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1 Abstract1

A regular data flow graph (RDFG) is a graph with a highly regular structure that enabl

description to be exponentially smaller than the description size for an ordinary graph. Such graph

when certain regular iterative algorithms (like matrix multiplication or convolution) are modeled u

dependence graphs. These graphs can be implemented either on systolic arrays, or wavefront arra

Systolic arrays have a global time clock; operations are scheduled statically and executed accordin

schedule. The global clocking however, presents problems due to clock skewing in large circuits;

wavefront arrays are an attractive alternative. Wavefront arrays use a dataflow method of executi

hence, do not require global synchronization. Array elements start computing whenever they hav

their inputs.

In a systolic implementation, the dependence graph cannot have any cycles since the existe

schedule depends on the existence of a schedule vector that has non-negative dot product with ea

dency edge. However, a graph implemented on a WA may have cycles provided that the cycles

deadlock. There are a couple of computational problems that arise in this context: the first is the d

of deadlock; that is, to determine whether the graph to be implemented has a delay-free cycle. The

is to determine the maximum cycle mean; this represents the iteration rate with which the graph

executed. While both of these problems are well known and well studied for ordinary static, homog

dataflow graphs, and can be solved with polynomial time algorithms, they have not been studied

context of RDFGs. Since RDFGs have an exponentially more compact representation, we determ

complexity of these two problems in terms of this lower representation size. We show that the proble

1.  This research is part of the Ptolemy project, which is supported by the Defense Advanced Research Projects Agency (
the State of California MICRO program, and the following companies: The Alta Group of Cadence Design Systems, Hew
Packard, Hitachi, Hughes Space and Communications, NEC, Philips, and Rockwell.
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NP-complete, and hence, no advantage can be theoretically gained from the smaller input size. We

some heuristics that should work well even if not technically in polynomial time with respect to the 

fication size, especially for large RDFGs.

2 Introduction

A data flow graph (DFG) is a directed graph where the nodes represent computations, and 

communication channels and precedence constraints. Each node produces (consumes) one to

(from) each of its output (input) arcs. An arc can have a number ofinitial tokens (also calleddelays). Each

node has an associatedcomputation time, that represents the number of cycles it takes to finish its com

tation. This dataflow model of computation is not the most general form of dataflow; more powerfu

sions include models where nodes can produce and consume a constant number of tokens of data

(i.e, not necessarily one), and models where nodes can produce and consume variable numbers 

per firing.

A path in the DFG is some connected sequence of edges in the graph. The beginning of the

the node from which the first edge is taken, and the end of the path is the node that at which the las

the path ends. A cycle is a path whose beginning and end are the same. The totaldelay count of a path is

the sum of delays on each of the edges in the path. The total computation time of the path is sum

computation times of each of the nodes along the path. A DFG is said to be in a deadlocked state if

at least one node in the graph that cannot be executed no matter how many times the other ex

nodes are executed. A node cannot execute if it does not have at least one token on each of its inp

DFG is said to bestrongly connected if there is a directed path between any two nodes in the graph.

The following property about dataflow graphs is easily seen to be true:

Property 1:A DFG deadlocks if and only if there is some cycle whose delay count is 0.

Given a DFG, we are interested in the rate at which nodes can be executed. For acyclic DF

rate is infinity since every execution of a node can proceed in parallel. If there are cycles in the grap

is a well known lower bound on the achievable iteration period defined as

,

where the maximum is taken over all cycles  in the graph,  is the computation time of cycle

 its delay count. This quantity is known as themaximum cycle mean (MCM). The throughput of the

graph; that is, the rate at which nodes can be executed, is given by the inverse of the MCM. Even

the number of cycles in a DFG can be an exponential function of the size of the DFG, the MCM 

MAXc
T c( )
D c( )
------------

 
 
 

c T c( ) c

D c( )
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Regular Data Flow Graphs
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computed in polynomial time using a binary search and the Bellman-Ford shortest paths algorithm

other words, it is not actually necessary to enumerate cycles as the definition suggests.

3 Regular Data Flow Graphs

An RDFG [7] is a directed graph that can be characterized by embedding it in a finite dimen

index space such that each node of the graph resides at an index point. For an -dimensional inde

we define the index vector as an -tuple , where each  is an integer. A node can n

described by its location in the index space.

An RDFG has the following properties:

(1)  It is defined over a contiguous, finite region of the index space.

(2)  It has functionally identical nodes, with identical execution times at every index point in

region.

