sov T, <access order for subgraphj1>

Figure 6.6Transaction order corresponding to the TRUE and FALSE
branches
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be read by all processors requiring the value of

For the OMA architecture, our proposed strategy is to switch between these
two access orders at run time. This is enabled by the preset feature of the transac-
tion controller (Chapter 3, section 3.4.2). Recall that the transaction controller is
implemented as a presettable schedule counter that addresses memory containing
the processor IDs corresponding to the bus access order. To handle conditional
constructs, we derive two bus access lists corresponding to each path in the pro-
gram, and the processor that determines the branch condition (processor 2 in our
example) forces the controller to switch between the access lists by loading the
schedule counter with the appropriate value (address “7” in the bus access sched-
ule of Fig. 6.7). Note from Fig. 6.7 that there are two points where the schedule
counter can be set; one is at the completion of the TRUE branch, and the other is a
jump into the FALSE branch. The branch into the FALSE path is best taken care of
by processor 2, since it computes the value of the control token , whereas the
branch after the TRUE path (which bypasses the access list of the FALSE branch)
is best taken care of by processor 1, since processor 1 already possesses the bus at
the time when the counter needs to be loaded. The schedule counter load opera-
tions are easily incorporated into the sequential programs of processors 1 and 2.

The mechanism of switching between bus access orders works well when
the number of control tokens is small. But if the number of such tokens is large,
then this mechanisms breaks down, even if we can efficiently compute a quasi-
static schedule for the graph. To see why this is so, consider the graph in Fig. 6.8,
which containsk conditional constructs in parallel paths going from the input to
the output. The functionsfi* and “g;” are assumed to be subgraphs that are
assigned to more than one processor. In Ha’s hierarchical scheduling approach,
each conditional is scheduled independently; once scheduled, it is converted into
an atomic node in the hierarchy, and a profile is assigned to it. Scheduling of the
other conditional constructs can then proceed based on these profiles. Thus the
scheduling complexity in terms of the number of parallel pathS(ik) if there

are k parallel paths. If we implement the resulting quasi-static schedule in the
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bus access list Addr

Proc2(s) | O

Procl(g) | 1

Proc3 (k) | 2

Proc 2 3
if c is FALSE proc 2 —
forces controller to jump Proc2(g) ||4 I
to the FALSE branch Proc 1 5| Access list for the

roc 1 (®) TRUE branch
Proc 1 6
_’ — ] .
if ¢ is TRUE proc 1 force$ Proc3(s) ||7| Access list for the
controller to bypass the Proc1(s) ||8 FALSE branch
access list for the > =
FALSE branch l Access order for
¢ subgraph-1

Figure 6.7Bus access list that is stored in the schedule RAM for the quasi-static
schedule of Fig. 6.6. Loading operation of the schedule counter conditioned on
value of c is also shown.

manner stated in the previous section, and employ the OMA mechanism above, we
would need one bus access list for every combination of the Bodd¢ansh..

This is because eadhandg; will have its own associated bus access list, which
then has to be combined with the bus access lists of all the other branches to yield
one list. For example, if all Booleabsare true, then all thigs are executed, and

we get one access list.df is TRUE, and, throughby are FALSE, theg is exe-

cuted, and, throughf, are executed. This corresponds to another bus access list.
This impliesZk bus access lists for each of the combinatidnaoidg; that exe-

cute, i.e. for each possible execution path in the graph.

6.2.3  Improved mechanism

Although the idea of maintaining separate bus access lists is a simple
mechanism for handling control constructs, it can sometimes be impractical, as in
the example above. We propose an alternative mechanism basekskingthat

handles parallel conditional constructs more effectively.
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SELECT

Figure 6.8 Conditional constructs in parallel paths

The main idea behind masking is to store an ID of a Boolean variable along
with the processor ID in the bus access list. The Boolean ID determines whether a
particular bus grant is “enabled.” This allows us to combine the access lists of all
the node$; throughf, andg, throughgy. The bus grant corresponding to eféh
tagged with the boolean ID of the correspondipgnd an additional bit indicates
that the bus grant is to be enabled wheis TRUE. Similarly, each bus grant cor-
responding to the access listgpfis tagged with the ID dfj, and an additional bit
indicates that the bus grant must be enabled only if the corresponding control
token has a FALSE value. At runtime, the controller steps through the bus access
list as before, but instead of simply granting the bus to the processor at the head of
the list, it first checks that the control token corresponding to the Boolean ID field
of the list is in its correct state. If it is in the correct state (i.e. it is TRUE for a bus
grant corresponding to anand FALSE for a bus grant corresponding t¢) atlgen
the bus grant is performed, otherwise it is masked. Thus the run time values of the
Booleans must be made available to the transaction controller for it to decide
whether to mask a particular bus grant or not.

