
Software Practice in the
Ptolemy Project

John Reekie
Stephen Neuendorffer
Christopher Hylands
Edward A. Lee

Gigascale Semiconductor Research Center
Technical Report Series
GSRC-TR-1999-01

April 1999

This page is intentionally left not quite blank

1 of 43

Software Practice in the
Ptolemy Project

John Reekie
Stephen Neuendorffer
Christopher Hylands
Edward A. Lee

University of California at Berkeley

In the Ptolemy project at UC Berkeley, we have been exploring ways of improving our
software development process. Unlike many other efforts at improving software devel-
opment, our efforts are focused on the particular needs of leading-edge academic
research. High levels of creativity and flexibility are paramount in this environment, and
the goals and qualifications of those producing the software are substantially different
from those in commercial software production. This report describes our efforts to meet
these needs and what we have learned.

1.0 Introduction

Increasingly, software is being seen as a publication medium for academic research.
The Department of Electrical Engineering and Computer Science at UC Berkeley has a
tradition of releasing software, and we believe that this tradition substantially magnifies
the impact of the research behind the software. The Ptolemy project, which released its
first version of the Ptolemy software environment in 1992, has grown through a series
of supported releases incorporating the latest research results, an increasing user com-
munity, and an active newsgroup (comp.soft-sys.ptolemy). Other CAD projects
from the University have experienced similar success.

This grounding of academic research in concrete and usable software is, we believe,
becoming a necessity for researchers working in fields in which the primary product of
the research is intellectual knowledge that is best embodied in software. In recent years,
there has been a marked shift in the thinking of leading curriculum developers in Elec-
trical Engineering and Computer Sciences, from a model based on physical models and
low-level algorithms, to an emphasis on systems, networks, and communications. This
shift is accompanied, particularly on the Electrical Engineering side, by a dramatic
swing in the proportion of research output that is fundamentally software-based, and we

Introduction

2 of 43 Software Practice in the Ptolemy Project

posit that many students in Electrical Engineering now spend the majority of their time
writing software. Software is also increasingly rapidly in complexity, and validating
research by embodying it in published software is increasingly important.

Although the importance of software publication is increasing rapidly, software pro-
cesses designed for industrial use are becoming less relevant to this environment. The
emphasis of processes such as the Capability Maturity Model (CMM) is on factors such
as predictability and repeatability over a series of projects. In a research environment,
we are more interested in flexibility and creativity, and projects that resemble earlier
projects sufficiently to allow predictable and repeatable results are – by definition –
generally not interesting in a research environment. For us, the questions are:

• What techniques can we use to improve our productivity and the quality of our
“research” software?

• How much can we improve quality without increasing cost?

• How do we introduce and maintain new practices?

• How do we maintain creativity and excitement?

Since beginning work on Ptolemy II, the successor to the original Ptolemy – now called
“Ptolemy Classic” – we have been working on improving our software practice. Our
approach has been quite simple: look at industry best practice and see what we can
incorporate or adapt to our environment in a suitable way. Our most common method
for introducing a new technique is to hold a study group, in which members of the
research group read and discuss selected materials describing the technique. We then try
using the technique, initially in mock-up experiments or by gradually incorporating it
into our development process. At each step along the way, we keep in mind the rele-
vance of the technique to our needs and adapt (or discard) it accordingly.

The benefits of this approach have been substantial. Contrasted to Ptolemy Classic, the
design and growth of Ptolemy II is less ad-hoc and more visible. Ptolemy Classic grew
very large, and over the years became awkward to use as a research vehicle.1 In Ptolemy
II, every member of the research group has a thorough understanding of its architecture,
as opposed to just one or two. Instead of finding bugs and problems by trying to use the
infrastructure, we found them by reviewing and testing the design and the code. Having
a more reliable infrastructure promotes good research because the researcher can focus
on the problem at hand rather than fixing or extending core infrastructure.

The report is organized as follows:

• Techniques
Section 2 describes the software design techniques that we have found effective. For
each, we give a short summary of the technique, how we introduced the technique
into our research group, and what we see as the benefits of the technique.

1. By this, we refer to its utility for experimenting with new models of computation and views of
system modeling. The usefulness of Ptolemy Classic as a design tool in fields as diverse such
as signal processing, architecture modeling and optronics, is not in question.

Introduction

Software Practice in the Ptolemy Project 3 of 43

• The review process
We have made formal reviews the mainstay of our development process. Reviews
need a lot of “how-to” explanation, and so this section provides a detailed descrip-
tion of how we review. We document what has worked for us and what we need to
improve.

• Guidelines
The appendices contains copies of detailed information from our internal Web
pages. We hope that this information will encourage other researchers to try apply-
ing a similar approach.

Techniques

4 of 43 Software Practice in the Ptolemy Project

2.0 Techniques

The half-dozen or so individual techniques that have benefited us most are well-known
techniques in software development. Nonetheless, they are not often applied in the pro-
duction of academic software. Our experience has shown us that, in an academic
research group with a commitment to publishing high-quality software, these techniques
can be extremely effective, both individually and in concert.

In considering why these techniques are not more widely used when we have found
them so effective, we believe the key issue is one of misunderstanding the scope and
application of the techniques. Software methodologies are often perceived as being sold
as “silver bullets” – techniques or methodologies that will solve all of your software
problems. As pointed out by Weigers [14], adopting a methodology wholesale can be a
big mistake; but there are nonetheless many valuable practices contained in these meth-
odologies, and these can indeed be effective when adapted appropriately.

There is one point we would like to note before proceeding. Although these techniques
are generally not particularly hard to learn, the real trick is making them stick – that is,
in making their use habitual and part of the group’s development culture. Simply know-
ing how to produce (say) a static structure diagram on demand is not useful if one does
not consistently use this technique in the framework of the whole development process.
To do so, one must find ways to encourage adoption of techniques. Often, this means
causing changes in development habits. Ideally, people change because they see that a
new technique helps them to work more effectively; but usually, it is necessary to use a
combination of demonstrating by effectiveness, leading by example, and using a little
authority where necessary.

