
November 19, 1997

1 of 17

Department of Electrical
Engineering and Computer Science

University of California

Berkeley, California 94720

A

•T

H
E

•U
N

IV
E

R
S I T Y • O F • C

A
L

I F
O

R
N

IA
•

•1868•

LE
T THE R E BE

LIG H T
Two Cycle-Related Problems of Regular Data
Flow Graphs: Complexity and Heuristics

Praveen K. Murthy
Edward A. Lee

(murthy,eal)@eecs.berkeley.edu

Technical Report: UCB/ERL M97/76, Electronics Research Lab
es its

s arise

sing

ys (WA).

g to this

 hence,

on, and

e all of

nce of a

ch depen-

 do not

etection

 second

 can be

eneous

 in the

ine the

ms are

DARPA),
lett
1 Abstract1

A regular data flow graph (RDFG) is a graph with a highly regular structure that enabl

description to be exponentially smaller than the description size for an ordinary graph. Such graph

when certain regular iterative algorithms (like matrix multiplication or convolution) are modeled u

dependence graphs. These graphs can be implemented either on systolic arrays, or wavefront arra

Systolic arrays have a global time clock; operations are scheduled statically and executed accordin

schedule. The global clocking however, presents problems due to clock skewing in large circuits;

wavefront arrays are an attractive alternative. Wavefront arrays use a dataflow method of executi

hence, do not require global synchronization. Array elements start computing whenever they hav

their inputs.

In a systolic implementation, the dependence graph cannot have any cycles since the existe

schedule depends on the existence of a schedule vector that has non-negative dot product with ea

dency edge. However, a graph implemented on a WA may have cycles provided that the cycles

deadlock. There are a couple of computational problems that arise in this context: the first is the d

of deadlock; that is, to determine whether the graph to be implemented has a delay-free cycle. The

is to determine the maximum cycle mean; this represents the iteration rate with which the graph

executed. While both of these problems are well known and well studied for ordinary static, homog

dataflow graphs, and can be solved with polynomial time algorithms, they have not been studied

context of RDFGs. Since RDFGs have an exponentially more compact representation, we determ

complexity of these two problems in terms of this lower representation size. We show that the proble

1. This research is part of the Ptolemy project, which is supported by the Defense Advanced Research Projects Agency (
the State of California MICRO program, and the following companies: The Alta Group of Cadence Design Systems, Hew
Packard, Hitachi, Hughes Space and Communications, NEC, Philips, and Rockwell.

Introduction

 develop

speci-

the arcs

ken onto

pu-

l ver-

 per firing

of tokens

 path is

t edge in

 of the

 there is

ecutable

ut arcs. A

Gs, this

h, there

 and

 though

can be
NP-complete, and hence, no advantage can be theoretically gained from the smaller input size. We

some heuristics that should work well even if not technically in polynomial time with respect to the

fication size, especially for large RDFGs.

2 Introduction

A data flow graph (DFG) is a directed graph where the nodes represent computations, and

communication channels and precedence constraints. Each node produces (consumes) one to

(from) each of its output (input) arcs. An arc can have a number ofinitial tokens (also calleddelays). Each

node has an associatedcomputation time, that represents the number of cycles it takes to finish its com

tation. This dataflow model of computation is not the most general form of dataflow; more powerfu

sions include models where nodes can produce and consume a constant number of tokens of data

(i.e, not necessarily one), and models where nodes can produce and consume variable numbers

per firing.

A path in the DFG is some connected sequence of edges in the graph. The beginning of the

the node from which the first edge is taken, and the end of the path is the node that at which the las

the path ends. A cycle is a path whose beginning and end are the same. The totaldelay count of a path is

the sum of delays on each of the edges in the path. The total computation time of the path is sum

computation times of each of the nodes along the path. A DFG is said to be in a deadlocked state if

at least one node in the graph that cannot be executed no matter how many times the other ex

nodes are executed. A node cannot execute if it does not have at least one token on each of its inp

DFG is said to bestrongly connected if there is a directed path between any two nodes in the graph.

The following property about dataflow graphs is easily seen to be true:

Property 1:A DFG deadlocks if and only if there is some cycle whose delay count is 0.

Given a DFG, we are interested in the rate at which nodes can be executed. For acyclic DF

rate is infinity since every execution of a node can proceed in parallel. If there are cycles in the grap

is a well known lower bound on the achievable iteration period defined as

,

where the maximum is taken over all cycles in the graph, is the computation time of cycle

 its delay count. This quantity is known as themaximum cycle mean (MCM). The throughput of the

graph; that is, the rate at which nodes can be executed, is given by the inverse of the MCM. Even

the number of cycles in a DFG can be an exponential function of the size of the DFG, the MCM

MAXc
T c()
D c()

 
 
 

c T c() c

D c()
2 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Regular Data Flow Graphs

 [9]. In

sional

x space,

ow be

 this

 its ini-

 an arc

addi-

mber of

ndary”

 outgoing

s input/

 in data
computed in polynomial time using a binary search and the Bellman-Ford shortest paths algorithm

other words, it is not actually necessary to enumerate cycles as the definition suggests.