More generally, a particular bus grant should be enabled by a product
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(AND) function of the Boolean variables in the dataflow graph, and the comple-
ment of these Booleans. Nested conditionals in parallel branches of the graph
necessitate bus grants that are enabled by a product function; a similar need arises
when bus grants must be reordered based on values of the Boolean variables. Thus,
in general we need to implement annotatedbus access list of the form

{(cy)ProclDy, (c,)ProclID,, ...} ; each bus access is annotated with a Bool-
ean valued condition; , indicating that the bus should be granted to the processor
corresponding td’rocID; when, evaluates to TRWE; could be an arbitrary
product function of the Boolean$§, b,, ..., b, ) in the system, and the comple-
ments of these Booleans (eqy. = b, (b, ,where the bar over a variable indicates
its complement).

This scheme is implemented as shown in Fig. 6.9. The schedule memory

shared address bus

shared data bus

v v

memory maps the address
ﬂagzs C1 through C, decode > bl b2 b3 bn
o the shared bus + + I + +
2 = é C1 Co C3 A Cm
= 3 L2 o
2 15| =% |[¢f |8 ) v v 3 v
3 sl 8 o° V. <Condition>
o T 25 ¢ - [ > De-Mux
= S ® G |8
° o= s |5
o 58 R
S B E 3
» 8 o
'\
4
f <ProcID>
g v Signal indicating whether
(&) to mask current BG or not
BG decode

Enable

S vy vy

Figure 6.9. A bus access mechanism that selectively “masks” bus
grants based on values of control tokens that are evaluated at run time

now contains two fields corresponding to each bus access: <Condition>:<ProclD>
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instead of the <ProclID> field alone that we had before. The <Condition> field
encodes a unique product  associated with that particular bus access. In the
OMA prototype, we can use 3 bits for <ProcID>, and 5 bits for the <Condition>
field. This would allow us to handle 8 processors and 32 product combinations of
Booleans. There can be uprto= 3" product terms in the worst case correspond-
ing to n Booleans in the system, because each Boddean  could appear in the
product term as itself, or its complement, or not at all (corresponding to a “don’t
care”). Itis unlikely that al” possible product terms will be required in practice;
we therefore expect such a scheme to be practical. The necessary product terms
(cj) can be implemented within the controller at compile time, based on the bus
access pattern of the particular dynamic dataflow graph to be executed.

In Fig. 6.9, the flag®,, b,, ..., b

that are memory mapped to the shared bus, and store the values of the Boolean

, » are 1-bit memory elements (flip-flops)
control tokens in the system. The processor that computes the value of each control
token updates the corresponding by writing to the shared memory location that
maps tob; . The product combinationg c,, ...,c, , are just AND functions of
the b; s and the complement of the s, e;0. coulth b, . As the schedule
counter steps through the bus access list, the bus grant is actually granted only if
the condition corresponding to that access evaluates to TRUE; thus if the entry
<c,><Procl> appears at the head of the bus access list,andb, (b, , then
processor 1 receives a bus grant only if the control tbkes TRUE andby is
FALSE, otherwise the bus grant is masked and the schedule counter moves up to
the next entry in the list.

This scheme can be incorporated into the transaction controller in our
existing OMA architecture prototype, since the controller is implemented on an
FPGA. The product terms,, C,, ...,C, may be programmed into the FPGA at
compile time; when we generate programs for the processors, we can also generate
theannotatedbus access list (a sequence of <Condition><Proc ID> entries), and a
hardware description for the FPGA (in VHDL, say) that implements the required

product terms.
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6.2.4  Generating the annotated bus access list

Consider the problem of obtaining an annotated bus access list
{(cy)ProclIDy, (cy)ProclD,, ...} , from which we can derive the sequence of
<Condition><Proc ID> entries for the mask-based transaction controller. A
straightforward, even if inefficient, mechanism for obtaining such a list is to use
enumeration; we simply enumerate all possible combinations of Booleans in the
system Qn combinations for Booleans), and determine the bus access sequence
(sequence of ProclD’s) for each combination. Each combination corresponds to an
execution path in the graph, and we can estimate the time of occurrence of bus
accesses corresponding to each combination from the quasi-static schedule. For
example, bus accesses corresponding to one schedule period of the two execution
paths in the quasi-static schedule of Fig. 6.6 may be marked along the time axis as
shown in Fig. 6.10 (we have ignored the bus access sequence corresponding to
subgraph-1 to keep the illustration simple).