2.1 Unified Modeling Language (UML)
The Unified Modeling Language (UML) [1][13] is a recent visual notation for modeling
object-oriented software systems. UML is the product of three key figures in object-ori-
ented analysis and design: James Rumbaugh, Grady Booch, and Ivar Jacobson.
Although development of UML was sponsored by Rational Software Corporation, the
language is an open standard, and has been adopted as an OMG (Object Management
Group) standard. UML is well-positioned to succeed a plethora of different object mod-
eling notations developed in the late 1980’s and early 1990’s.

2.1.1 Summary

UML consists of nine visual diagramming notations, each intended to represent a differ-
ent aspect of a software system. The most commonly used notation is the static struc-
ture diagram, which is a development of OMT class diagrams [10]. A static structure
diagram is a representation of a set of classes and the relations between them. The key
features of a static structure diagram are shown in the UML fragment below:

• Classes
A class is shown as a rectangle containing the class name, attributes, and operations.
Depending on the level of detail represented by the diagram, attributes may repre-
sent abstract state of class instances (high-level), or actual instance variables (low

Techniques

Software Practice in the Ptolemy Project 5 of 43

level). At a high level, the set of operations includes operations that are relevant to
that class only; at a low level, operations that construct and traverse associations (see
below) are also shown.
Several notations add detail to a class. Symbols such as “+” and “#” indicate public
and protected attributes and methods, while italics indicate an abstract class or oper-
ation.

• Inheritance
Inheritance is shown as a solid connecting line with a triangle at the superclass end.
In this example, JCanvas inherits from JComponent, and GraphicsPane inherits from
CanvasPane. CanvasPane is an abstract class, as indicated by the italic font used for
its name.
Not all classes are shown in one diagram – those that are not are assumed to be
defined in a separate diagram. Note also that this diagram is conceptual; for exam-
ple, constructors are not shown in detail.

• Interfaces
An interface is marked by the stereotype <<Interface>> . Implementation of an inter-
face is shown by a dashed line with a triangle at the interface end. For example, Can-
vasPane implements CanvasComponent and EventAcceptor. An alternative notation
is shown attached to CanvasLayer, which implements CanvasComponent.

• Associations
Associations are the real substance of static structure diagrams, as they show
detailed information about the relations between classes. The information shown by
associations is not available from the source code itself, so their presence on static
structure diagrams is an invaluable resource. Each association can have a multiplic-
ity at each end, such as “1..n” or “0..1”. (Unless shown otherwise, the default is one.)
Here, for example, each CanvasPane can be contained by zero or one CanvasCom-
ponents, and zero or one JCanvasses. Each association can have a name (none do
here), and each end of an association can be labeled with a role, indicating the role
played by the class at that end of the association. Here, the association from Canvas-
Component to itself has a “parent” role.

Techniques

6 of 43 Software Practice in the Ptolemy Project

A second important notation in the UML is the sequence diagram. In contrast to static
structure diagrams, sequence diagrams show individual objects instead of classes. Each
diagram shows one or a few possible sequences of interaction between a set of objects.
As shown in Figure 2, sequence diagrams order execution events along a set of time-
lines. Patterns of communication, and object lifetimes and dependencies are easily seen.

In this example, a DataReceiver object constructs an Element, which it adds to a Model.
It then draws the Element on a View, which performs some additional operations.
Although conceptually simple, sequence diagrams are extremely effective for under-
standing the flow of control between several objects.

FIGURE 1. A sample UML static structure diagram

JCanvas

JComponent

CanvasPane

+layers() : Iterator
+layersFromFront() : Iterator
+layersFromBack() : Iterator
+setCanvas(c : JCanvas)
+setParent(c : CanvasComponent)
+setTransform(at : AffineTransform)
#processLayerEvent(e : LayerEvent)

+size : Point2D
+antiAliasing : boolean

CanvasLayer
0..n

0..1

GraphicsPane

+backgroundEventLayer : EventLayer
+backgroundLayer : CanvasLayer
+foregroundLayer : FigureLayer
+overlayLayer : OverlayLayer
+foregroundEventLayer : EventLayer

«Interface»
EventAcceptor

0..1

CanvasComponent

«Interface»
CanvasComponent

+getParent() : CanvasComponent
+getTransformContext() : TransformContext
+repaint()
+repaint(d : DamageRegion)

0..n
parent

Techniques

Software Practice in the Ptolemy Project 7 of 43

2.1.2 Introducing UML

We initially introduced OMT (Object Modeling Technique) into our research group in a
series of study groups, and later changed to using UML. We originally used Rumbaugh
et al [11] as the reference text, focussing mainly on the chapters on analysis and on the
OMT class diagram notation, on which UML static structure diagrams are based. In
later study groups, we added readings from other texts, in particular Rumbaugh’s 1996
book [12] and Riel’s Object-Oriented Design Heuristics [10]. Readings were chosen to
emphasize particular aspects of static structure diagrams, with particular attention given
to associations, which are both the most important concept and the hardest to grasp
properly.

The process of learning how to draw OMT class diagrams was aided by a real design
case study provided by one of the students (Mike Williamson). After creating an initial
design, we worked on refining it. At the left of Figure 3 is one of the initial OMT
designs, while the right shows a later, cleaner design. The process of actually trying to
produce static structure diagrams with real designs is by far the most effective technique
for learning the notation.

FIGURE 2. A sample sequence diagram

set(e)
set(f)

Receiver

e:Elementconstruct(d)

receive(d)

m:Model

f:Figure

v:View

add(e)

draw(e)

Techniques

8 of 43 Software Practice in the Ptolemy Project

After introducing OMT, we took a look at the emerging UML standard, and decided
that UML was probably a win. After a period of uncertainty, we chose Visio Profes-
sional as a drawing tool, which includes a fairly basic UML static structure editor. Dur-
ing this process, two other factors encouraged adoption of UML. First, we started
performing design reviews using UML static structure diagrams. Second, we started
work on a detailed design document for the Ptolemy II kernel. The document static
structure diagrams extensively in the early chapters, thus setting a standard and prece-
dent for later chapters.

2.1.3 Benefits

The use of UML static structure diagrams is an enormous benefit. All of the key parts of
Ptolemy II are documented with static structure diagrams, providing a valuable design
reference. (Some of the Ptolemy II developers have remarked that the most-thumbed
pages of the kernel design manual are the pages with the static structure diagrams.) The
static structure diagrams also play a key role in all design reviews.