3 Regular Data Flow Graphs

An RDFG [7] is a directed graph that can be characterized by embedding it in a finite dimen

index space such that each node of the graph resides at an index point. For an -dimensional inde

we define the index vector as an -tuple , where each is an integer. A node can n

described by its location in the index space.

An RDFG has the following properties:

(1) It is defined over a contiguous, finite region of the index space.

(2) It has functionally identical nodes, with identical execution times at every index point in

region.

(3) For every node, each arc in the set of arcs for which the node is a terminal endpoint, has

tial point at the same relative offsets. This means that if there is an arc from to , then there is

from every point to every point , where the addition for index points is the usual vector

tion.

(4) For every node, the corresponding arcs have corresponding properties (namely, the nu

initial tokens).

Figure 1 shows an example of an RDFG. The big dots on the arcs denote initial tokens. For “bou

nodes, nodes that are near or at the edges of the region where the graph exists, not all incoming or

arcs have a terminal node. In such a case, it is conceptually useful to think of these “hanging” arcs a

output arcs from the graph; these are shown as gray arcs in the figure. An external device feeds

n

n i i 1 … in, ,{ }= ik

a b

a x+ b x+

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 1.An example RDFG. The dots on the arcs represent initial tokens, or delays.
Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 3 of 17

Regular Data Flow Graphs

re, these

raphs

e

of initial

ensional

r region

e graph

 that this

 the

g as the

onen-

mplete

g an

 others

,

 then it

vector

es in a

ll nodes

take it to
along the input arcs, and collects data from the output arcs. For the purposes of analysis, therefo

boundary nodes with their input/output arcs will not matter, and will not be shown in the other g

shown in this paper. Hence, the following property of an RDFG is obvious:

Property 2:Each node has the same number of incoming arcs as outgoing arcs.

An RDFG can be fully specified using an arc matrix for an -dimensional index spac

where each node has incoming arcs, and an -dimensional vector that specifies the number

tokens on each of the arcs. In an -dimensional index space, each arc is specified as an -dim

vector. Hence, the RDFG in Figure 1 is specified by

, and .

In addition, we need to specify the region of the space where the graph exists. For a rectangula

like below, it can be easily specified as two intervals whose cross product is the region where th

resides. More complicated polygons can be specified by their vertices. In any case, it is easily seen

description is very compact and highly scalable. In particular, if the number of arcs is constant, then

and matrices are constant even though the number of nodes may be arbitrarily big. In fact, as lon

number of arcs is given by , where is the number of nodes, an RDFG has an exp

tially smaller description size than an ordinary data flow graph. For the example in Figure 1, the co

specification would be given as:

, , and .

The size of this description is clearly . If the graph were described usin

adjacency list, the size would be since there are nodes and each connects to

(in this example). Clearly, is exponentially smaller than .

A set of paths in the graph can be represented by non-negative integer vector

where is the number of times an instance of arc is traversed. If the path starts at a point ,

ends at point . For a cycle that ends at , we have and hence, . So any

in the null space of is a potential candidate for a cycle. The sums of the node computation tim

path can be computed as , where is a vector whose entries are all the same; recall that a

have the same computation time in an RDFG. Since the computation times are the same, we can

be one without loss of generality. Similarly, the delay count of a path is given by .

n m× A n

m m D

m n n

A 1 1– 0

0 1– 1
= D 0 1 0, ,[]=

R

A

D

m m O Nlog()= N

A D R 0 N1,[] 0 N2,[]×=

O mlog() N1() N2()log+log+

O N1N2m() N1N2 m

m 3= mN1N2()log mN1N2

pT p1 … pm, ,[]=

pi ai x

y x Ap+= x y x= Ap 0=

A

p pTt t

p pTD
4 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Cycle existence problems on RDFGs

mming.

 can be

 of the

this is

 linear

can, of-

FG of-

plexity

on 1:

tually

ould be

t be big

 in the

physi-

ation: as

e one

of the

ed as
4 Cycle existence problems on RDFGs

In [7], Kung sets up the MCM problem as one of computing

(EQ 1)

where is a vector of ones. This problem is stated to be an instance of nonlinear integer progra

Kung claims that since the size of the problem formulation is independent of the size of the graph, it

solved more efficiently. However, Kung erroneously assumes in his comparison that the complexity

MCM problem for DFGs is proportional to the number of cycles in the DFG. As already mentioned,

untrue, and the MCM can be solved much more efficiently than enumerating cycles. Also, integer

programming is an NP-complete problem, and integer non-linear programming is even worse. We

course, represent an RDFG as a DFG and use a polynomial time algorithm (in the size of the D

course) to compute the MCM. But we do not really know how this compares to the exponential com

(in the size of the RDFG) of the non-linear integer programming formulation in equation 1.

Moreover, Kung apparently overlooks an important detail in his formulation given in equati

given a cycle vector in the null space of arc matrix , how do we know for sure that this cycle ac

exists in the graph? Recall that the graph only exists in a finite region of the index space. Hence, it c

possible that there is no way to actually form the cycle suggested by since the graph may no

enough. Or, in the MCM computation, the that maximizes the quantity in equation 1 may not exist

graph at all. In the following, we show that the problem of determining whether a null vector is a

cal cycle is NP-complete. However, this does not mean that we have to resort to a DFG represent

long as is small enough, an exponential time algorithm in might be better than a polynomial tim

the DFG. However, the result establishes that there is theoretically little hope of making full use

smaller description size of the RDFG.

