
AN EXTENSION OF MULTIDIMENSIONAL
SYNCHRONOUS DATAFLOW TO HANDLE ARBITRARY

SAMPLING LATTICES

Praveen K. Murthy, Edward A. Lee

Dept. of EECS, University of
California, Berkeley CA 94720

{murthy,eal}@eecs.berkeley.edu

Abstract1

Multidimensional Synchronous Dataflow (MDSDF) [5][2] is a
model of computation that has been proposed and implemented
for specifying multidimensional multirate signal processing sys-
tems such as image and video processing algorithms. The model
is an extension of synchronous dataflow (SDF) [4] and has all of
the desirable properties of the SDF model such as static schedu-
lability, exposure of data and functional parallelism, and a visu-
ally pleasing syntax well suited for block diagram signal
processing environments such as Ptolemy [1] and Khoros [3].
However, the MDSDF model as specified in [5] is limited to
modeling multidimensional systems sampled on the rectangular
lattice. Since some multidimensional systems of practical interest
use non-rectangular sampling lattices and non-rectangular multi-
rate operators like hexagonal decimators, models that are capable
of representing and simulating such systems are of interest. This
paper describes an extension of the MDSDF model that allows
signals on arbitrary sampling lattices to be represented, and that
allows the use of non-rectangular downsamplers and upsamplers.

1. Introduction

Dataflow has proven to be a useful programming model for use
in software environments for simulating and prototyping signal
processing systems. This is because such systems are increas-
ingly being based on graphical, block-diagram programming sys-
tems[3][1], and a dataflow graph forms a very natural abstraction
for a program specified as a block diagram. Most signal process-
ing algorithms have a predictable flow of control; hence, it has
been found that a particular model of dataflow, synchronous
dataflow (SDF), is especially well suited for modeling unirate
and multirate signal processing systems of arbitrary complexity.
Chief amongst the many useful properties that this model has is
the possibility of constructing schedules at compile time; this
leads to very efficient implementations since overhead due to
run-time decision making is completely avoided. Moreover,
compile time schedulability implies that schedules can be opti-

1. This research is part of the Ptolemy project, which is supported by the
Advanced Research Projects Agency and the U.S. Air Force (under the
RASSP program, contract F33615-93-C-1317), the Semiconductor
Research Corporation (SRC) (project 95-DC-324-016), the National Sci-
ence Foundation (MIP-9201605), the State of California MICRO pro-
gram, and the following companies: Bell Northern Research, Cadence,
Dolby, Hitachi, Lucky-Goldstar, Mentor Graphics, Mitsubishi, Motorola,
NEC, Philips, and Rockwell.

mized for any of several criteria including program and data
memory usage [7], and high throughput multiprocessor sched-
ules taking interprocessor communication into account [8]. The
second possibility, namely that of constructing goodmultiproces-
sor implementations, is due to the ability of SDF to expose not
just the functional parallelism but alsodata parallelism in the
algorithm.

The standard dataflow models, including SDF, suffer from the
limitation that their streams (sequences of tokens passed along
the arcs) are unidimensional. Although a multidimensional
object such as an array can be embedded in a one dimensional
stream, it may be awkward to do so. In particular, compile- time
information about data parallelism and flow of control may not
be very clear [2]. Multidimensional Synchronous Dataflow
(MDSDF) was proposed recently for specifying multidimen-
sional systems [5]; this model is an extension of SDF and pre-
serves all of the nice properties of SDF such as compile-time
schedulability. Moreover, it is also capable of exposing data par-
allelism in multidimensional systems to a much greater extent
than would be possible with multidimensional objects embedded
in one dimensional streams in SDF. However, the model reported
in [5] was limited to expressing systems sampled on the standard
rectangular lattice. Since there is a benefit sometimes in using
non-separable lattices for sampling multidimensional signals [9],
and for using non-separable multirate operations such as hexago-
nal decimation or quincunx upsampling, it is of interest to have
dataflow models that can also express these systems. In this
paper, we present an extension of the MDSDF model to handle
such systems, without sacrificing either compile-time schedula-
bility or exposition of data-parallelism. In fact, extending the
model without sacrificing these properties is the main challenge
since it was conjectured in [5] that a dynamic dataflow model
might have to be extended to multiple dimensions in order to
model non-rectangular index spaces. While it is not clear to what
extent the generalization presented in this paper can model arbi-
trary non-rectangular index spaces, it can certainly model the
interesting subclass of applications (that require non-rectangular
index spaces) arising out of the use of non-rectangular sampling
lattices and multirate operators.

