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Abstract1 mized for any of several criteria including program and data

o ) ] memory usage [7], and high throughput multiprocessor sched-
Multidimensional Synchronous Dataflow (MDSDF) [S][2] is & yjes taking interprocessor communication into account [8]. The
model of computation that has been proposed and implementegcond possibility, namely that of constructing gondtiproces-
for specifying multidimensional multirate signal processing syS-or implementations, is due to the ability of SDF to expose not
tems such as image and video processing algorithms. The moqgk the functional parallelism but als@ta parallelism in the
is an extension of synchronous dataflow (SDF) [4] and has all Qilgorithm.
the desirable properties of the SDF model such as static schedu- ] ]
lability, exposure of data and functional parallelism, and a visu] h€ standard dataflow models, including SDF, suffer from the
ally pleasing syntax well suited for block diagram Signa|llm|ta'uon that the_lr_streams (sequences of token_s passec_i along
processing environments such as Ptolemy [1] and Khoros [3]t_h§ arcs) are unidimensional. Although a_multldlmt_ansmn_al
However, the MDSDF model as specified in [5] is limited to object such as an array can be embedded in a one dimensional
modeling multidimensional systems sampled on the rectangul&it’®@m, it may be awkward to do so. In particular, compile- time
lattice. Since some multidimensional systems of practical interedfformation about data parallelism and flow of control may not
use non-rectangular sampling lattices and non-rectangular mul2€ Very clear [2]. Multidimensional Synchronous Dataflow
rate operators like hexagonal decimators, models that are capatldDSDF) was proposed recently for specifying multidimen-
of representing and simulating such systems are of interest. Thonal systems [S]; this model is an extension of SDF and pre-
paper describes an extension of the MDSDF model that allow€rves all of the nice properties of SDF such as compile-time
signals on arbitrary sampling lattices to be represented, and th&ghedulability. Moreover, it is also capable of exposing data par-

allows the use of non-rectangular downsamplers and upsample®l€lism in multidimensional systems to a much greater extent
than would be possible with multidimensional objects embedded

1. Introduction in one dimensional streams in SDF. However, the model reported

Dataflow has proven to be a useful programming model for usin [5] was limited to expressing systems sampled on the standard
P prog 9 ?ectangular lattice. Since there is a benefit sometimes in using

In software environments for simulating and prototyping Slgnalnon-separable lattices for sampling multidimensional signals [9],

processing systems. This IS because _SUCh systems are INCreasy for using non-separable multirate operations such as hexago-
ingly being based on graphical, block-diagram programming sys-

?“nal decimation or quincunx upsampling, it is of interest to have
tems{3][1], and a dgt_aflow graph forms avery naturgl abStraCt'OHataﬂow models that can also express these systems. In this
_for a program specified as a block diagram. Most signal prpcessﬁ-aper we present an extension of the MDSDF model to handle
ing algorithms have a p_redlctable flow of control; hence, it ha such systems, without sacrificing either compile-time schedula-
been found that a particular model of dataflow, synchronou

%ility or exposition of data-parallelism. In fact, extending the

dataflow-(SDF)_, IS espeually well suited for m_odellng un'rat.emodel without sacrificing these properties is the main challenge
and multirate signal processing systems of arbitrary complexity,

- . . i i j i h i fl I
Chief amongst the many useful properties that this model has jnce it was conjectured in [S] that a dynamic dataflow mode

the possibility of constructing schedules at compile time; this ight have to be extended to multiple dimensions in order to
| dp 0 v ry ficient ian] | r?1 ntati l:] in vprh dd’ tmodel non-rectangular index spaces. While it is not clear to what
cads to very eflicient Impiementations since overhead due 1o e generalization presented in this paper can model arbi-
run-time decision making is completely avoided. Moreover,

compile time schedulability implies that schedules can be o titrary non-rectangular index spaces, it can certainly model the
P Yy imp P interesting subclass of applications (that require non-rectangular

index spaces) arising out of the use of non-rectangular sampling
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where x,(t;, t,) is a continuous time signal. Notice that theMDSDF graph where nod& produces an 2x1 array of samples
sample locations retained are given by the equation on each firing, and nod@  consumes an 1x3 array of samples on
each firing. The horizontal dimension is taken to be the direction
- ta| _ | ag||ny _ Vi along w_hich the stream is infinite. The second diagram shows the
t, 81 Ayl Ny u_nderly!ng data space. Th_e gla}ta space can be thought c_Jf as a two
dimensional array that is infinite in the horizontal direction and
The matrixV is called theampling matrix. That is, the sample of size 2 in the vertical direction. The first column is the data pro-
locations are vectors that are linear combinations of the cotiuced byA on its first invocation. The balance equations are
umns of the sampling matri¥ . The set of all sample pointgiven byr, ; x2 = rg;x1 ,r, ,*x1 =rg,x3 .This can be
t =vn, A0OO, whered space of all integer vectors (of thesolved to yield(r, 1,72 2) = (L 3) andrg,rg,) = (2,1)
appropriate dimension), is called tlagtice generated by , and This means tha#\ fires 3 times in the horizontal direction (pro-
is denoted LAT(V) . The set of point¥kX  where duces 3 columns of data) and once in the vertical direction, and
X = [Xq, X]T, with 0< x4, X, <1, is called thdundamental B fires once in the horizontal direction and twice in the vertical
parallelepiped of V and is denoted=PD(V) [9]. The set of direction. The total number of samples exchanged on the arc is
integer points withinFPD(V) is denoted by the $¢{V) . If an array of 2x3 samples.
V is an integer matrix, then the number of elements (called the
integer volume) in N(V) is given by|N(V)| = |det( V)| . Sup-
pose thath is a point obAT(V) . Then there exists an integ@iDSDF handles only rectangular data-spaces whereas a system
vectork such thah = Vk . The poinks  are calledi#®im-  that handles arbitrary lattices must be able to deal with non-rect-
bered pointsof LAT(V) . angular data-spaces. In building such a model, several questions