To motivate the problem, consider the graph in Figure 2. The figure shows an RDFG specifi

, , .

MAXc 1
cT1

cTd
---------, 

 

1

c A

c

c

c

m m

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 2.Example that shows the non-existence of a cycle in the region of the graph.

A 1– 1 1

1 2 2–
= D 0 0 0= R 0 2,[] 0 2,[]×=
Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 5 of 17

Cycle existence problems on RDFGs

l space

use the

nces of

ically

tangular

rix

n by

any

ine

 the

 cycle

goes is

nd get

in each

y null

n down

ns to be

ia the

neral,

 the sum

er, we

es are
So the graph occupies the 3x3 square cornered at the origin. The vector is in the nul

of , and hence is a potential cycle. However, this cycle does not actually exist in the graph beca

graph is not big enough to enable traversing four instances of the arc , and three insta

. So given a null space vector, we would like to efficiently determine whether the cycle phys

exists in the region where the graph exists. For simplicity, we assume that the graph exists in a rec

region. Formally,

Definition 1: The -dimensional CYCLE EXISTENCE problem is the following. Given an mat

, and an integer vector in the null space of , and a rectangular region give

, determine whether there is a point in and a path consisting of as m

instances of each arc as specified by so that the path never leaves the region .

Definition 2: The PARTITION problem is the following. Given a set of positive integers, determ

whether there is a subset of such that .

Theorem 1:The PARTITION problem is NP-complete [6].

Lemma 1: In the -dimensional CYCLE EXISTENCE problem, a cycle starting from some point in

region exists in iff it exists starting from .

Proof: Clearly, if the cycle exists and goes through 0 (that is, the 0 node is in the cycle), then the

exists starting from 0. If the cycle does not go through 0, then the smallest index through which it

some number in ; let this be . Clearly, we can subtract from each index that is in the cycle a

one that goes through 0; in other words, we can translate any cycle back to the origin.

Note that the above lemma does not hold in higher dimensions because the numbers

dimension cannot be treated independently.

The CYCLE EXISTENCE problem as defined may not even be in NP since given an arbitrar

vector, it is not clear whether the path (the precise order in which nodes are visited) can be writte

succinctly. In other words, suppose that there are three arcs, . Suppose the null vector happe

. However, the only way in which a cycle can be constructed in the region might be v

sequence . It is not clear whether this string can be written down more compactly. In ge

there might exist instances where the sequence of arcs traversed in the region has length given by

of the entries in the null vector; clearly, this is exponential in the size of the representation. Howev

can still look at the complexity of this problem if we restrict our attention to null vectors whose entri

all bounded in some manner.

cT 4 1 3=

A

1– 1
T

1 2–
T

n n m×

A c A R

0 n1,[] … 0 nn,[]×× x R

c R

A m

S A a
a S∈
∑ a

a A S–∈
∑=

1 x

R 0 r,[]= R 0

R y y

a b c, ,

2 3 3, ,[]T R

abcbacbc
6 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Cycle existence problems on RDFGs

he

y con-

le.

 to just

nce the

N. Let

ion

.

l vec-

G in

between

 arc

m to .

-

re is no

 the

eorem
Definition 3: The 0-1-2 CYCLE EXISTENCE problem is the CYCLE EXISTENCE problem with t

restriction that each entry in the null vector has value drawn from the set . That is, we onl

sider the set of cycles (i.e, a subset of the null space) where no arc occurs more than twice in a cyc

Theorem 2:The 0-1-2 CYCLE EXISTENCE problem is NP-complete.

Proof: The problem is in NP since given a sequence of arcs in the path, and the point , we have

sum from and ensure that we never go out of the region. This can be done in polynomial time si

total length of the path cannot be more than . To show completeness, we reduce from PARTITIO

the integers in an instance of PARTITION be . Define . Clearly, if a partit

 exists, then each sum in

sums to . Let the arc matrix in the instance of CYCLE EXISTENCE be defined as

Hence, in this instance, . Clearly, is in the null space of ; hence, this is the nul

tor in our instance of 0-1-2 CYCLE EXISTENCE. Finally, let the region be . Thus, the RDF

this specification has nodes at each integer point in . The arc specifies that there is an arc

node and , between and and so on (see Figure 3). Clearly, a cycle that uses each

once, twice, and still stays in must have the property that there is a subset of the that su

Similarly, if such a subset exists, then we can find a cycle that never leaves .QED.

Another problem is that of finding a “minimal” vector in the null space of :

Definition 4: The MINIMAL CYCLE VECTOR is the following. Given an matrix , and an inte

ger , find a null space vector such that the maximum element in is less than . Note that the

requirement that the cycle represented by this vector actually exist; hence, no region is specified.

Corollary 1: The MINIMAL CYCLE VECTOR problem is NP-complete.