The bus access schedules for each of the combinations can now be col-
lapsed into one annotated list, as in Fig. 6.10; the fact that accesses for each combi-

nation are ordered with respect to time allows us to enforce a global order on the

B33 23
N ™M AN
O O O (SIS
S99 S 9
(I a TN o [a Nl
| L1 L > t _
f T 1 T > ¢ = TRUE
2333 ok
N - ™ ‘3 :‘)
888 g s
I Qlﬂl? — > t c = FALSE
{(c) Proc2, €) Proc2, (c) Proc1,d) Proc1, (c) Proc3,d) Proc3, “annotated” list

(c) Proc2, (c) Procl,d) Proc3, €) Proc 1}

Figure 6.10Bus access lists and the annotated list corresponding to Fig. 6.6

161



accesses in the collapsed bus access list. The bus accesses in the collapsed list are
annotated with their respective Boolean condition.

The collapsed list obtained above can be used as is in the masked controller
scheme; however there is a potential for optimizing this list. Note, however, that
the same transaction may appear in the access list corresponding to different Bool-
ean combinations, because a particular Boolean token may be a “don’t care” for
that bus access. For example, the first three bus accesses in Fig. 6.10 appear in both
execution paths, because they are independent of the vatue of . In the worst case
a bus access that is independent of all Booleans will end up appearing in the bus
access lists of all the Boolean combinations. If these bus accesses appear contigu-
ously in the collapsed bus access sequence, we can combine them into one. For
example, “€ ) Proc2,€ ) Proc2” in the annotated schedule of Fig. 6.10 can be
combined into a single “Proc 2” entry, which is not conditioned on any control
token. Consider another example: if we get contiguous entrlilelsﬂT(Z ) Proc3”
and “(b, [h, ) Proc3” in the collapsed list, we can replace the two entries with a
single entry “p, ) Proc3”.

More generally, if the collapsed list contains a contiguous segment of the
form:

{...,(cyProclDy, (c,)ProclID,, (cg)ProclD,, ..., (¢)ProclD,, ...} ,

we can write each of the contiguous segments as:
{...(ci+cy+ ... +¢)ProclD,, ...} ,

where the bus grant condition is an expresgiey+c, + ... +¢;) , Which is a sum
of products (SOP) function of the Booleans in the system. We can now apply 2-
level minimization to determine a minimal representation of each of these expres-
sions. Such 2-level minimization can be done by using a logic minimization tool
such as ESPRESSO [Bray84], which simplifies a given SOP expression into an
SOP representation with minimal number of product terms. Suppose the expres-

sion (c;+c,+...+c) can be minimized into another SOP expression
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(¢ +cy) +... + cp') , Wherep < | . We can then replace the segment
{...,(cy)ProclDy, (c,)ProclD,, (c3)ProclD,, ..., (¢)ProclD,, ...}
of the annotated bus access list with an equivalent segment of the form:
{....(c{")ProclD,, (c,')ProcIDy, (c5')ProciD,, ..., (cp')ProcIDk, .}
We can thus obtain a minimal set of contiguous appearances of a bus grant
to the same processor.
Another optimization that can be performed is to combine annotated bus
access lists with the switching mechanism of section 6.2.1. Suppose we have the

following annotated bus access list:
{ ..., (b; Dby)ProclID;, (b, [hy)ProclD;, (b, b, Chs)ProciD,, ...}

Then, by “factoring”o, out, we can equivalently write the above list as:

{.... (b)){(by)ProclID;, (bz)ProciD;, (b, [bg)ProciD,}, ...}
Now, we can skip over all the three accesses whenever the Baglean  is FALSE

by loading the schedule counter and forcing it to increment its count by three,
instead of evaluating each access separately, and skipping over each one individu-
ally. This strategy reduces overhead, because it costs an extra bus cycle to disable a
bus access when a condition corresponding to that bus access evaluates to FALSE;
by skipping over three bus accesses that we know are going to be disabled, we save
three idle bus cycles. There is an added cost of one cycle for loading the schedule
counter; the total savings in this example is therefore two bus cycles.