(3)  For every node, each arc in the set of arcs for which the node is a terminal endpoint, has

tial point at the same relative offsets. This means that if there is an arc from  to , then there is

from every point  to every point , where the addition for index points is the usual vector 

tion.

(4)  For every node, the corresponding arcs have corresponding properties (namely, the nu

initial tokens).

Figure 1 shows an example of an RDFG. The big dots on the arcs denote initial tokens. For “bou

nodes, nodes that are near or at the edges of the region where the graph exists, not all incoming or

arcs have a terminal node. In such a case, it is conceptually useful to think of these “hanging” arcs a

output arcs from the graph; these are shown as gray arcs in the figure. An external device feeds

n

n i i 1 … in, ,{ }= ik

a b

a x+ b x+

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 1.An example RDFG. The dots on the arcs represent initial tokens, or delays.
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along the input arcs, and collects data from the output arcs. For the purposes of analysis, therefo

boundary nodes with their input/output arcs will not matter, and will not be shown in the other g

shown in this paper. Hence, the following property of an RDFG is obvious:

Property 2:Each node has the same number of incoming arcs as outgoing arcs.

An RDFG can be fully specified using an arc matrix  for an -dimensional index spac

where each node has  incoming arcs, and an -dimensional vector  that specifies the number 

tokens on each of the  arcs. In an -dimensional index space, each arc is specified as an -dim

vector. Hence, the RDFG in Figure 1 is specified by

, and .

In addition, we need to specify the region  of the space where the graph exists. For a rectangula

like below, it can be easily specified as two intervals whose cross product is the region where th

resides. More complicated polygons can be specified by their vertices. In any case, it is easily seen

description is very compact and highly scalable. In particular, if the number of arcs is constant, then

and  matrices are constant even though the number of nodes may be arbitrarily big. In fact, as lon

number of arcs  is given by , where  is the number of nodes, an RDFG has an exp

tially smaller description size than an ordinary data flow graph. For the example in Figure 1, the co

specification would be given as:

, , and .

The size of this description is clearly . If the graph were described usin

adjacency list, the size would be  since there are  nodes and each connects to

(in this example ). Clearly,  is exponentially smaller than .

A set of paths in the graph can be represented by non-negative integer vector

where  is the number of times an instance of arc  is traversed. If the path starts at a point ,

ends at point . For a cycle that ends at , we have  and hence, . So any 

in the null space of  is a potential candidate for a cycle. The sums of the node computation tim

path  can be computed as , where  is a vector whose entries are all the same; recall that a

have the same computation time in an RDFG. Since the computation times are the same, we can 

be one without loss of generality. Similarly, the delay count of a path  is given by .

n m× A n

m m D

m n n

A 1 1– 0

0 1– 1
= D 0 1 0, ,[ ]=

R

A

D

m m O Nlog( )= N

A D R 0 N1,[ ] 0 N2,[ ]×=

O mlog( ) N1( ) N2( )log+log+

O N1N2m( ) N1N2 m

m 3= mN1N2( )log mN1N2

pT p1 … pm, ,[ ]=

pi ai x

y x Ap+= x y x= Ap 0=

A

p pTt t

p pTD
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Cycle existence problems on RDFGs
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4 Cycle existence problems on RDFGs

In [7], Kung sets up the MCM problem as one of computing

(EQ 1)

where  is a vector of ones. This problem is stated to be an instance of nonlinear integer progra

Kung claims that since the size of the problem formulation is independent of the size of the graph, it

solved more efficiently. However, Kung erroneously assumes in his comparison that the complexity

MCM problem for DFGs is proportional to the number of cycles in the DFG. As already mentioned, 

untrue, and the MCM can be solved much more efficiently than enumerating cycles. Also, integer

programming is an NP-complete problem, and integer non-linear programming is even worse. We 

course, represent an RDFG as a DFG and use a polynomial time algorithm (in the size of the D

course) to compute the MCM. But we do not really know how this compares to the exponential com

(in the size of the RDFG) of the non-linear integer programming formulation in equation 1.

Moreover, Kung apparently overlooks an important detail in his formulation given in equati

given a cycle vector  in the null space of arc matrix , how do we know for sure that this cycle ac

exists in the graph? Recall that the graph only exists in a finite region of the index space. Hence, it c

possible that there is no way to actually form the cycle suggested by  since the graph may no

enough. Or, in the MCM computation, the  that maximizes the quantity in equation 1 may not exist

graph at all. In the following, we show that the problem of determining whether a null vector  is a 

cal cycle is NP-complete. However, this does not mean that we have to resort to a DFG represent

long as  is small enough, an exponential time algorithm in  might be better than a polynomial tim

the DFG. However, the result establishes that there is theoretically little hope of making full use 

smaller description size of the RDFG.