Proof: Membership in NP is trivial since it is just matrix-vector multiplication to verify that the result is

0 vector. We use the same reduction from PARTITION; that is, the matrix is as in the proof of Th

c 0 1 2, ,{ }

x

x

2m

m a1 … am, , b ai∑() 2⁄=

S

a
a S∈
∑ a

a A S–∈
∑=

b A a1 … am b–=

n 1= 1 … 1 2
T A

R 0 b,[]

0 b,[] a1

0 a1 1 1 a1+

0 1 2 a2 a2+1 bb-1a1+1a1

Fig 3.Graph used in the proof of Theorem 2.

ai

b– R ai b

R

A

n m× A

K c c K

A

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 7 of 17

Cycle existence problems on RDFGs

of 0-1

has a

men-

not seem

ms that

lements

ke in the

NCE

ly arbi-

: we

t. Hence,

, ,

rob-

time is

T-

ng the

 whether

 the com-

 and

t is

ial

ust be

egion

 as given

efined
2. We let . A cycle vector whose maximum entry is less than 2 for this has to be a vector

entries, and this would then solve the partition problem. Conversely, if the PARTITION problem

solution, then such a vector would exist.QED.

In the discussion on membership of the general CYCLE EXISTENCE problem in NP, we

tioned that the presence of arbitrary integers in the null vector presents problems since there does

to be a way, in general, of representing such paths succinctly. In general, in combinatorial proble

have integers in their input instances, there are two sources of complexity: the number of discrete e

(the number of integers, the number of edges or nodes etc.), and the values the integers can ta

input instance. Hence, there are three “dimensions” to the complexity of the 1-d CYCLE EXISTE

problem: the number of entries in the arc matrix , the arbitrary values they take, and the potential

trary values in .

Suppose that is fixed. Then, the PARTITION problem can be solved in polynomial time

simply look at all possible subsets, and since is not increasing, the number of subsets is constan

the arbitrariness of the does not affect the complexity of PARTITION; only the number of them

does.

We know that with the entries in restricted to be 0-1-2 valued, the CYCLE EXISTENCE p

lem is NP-complete, meaning that as is increased, it is unlikely that an algorithm whose running

a polynomial function of and exists. If is also fixed, then the 0-1-2 CYCLE EXIS

ENCE problem can be solved in polynomial time also; simply look at all possible ways of constructi

path. Since there are a fixed number of arcs, and each occurs at most two times, we can find out

there is a sequence that never leaves the region. Hence, the values of the entries of do not affect

plexity of 0-1-2 CYCLE EXISTENCE. So in reality, there are two “dimensions” to the complexity: ,

the arbitrariness of . Hence, we look at the complexity of CYCLE EXISTENCE when is fixed bu

allowed to have arbitrary entries.

Theorem 3: The 1-dimensional CYCLE EXISTENCE problem, with , is solvable in polynom

time.

Proof: Since , the arc matrix has two entries. One of the entries must be positive and one m

negative in order for there to be a non-negative null vector. Let the arc matrix . Let the r

. Any null vector is of the form , where denotes the gcd of

and . Suppose that . Consider any path that traverses each of the two arcs as many times

by . In order for the path to stay in , it can never visit a negative index, since the graph is only d

K 2= A

m

c

m

m

ai m

c

m

ai() b()log,log m m

A

m

c m c

m 2=

m 2=

A a b–,[]=

R 0 r,[]= c c bk

a b,()
------------- ak

a b,()

T

= x y,() x

y k 1=

c R
8 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

e maxi-

 that

ative:

ths

imum

ed over

question

buffer

hed is

e

s for any

it has

 case, if

ot be

he mini-

ence

sorting

y 1000

 in the

dy and

 to
over . From the set of paths that obey this constraint, we can choose the path where th

mum state visited is minimized. For example, let , and . One possible path

does not visit any negative state is ; all partial sums in this path are non-neg

. Another possible path is

. The path visits a negative index (-1). Of the two possible pa

that only visit non-negative indices, the maximum state visited by the first one is 4 while the max

state visited by the second path is 6. Clearly, if we can compute the minimum maximum state visit

all such paths (where the minimum state visited is 0), we can answer yes or no to the existence

simply by comparing that value against . It turns out that this problem is identical to the minimum

scheduling problem for a 2-node SDF graph [1]; there it is shown that the minimum maximum reac

given by . Hence, a cycle with cycle vector exists iff . If , then w

just repeat the path times; this cannot increase the maximum state visited. Hence, the result hold

cycle vector .QED.

This result can be easily extended to 2 dimensions if the arc matrix has rank 1 (if

rank 2, then the null space has dimension 0 and the 0 vector is the only cycle vector). In the 1-d

, the complexity of CYCLE EXISTENCE is open since the technique used above cann

extended easily anymore. Hence, it does not seem possible to get a closed form expression for t

mum maximum state visited over all paths.

5 Heuristic approaches

Although we cannot apparently get polynomial-time algorithms for cycle detection/exist

problems, we can adopt heuristic approaches that will definitely be much better in practice than re

to a full-flown graph description. In particular, suppose that the graph is big enough, say 1000 b

nodes. We investigate some ways of detecting deadlock efficiently (even if not in time polynomial

size of the matrix descriptions), and computing the MCM.