2. Non Rectangular Sampling

Consider the sequence of samples generated by

x n1 n2,() xa a11n1 a12n2 a21n1 a22n2+,+()=

In the proceedings of the ICASSP 96, Atlanta, GA, May 7-10, 1996.

where is a continuous time signal. Notice that the
sample locations retained are given by the equation

The matrix is called thesampling matrix. That is, the sample
locations are vectors that are linear combinations of the col-
umns of the sampling matrix . The set of all sample points

, , where space of all integer vectors (of the
appropriate dimension), is called thelattice generated by , and
is deno ted . The se t o f po in ts where

, with , is called thefundamental
parallelepiped of and is denoted [9]. The set of
integer points within is denoted by the set . If

 is an integer matrix, then the number of elements (called the
integer volume) in is given by . Sup-
pose that is a point on . Then there exists an integer
vector such that . The points are called therenum-
bered points of .

2.1 Multidimensional Decimator and Expander

The two basic multirate operators for multidimensional systems
are the decimator and expander. For an MD signal on

, the - fo ld decimated vers ion is g iven by
 where is an non-sin-

gular integer matrix, called thedecimation matrix. Note that
. Thedecimation ratio for a decimator

with decimation matrix is defined to be the number of points
thrown away for every point kept from the input and is given by

.

The “expanded” output of an input signal is given by:

where is the input lattice to the expander. Note that
. The expansion ratio, defined as the

number of points added to the output lattice for each point in the
input lattice, is given by .

3. Multidimensional Synchronous Dataflow

A model suited for multidimensional systems is an extension of
SDF called MDSDF where the arcs become -dimensional
arrays instead of FIFO queues. Data along only one of the
dimensions is allowed to be an infinite stream; this is because if
the stream were infinite in more than one dimension, the compu-
tation might depend on the schedule for the system, leading to
non-determinacy. The produced/consumed numbers for each
node on each arc are now -dimensional tuples. A set ofbal-
ance equations (which dictates that the number of firings of
nodes in the graph must result in the total number of samples
produced on an arc to equal the total number consumed) can be
written for each of the dimensions to get arepetitions matrix
where each column (of length) of the matrix represents the
repetitions of the node along the different directions. Figure 1
makes these notions clearer. It represents a 2 dimensional

MDSDF graph where node produces an 2x1 array of samples
on each firing, and node consumes an 1x3 array of samples on
each firing. The horizontal dimension is taken to be the direction
along which the stream is infinite. The second diagram shows the
underlying data space. The data space can be thought of as a two
dimensional array that is infinite in the horizontal direction and
of size 2 in the vertical direction. The first column is the data pro-
duced by on its first invocation. The balance equations are
given by , .This can be
solved to yield and .
This means that fires 3 times in the horizontal direction (pro-
duces 3 columns of data) and once in the vertical direction, and

 fires once in the horizontal direction and twice in the vertical
direction. The total number of samples exchanged on the arc is
an array of 2x3 samples.

4. Semantics of the Generalized Model

MDSDF handles only rectangular data-spaces whereas a system
that handles arbitrary lattices must be able to deal with non-rect-
angular data-spaces. In building such a model, several questions
arise:

• One objective is to retain the producer/consumer model
between actors for these streams; how do we determine the
number of samples produced and consumed when the lattice
is non-rectangular?