To motivate the problem, consider the graph in Figure 2. The figure shows an RDFG specifi

, , .

MAXc 1
cT1

cTd
---------, 

 

1

c A

c

c

c

m m

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 2.Example that shows the non-existence of a cycle in the region of the graph.

A 1– 1 1

1 2 2–
= D 0 0 0= R 0 2,[ ] 0 2,[ ]×=
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So the graph occupies the 3x3 square cornered at the origin. The vector  is in the nul

of , and hence is a potential cycle. However, this cycle does not actually exist in the graph beca

graph is not big enough to enable traversing four instances of the arc , and three insta

. So given a null space vector, we would like to efficiently determine whether the cycle phys

exists in the region where the graph exists. For simplicity, we assume that the graph exists in a rec

region. Formally,

Definition 1: The -dimensional CYCLE EXISTENCE problem is the following. Given an  mat

, and an integer vector  in the null space of , and a rectangular region  give

, determine whether there is a point  in  and a path consisting of as m

instances of each arc as specified by  so that the path never leaves the region .

Definition 2: The PARTITION problem is the following. Given a set  of  positive integers, determ

whether there is a subset  of  such that .

Theorem 1:The PARTITION problem is NP-complete [6].

Lemma 1: In the -dimensional CYCLE EXISTENCE problem, a cycle starting from some point  in

region  exists in  iff it exists starting from .

Proof: Clearly, if the cycle exists and goes through 0 (that is, the 0 node is in the cycle), then the

exists starting from 0. If the cycle does not go through 0, then the smallest index through which it 

some number in ; let this be . Clearly, we can subtract  from each index that is in the cycle a

one that goes through 0; in other words, we can translate any cycle back to the origin.

Note that the above lemma does not hold in higher dimensions because the numbers 

dimension cannot be treated independently.

The CYCLE EXISTENCE problem as defined may not even be in NP since given an arbitrar

vector, it is not clear whether the path (the precise order in which nodes are visited) can be writte

succinctly. In other words, suppose that there are three arcs, . Suppose the null vector happe

. However, the only way in which a cycle can be constructed in the region  might be v

sequence . It is not clear whether this string can be written down more compactly. In ge

there might exist instances where the sequence of arcs traversed in the region has length given by

of the entries in the null vector; clearly, this is exponential in the size of the representation. Howev

can still look at the complexity of this problem if we restrict our attention to null vectors whose entri

all bounded in some manner.

cT 4 1 3=

A

1– 1
T

1 2–
T

n n m×

A c A R

0 n1,[ ] … 0 nn,[ ]×× x R

c R

A m

S A a
a S∈
∑ a

a A S–∈
∑=

1 x

R 0 r,[ ]= R 0

R y y

a b c, ,

2 3 3, ,[ ]T R

abcbacbc
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Definition 3: The 0-1-2 CYCLE EXISTENCE problem is the CYCLE EXISTENCE problem with t

restriction that each entry in the null vector  has value drawn from the set . That is, we onl

sider the set of cycles (i.e, a subset of the null space) where no arc occurs more than twice in a cyc

Theorem 2:The 0-1-2 CYCLE EXISTENCE problem is NP-complete.

Proof: The problem is in NP since given a sequence of arcs in the path, and the point , we have

sum from  and ensure that we never go out of the region. This can be done in polynomial time si

total length of the path cannot be more than . To show completeness, we reduce from PARTITIO

the  integers in an instance of PARTITION be . Define . Clearly, if a partit

 exists, then each sum in

sums to . Let the arc matrix in the instance of CYCLE EXISTENCE be defined as

Hence, in this instance, . Clearly,  is in the null space of ; hence, this is the nul

tor in our instance of 0-1-2 CYCLE EXISTENCE. Finally, let the region  be . Thus, the RDF

this specification has nodes at each integer point in . The arc  specifies that there is an arc 

node  and , between  and  and so on (see Figure 3). Clearly, a cycle that uses each

once,  twice, and still stays in  must have the property that there is a subset of the  that su

Similarly, if such a subset exists, then we can find a cycle that never leaves .QED.

Another problem is that of finding a “minimal” vector in the null space of :

Definition 4: The MINIMAL CYCLE VECTOR is the following. Given an  matrix , and an inte

ger , find a null space vector  such that the maximum element in  is less than . Note that the

requirement that the cycle represented by this vector actually exist; hence, no region is specified.