Basically, we are interested in solving the following problem:

find a non-negative, integer vector such that (EQ 2)

This will give us a vector that represents a cycle in a large enough graph. In the following, we stu

review some fundamental properties of the above equation. We will use the notation

denote an -dimensional column vector.

R 0 r,[]=

A 2 3–,[]= c 3 2
T=

2() 2() 3–() 2() 3–()

2 2 2+, 4 2 2 3–+, 1 2 2 3– 2+ +, 3 2 2 3– 2 3–+ +, 0= = = =

2() 2() 2() 3–() 3–() 2() 3–() 2() 2() 3–()

r

a b a b,()–+ c r a b a b,()–+≥ k 1>

k

c

2 2× A

m 3=

x Ax 0=

x x1 … xm, ,()=

m

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 9 of 17

Heuristic approaches

re called

m

irre-

ntains

 any

 the basis

e-

here

ach

f equa-

 of

maller.

he basis
5.1 Homogenous Linear Diophantine Equations

Equation 2 represents a system of linear equations whose coefficients are integers; these a

linear Diophantine equations. They are homogenous because the constant term is 0. Let

be the set of solutions of . A solution is calledirreducible if it cannot be represented as a su

of other solutions in . In the natural partial ordering of tuples (), a solution is

ducible iff there is no solution such that . Hence, irreducible solutions are also calledminimal ; we

will use the term minimal solution as it is easier to type. Clearly, is closed under addition and co

 as the zero element; hence, is an additive sub-monoid.

The following characterization is fundamental:

Theorem 4:The set has afinite basis; that is, there are a finite number of elements such that

 can be represented as , where are all non-negative integers.

Proof: The theorem can be seen as a consequence of Hilbert’s famous finite basis theorem; hence,

 is sometimes called theHilbert basis for [13]. There is also a direct way of determining its finit

ness; we outline a method due to Grace and Young [4]. Consider just one equation

(EQ 3)

where the are all positive integers, and we desire a non-negative solution , w

 etc. Clearly, the following solutions are all minimal (the rest of the variables in e

solution are 0):

(EQ 4)

We can bound the values of in any minimal solution by

(EQ 5)

(the case is symmetric). Indeed, suppose for some . Then the right hand side o

tion 3 is greater than , or , meaning that at least one

the . Hence, this solution cannot be minimal since one of the solutions in equation 4 is s

Because of the bound, there are only a finite number of tuples that are minimal, and these will be t

elements.

ℑ x:Ax 0={ }=

Ax 0= x

ℑ x y xi yi i∀≤⇔≤ y

x x y≤

ℑ

0 ℑ

ℑ hi ℑ∈

x ℑ∈ pihi∑ pi

hi ℑ

a1x1 a2x2 … amxm+ + + b1y1 b2y2 … bnyn+ + +=

ai bi, x y,()

x x1 … xm, ,()= mn

xr bs grs⁄= ys ar grs⁄= grs gcd ar bs,()= 1 r m 1 s n≤ ≤,≤ ≤()∀

xi

xi b1 … bn+ +≤

y xi b1 … bn+ +> i

ai b1 … bn+ +() b1 y1 ai–() … bn yn ai–() 0>+ +

yj ai>
10 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

of equa-

d equa-

ined by

 rep-

te this

 com-

stem, the

h, it is

ny

ua-

re

et-

 set
Suppose that there is another equation that also has to be satisfied. The minimal solutions

tion 3 can be written as

So any solution to equation 3 can be written as

where are arbitrary non-negative integers. We substitute the above values for is the secon

tion, and get a new equation relating the . This in turn has a finite basis, that can be determ

exhaustive search, to give the set of minimal solutions . Any solution can be

resented as , where the are arbitrary non-negative integers. We substitu

back into the first equation to get

.

The minimal solutions are now just . If there is a third equation, we can substitute the

bination of these in and repeat the process. Since there are a finite number of equations in the sy

basis is finite, and can be determined in this fashion.QED

Example 1:Suppose . We need to determine the minimal solutions of , or

The bound establishes that for the first equation, for each in any minimal solution. By searc

easily seen that are the only minimal solutions. So a

solution can be written as . Substituting this into the second eq

tion yields . The minimal solutions to this equation a

. So . Substi-

tuting back, we get . So

the minimal solutions to the system are , obtained by s

ting each of the . Eliminating redundant solutions gives the final

as .

The bound given by equation 5 (for one equation) was strengthened by Huet [5]:

(EQ 6)

Lambert [8] gives an even sharper bound:

x α1= y β1=

…
x αp= y βp=

x t1α1 … t pαp+ +=

y t1β1 … t pβp+ +=

ti x y,

ti

t γ1 t γ2 … t γσ=, ,=,=

t T1γ1 … Tσγσ+ += Ti

x κ1T1 … κσTσ+ +=

y λ1T1 … λσTσ+ +=

x κ j y λ j=,=

A 1 1 1– 1–

2 2– 1– 1
= Ax 0=

x1 x2+ x3 x4+=

2x1 x4+ 2x3 x3+=

xi 2≤ i

1 0 1 0, , ,() 1 0 0 1, , ,() 0 1 1 0, , ,() 0 1 0 1, , ,(), , ,

x x t1 t2 t3 t4 t1 t3 t2 t4+,+,+,+()=

t1 3t2+ 3t3 t4+=

1 0 0 1, , ,() 0 1 1 0, , ,() 0 1 0 3, , ,() 3 0 1 0, , ,(), , , t T1 3T4 T2 T3 T2 T4 T1 3T3+,+,+,+()=

x T1 T2 T3 3T4 T1 T2 3T3 T4 T1 T2 4T4 T1 T2 4T3+ +,+ +,+ + +,+ + +()=

1 1 1 1, , ,() 1 1 1 1, , ,() 1 3 0 4, , ,() 3 1 4 0, , ,(), , ,

Ti 1 T j, 0 j i i,≠, 1 2 3 4, , ,= = =

1 1 1 1, , ,() 1 3 0 4, , ,() 3 1 4 0, , ,(), ,

xi max bj() yj max ai()≤,≤
Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 11 of 17

Heuristic approaches

ty (for

ven for

ultiple

s than

anything

s. Let

 of

So

 vec-

.

blem

lumns

 graph

cycle
(EQ 7)

It is easily seen that this bound is tight as there are minimal solutions that meet it with equali

instance, the minimal solutions given for one equation in example 1).

Even with the sharpest bound, there can be an exponential number of minimal solutions e

one equation. The situation quickly gets worse in the procedure given in the proof above when m

equations are involved. However, the number of minimal solutions to the whole system will be les

the number for any subset of the equations; so these bounds are ultimately not enough to tell us

about the entire system.

Pottier [12] gives the following bound for systems of equations using geometric argument

, where . Let be the largest absolute value of the minors

order of (a minor of order of matrix is the determinant of an submatrix of). Then,

(EQ 8)

where is the number of columns of .

For the matrix in example 1, we get . So and .

6 is the smallest bound in this case, and is not tight.

5.2 Deadlock detection

The graph deadlocks if there is a cycle such that and where is the delay

tor. Since both are non-negative, iff whenever and whenever

Setting for an where eliminates column from ; hence, the deadlock detection pro

becomes one of solving a smaller system , where is the submatrix with the set of co

 removed. Deadlock occurs iff this system has a non-negative integral solution and the

is big enough that the cycle exists in it. Techniques for determining a solution are given in 5.4.

5.3 Maximum cycle mean

The following lemma shows that minimal solutions are sufficient to determine the maximum

mean in the RDFG.

Lemma 2:Suppose that , , and . Then

x1 … xm max bi() y1 … yn max ai()≤+ +,≤+ +

M ∞ maxx ℑ∈ x ∞= x ∞ max xi()= Dr

r A r A r r× A

M ∞ n r–()Dr≤

n A

D1 2 D2, 4= = M ∞ 3 2×≤ 6= M ∞ 2 4×≤ 8=

c c ℑ∈ cTd 0= d

c d, cTd 0= ci 0= di 0> di 0= ci 0>

ci 0= i di 0> i A

A'c' 0= A' A

ai :di 0≠{ }

c1 c2 ℑ∈, α β 0>, c αc1 βc2+=
12 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

hen

inimal

h is to

vably

the Bell-

imal

l. We

re to the

g all of

 (2) in

e sorted

ontains

t this

imilarly,

maximal

on over

e graph
.

Proof: Recall that . Letting , let

, .

We assume that since otherwise the cycle is deadlocked. T

. So implying that

one of the terms is positive and one negative since .QED.

Hence, we do not need to consider non-minimal solutions since there will always be a m

cycle that has larger MCM. One heuristic strategy for determining the MCM in a large enough grap

use the bound on minimal solutions given in equation 8, and construct a “minimal” RDFG that pro

contains all of the minimal cycles. On this graph, we can use standard graph techniques based on

man-Ford shortest paths algorithm [9] for determining the MCM. However, constructing this min

RDFG appears to be non-trivial; in the following we give one method that is not optimal in genera

then give a conjecture that, if correct, could give much more compact graphs.

Recall that we were restricting our attention to RDFGs specified over rectan-

gular regions. One technique for constructing an RDFG that contains all of the mini-

mal cycles is to simply map out a tour where each segment of the tour consists of

 instances of each arc. The vectors are separated into four groups: group

contains the vectors that point in the th quadrant in the plane. The quadrants are shown in the figu

right. The vectors are sorted by their gradients, with steepest first. We then construct a walk by takin

the vectors in group (1), in the sorted order. We continue the walk by choosing vectors in group

reverse sorted order, then group (3) vectors in sorted order, and finally group (4) vectors in revers

order. We call this the maximal tour. The RDFG is then created over the smallest rectangle that c

this tour. This procedure can be easily generalized to higher dimensional RDFGs.