A second benefit of drawing static structure diagrams is the aid they give to the devel-
oper. This benefit has not been fully realized, as many developers still generate UML
diagrams after coding rather than before or during. This habit is changing slowly,
though, as senior members of the group are starting to insist on UML diagrams as a
requirement for and product of design discussions.

Finally, we are starting to find situations in which static structure diagrams are not
enough – for example, design discussions that could be easily resolved with the aid of

FIGURE 3. Examples of OMT class diagrams produced in a study group. At left, an initial design; at right, the
design after some rework and refinement. Closed circles mean a multiplicity of zero or more,
while the arcs connecting a class to an association show a class that is part of the association.

CompTask
CommTask

SpecGraph

source

isLeaf

comp-map

sink

CompRes
CommRes

ArchGraph

source

isLeaf

sink

comm-map

AtomicTask

CommTask

SpecGraph

source

sink

CompRes
CommRes

ArchGraph

source

isLeaf

sink

CompTask

CommMapping

CompMapping

Techniques

Software Practice in the Ptolemy Project 9 of 43

sequence diagrams. Making sequence diagrams a habit, as static structure diagrams are
now, is our next goal for our UML practice.

2.2 Design patterns
A design pattern captures a solution to a recurring problem in object-oriented design.
Design patterns are lower-level than architectures: an architecture will typically exhibit
several design patterns. The original reference on design patterns, and the one we used
as a text, is the 1994 book by Gamma et al [5].

The figure below illustrates one of the design patterns from Gamma et al, the Strategy
pattern. This pattern is a solution to the problem of dynamically altering the behavior of
an object. By creating a separate abstract class that encapsulates a particular function,
one can then substitute different sub-classes of the abstract class at run-time. There is no
change to the interface presented by the Context object, but its behavior is different, as it
delegates the operation to its Strategy object.

Patterns are presented in a stylized prose description. The description typically contains
sections describing motivation, the pattern, known instances of the pattern, and so on.
One of the best things about the way that patterns are presented is that issues in using
and implementing the pattern are presented evenly: positive and negative aspects of
each pattern and implementation choice are both dealt with frankly.

The patterns book by Gamma et al contains 23 design patterns, and there have probably
been hundreds published since. There are two key benefits to studying design patterns.
First, since a design pattern codifies design experience, familiarity with the basic pat-
terns often enables one to arrive at a design more quickly, by reusing and combining
known patterns. Less time is spent agonizing over alternatives, since the basic pattern
and various implementation trade-offs are documented. Furthermore, inexperienced
designers are more likely to “get it right” by following common patterns.

Second, design patterns provide a vocabulary with which to communicate fundamental
aspects of a design. For example, a developer who describes a design as a Composite
with a Factory here for window construction and a Strategy there for display painting, is

FIGURE 4. The Strategy design pattern

Context

ContextInterface()

Strategy

AlgorithmInterface()

ConcreteStrategy1

AlgorithmInterface()

ConcreteStrategy2

AlgorithmInterface()

strategy

Techniques

10 of 43 Software Practice in the Ptolemy Project

immediately conveying essential information about the design to someone that speaks
the same vocabulary.

2.2.1 Introducing design patterns

Design patterns are easier to teach than to absorb! We started with two, two-hour study
groups. Each participant chose one pattern, which he described and gave a concrete
example of from our own design space. The patterns we covered from Gamma et al
were Composite, Decorator, Facade, Proxy, Observer, Strategy, and Template Method.
This is only a small selection, but we felt it enough to introduce the concept of patterns.

In design meetings following the patterns study groups, several of these patterns did
appear in our designs, and we believe the designs were cleaner for it. In one case, the
pattern appeared in our designs for a while but was eventually replaced by a more
sophisticated pattern: Observer (aka publish-and-subscribe or model-view) was sub-
sumed by the typed Event-Listener pattern implemented throughout Java AWT 1.1.

In retrospect (now that we write this report), we believe that it would have been worth
holding some additional study groups to study additional patterns. Questions raised dur-
ing design meetings indicated that a deep understanding of even simple patterns does
not come immediately, and additional study would perhaps have yielded greater bene-
fits.

2.3 Daily build and smoke test
One of the most important factors in releasing any kind of software is the ability to build
and test the software on a regular basis. In Ptolemy II, the entire codebase is automati-
cally rebuilt in several configurations every night. (Among other things, we need to
build it with two versions of the Java compiler.) The output of the compilers and other
tools is parsed to find errors in the build, and these errors are included in an email mes-
sage sent to the whole group each morning.

Building every night helps identify configuration management issues earlier in the
release cycle, which in turn makes the process of generating the release much less of a
last minute rush. For example, the nightly build uncovered pathname length problems
that were cropping up when the release was extracted with the Solaris tar program. In
the past, similar bugs have only been detected in the alpha or beta releases. Building the
release every night also makes it very easy for us to ship snapshot releases to off-site
developers.

Regression tests are run together with the nightly build. Every package in Ptolemy II has
a test directory, containing test scripts written in Tcl and using the Tcl Blend (see
http://www/scriptics.com) package to create and exercise Java objects. We use
Sun’s JavaScope tool to generate code coverage statistics from the test runs, and gener-
ate annotated web pages that show the code coverage for each file. The web page that
summarizes the code coverage on a per file basis is also annotated with its code rating
(see Section 2.4). This page is discussed every week in group meeting so that everyone
knows what the code coverage and rating statistics look like.

Techniques

Software Practice in the Ptolemy Project 11 of 43

2.3.1 Introducing the daily build and smoke

In terms of mechanics, the daily build and smoke test was introduced simply by doing
it: we wrote the scripts that perform the build and smoke test and generate the output
email and Web pages, and turned it on. In terms of creating an understanding of issues
such as the reason for the build and smoke test and the importance of not breaking the
build, the process was less straight-forward.

To engender an understanding of the importance of the daily build, we held a study
group where we read sections from McConnell’s Rapid Development [8] and McCar-
thy’s Dynamics of Software Development [6]. This was useful background material, but
more important than this study group was an on-going effort to communicate the impor-
tance of a working build. Things we did to engender a spirit of shared ownership of the
build were:

• When the build email shows broken compiles, figure out who checked in the code
that broke and ask them to take a look at it.