Corollary  1: The MINIMAL CYCLE VECTOR problem is NP-complete.

Proof: Membership in NP is trivial since it is just matrix-vector multiplication to verify that the result is

0 vector. We use the same reduction from PARTITION; that is, the matrix  is as in the proof of Th

c 0 1 2, ,{ }

x

x

2m

m a1 … am, , b ai∑( ) 2⁄=

S

a
a S∈
∑ a

a A S–∈
∑=

b A a1 … am b–=

n 1= 1 … 1 2
T A

R 0 b,[ ]

0 b,[ ] a1

0 a1 1 1 a1+

0 1 2 a2 a2+1 bb-1a1+1a1

Fig 3.Graph used in the proof of Theorem 2.

ai

b– R ai b

R

A

n m× A

K c c K

A
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2. We let . A cycle vector whose maximum entry is less than 2 for this  has to be a vector 

entries, and this would then solve the partition problem. Conversely, if the PARTITION problem 

solution, then such a vector would exist.QED.

In the discussion on membership of the general CYCLE EXISTENCE problem in NP, we 

tioned that the presence of arbitrary integers in the null vector presents problems since there does 

to be a way, in general, of representing such paths succinctly. In general, in combinatorial proble

have integers in their input instances, there are two sources of complexity: the number of discrete e

(the number of integers, the number of edges or nodes etc.), and the values the integers can ta

input instance. Hence, there are three “dimensions” to the complexity of the 1-d CYCLE EXISTE

problem: the number of entries in the arc matrix , the arbitrary values they take, and the potential

trary values in .

Suppose that  is fixed. Then, the PARTITION problem can be solved in polynomial time

simply look at all possible subsets, and since  is not increasing, the number of subsets is constan

the arbitrariness of the  does not affect the complexity of PARTITION; only the number of them

does.

We know that with the entries in  restricted to be 0-1-2 valued, the CYCLE EXISTENCE p

lem is NP-complete, meaning that as  is increased, it is unlikely that an algorithm whose running 

a polynomial function of  and  exists. If  is also fixed, then the 0-1-2 CYCLE EXIS

ENCE problem can be solved in polynomial time also; simply look at all possible ways of constructi

path. Since there are a fixed number of arcs, and each occurs at most two times, we can find out

there is a sequence that never leaves the region. Hence, the values of the entries of  do not affect

plexity of 0-1-2 CYCLE EXISTENCE. So in reality, there are two “dimensions” to the complexity: ,

the arbitrariness of . Hence, we look at the complexity of CYCLE EXISTENCE when  is fixed bu

allowed to have arbitrary entries.

Theorem 3: The 1-dimensional CYCLE EXISTENCE problem, with , is solvable in polynom

time.

Proof: Since , the arc matrix has two entries. One of the entries must be positive and one m

negative in order for there to be a non-negative null vector. Let the arc matrix . Let the r

. Any null vector  is of the form , where  denotes the gcd of

and . Suppose that . Consider any path that traverses each of the two arcs as many times

by . In order for the path to stay in , it can never visit a negative index, since the graph is only d

K 2= A

m

c

m

m

ai m

c

m

ai( ) b( )log,log m m

A

m

c m c

m 2=

m 2=

A a b–,[ ]=

R 0 r,[ ]= c c bk

a b,( )
------------- ak

a b,( )
-------------

T

= x y,( ) x

y k 1=

c R
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over . From the set of paths that obey this constraint, we can choose the path where th

mum state visited is minimized. For example, let , and . One possible path

does not visit any negative state is ; all partial sums in this path are non-neg

. Another possible path is

. The path  visits a negative index (-1). Of the two possible pa

that only visit non-negative indices, the maximum state visited by the first one is 4 while the max

state visited by the second path is 6. Clearly, if we can compute the minimum maximum state visit

all such paths (where the minimum state visited is 0), we can answer yes or no to the existence 

simply by comparing that value against . It turns out that this problem is identical to the minimum 

scheduling problem for a 2-node SDF graph [1]; there it is shown that the minimum maximum reac

given by . Hence, a cycle with cycle vector  exists iff . If , then w

just repeat the path  times; this cannot increase the maximum state visited. Hence, the result hold

cycle vector .QED.

This result can be easily extended to 2 dimensions if the  arc matrix  has rank 1 (if 

rank 2, then the null space has dimension 0 and the 0 vector is the only cycle vector). In the 1-d

, the complexity of CYCLE EXISTENCE is open since the technique used above cann

extended easily anymore. Hence, it does not seem possible to get a closed form expression for t

mum maximum state visited over all paths.