One of the problems with the above approach is that it involves explicit
enumeration of all possible combinations of Booleans, the complexity of which
limits the size of problems that can be tackled with this approach. An implicit
mechanism for representing all possible execution paths is therefore desirable. One
such mechanism is the use of Binary Decision Diagrams (BDDs), which have been
used to efficiently represent and manipulate Boolean functions for the purpose of

logic minimization [Bryant86]. BDDs have been used to compactly represent large
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state spaces, and to perform operations implicitly over such state spaces when
methods based on explicit techniques are infeasible. One difficulty we encountered
in applying BDDs to our problem of representing execution paths is that it is not

obvious how precedence and ordering constraints can be encoded in a BDD repre-
sentation. The execution paths corresponding to the various Boolean combinations
can be represented using a BDD, but it isn't clear how to represent the relative

order between bus accesses corresponding to the different execution paths. We

leave this as an area for future exploration.

6.3  Data-dependent iteration

A data-dependent iteration construct is shown in Fig. 6.2(b). A quasi-static

schedule for such a construct may look like the one in Fig. 6.11. We are assuming

Subgraph A Subgraphs B & D Subgraph C

\

\ ¥

proc 1
proc 2

proc 3

k iterations of subgraphs B & D

Figure 6.11.Quasi-static schedule for the data-dependent iteration
graph of Fig. 6.2(b).

that A, B, C, and D of Fig. 6.2(b) are subgraphs rather than atomic actors.

Such a quasi-static schedule can also be implemented in a straightforward
fashion on the OMA architecture, provided that the data-dependent construct spans
all the processors in the system. The bus access schedule corresponding to the iter-
ated subgraph is simply repeated until the iteration construct terminates. The pro-
cessor responsible for determining when the iteration terminates can be made to

force the schedule counter to loop back until the termination condition is reached.
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This is shown in Fig. 6.12.

Bus access list

A

bus acces
list for A

2

g

bus acces$ Processor that

list for the determines termination
loop body condition of the iteration
(B & D) Y can also re-initialize

A the schedule counter
bus accesp
list for C

|

Figure 6.12A possible access order list corresponding to
the quasi-static schedule of Fig. 6.11.

6.4  Summary

This chapter dealt with extensions of the ordered transactions approach to
graphs with data-dependent control flow. We briefly reviewed the Boolean Data-
flow model, and the quasi-static approach to scheduling conditional and data-
dependent iteration constructs. We then presented a scheme whereby the Ordered
Memory Access board could be used when such control constructs are included in
the dataflow graph. In this scheme, bus access schedules are computed for each set
of values that the control tokens in the graph evaluate to, and the bus access con-
troller is made to select between these lists at run time based on which set of values
the control tokens actually take at any given time. This was also shown to be appli-
cable to data-dependent iteration constructs. Such a scheme is feasible when the
number of execution paths in the graph is small. We proposed another mechanism
based on masking of bus accesses depending on run time values of control tokens,

for handling the case when there are multiple conditional constructs in “parallel.”
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7

CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we explored techniques that minimize inter-processor com-
munication and synchronization costs in statically scheduled multiprocessors for
DSP. The main idea is that communication and synchronization in statically sched-
uled hardware is fairly predictable, and this predictability can be exploited to
achieve our aims of low overhead parallel implementation at low hardware cost.
The first technique we looked at was the ordered transactions strategy, where the
idea is to predict the order of processor accesses to shared resources and enforce
this order at run time. We applied this idea to a shared bus multiprocessor where
the sequence of accesses to shared memory is pre-determined at compile time and
enforced at run time by a controller implemented in hardware. We built a prototype
of this architecture called the ordered memory access architecture, and demon-
strated how we could achieve low overhead IPC at low hardware cost for the class
of DSP applications that can be specified as SDF graphs, and for which good com-
pile time estimates of execution times exist. We also introduced the IPC graph
model for modeling self-timed schedules. This model was used to show that we
can determine a particular transaction order such that enforcing this order at run
time does not sacrifice performance when actual execution times of tasks are close
to their compile time estimates. When actual running times differ from the compile

time estimates, the computation performed is still correct, but the performance
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elaborate interconnect, such as a crossbar or a mesh topology, may be required. If
the processors in such a system run a self-timed schedule, the communication pat-
tern is again periodic and we can predict this pattern at compile time. We can then
determine the states that the crossbar in such a system cycles through or we can
determine the sequence of settings for the switches in the mesh topology. The fact
that we can determine this information should make it possible to simplify the
hardware associated with these interconnect mechanisms, since the associated
switches need not be configured at run time. How exactly this compile time infor-
mation can be made use of for simplifying the hardware in such interconnects is an
interesting problem for further study.