• Buy a silly hat1 and write “I BROKE THE BUILD” on it, and (humorously) threaten
to make people wear it. Of course, we don’t actually make anyone wear it, but its
presence (and the fact that senior group members do wear it occasionally) empha-
sizes the importance of the issue in a light-hearted way.

• Complain a lot when we had to fix the build ourselves.

At the time, we already had an established infrastructure for writing test suites, so the
smoke test tagged along with the daily build quite easily. Again, the physical mecha-
nism for introducing regression tests is more straight-forward than the social mecha-
nisms. One of the key problems is that most of us have simply not been in the habit of
writing test suites as we develop code, yet this habit is one of the most valuable skills
that a developer can have.

Apart from having a framework for writing test suites that is integrated into the makefile
and build system, we have found that increasing the visibility of the test suites helps
enormously. The code coverage tools generate coverage statistics in HTML, which we
have modified to show the rating of each class. Particularly in the lead-up to a release,
we run through these pages at our weekly lunch meeting, and highlight classes or pack-
ages that are short on tests or coverage and need attention. Of course, 100% coverage
does not mean fully tested, but it is at least a clear goal.

2.3.2 Benefits of the daily build and smoke

The build and smoke test has had two key benefits. Although we have not instituted a
check-in test – one that would require running a set of regression tests before checking
in – the group members are now aware of the importance of keeping the build working.
When the nightly build email shows that there is a problem, group members will gener-
ally fix the problem immediately, and then notify the rest of the group. This kind of con-
cern is very confidence-inspiring!

1. For those who care about these things, we bought Cartman’s hat, from “South Park.” About
twenty dollars at a novelty store.

Techniques

12 of 43 Software Practice in the Ptolemy Project

Second, the regression and code coverage statistics have improved markedly in recent
months. The lesson we have learned here is that simply making people aware of a) what
the standard is and b) how their packages fare relative to that standard, encourages a
more professional approach.

2.4 Code rating
One of the most important yet neglected factors in producing functioning research soft-
ware is the ability to answer the question “Where are we now?” Our code rating system
classifies code based on its progression towards an ideal quality standard. It acts as a
framework for quality improvement by peer review and change control through
improved visibility.

Code is rated on a per-class basis at four levels of confidence: red, yellow, green, and
blue. The basic idea is that a package or class starts at red, and advances to blue. In our
process, we have tied the rating to design and code reviews, but other processes could
use different mechanisms to advance code through the rating levels. In more detail, the
rating levels are:

• Red
Red code is untrusted code. This means that we have no confidence in the design or
implementation (if there is one) of this code or design, and that anyone that uses it
can expect it to change substantially and without notice. All code starts at red.

• Yellow
Yellow code is code with a trusted design. We have a reasonable degree of confi-
dence in the design, and do not expect it to change in any substantial way. However,
we do expect the API to shift around a little during development.

• Green
Green code is code with a trusted implementation. We have confidence that the
implementation is sound, based on test suites and practical application of the code. If
possible, we try not to release important code unless it is green.

• Blue
Blue marks polished and complete code, and also represents a firm commitment to
backwards-compatibility. Blue code is completely reviewed, tested, documented,
and stressed in actual usage.

Each class file contains a tag, @AcceptedRating , that marks its rating. The rating
given by this tag appears in Web pages generated by the nightly build scripts, providing
an at-a-glance indication of our overall level of confidence in the codebase.

Although we track the code rating of classes individually, it is very useful to indicate the
aggregate code rating of packages as well. We generally view the code rating of a pack-
age as the lowest rating of any class contained within the package.

2.4.1 Introducing code rating

The idea of code rating was motivated by our realization that we were, at one point in
one of our projects, spending a lot of time redesigning each other’s code. To counteract

Techniques

Software Practice in the Ptolemy Project 13 of 43

this, we invented the rating system. By visibly indicating our confidence in the quality
of a class or file, we hoped to reduce the likelihood of unnecessary rework. Since then,
we have formalized the rating system and integrated it with design and code reviews.

2.4.2 Benefits of code rating

Code rating has two key benefits:

1. It provides an instant summary of the perceived quality of a class or package.
2. It provides a vocabulary for summarizing the quality of a package. For example, we

might say, “These packages need to be green before we release them,” or “This set
of packages has been red for a long time; we need to start moving some of them to
yellow.”

Given its simplicity, code rating combined with reviews is surprisingly effective, and is
not something that we have seen published elsewhere.

2.5 Formal reviews
Formal reviews are a technique for improving software quality by peer review. By “for-
mal,” it is meant that the reviews are performed in a well-defined way, with clear goals
and written results. The specific technique we use for reviews is generally known as an
inspection, and was originally published by Fagan in 1976 [2]. A concise summary of
inspections and other types of review is contained in chapter 24 of Code Complete [7].
A complete and detailed description of the review technique that we have evolved is
contained in Section 2 of this report.

The basic premise of a peer review is that it will show defects that would not have been
found solely by the author. For this process to be effective, reviews have a formalized
structure that encourages defect detection, and discourages defensiveness, side-tracks,
on-the-spot redesigns, and other barriers to effective completion of the review. Several
points are key to a successful review. First, reviewers are expected to read the review
material before-hand. Second, the emphasis of the review is on finding defects in the
material at hand as a matter of fact and not as a reflection of the author’s level of skill or
ability. Third, reviewers are not permitted to discuss solutions to problems during the
review itself, but must remain focussed on defect detection.

Each person in a review has a well-defined role. The key role is played by the modera-
tor. The moderator’s main task is to keep the review focused and moving. In particular,
the moderator must cut short attempts to discuss solutions during the review itself.
Other important tasks of the moderator are to organize the review and to start and finish
it on time. In our reviews, the moderator also acts as reader, paraphrasing the design or
code to focus the reviewers’ attention on it.