• How do the various actors know which lattice they are con-
suming and producing samples on?

• How do scanning orders and “next sample consumed” get
determined?

• How do we model non-rectangular decimators and interpola-
tors?

• Can we do compile time scheduling by solving “balance
equations” as is done in MDSDF?

Consider the system depicted in figure 2, where a source actor
produces an array of 6x6 samples each time it fires ((6,6) in
MDSDF parlance). This actor is connected to the decimator with
a non-diagonal decimation matrix. The circled samples indicate
the samples that fall on the decimators output lattice; these are
retained by the decimator. In order to represent these samples on
the decimators output, we will think of the buffers on the arcs as
containing the renumbered equivalent of the samples on a lattice.
For a decimator, if we renumber the samples at the output
according to , then the samples get written to a par-
allelogram shaped array rather than a rectangular array. To see
what this parallelogram is, we introduce the concept of a “sup-
port matrix” that describes precisely the region of the rectangular
lattice where samples have been produced. Figure 2 illustrates

xa t1 t2,()

t̂
t1

t2

a11 a12

a21 a22

n1

n2

Vn̂= = =

V
t̂

V
t̂ V n̂= n̂ ℵ∈ ℵ

V
LAT V() V x̂

x̂ x1 x2,[]T= 0 x1 x2 1<,≤
V FPD V()

FPD V() N V()
V

N V() N V() det V()=
n̂ LAT V()

k̂ n̂ V k̂= k̂
LAT V()

x n̂()
LAT VI() M
y n̂() x n̂() n̂ LAT VI M()∈,= M m m×

LAT VI() LAT VI M()⊇
M

N M() det M()=

y n̂() x n()

y n()
x n()
0

=
n LAT VI()∈

otherwise
 n LAT VI L 1–()∈∀

VI

LAT VI() LAT VI L
1–()⊆

det L()

m
m

m

m

Figure 1.Data space for an MDSDF arc

A B
(2,1) (1,3)

......

A
B

A
r A 1, 2× r B 1, 1×= r A 2, 1× rB 2, 3×=

r A 1, r A 2,,() 1 3,()= r B 1, r B 2,,() 2 1,()=
A

B

LAT VI M()

this for a decimation matrix, where the retained samples have
been renumbered according to and plotted on the
right. The labels on the samples show the mapping. The renum-
bered samples can be viewed as the set of integer points lying
inside the parallelogram that is shown in the figure. In other
words, thesupport of the renumbered samples can be described
as where

We will call thesupport matrix for the samples on the output
arc. In the same way, we can describe the support of the samples
on the input arc to the decimator as where

It turns out that .

Definition 1: The containability condition: let be a set of
integer points in . We say that satisfies thecontainability
condition if there exists an rational-valued matrix
such that .

Definition 2: We will assume that any source actor in the system
produces data in the following manner. A source will produce
a set of samples on each firing such that each sample in will
lie on the lattice . Hence, the set
is a set of integer points, consisting of the points of renum-
bered by . We assume that the set satisfies the con-
tainability condition.

Given a decimator with decimation matrix as shown in figure
3, we make the following definitions and statements.: Denoting
the input arc as and the output arc as , are the bases
for the input and output lattice respectively. are the sup-
port matrices for the input and output arcs respectively. With this
notation, we can state the following theorem:

Theorem 1: [6]The input/output relationships are given by:

Decimator: ,
Expander: , .

Definition 3: Let be a set of points in , and be two
positive integers such that . is said to be organized as
a generalized rectangle of points, or just a generalized

 rectangle, by associating arectangularizing function
with that maps the points of to an integer rectangle.

In summary, our generalized model for expressing non-rectangu-
lar systems has the following semantics:

• Each arc has associated with it a support matrix and a lattice
generating matrix.