In the techniques we proposed in Chapter 5 for minimizing synchroniza-
tion costs, no assumptions regarding bounds on execution times of actors in the
graph were made. A direction for further work is to incorporate timing guarantees
— for example, hard upper and lower execution time bounds, as Dietz, Zaafrani,
and O’Keefe use in [Dietz92]; and handling of a mix of actors some of which have
guaranteed execution time bounds, and some that have no such guarantees, as Filo,
Ku, Coelho Jr., and De Micheli do in [Filo93]. Such guarantees could be used to
detect situations in which data will always be available before it is needed for con-
sumption by another processor.

Also, execution time guarantees can be used to compute tighter buffer size

bounds. As a simple example, consider Fig. 7.1. Here, the analysis of section 5.8

Figure 7.1.An example of how execution time guarantees can be
used to reduce buffer size bounds.
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(throughput) may be affected. We showed how such effects of run time variations
in execution times on the throughput of a given schedule can be quantified.

The ordered transactions approach also extends to graphs that include con-
structs with data-dependent firing behaviour. We discussed how conditional con-
structs and data-dependent iteration constructs can be mapped to the OMA
architecture, when the number of such control constructs is small — a reasonable
assumption for most DSP algorithms.

Finally, we presented techniques for minimizing synchronization costs in a
self-timed implementation that can be achieved by systematically manipulating the
synchronization points in a given schedule; the IPC graph construct was used for
this purpose. The techniques proposed include determining when certain synchro-
nization points are redundant, transforming the IPC graph into a strongly con-
nected graph, and then sizing buffers appropriately such that checks for buffer
overflow by the sender can be eliminated. We also outlined a technique we call
resynchronization, which introduces new synchronization points in the schedule
with the objective of minimizing the overall synchronization cost.

The work presented in this thesis leads to several open problems and direc-
tions for further research.

Mapping a general BDF graph onto the OMA to make best use of our abil-
ity to switch between bus access schedules at run time is a topic that requires fur-
ther study. Techniques for multiprocessor scheduling of BDF graphs could build
upon the quasi-static scheduling approach, which restricts itself to certain types of
dynamic constructs that need to be identified (for example as conditional con-
structs or data-dependent iterations) before scheduling can proceed. Assumptions
regarding statistics of the Boolean tokens (e.g. the proportion of TRUE values that
a control token assumes during the execution of the schedule) would be required
for determining multiprocessor schedules for BDF graphs.

The OMA architecture applies the ordered transactions strategy to a shared
bus muiltiprocessor. If the interprocessor communication bandwidth requirements

for an application are higher than what a single shared bus can support, a more
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yields a buffer sizBg, ((A, B)) = 3 , sinc@ is the minimum path delay of a
cycle that containg A, B) . However, i{A) angdB) , the execution times of
actorsA andB , are guaranteed to be equal to the same constant, then it is easily
verified that a buffer size of  will suffice fofA, B) . Systematically applying
execution time guarantees to derive lower buffer size bounds appears to be a prom-
ising direction for further work.

Another interesting problem is applying the synchronization minimization
techniques to graphs that contain dynamic constructs. Suppose we schedule a
graph that contains dynamic constructs using a quasi-static approach, or a more
general approach if one becomes available. Is it still possible to employ the syn-
chronization optimization techniques we discussed in Chapter 5? The first step to
take would be to obtain an IPC graph equivalent for the quasi-static schedule that
has a representation for the control constructs that a processor may execute as a
part of the quasi-static schedule. If we can show that the conditions we established
for a synchronization operation to be redundant (in section 5.6) holds for all execu-
tion paths in the quasi-static schedule, then we could identify redundant synchroni-
zation points in the schedule. It may also be possible to extend the strongly-
connect and resynchronization transformations to handle graphs containing condi-

tional constructs; these issues require further investigation.
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