The author is there solely to answer questions from the reviewers. Depending on the
reviewers and the kind of review, the author may need to do more or less explanation. It
is important that the author not attempt to defend his or her design or code during the
review; rather, if the reviewers decide that they have found a defect, the author
acknowledges the defect and moves on. The scribe has a critical role, which is to note
the defects raised during the review. Finally, reviewers are there to find defects, both in

Techniques

14 of 43 Software Practice in the Ptolemy Project

preparing for the review and during the review itself. (The moderator and scribe are also
reviewers.)

Following the review, the scribe distributes the review notes (in our case, they are
placed on a Web page). The author is then required to perform rework to address the
defects raised in the review. Here, another key point: the author has responsibility to
decide what to do about each defect. If he or she believes with good reason that a defect
raised in the review is not in fact a defect, then it is sufficient merely to note the reason-
ing in the rework notes.

There are two key areas where we have not followed recommended practice. First, we
have not implemented metrics that enable us to measure improvement in our quality.
One reason for this is simply that we haven’t felt that the cost of implementing metrics
would pay off. Another reason is that we are a relatively small group of developers, so it
is doubtful that we would be able to gather meaningful metrics anyway. Nonetheless,
this is something that we should revisit.

The second area in which we have deviated is that we do not use checklists during the
reviews. Although we started by adapting published checklists, we found that we ended
up just not using them. We do, however, have preparation checklists for the author and
moderator to ensure preparedness for the review. Again, this is an issue we should
revisit to see what we might have missed.

2.5.1 Introducing reviews

We introduced reviews with a short series of study groups. In the first, we read Chapter
24 of McConnell’s Code Complete [7], and a selection from the NASA Formal Inspec-
tion Guidebook [9]. Following that, we performed a mock code review of some of our
code, using the checklists from the Formal Inspection Guidebook as a starting point. We
repeated the process with a design review.

Having done these small test cases, we decided reviews would probably be beneficial,
and started reviewing small parts of the embryonic Ptolemy II code. Somewhere along
the way (we don’t remember exactly – all of these techniques were introduced gradually
into our development process), we incorporated design and code reviews into the code
rating system.

Two final points are worth noting. First, we recall there being a lot of pressure to modify
the format of the reviews. It is important not to let the reviews become too “comfort-
able” – keeping the reviews short and focussed is key. Second, reviews can be quite fun
at first, with the role-playing enhancing the experience. It is important to keep a focus
on the non-antagonistic nature of the review.

2.5.2 Benefits of reviews

Design and code reviews are immediately perceived as beneficial by most people that
have tried it, because of the feedback they receive on their design or code. In the longer
term, we have found that reviews conducted on a regular basis within a research group
have a number of benefits:

Techniques

Software Practice in the Ptolemy Project 15 of 43

• Improved quality. This is of course the primary goal of reviews, and the exposure of
designs and code to criticism in a structured way almost always improves quality.

• Increased awareness and communication. By attending reviews of other people’s
work on a regular basis, group members become aware of others’ work. They dis-
cuss and work on designs together more than in previous projects that did not have
reviews, and there is less duplicated effort.

• Building a culture. Particularly in the early phases of a reviewed project, group
members spend a certain amount of time querying style issues, coding standards,
documentation requirements, and so on. The decisions made during these early
reviews rapidly become part of the group’s development culture.

• Dissemination of experience. Newer members of the research group rapidly become
aware of expected standards by attending reviews. Reviews are an excellent means
by which all group members, and in particular the less experienced programmers,
gain design and programming knowledge.

The review process

16 of 43 Software Practice in the Ptolemy Project

3.0 The review process

This section is an expansion of Sections 2.4 and 2.5. It describes the review process that
we have evolved for improving the quality and visibility of our code. We stress that our
process is lightweight, and has very little overhead other than what is involved in per-
forming the design and code reviews. It is essentially very simple: design and code
reviews advance classes and packages through the code rating levels.

As much as possible, we try to build the attitudes and culture rather than rules and rigid
structure. Nonetheless, we do have documents that look like tedious rules and check-
lists – but we emphasize that these documents simply codify sequences of steps that we
have found worked for us, and are intended to help make reviews as effective and pro-
ductive as possible. These check-lists are reproduced in Appendix A. These documents
are not perfect, and we are now (following the 1999 Ptolemy mini-conference) in the
process of refining them again.

It is rather difficult to present the complete process, as so much of it is embodied in the
way that group members interact and their attitude towards development. In the next
few sections, we will give an overview of our process and then annotate and clarify the
most important points. All of our current development is done in Java and so empha-
sizes packages (groups of classes), but it can probably be applied without much diffi-
culty in other languages.

3.1 Overview of the process
Consider the following scenario.

Frank, an enthusiastic software developer (aren't we all?), writes a fabulous piece of
foobar code. He tests it, installs it in the public repository, and then keeps working on
other code that uses foobar. A few weeks later, Ernest starts using Frank's foobar code,
and discovers that it has some design flaws that weren't apparent to Frank. Ernest, in the
spirit of fixing problems when they're found, adds some code and moves some other
code around to fix the flaws, and keeps on working.

A few days later, Frank is suddenly very unhappy. Firstly, his build broke because of a
couple of small changes Ernest made to the types of a couple of methods. Easily fixed.
Then he discovers that he is going to have to rework a lot of his code because Ernest
redesigned part of the internal architecture of the foobar, which showed up in the order
of method calling and the way event callbacks were handled. Eventually, the whole sys-
tem is functioning again, but not without some acrimonious email debate, code rework,
and perhaps some damage to the team dynamics.

How could this have been done better? Ernest could have tried to work around the flaw
– but ultimately that's a negative impact on quality, and Ernest clearly felt that it was
unacceptable. Or a change control “committee” could be established to evaluate the
impact and cost/benefit of changes such as Ernest's. OK, but that's only half the story –
the other half is that a peer review could have solved the problem before it occurred.
Ernest (and others) could have voiced their concern about the design flaw at a time
when fixing it would be relatively cheap. Either the flaw a) would have been fixed, or b)

The review process

Software Practice in the Ptolemy Project 17 of 43

it wouldn't have been fixed, but the reasons for not fixing it would be documented and –
more importantly – accepted by other developers as a necessary decision in light of
other constraints.