4. Semantics of the Generalized Model

2.1  Multidimensional Decimator and Expander arise:
The two basic multirate operators for multidimensional systemt One objective is to retain the producer/consumer model
are the decimator and expander. For an MD sig«(a) on between actors for these streams; how do we determine the

LAT(V,), the M -fold decimated version is given by
y(h) = x(h), AOLAT(V,M) whereM is amqmx m non-sin-
gular integer matrix, called th@ecimation matrix. Note that e
LAT(V,) OLAT(V,M). Thedecimation ratio for a decimator
with decimation matrixM is defined to be the number of pointg
thrown away for every point kept from the input and is given by

number of samples produced and consumed when the lattice
is non-rectangular?

How do the various actors know which lattice they are con-
suming and producing samples on?

How do scanning orders and “next sample consumed” get
determined?

IN(M)| = |det( M)| .
The “expanded” outpug( )

) = 5

* How do we model non-rectangular decimators and interpola-

of an input signdin) isgiven by:  tors?

¢ Can we do compile time scheduling by solving “balance
equations” as is done in MDSDF?

nOLAT(V,

)
nOLAT(V, L
otherwise %] (ML)

whereV, is the input lattice to the expander. Note thatcons'ld(:"r the system depicted in figure 2, vyherg gsource act.or
-1 . ; ' produces an array of 6x6 samples each time it fires ((6,6) in
LAT(V,) OLAT(V,L ). The expansion ratio, defined as the - - . .
. . . MDSDF parlance). This actor is connected to the decimator with
number of points added to the output lattice for each point in the . N ) . L
input lattice, is given bydet( L)| a non-diagonal decimation matrix. The circled samples indicate
’ the samples that fall on the decimators output lattice; these are
retained by the decimator. In order to represent these samples on
) . ) ) ~ the decimators output, we will think of the buffers on the arcs as
A model suited for multidimensional systems is an extension Qfontaining the renumbered equivalent of the samples on a lattice.
SDF C"’_‘”ed MDSDF where the arcs become  -dimensiongtor 5 decimator, if we renumber the samples at the output
arrays instead of FIFO queues. Data along only one ofrthe according toLAT(V,M) , then the samples get written to a par-
dimensions is allowed to be an infinite stream; this is because dilelogram shaped array rather than a rectangular array. To see
thg streqm were infinite in more than one dimension, the COMPiyhat this parallelogram is, we introduce the concept of a “sup-
tation might depend on the schedule for the system, leading gt matrix” that describes precisely the region of the rectangular

non-determinacy. The produced/consumed numbers for eagttice where samples have been produced. Figure 2 illustrates
node on each arc are naw  -dimensional tuples. A skalef

ance equations(which dictates that the number of firings of @1)  (1.3)
nodes in the graph must result in the total number of samples
produced on an arc to equal the total number consumed) can be f /

written for each of the dimensions to gekaetitions matrix
where each column (of length ) of the matrix represents the

repetitions of the node along the different directions. Figure 1
makes these notions clearer. It represents a 2 dimensional

3. Multidimensional Synchronous Dataflow

Figure 1. Data space for an MDSDF arc



Theorem 1:[6]The input/output relationships are given by:

Ve’ V\é Vfi \/\4 Ve’ V\é Vf! \M
e '(: ) f' e '< > f' Decimator:  V; = VM, W; = M’lwe

. — -1 —
Figure 3. Generalized expander and decimator with Expander: V= Vel ™, Wp = LWe.
arbitrary input lattices and support matrices. o ] —
Definition 3: Let X be a set of points ifl ,andy betwo

this for a decimation matrix, where the retained samples haR@sitive integers such thay = |X X is said to be organized as
been renumbered according kAT(M)  and plotted on th@9eneralized (x, y) rectangleof points, or just a generalized
right. The labels on the samples show the mapping. The renurd® ¥) rectangle, by associatingrectangularizing function
bered samples can be viewed as the set of integer points lyigfh X that maps the points o€ to an intedex y) rectangle.
inside the parallelogram that is shown in the figure. In othefn summary, our generalized model for expressing non-rectangu-
words, thesupport of the renumbered samples can be describefyr systems has the following semantics:

asFPD(Q) where . _ . .
* Each arc has associated with it a support matrix and a lattice