Suppose now that is some minimal cycle. Clearly, the maximum horizontal distance tha

cycle covers has to less than the horizontal distance spanned by the maximal tour given above. S

the maximum vertical distance spanned by any minimal cycle is also less than that spanned by the

tour. Hence, the minimal cycle is contained in a rectangle that is smaller than the rectangular regi

which the graph exists in the sense that the rectangle containing the minimal cycle is contained in th

region. Hence, the constructed graph region contains all of the minimal cycles.

c 1

cTd
--------- max 1

c1
Td

--------- 2

c2
Td

---------,
 
 
 

≤

1 1 1 … 1, , ,()= a1 c1
T1 a2, c2

T1 b1, c1
Td b2, c2

Td= = = =

λc

αa1 βa2+

αb1 βb2+
-------------------------= λ1

c1
T1

c1
Td

a1

b1
----- λ2,

c2
T1

c2
Td

a2

b2
-----= = = =

b1 b2 0>,

αb1λc βb2λc+ αa1 βa2+ αb1λ1 βλ2b2+= = αb1 λc λ1–() βb2 λc λ2–()+ 0=

α β b1 b2 0>, , ,

(1)

(2)(3)

(4)

n r–()Dr I

I

c

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 13 of 17

Heuristic approaches

 bigger

cessary

. The fol-

ere:

nd,

struct-

o on.

ce, the

ycles

at

er than

anning

ctness
The bound given in equation 8 is not tight, as mentioned, and can thus lead to graphs much

than necessary. Even if the bound were tight, the graph constructed might still be bigger than ne

since we do not need to traverse each type of edge in series as is done in the construction above

lowing example elucidates this.

Example 2:Suppose . The minimal solutions that we determined in example 1 w

. The computed bound is , whereas the tight bou

by examining the minimal solutions, is . Using the tight bound of , we construct the graph by con

ing the tour, starting from an arbitrary point, of four instances of , then four of and s

The maximum horizontal distance spanned is and the maximum vertical distance is . Hen

“minimal” graph constructed in this case exists over an rectangle and contains nodes.

However, consider the graph shown in figure 4. This graph contains both of the c

:

, and

. Of course, it contains

: . So, this graph is the smallest graph th

contains all of the minimal cycles for this example, and the graph constructed above is larg

necessary.

One reason why the graph that results from our construction is so big is our insistence on sp

the maximum possible distance horizontally and vertically. This is done to make the proof of corre

simple, but we conjecture that the following is also true:

A 1 1 1– 1–

2 2– 1– 1
=

1 1 1 1, , ,() 1 3 0 4, , ,() 3 1 4 0, , ,(), , M ∞ 3 2×≤ 6=

4 4

1 2
T

1 2–
T

8 12

8 12× 96

3 4×

0,3 1,3 2,3

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

Fig 4.Minimal graph for example 2.

1 3 0 4, , ,() 3 1 4 0, , ,(),

0 1,() 1 3,() 2 1,() 1 2,() 0 3,() 1 1,() 0 2,() 1 0,() 0 1,()→ → → → → → → →

0 1,() 1 3,() 2 1,() 1 0,() 2 2,() 1 1,() 0 0,() 1 2,() 0 1,()→ → → → → → → →

1 1 1 1, , ,() 0 0,() 1 2,() 2 0,() 1 1,() 0 0,()→ → → → 3 4×

8 12×
14 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Heuristic approaches

that

 close

e result-

uristic

ary as

tain all

inimal

ial in

niques

roblem as

ll

-

lar

associ-

 matri-
Conjecture 1:A minimal cycle exists in the graph if it is possible to find a path in the graph

traverses each arc times, without repeating any arc.

If the conjecture is true, then we can construct a “minimal” tour where we attempt to stay as

to the starting point as possible, without repeating any arcs. The smallest rectangle that contains th

ing tour is then the “minimal” graph. For example 2, the graph constructed using this type of he

(with the tight bound of) results in an graph, which is quite close to the optimal solution.

Note that the final qualifier in the conjecture above, “without repeating any arc”, is necess

otherwise, the minimal tour for the above example would result in an graph that does not con

of the minimal cycles.

Another heuristic is to simply enumerate the cycles. This is done by enumerating the m

solutions in ; algorithms are given in [2][3][12]. It is not clear which approach will be more benefic

practice.

5.4 Integer programming techniques

Since equation 2 is an instance of integer linear programming (ILP), we review some tech

that can also be used to solve it; in particular, these techniques are needed to solve the deadlock p

defined in section 5.2.

A matrix is calledunimodular if it is integral and has a determinant of . A matrix of fu

row rank is said to be inHermite normal form (HNF) if it has the form , where is a non-singu

lar, lower triangular matrix, in which , and for .

Theorem 5: If is an integer matrix, with , then there exists an unimodu

matrix such that where is in HNF, and is an integer matrix.

Proof: See [11] for a proof.

The HNF can be determined in polynomial time.

The basic integer linear programming optimization problem is the following:

(EQ 9)

where are integral matrices and vectors, the solution vector is required to be integral. The

ated feasibility problem is to find an integer vector such that the following holds, where again the

ces and vectors are all integral:

c

M ∞

4 3 5×

3 2×

ℑ

U 1±

B 0 B

bii 0> i∀ bij 0≤ bij bii< i j>

A m n× rank A() m= n n×

C AC B 0= B H 1– A

max cx:Ax b≤{ }

A b c, , x

x

Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 15 of 17

Heuristic approaches

can be

m is,

prob-

 these

; rather,

tra’s the-

hich

ional.

em in

olves

dular

 that

 for

 an

 arc

lumns

 a non-
(EQ 10)

It can be easily shown that if the feasibility problem can be solved, than the optimization problem

solved using a polynomial number of calls of the feasibility solving algorithm. The feasibility proble

however, NP-complete. So is the following feasibility problem:

(EQ 11)

where we desire a non-negative vector .