Our process is a simple framework for combining these two aspects: quality improve-
ment by peer review and change control by improved visibility. It was designed as a
light-weight technique for small teams – other than the cost of performing design and
code reviews, it is very cheap. It is not intended to prevent change or creativity, since
change is an essential part of the software development process. Ultimately, the frame-
work is about confidence in quality and commitment to stability.

3.1.1 Rating levels

As described in Section 2.4, every package or class is assigned a rating indicating the
amount of confidence we place in it. The rating levels are red, yellow, green, or blue.
The basic idea is simple: a package or class starts at red, and advances up to blue by a
series of reviews. At each step, the package or class author proposes an increase in its
rating and finds a volunteer to act as review moderator. The moderator is responsible
for organizing the review and advancing the rating after the issues raised in the review
have been resolved.

Although every class has its own code rating, the classes within a package are usually
very dependent on each other. Because of this dependency, we find it most useful to
review all of the classes within a package at about the same time. This ensures that the
code within a package has a consistent rating, and also reveals more of the interaction
within the package. From now on, we will simply refer to the review process as being
applied to entire packages.

The interpretations of the four rating levels are:

• Red
The package has not been reviewed. The code may change without warning.

• Yellow
The package has passed design review. The API is not likely to change significantly.

• Green
The package has passed design review and code review. The implementation is not
likely to change significantly, although it may not be optimal.

• Blue
The package has passed final review. This means that we are confident that the code
has reached a high level of quality, and we have made a final commitment to main-
tain backwards-compatibility.

3.1.2 The review procedure

The procedure suggested here is simple and easy to remember. For each level except
red:

1. The author announces the package ready for review.
2. The moderator organizes and moderates the review.

The review process

18 of 43 Software Practice in the Ptolemy Project

3. The author responds to the issues raised in the review, redesigning or reworking as
necessary.

4. The moderator signs off on the changes, and announces the new rating.

As a general rule, we believe the process will work better if the author initiates reviews,
as the commitment to completing the review will be higher. However, new group mem-
bers often need a little bit of encouragement to initiate reviews. Also, it is important that
not too much time pass between the review and the rework, or the author will lose moti-
vation and the review notes will start to lose meaning.

The most crucial part of the review is, of course, the reviewers. But how many review-
ers should be present for an effective review? In our process, four is pretty much the
minimum (author, scribe, moderator, and one additional reviewer). Any less would
require the moderator and reviewer to split their attention between the topic and the
mechanics of the review. (This is not to imply that the moderator and scribe are pre-
vented from raising issues during the meeting – in fact, we rarely have reviews during
which the author himself does not discover defects.) In general, about four to six people
seems to be a good balance between having enough reviewers, and not wasting the
reviewers’ time – with more reviewers, there is a sense of diminishing returns, since are
only a certain number of issues to be brought up. We have, however, run effective
reviews with as many as ten people.

3.1.3 Requirements to enter review

Here are the requirements for entering a review, which we have found to work well:

• Yellow
If a subsystem or package is being reviewed, then the review requires detailed
design and API documentation, including UML diagrams and explanatory text. If
one or a few classes with well-defined or obvious roles are being reviewed, then an
API specification or javadoc output is generally sufficient.

• Green
Green is a fairly large jump from yellow. A rating of green means that other devel-
opers are going to rely on the code, so entering a green review requires a test suite
that is substantial enough to give the reviewers confidence that the code really does
what it says it does.

• Blue
Blue requires that the code has been stress-tested in use by other packages. This
requirement improves the chances that a package really does fulfill its requirements,
at least as far as its clients are concerned.

3.1.4 Managing change

Change is a fundamental aspect of software development. In Code Complete, McCon-
nell suggests establishing a “change committee.” Doing so is probably unnecessary for a
small team, but the spirit of the idea is important: have someone else evaluate the
change to see if it really is worth it. If it is, great – do it. At least you will know it's worth
the pain!

The review process

Software Practice in the Ptolemy Project 19 of 43

Instead of a change committee, we will hold a mini-review. A mini-review is less for-
mal than a full review, and takes much less time. Small changes to reviewed code can be
covered at our weekly group meetings, while more extensive changes are handled at a
separate review. If changes cannot be reviewed in a timely manner, then the package
should be reverted to a lower code rating.

Here are some guidelines on how to approach making changes at each rating level. If the
guidelines for change at each level cannot be met, then take the class back to a lower
level. This is an action that is acceptable and in some cases probably inevitable. How-
ever, it is a very strong signal that the changes need to be evaluated very carefully, since
the package has reached its current level by a careful review process. There is one over-
riding rule for all changes: code checked into the public repository must not break the
build – changes that break the nightly build disrupt all work and are unacceptable.

• Red
Changes are expected. If you know that other code already uses red code (if you
have any), then you should at least notify whoever is responsible for that other code.
Demos and test suites might be examples of code that depends on red code. Other
than that, any changes to red specifications or code are acceptable.

• Yellow
Minor changes to the interface of a yellow package are expected and acceptable.
Major changes, such as reworking the collaboration of some of the classes in the
package, are issues that should have been detected in the design review before the
package went yellow, and thus require a re-review. In any case, major changes to a
yellow package are to be considered with some care. Since the package has already
been reviewed you need good reason to make very substantial changes.
Change in the implementation code of a yellow package is expected as part of the
development process.

• Green
Changes to the interface of a green package are to be considered very carefully. A
substantial amount of code may already depend on this interface, and adding new
methods is better than changing old ones if it can be done without destroying the
conceptual integrity of the package.
Changes to the implementation of green packages are normal and expected, pro-
vided that the semantics behind the interface do not change. If they do, then take
care to ensure that code that depends on this package will not break or is updated.

• Blue
The interface to a blue package must not change in an incompatible way. Changes
that extend the existing interface without changing its semantics are acceptable, but
these changes should themselves be reviewed in a yellow-green-blue sequence.
Implementation code can change, but this should be done only for bug fixes or for
planned performance enhancements. All changes to blue code must be reviewed
again to maintain confidence in the package.
A blue package cannot be taken back to a lower level, as doing so would break the
commitment to backward compatibility implied by blue.
Remember that a blue package represents a substantial investment in intellectual
effort, not to mention sweat.