Q= F 1-j generating matrix.
31 * An expander with expansion matrix  consumes (1,1) and

We will call Q thesupport matrix for the samples on the output ~ Produces the set of samplesfPD(L)  that is ordered as a
arc. In the same way, we can describe the support of the samplesgeneralized(L,, L,) ~rectangle of data whérgl,  are

on the input arc to the decimatorBBD(P)  where positive integers such thatL, = [det(L)|
_l60 * A decimator with decimation matri consumes a rectan-
- 0 6 gle (M, M,) of data where this rectangle is interpreted

according to the way it has been ordered (by the use of some
It turns out thalQ = M'P . rectangularizing function) by the actor feeding the decimator.
It produces (1,1) on average.

Definition 1: The containability condition: let X be asetof o p any arc, the global ordering of the samples on that arc is

integer points i)™ . We say that  satisfies doatainability established by the actor feeding the arc. The actor consuming
conditionif there exists amx m rational-valued matnX the samples follows this ordering.

such thatN(W) = X . . . . .
(W) * A setof balance equations are written down using the various

factorizations. Additional constraints for arcs that feed a dec-
imator are also written down. These are solved to yield the
repetitions matrix for the network. A scheduler can then con-
struct a static schedule by firing firable nodes in the graph
until each node has been fired the requisite number of times
as given by the repetitions matrix.

Definition 2: We will assume that any source actor in the system
produces data in the following manner. A sougce  will produce
aset of sampleg on each firing such that each sample in  will
lie on the latticeLAT(Vs) . Hence, the set= {Vgth: A O {}

is a set of integer points, consisting of the pointg§ of renum-
bered byLAT(V,) . We assume that the §et  satisfies the con-
tainability condition. For example, consider the system below, where a decimator fol-

Given a decimator with decimation mati%  as shown in figunj.'OWS an expander (figure 4(a))

3, we make the following definitions and statements.: Denoting\Ve start by specifying the lattice and support matrix for the arc

the input arc ag and the output arcfa®/,,,V; are the bas&A. Let Vg, = |, wherel is the identity matrix, and

for the input and output lattice respectively,, W, are the supWs, = 3l . So the source produces (3,3) in MDSDF parlance.

port matrices for the input and output arcs respectively. With thiSor the system above, we can compute the lattice and support

notation, we can state the following theorem: matrices for all other arcs given these. The expander consumes
the samples on arc SA in some natural order; for example, scan-

11 (6,6) ning by rows. The expander produdeBD(L) samples on each
M = !
O e A NG
SA AB
A B
a)

.h. .i. L]

4 b)
Q.
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Figure 4. An example to illustrate balance equations and
Figure 2. Output samples from the decimator the need for some additional constraints. a) The system.

renumbered to illustrate concept of support matrix. b) Ordering of data into a 5x2 rectangle inside FPD(L).



firing; these samples are organized as a generalizgd.,) Since this matrix is not integer-valued, it appears that its integer
rectangle. volume has to be computed by brute force; it turns out to be 47.

Suppose we choose the factorization 5x2/émt(L)| . One way'€"c® N(Wgr)| = [N(Wag)|/IM| is not satisfied. One way to

to map the samples into an intedsy 2) rectangle is as Sho\gﬁltlsfy it is to forceWg to be an integer matrix.; the smallest

by the groupings in figure 4(b). Notice that the horizontal direcyalues thatdoiitares, = 4,15, = 2 . Itis shown in [6] that it

tion for FPD(L) is the direction of the vectde, 3]T  and the is always possible to solve themagmentedbalance equations.

vertical direction is the direction of the vec{er2, 2]T . A global 5. Future Work
ordering on the samples can be deduced from these directions.
For the decimator, a factorization fet( M)| is chosen, and 4 he different choices of factorizations leads to different sets of

“rectang]e" of those samp|es’ where the “rectang|e” is deducé@ﬁlance equations, and these in turn will lead to different sched-

from the global ordering imposed above is consumed per firingles. One optimization problem that arises is to choose these fac-
(figure 5). torizations in such a way that the schedules are as small as

ite d ¢ “bal ., ) ) hpossible. Some of these issues are discussed in more detail in [6],
Now we can write down a set of “balance” equations using thgy, . ,gh general solutions have not been obtained yet.
“rectangles” that we have defined. Denote the repetitions of a
node X in the “horizontal” direction by, , and the “vertical” Parallel scheduling issues have not been dealt with yet. In order

direction asry , . We have to effectively exploit data parallelism, techniques developed in
’ the systolic arrays community [10], and the loop parallelization

3rq1 = a1, 5Ma1 =2, g1 =g community [11] might prove to be useful.

g, = 1rpp,2rp = 2rg 5,055 =115 (EQ1) 6. References
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Figure 5. Some of the data produced by the source in
one iteration of the periodic schedule determined by
the balance equations in equation 1.