5 Heuristic approaches

Although we cannot apparently get polynomial-time algorithms for cycle detection/exist

problems, we can adopt heuristic approaches that will definitely be much better in practice than re

to a full-flown graph description. In particular, suppose that the graph is big enough, say 1000 b

nodes. We investigate some ways of detecting deadlock efficiently (even if not in time polynomial

size of the matrix descriptions), and computing the MCM.

Basically, we are interested in solving the following problem:

find a non-negative, integer vector  such that (EQ 2)

This will give us a vector that represents a cycle in a large enough graph. In the following, we stu

review some fundamental properties of the above equation. We will use the notation

denote an -dimensional column vector.

R 0 r,[ ]=

A 2 3–,[ ]= c 3 2
T=

2( ) 2( ) 3–( ) 2( ) 3–( )

2 2 2+, 4 2 2 3–+, 1 2 2 3– 2+ +, 3 2 2 3– 2 3–+ +, 0= = = =

2( ) 2( ) 2( ) 3–( ) 3–( ) 2( ) 3–( ) 2( ) 2( ) 3–( )

r

a b a b,( )–+ c r a b a b,( )–+≥ k 1>

k

c

2 2× A

m 3=

x Ax 0=

x x1 … xm, ,( )=

m

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 9 of 17
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5.1 Homogenous Linear Diophantine Equations

Equation 2 represents a system of linear equations whose coefficients are integers; these a

linear Diophantine equations. They are homogenous because the constant term is 0. Let

be the set of solutions of . A solution  is calledirreducible  if it cannot be represented as a su

of other solutions in . In the natural partial ordering of tuples ( ), a solution  is 

ducible iff there is no solution  such that . Hence, irreducible solutions are also calledminimal ; we

will use the term minimal solution as it is easier to type. Clearly,  is closed under addition and co

 as the zero element; hence,  is an additive sub-monoid.

The following characterization is fundamental:

Theorem 4:The set  has afinite basis; that is, there are a finite number of elements  such that

 can be represented as , where  are all non-negative integers.

Proof: The theorem can be seen as a consequence of Hilbert’s famous finite basis theorem; hence,

 is sometimes called theHilbert basis for  [13]. There is also a direct way of determining its finit

ness; we outline a method due to Grace and Young [4]. Consider just one equation

(EQ 3)

where the  are all positive integers, and we desire a non-negative solution , w

 etc. Clearly, the following  solutions are all minimal (the rest of the variables in e

solution are 0):

(EQ 4)

We can bound the values of  in any minimal solution by

(EQ 5)

(the  case is symmetric). Indeed, suppose  for some . Then the right hand side o

tion 3 is greater than , or , meaning that at least one

the . Hence, this solution cannot be minimal since one of the solutions in equation 4 is s

Because of the bound, there are only a finite number of tuples that are minimal, and these will be t

elements.

ℑ x:Ax 0={ }=

Ax 0= x

ℑ x y xi yi i∀≤⇔≤ y

x x y≤

ℑ

0 ℑ

ℑ hi ℑ∈

x ℑ∈ pihi∑ pi

hi ℑ

a1x1 a2x2 … amxm+ + + b1y1 b2y2 … bnyn+ + +=

ai bi, x y,( )

x x1 … xm, ,( )= mn

xr bs grs⁄= ys ar grs⁄= grs gcd ar bs,( )= 1 r m 1 s n≤ ≤,≤ ≤( )∀

xi

xi b1 … bn+ +≤

y xi b1 … bn+ +> i

ai b1 … bn+ +( ) b1 y1 ai–( ) … bn yn ai–( ) 0>+ +

yj ai>
10 of  17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics
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Suppose that there is another equation that also has to be satisfied. The minimal solutions 

tion 3 can be written as

So any solution to equation 3 can be written as

where  are arbitrary non-negative integers. We substitute the above values for  is the secon

tion, and get a new equation relating the . This in turn has a finite basis, that can be determ

exhaustive search, to give the set of minimal solutions . Any solution can be

resented as , where the  are arbitrary non-negative integers. We substitu

back into the first equation to get

.

The minimal solutions are now just . If there is a third equation, we can substitute the

bination of these in and repeat the process. Since there are a finite number of equations in the sy

basis is finite, and can be determined in this fashion.QED

Example 1:Suppose . We need to determine the minimal solutions of , or

The bound establishes that for the first equation,  for each  in any minimal solution. By searc

easily seen that  are the only minimal solutions. So a

solution  can be written as . Substituting this into the second eq

tion yields . The minimal solutions to this equation a

. So . Substi-

tuting back, we get . So

the minimal solutions to the system are , obtained by s

ting each of the . Eliminating redundant solutions gives the final

as .