The review process

20 of 43 Software Practice in the Ptolemy Project

There are other ways with dealing with change at more fundamental levels. Designing a
system with change in mind will make it easier to accommodate large-scale changes
with minimal disruption to existing packages. Consider implementing wrappers,
facades, adapters, or (even) subclasses to deal with change instead of making major
modifications to code that has been thoroughly reviewed and tested.

3.2 The process in perspective
There are three negative reactions we have experienced from people who first learn of
our process. The first is that any process is too expensive or too rigid or too ineffective
for a research environment. The second is that it's defective because we didn't imple-
ment, say, bug tracking or improvement metrics or name-your-favorite-technique-here.
The third is that we have a waterfall process (red-yellow-green-blue sounds a bit like a
waterfall model).

All of these are wrong.

Firstly, the goal of the whole process is to improve the practice of software development
in our environment. In our case, that means academic research, a high level of innova-
tion, and people who are not necessarily experienced software developers. If it doesn't
produce results in that environment, then we won't use it. Although we have gone
through some trial and error, and have further to go, the year or so since we started
learning about design reviews and the other techniques summarized in Section 2.0, and
putting them into practice has shown enormous benefits. The responses to the survey
summarized in Section 3.4 show an overall very positive response to the process.

The second objection noted above is the other side of that same coin, and indicates a
mind-set that we have been careful to avoid. We do not implement some practice or
technique because it's “software engineering,” we do it because we think it will make it
faster and easier for us to produce better software that show-cases the results of our
research. We hope that we can maintain this attitude, and be flexible enough to try any
technique that looks promising, and discard any technique that – after trying with good
intent and some perseverance – proves to be ineffective for us.

 The third point is understandable, and arises from the apparent linear progression of the
rating codes. But that is not the way they are supposed to work. Firstly, recall that the
intention of the rating levels is one of confidence and commitment. If we say that certain
classes are green, that means that we have high confidence that they are of a certain
quality and stability, not that the implementation is cast in stone. Obviously, as we work
on a piece of software, our confidence in its quality increases and our commitment to
maintaining this quality increases, and how could it be otherwise?

Of course, change is inevitable in the life of a piece of software. Even in code that is
green, thoroughly tested, and has been used daily for weeks, we discover bugs. Most of
these bugs are conceptual errors: a new piece of research is using the package in some
new way that shows a flaw or limitation in the original conception of the way those
classes operate. So we fix it, and review the fix. We don't have any hard guidelines on
how to do this, we just expect each of us to use our judgment, and to discuss the issues
with others in the group. In extreme cases, we will take code that is green back to yel-

The review process

Software Practice in the Ptolemy Project 21 of 43

low, and start again from there. (We have also taken code that is yellow back to red.)
This is not incompatible with the process, it is part of it.

Some other points are worth noting:

• We do not feel compelled to rate every piece of software we produce. In particular,
code that was designed and written before we started the process is basically exempt,
because we don't have time to retrospectively review it.

• We place more emphasis on reviewing kernel code than domain-specific actors
(another way to put that: we place more emphasis on reviewing the application
framework than the clients of the framework), because the kernel code is so much
more critical than individual actors.

• In general, we try to consider packages as a whole as being at a given level. This is
often not possible, as packages grow and change, but it is a good goal to aim for,
especially for packages that a lot of other code depends on. For the same reason, it is
better to prepare a whole package for review (in two or more review meetings) than
to review it in bits and pieces.

• In general, code should not have a rating substantially higher than other code that it
depends upon. For example, if package A uses package B and B is still red, then
make B at least yellow (so its interface is somewhat stable) before making A green.
A similar principle applies to inheritance hierarchies.

Finally, although we encourage others to try this process, we don't expect anyone to
adopt it wholesale. Take the parts that work for you, add other techniques that you think
will be effective in your environment, and keep refining it.

3.3 Additional notes
One of the crucial aspects of our efforts to introduce a software process and culture is to
constantly strive to find ways to make the process more efficient and enjoyable. To
highlight this aspect, here are some specific mechanisms that we have introduced,
which work well in our environment. First, things that make reviews more efficient:

• Pre-allocate two time slots per week for reviews. These time slots are decided once
at the beginning of each semester as time where most people in the group will be
likely to make a review. When a review is announced, it always goes into one of
these slots (except in the rare cases where we have more than two in one week). The
reduction in frustration when trying to schedule reviews is dramatic!

• Create detailed “how-to” checklists for moderator and author. These lists are repro-
duced in Appendix A. The check-lists are intended to keep each review “on the
rails,” and when they are used are quite effective. It is not clear how to encourage
more consistent usage of the check-lists.

• Choose a scribe beforehand, and scribe into the computer. This ensures that the
scribe is prepared in advance to scribe the review notes, and that the review notes are
available on a web page immediately after the meeting.

• Require that the review material is stable. Early on, we had some reviews in which
authors changed material under review the day before the review. As a result, the
review meeting had two or more different versions of the material, which makes

The review process

22 of 43 Software Practice in the Ptolemy Project

effective reviewing impossible. We now require that, once the review is announced,
the review material not change until after the review.

• Don’t try to review too much. There is a temptation to “get through” a whole pack-
age or set of classes. Resist it. In our experience, reviews that run two hours or more
are less effective at the end anyway, and it becomes much harder to get reviewers to
commit to meetings that might run on endlessly. Now we generally schedule reviews
for 60, 75, or 90 minutes, and the moderator is expected to stop the meeting on time,
and schedule a follow-up meeting if necessary.

Here are some mechanisms that we have found make the reviews more useful:

• Use UML and javadoc for all design reviews. In general, the better the quality of
the UML diagrams in a design review, the more time is spent focussing on the
design itself rather than the trivialities of the presentation. We note, however, that
focusing on the javadoc for design reviews is a potential trap. If an author has not
kept the method comments in sync with the code, the design review becomes point-
less because we are not reviewing the actual design.

• Create a Web page for each review. The Web page lists the reviewers, start and end
time, and has pointers to all material to be reviewed. During the review, the scribe
adds defects and issues raised at the review; during rework, the author annotates
each defect or issue with a response. The Web page thus serves as a concrete artifact
and record of the review.