• An expander with expansion matrix consumes (1,1) and
produces the set of samples in that is ordered as a
generalized rectangle of data where are
positive integers such that .

• A decimator with decimation matrix consumes a rectan-
gle of data where this rectangle is interpreted
according to the way it has been ordered (by the use of some
rectangularizing function) by the actor feeding the decimator.
It produces (1,1) on average.

• On any arc, the global ordering of the samples on that arc is
established by the actor feeding the arc. The actor consuming
the samples follows this ordering.

• A set of balance equations are written down using the various
factorizations. Additional constraints for arcs that feed a dec-
imator are also written down. These are solved to yield the
repetitions matrix for the network. A scheduler can then con-
struct a static schedule by firing firable nodes in the graph
until each node has been fired the requisite number of times
as given by the repetitions matrix.

For example, consider the system below, where a decimator fol-
lows an expander (figure 4(a))

We start by specifying the lattice and support matrix for the arc
. Let , where is the identi ty matrix, and

. So the source produces (3,3) in MDSDF parlance.
For the system above, we can compute the lattice and support
matrices for all other arcs given these. The expander consumes
the samples on arc SA in some natural order; for example, scan-
ning by rows. The expander produces samples on each

a b c

f

g h i

a

b
c f

i

g
h

MS
(6,6)

M 1 1

2 2–
=

Figure 2. Output samples from the decimator
renumbered to illustrate concept of support matrix.

LAT M()

FPD Q()

Q 3 1.5

3 1.5
=

Q

FPD P()

P 6 0

0 6
=

Q M 1– P=

X
ℜm X

m m× W
N W() X=

S
ζ ζ
LAT VS() ζ VS

1– n̂: n̂ ζ∈{ }=
ζ

LAT VS() ζ

M

M
Ve, We Vf, Wf

e f
L

Ve, We Vf, Wf

e f

Figure 3. Generalized expander and decimator with
arbitrary input lattices and support matrices.

e f Ve V f,
We Wf,

V f VeM= Wf M 1– We=
V f VeL

1–= Wf LWe=

X ℜ2 x y,
xy X= X

x y,()
x y,()

X X x y,()

L
FPD L()

L1 L2,() L1 L2,
L1L2 det L()=

M
M1 M2,()

MS

M 1 1

2 2–
=

L
SA AB

A B

T

L 2 2–

3 2
=

Figure 4. An example to illustrate balance equations and
the need for some additional constraints. a) The system.
b) Ordering of data into a 5x2 rectangle inside FPD(L).

0 1 2-1-2

1
2
3
4

b)
a)

SA VSA I= I
WSA 3I=

FPD L()

firing; these samples are organized as a generalized
rectangle.

Suppose we choose the factorization 5x2 for . One way
to map the samples into an integer rectangle is as shown
by the groupings in figure 4(b). Notice that the horizontal direc-
tion for is the direction of the vector and the
vertical direction is the direction of the vector . A global
ordering on the samples can be deduced from these directions.
For the decimator, a factorization of is chosen, and a
“rectangle” of those samples, where the “rectangle” is deduced
from the global ordering imposed above is consumed per firing
(figure 5).

Now we can write down a set of “balance” equations using the
“rectangles” that we have defined. Denote the repetitions of a
node in the “horizontal” direction by and the “vertical”
direction as . We have

, ,

, , (EQ 1)

where we have assumed that the sink actor consumes (1,1) for
simplicity. We have also made the assumption that the decimator
produces exactly (1,1) every time it fires. This assumption is usu-
ally invalid as is shown in figure 5. Hence, we need to augment
the balance equat ions wi th an addi t ional constra int :

. We can symbolical ly derive
expressions for using [6]:

, and

The solution to 1 gives . With these values,
we get

.

Since this matrix is not integer-valued, it appears that its integer
volume has to be computed by brute force; it turns out to be 47.
Hence, is not satisfied. One way to
satisfy it is to force to be an integer matrix.; the smallest
values that do it are . It is shown in [6] that it
is always possible to solve theseaugmented balance equations.