5.5 Determining the null vector efficiently using Lenstra’s algorithm

Interestingly enough, if the number of columns of the matrix is fixed, then all of the above

lems can be solved in polynomial time by Lenstra’s algorithm [10]. In other words, the complexity of

problems does not arise because of the arbitrary integers that are allowed in the problem instance

they arise due to the combinatorial aspect: the number of columns. The precise statement of Lens

orem is:

Theorem 6: [Lenstra] For each fixed natural number , there exists a polynomial time algorithm w

solves the ILP problem in equation 9, where has rank at most , and where input data are all rat

Hence, if either the number of columns or the number of rows is fixed, then the ILP probl

equation 9 can be solved in polynomial time. From the above, we can prove the following:

Corollary 2: For fixed natural numbers and , there exists a polynomial time algorithm which s

the ILP problem in equation 11, where is , and where input data are all rational.

Proof: Suppose that has full row rank , and has columns. Then we can find an unimo

matrix such that . For any integer vector , there is an integer vector such

. Hence, iff . Let , where is , and is

, and where has rows and has rows. We can solve

. We need to determine such that , or . This last problem is

ILP problem in variables, and can be solved using Lenstra’s algorithm.QED.

Practically, the conditions of the corollary will usually hold since the number of rows in the

matrix is some small fixed number (like 2 or 3 for 2 or 3 dimensional RDFGs), and the number of co

is also likely to be small in practice (since each node will have small degree). Hence, we can find

negative null vector, representing a potential cycle, efficiently in such cases.

x:Ax b≤{ }

x:Ax b x 0≥,={ }

x

A

n

A n

n m

A n m×

A n m m m×

U AU B 0= x y

x Uy= Ax b= AUy b B 0 y= = U U1 U2= U1 m n× U2

m m n–()× y y1 y2
T

= y1 n y2 m n–

y1 B 1– b= y2 Uy x 0≥= U– 2y2 U1y1≤

m n–
16 of 17 Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics

Conclusion

on and

ion was

wn that

g these

we have

qua-

al

s,”

r

ud,

earch,

ues
6 Conclusion

We have studied two problems concerning cycles in RDFGs in this paper: deadlock detecti

computing the maximum cycle mean. Since RDFGs can be represented very compactly, our intent

to study the complexity of these two problems in terms of the compact representation. We have sho

these problems are NP-complete. We have then given some heuristic techniques for determinin

quantities; these techniques should be better than those currently known in the literature, although

made no attempt to quantify the improvement, if any, in this paper.

7 References

[1] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee,Software Synthesis from Dataflow Graphs, Kluwer Academic Pub-
lishers, 1996.

[2] E. Contejean, H. Devie, “An Efficient Incremental Algorithm for Solving Systems of Linear Diophantine E
tions,” Information and Computation, Vol. 113, No. 1, August 1994.

[3] E. Domenjoud, “Solving Systems of Linear Diophantine Equations: An Algebraic Approach,” Mathematic
Foundations of Computer Science, 16th Intl. Symposium, Kazinierz, Dolny, Poland, September 1991.

[4] J. H. Grace, A. Young,The Algebra of Invariants, Cambridge University Press, 1903.

[5] G. Huet, “An Algorithm to Generate the Basis of Solutions to Homogenous Linear Diophantine Equation
Information Processing Letters, Vol. 7, No. 3, April, 1978.

[6] R. M. Karp, “Reducibility Among Combinatorial Problems,” Complexity of Computer Computations, Mille
and Thatcher Eds, Plenum Press, NY, 1972

[7] S. Y. Kung,VLSI Array Processors, Prentice Hall, 1988.

[8] J. L. Lambert, “Un Probleme d’accessibilite dans les reseaux de Petri,” Ph.D thesis, University of Paris-S
Orsay, France, 1987.

[9] E. L. Lawler,Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Winston, 1976.

[10] H. W. Lenstra, “Integer Programming with a Fixed Number of Variables,” Mathematics of Operations Res
Vol. 8, 1983.

[11] G. Nemhauser, L. Wolsey,Integer and Combinatorial Optimization, Wiley, 1988.

[12] L. Pottier, “Minimal Solutions of Linear Diophantine Systems: Bounds and Algorithms”, Rewriting Techniq
and Applications, 4th International Conference, RTA-91 Proceedings, Como, Italy, 10-12 April 1991.

[13] A. Schrijver,Theory of Linear and Integer Programming, Wiley, 1986.
Two Cycle-Related Problems of Regular Data Flow Graphs: Complexity and Heuristics 17 of 17

	1 Abstract
	2 Introduction
	3 Regular Data Flow Graphs
	4 Cycle existence problems on RDFGs
	5 Heuristic approaches
	5.1 Homogenous Linear Diophantine Equations
	5.2 Deadlock detection
	5.3 Maximum cycle mean
	5.4 Integer programming techniques
	5.5 Determining the null vector efficiently using ...

	6 Conclusion
	7 References