The bound given by equation 5 (for one equation) was strengthened by Huet [5]:

(EQ 6)

Lambert [8] gives an even sharper bound:

x α1= y β1=

…
x αp= y βp=

x t1α1 … t pαp+ +=

y t1β1 … t pβp+ +=

ti x y,

ti

t γ1 t γ2 … t γσ=, ,=,=

t T1γ1 … Tσγσ+ += Ti

x κ1T1 … κσTσ+ +=

y λ1T1 … λσTσ+ +=

x κ j y λ j=,=

A 1 1 1– 1–

2 2– 1– 1
= Ax 0=

x1 x2+ x3 x4+=

2x1 x4+ 2x3 x3+=

xi 2≤ i

1 0 1 0, , ,( ) 1 0 0 1, , ,( ) 0 1 1 0, , ,( ) 0 1 0 1, , ,( ), , ,

x x t1 t2 t3 t4 t1 t3 t2 t4+,+,+,+( )=

t1 3t2+ 3t3 t4+=

1 0 0 1, , ,( ) 0 1 1 0, , ,( ) 0 1 0 3, , ,( ) 3 0 1 0, , ,( ), , , t T1 3T4 T2 T3 T2 T4 T1 3T3+,+,+,+( )=

x T1 T2 T3 3T4 T1 T2 3T3 T4 T1 T2 4T4 T1 T2 4T3+ +,+ +,+ + +,+ + +( )=

1 1 1 1, , ,( ) 1 1 1 1, , ,( ) 1 3 0 4, , ,( ) 3 1 4 0, , ,( ), , ,

Ti 1 T j, 0 j i i,≠, 1 2 3 4, , ,= = =

1 1 1 1, , ,( ) 1 3 0 4, , ,( ) 3 1 4 0, , ,( ), ,

xi max bj( ) yj max ai( )≤,≤
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(EQ 7)

It is easily seen that this bound is tight as there are minimal solutions that meet it with equali

instance, the minimal solutions given for one equation in example 1).

Even with the sharpest bound, there can be an exponential number of minimal solutions e

one equation. The situation quickly gets worse in the procedure given in the proof above when m

equations are involved. However, the number of minimal solutions to the whole system will be les

the number for any subset of the equations; so these bounds are ultimately not enough to tell us 

about the entire system.

Pottier [12] gives the following bound for systems of equations using geometric argument

, where . Let  be the largest absolute value of the minors

order  of  (a minor of order  of matrix  is the determinant of an  submatrix of ). Then,

(EQ 8)

where  is the number of columns of .

For the matrix in example 1, we get . So  and . 

6 is the smallest bound in this case, and is not tight.

5.2 Deadlock detection

The graph deadlocks if there is a cycle  such that  and  where  is the delay

tor. Since both  are non-negative,  iff  whenever  and  whenever

Setting  for an  where  eliminates column  from ; hence, the deadlock detection pro

becomes one of solving a smaller system , where  is the submatrix  with the set of co

 removed. Deadlock occurs iff this system has a non-negative integral solution and the

is big enough that the cycle exists in it. Techniques for determining a solution are given in 5.4.

5.3 Maximum cycle mean

The following lemma shows that minimal solutions are sufficient to determine the maximum 

mean in the RDFG.

Lemma 2:Suppose that , , and . Then

x1 … xm max bi( ) y1 … yn max ai( )≤+ +,≤+ +

M ∞ maxx ℑ∈ x ∞= x ∞ max xi( )= Dr

r A r A r r× A

M ∞ n r–( )Dr≤

n A

D1 2 D2, 4= = M ∞ 3 2×≤ 6= M ∞ 2 4×≤ 8=

c c ℑ∈ cTd 0= d

c d, cTd 0= ci 0= di 0> di 0= ci 0>

ci 0= i di 0> i A

A'c' 0= A' A

ai :di 0≠{ }

c1 c2 ℑ∈, α β 0>, c αc1 βc2+=
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Proof: Recall that . Letting , let

, .

We assume that  since otherwise the cycle is deadlocked. T

. So  implying that

one of the terms is positive and one negative since .QED.