5. Future Work

The different choices of factorizations leads to different sets of
balance equations, and these in turn will lead to different sched-
ules. One optimization problem that arises is to choose these fac-
torizations in such a way that the schedules are as small as
possible. Some of these issues are discussed in more detail in [6],
although general solutions have not been obtained yet.

Parallel scheduling issues have not been dealt with yet. In order
to effectively exploit data parallelism, techniques developed in
the systolic arrays community [10], and the loop parallelization
community [11] might prove to be useful.

6. References

[1] Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a
Framework for Simulating and Prototyping Heterogeneous Sys-
tems”, International Journal of Computer Simulation, Jan., 1994.

[2] M. C. Chen, “Developing a Multidimensional Synchronous
Dataflow Domain in Ptolemy”, MS Report, UC-Berkeley, UCB/
ERL Memo No. M94/16, June 1994

[3] K. Konstantinides, J. R. Rasure, “The Khoros software devel-
opment environment for image and signal processing”, IEEE
Transactions on Image Processing, May 1994.

[4] E. A. Lee, D. G Messerschmitt, “Static Scheduling of Syn-
chronous Dataflow Programs for Digital Signal Processing,”
IEEE Trans. on Computers, Jan. 1987

[5] E. A. Lee, “Multidimensional Streams Rooted in Dataflow”,
Proceedings of the IFIP Working Conference on Architectures
and Compilation Techniques for Fine and Medium Grain Paral-
lelism, Jan. 20-22, 1993, Orlando, FL

[6] P. K. Murthy, E. A. Lee, “A Generalization of Multidimen-
sional Synchronous Dataflow to Arbitrary Sampling Lattices”,
Technical report, UCB/ERL M95/59, Electronics Research Lab-
oratory, UC Berkeley, Ca 94720, Mar. 1995

[7] P. K. Murthy, S. S. Bhattacharyya, E. A. Lee, “Combined
Code and Data Minimization for Synchronous Dataflow Pro-
grams”, ERL Memo No. UCB/ERL M94/93, Electronics
Research Lab, UC Berkeley, CA 94720, Nov. 1994

[8] G. C. Sih and E. A. Lee, “Declustering: A New Multiproces-
sor Scheduling Technique,” IEEE Trans. on Parallel and Distrib-
uted Systems, June 1993.

[9] P. P. Vaidyanathan,Multirate Systems and Filter Banks, Pren-
tice Hall, 1993

[10] S. Y. Kung,VLSI Array Processors, Prentice Hall, 1988

[11] H.Zima and B.Chapman,Supercompilers for Parallel and
Vector Computers, ACM Press, 1990.

L1 L2,()

det L()
5 2,()

FPD L() 2 3,[]T

2 2,–[]T

det M()

X r X 1,
r X 2,

3rS 1, 1r A 1,= 5r A 1, 2rB 1,= rB 1, rT 1,=

3rS 2, 1r A 2,= 2r A 2, 2rB 2,= r B 2, rT 2,=

T

0 1 2-1-2

1
2
3
4

} Samples retained by
decimator

Samples added by
expander, discarded b
decimator

Original samples
produced by source

2x2 rectangle
consumed by

Figure 5. Some of the data produced by the source in
one iteration of the periodic schedule determined by
the balance equations in equation 1.

decimator

N WBT() N WAB() M⁄=
WBT WAB, r S 1, r S 2,,

WAB
6r S 1, 6– r S 2,

9r S 1, 6r S 2,

= WBT
1
4

21r S 1, 6r S 2,–

3r S 1, 18r S 2,–
=

r S 1, 2 r S 2,, 1= =

WBT
21 2⁄ 3 2⁄–

3 2⁄ 9 2⁄–
=

N WBT() N WAB() M⁄=
WBT

r S 1, 4 r S 2,, 2= =