Hence, we do not need to consider non-minimal solutions since there will always be a m

cycle that has larger MCM. One heuristic strategy for determining the MCM in a large enough grap

use the bound on minimal solutions given in equation 8, and construct a “minimal” RDFG that pro

contains all of the minimal cycles. On this graph, we can use standard graph techniques based on 

man-Ford shortest paths algorithm [9] for determining the MCM. However, constructing this min

RDFG appears to be non-trivial; in the following we give one method that is not optimal in genera

then give a conjecture that, if correct, could give much more compact graphs.

Recall that we were restricting our attention to RDFGs specified over rectan-

gular regions. One technique for constructing an RDFG that contains all of the mini-

mal cycles is to simply map out a tour where each segment of the tour consists of

 instances of each arc. The vectors are separated into four groups: group

contains the vectors that point in the th quadrant in the plane. The quadrants are shown in the figu

right. The vectors are sorted by their gradients, with steepest first. We then construct a walk by takin

the vectors in group (1), in the sorted order. We continue the walk by choosing vectors in group

reverse sorted order, then group (3) vectors in sorted order, and finally group (4) vectors in revers

order. We call this the maximal tour. The RDFG is then created over the smallest rectangle that c

this tour. This procedure can be easily generalized to higher dimensional RDFGs.

Suppose now that  is some minimal cycle. Clearly, the maximum horizontal distance tha

cycle covers has to less than the horizontal distance spanned by the maximal tour given above. S

the maximum vertical distance spanned by any minimal cycle is also less than that spanned by the 

tour. Hence, the minimal cycle is contained in a rectangle that is smaller than the rectangular regi

which the graph exists in the sense that the rectangle containing the minimal cycle is contained in th

region. Hence, the constructed graph region contains all of the minimal cycles.

c 1

cTd
--------- max 1

c1
Td

--------- 2

c2
Td

---------,
 
 
 

≤

1 1 1 … 1, , ,( )= a1 c1
T1 a2, c2

T1 b1, c1
Td b2, c2

Td= = = =

λc

αa1 βa2+

αb1 βb2+
-------------------------= λ1

c1
T1

c1
Td

---------
a1

b1
----- λ2,

c2
T1

c2
Td

---------
a2

b2
-----= = = =

b1 b2 0>,

αb1λc βb2λc+ αa1 βa2+ αb1λ1 βλ2b2+= = αb1 λc λ1–( ) βb2 λc λ2–( )+ 0=

α β b1 b2 0>, , ,

(1)

(2)(3)

(4)

n r–( )Dr I

I

c
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The bound given in equation 8 is not tight, as mentioned, and can thus lead to graphs much

than necessary. Even if the bound were tight, the graph constructed might still be bigger than ne

since we do not need to traverse each type of edge in series as is done in the construction above

lowing example elucidates this.

Example 2:Suppose . The minimal solutions that we determined in example 1 w

. The computed bound is , whereas the tight bou

by examining the minimal solutions, is . Using the tight bound of , we construct the graph by con

ing the tour, starting from an arbitrary point, of four instances of , then four of  and s

The maximum horizontal distance spanned is  and the maximum vertical distance is . Hen

“minimal” graph constructed in this case exists over an  rectangle and contains  nodes.

However, consider the  graph shown in figure 4. This graph contains both of the c

:

, and

. Of course, it contains

: . So, this  graph is the smallest graph th

contains all of the minimal cycles for this example, and the  graph constructed above is larg

necessary.

One reason why the graph that results from our construction is so big is our insistence on sp

the maximum possible distance horizontally and vertically. This is done to make the proof of corre

simple, but we conjecture that the following is also true:

A 1 1 1– 1–

2 2– 1– 1
=

1 1 1 1, , ,( ) 1 3 0 4, , ,( ) 3 1 4 0, , ,( ), , M ∞ 3 2×≤ 6=

4 4

1 2
T

1 2–
T

8 12

8 12× 96

3 4×

0,3 1,3 2,3

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 4.Minimal graph for example 2.

1 3 0 4, , ,( ) 3 1 4 0, , ,( ),

0 1,( ) 1 3,( ) 2 1,( ) 1 2,( ) 0 3,( ) 1 1,( ) 0 2,( ) 1 0,( ) 0 1,( )→ → → → → → → →

0 1,( ) 1 3,( ) 2 1,( ) 1 0,( ) 2 2,( ) 1 1,( ) 0 0,( ) 1 2,( ) 0 1,( )→ → → → → → → →

1 1 1 1, , ,( ) 0 0,( ) 1 2,( ) 2 0,( ) 1 1,( ) 0 0,( )→ → → → 3 4×

8 12×
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Conjecture 1:A minimal cycle  exists in the graph if it is possible to find a path in the graph 

traverses each arc  times, without repeating any arc.

If the conjecture is true, then we can construct a “minimal” tour where we attempt to stay as

to the starting point as possible, without repeating any arcs. The smallest rectangle that contains th

ing tour is then the “minimal” graph. For example 2, the graph constructed using this type of he

(with the tight bound of ) results in an  graph, which is quite close to the optimal solution.

Note that the final qualifier in the conjecture above, “without repeating any arc”, is necess

otherwise, the minimal tour for the above example would result in an  graph that does not con

of the minimal cycles.

Another heuristic is to simply enumerate the cycles. This is done by enumerating the m

solutions in ; algorithms are given in [2][3][12]. It is not clear which approach will be more benefic

practice.

5.4 Integer programming techniques

Since equation 2 is an instance of integer linear programming (ILP), we review some tech

that can also be used to solve it; in particular, these techniques are needed to solve the deadlock p

defined in section 5.2.

A matrix  is calledunimodular  if it is integral and has a determinant of . A matrix of fu

row rank is said to be inHermite normal form (HNF) if it has the form , where  is a non-singu

lar, lower triangular matrix, in which ,  and  for .

Theorem 5: If  is an  integer matrix, with , then there exists an  unimodu

matrix  such that  where  is in HNF, and  is an integer matrix.

Proof: See [11] for a proof.

The HNF can be determined in polynomial time.

The basic integer linear programming optimization problem is the following:

(EQ 9)

where  are integral matrices and vectors, the solution vector  is required to be integral. The 

ated feasibility problem is to find an integer vector  such that the following holds, where again the

ces and vectors are all integral:

c

M ∞

4 3 5×

3 2×

ℑ

U 1±

B 0 B

bii 0> i∀ bij 0≤ bij bii< i j>

A m n× rank A( ) m= n n×

C AC B 0= B H 1– A

max cx:Ax b≤{ }

A b c, , x

x
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(EQ 10)

It can be easily shown that if the feasibility problem can be solved, than the optimization problem 

solved using a polynomial number of calls of the feasibility solving algorithm. The feasibility proble

however, NP-complete. So is the following feasibility problem:

(EQ 11)

where we desire a non-negative vector .

5.5 Determining the null vector efficiently using Lenstra’s algorithm

Interestingly enough, if the number of columns of the matrix  is fixed, then all of the above 

lems can be solved in polynomial time by Lenstra’s algorithm [10]. In other words, the complexity of

problems does not arise because of the arbitrary integers that are allowed in the problem instance

they arise due to the combinatorial aspect: the number of columns. The precise statement of Lens

orem is:

Theorem 6: [Lenstra] For each fixed natural number , there exists a polynomial time algorithm w

solves the ILP problem in equation 9, where  has rank at most , and where input data are all rat

Hence, if either the number of columns or the number of rows is fixed, then the ILP probl

equation 9 can be solved in polynomial time. From the above, we can prove the following:

Corollary  2: For fixed natural numbers  and , there exists a polynomial time algorithm which s

the ILP problem in equation 11, where  is , and where input data are all rational.

Proof: Suppose that  has full row rank , and has  columns. Then we can find an  unimo

matrix  such that . For any integer vector , there is an integer vector  such

. Hence,  iff . Let , where  is , and  is

, and  where  has  rows and  has  rows. We can solve

. We need to determine  such that , or . This last problem is

ILP problem in  variables, and can be solved using Lenstra’s algorithm.QED.

Practically, the conditions of the corollary will usually hold since the number of rows in the

matrix is some small fixed number (like 2 or 3 for 2 or 3 dimensional RDFGs), and the number of co

is also likely to be small in practice (since each node will have small degree). Hence, we can find

negative null vector, representing a potential cycle, efficiently in such cases.

x:Ax b≤{ }

x:Ax b x 0≥,={ }

x

A

n

A n

n m

A n m×

A n m m m×

U AU B 0= x y

x Uy= Ax b= AUy b B 0 y= = U U1 U2= U1 m n× U2

m m n–( )× y y1 y2
T

= y1 n y2 m n–

y1 B 1– b= y2 Uy x 0≥= U– 2y2 U1y1≤

m n–
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6 Conclusion

We have studied two problems concerning cycles in RDFGs in this paper: deadlock detecti

computing the maximum cycle mean. Since RDFGs can be represented very compactly, our intent

to study the complexity of these two problems in terms of the compact representation. We have sho

these problems are NP-complete. We have then given some heuristic techniques for determinin

quantities; these techniques should be better than those currently known in the literature, although 

made no attempt to quantify the improvement, if any, in this paper.
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