3.4 Evaluating the process
Perhaps the most important ingredient in making any kind of software process success-
ful is constant monitoring and improvement. Because there are many other demands
placed on members of a research group – taking or teaching classes, basic research,
writing papers, reports, and theses, and so on – any part of the process that feels unpro-
ductive or unnecessary will naturally tend to get ignored. It is thus critical to always aim
to minimize overhead and maximize perceived benefits.

We have had two major points where we took a step back and looked at our process
with the above in mind. For the first, we did a “review review” – that is, we subjected
the review process itself to a review. Four members of the research group (other than the
“author”) attended the review, and raised over thirty potential defects and problems with
the review process. (Because of the nature of the material being reviewed, we also
allowed suggestions in that count.)

The second assessment was an informal survey conducted by John Reekie in prepara-
tion for writing this report. All of those who have been actively involved in the review
process and who are still at UC Berkeley responded. Responses were considered to be
anonymous, and so none of the responses published here include names. The full set of
responses is reproduced in full in Appendix C, and summarized below.

3.4.1 Summary and analysis of survey responses

The survey consisted of fifteen questions intended to elicit opinions about the process.
We tried to encourage frank responses. We were surprised by some of the responses,
and there are clearly some aspects of our process that we need to keep working on!

The review process

Software Practice in the Ptolemy Project 23 of 43

1. At how many design reviews have you been present as author?
Responses ranged from zero for the newer students through to five. Generally, each
Java package takes one or two reviews.

2. At how many code reviews have you been present as author?
Most people have not had their code formally reviewed yet. This partly indicates the
greater importance we place on design reviews, but also the fact that we are still rel-
atively early on the development curve. Edward Lee has led the way with code
reviews, at a count of three.

3. At how many design and code reviews have you been present as a reviewer?
Responses ranged from one to over 10 for students, and ten to fifteen for senior
group members. Everybody in the Ptolemy group has attended at least five.

4. What were the benefits of the reviews your designs went through?
Benefits listed included better design and more confidence, feedback about docu-
mentation and naming issues, development of a coherent style within the group, and
affirmation of a sound design. In general, authors felt that the design reviews
exposed design flaws and improved the quality and soundness of their designs.

5. What were the benefits of the reviews your code went through?
Those who have had their code reviewed listed confidence, improved coding style,
catching of subtle errors, and code cleaning.

6. What were the costs/downside of the design and code reviews? (Time to prepare the
reviews, time needed to rework your design into someone else's design, disruption of
your regular workflow, discouragement caused by negative feedback, discourage-
ment caused by the extra time involved, etc etc.)
This questions elicited a number of responses, but the most common was the time
required to prepare for the reviews and to perform rework following the review.
Most of those who raised this issue also remarked that the cost was paid off by the
benefits of correcting designs before the package became more widely used. One
respondent remarked that the benefits of the rework were not obvious to him, indi-
cating that the purpose of the rework is not fully understood.

7. List some good points about the way in which the reviews that you were present at
were conducted.
Many respondents liked the formality of the reviews and the way that the assigned
roles and the policy of not discussing solutions kept the review on track and
focussed on the review material. One remarked that the reviews were good for not
getting bogged down in details.

8. List some bad points about the way in which the reviews that you were present at
were conducted.
There were several issues raised in response to this question. The most prominent
(that appeared in answers to other questions as well) was that some reviews got
bogged down in trivialities, such as typos and small changes to the documentation.
One respondent said “if an API is solid the reviewers should just acknowledge that it
is solid.”
A second important issue raised is the quality of the notes taken by the scribe. This
appeared in several places, and it is clear that we need to work on ensuring that the
scribe is able to note raised issues precisely.

The review process

24 of 43 Software Practice in the Ptolemy Project

Other problems raised included: lack of positive feedback, authors not caring to
respond effectively to issues raised in the review, and reviewers that do not prepare
for the reviews or are unfamiliar with the overall architecture of the system.

9. What differences did you note in the conduct of the reviews at which Edward was
present? (Or me, or Christopher)
This question was intended to explore a concern that we had early on that the pres-
ence of a professor (Edward Lee) at the reviews would count as “management.”
Quite the reverse seems to be true: most respondents felt that the presence of a senior
group member at the review improved the review enormously. This indicates two
things: i) that the right kind of participation in reviews by a professor and senior
researchers can have an enormous benefit, and ii) that we have to be careful not to
allow this to become an ingrained procedure, as inevitably it is not scalable. Since
most of the members of the research group are in fact relatively early in their post-
graduate careers, we hope that they will become stronger reviewers as they gain
experience and confidence.

10. Would you prefer more or fewer reviews (or the same number)? If so, why?
This question was read as “reviewers” in some cases. In either case, it appears that
our current number of both reviews and reviewers is about right. Two respondents
noted the trade-off between the number of reviews and the time costs. Edward Lee
felt that we should have more reviews, as it is a more effective use of his time than
reworking poor designs or code himself!

11. Do you think reviews should be conducted earlier or later in the development pro-
cess? If yes to either, when and why?
Some respondents suggested that reviews be done earlier so problems are found ear-
lier. Others suggested that reviews be done later, so that the reviews spend less time
working through obvious flaws and rough code. Several remarked that the point in
the design process at which a review is conducted should just be left up to the author.
We are considering introducing an early design/architectural review that looks only
at UML diagrams and not at API documentation.

12. Do you think testing and the review process should be more integrated?
Responses were divided into “How?” and “Yes!”. Overall, it appears that most peo-
ple are interested in reviewing test cases or in exercising the test cases as part of the
reviews.

13. How would you improve the review process? (This can include removing things as
well as adding or changing things.)
Responses here raised issues also raised in other questions (better notes from the
scribe, better preparation from the reviewers). Other suggestions were that we
should follow our review checklists more closely, and to have senior people in the
group spend more time in reviews.

14. How would you improve the way that software is developed in the Ptolemy group in
general?
There were two interesting suggestions. One was that each key package have two
primary developers rather than one. Another was that we make better use of auto-
mated testing software.

15. Do you have any other comments?

The review process

Software Practice in the Ptolemy Project 25 of 43

Responses were extremely positive about the impact of the reviews on the quality of
our code output. Two responses are “I really think that our review process has had a
noticeable effect on the quality of code that has come out of the group recently. I
very rarely look at Ptolemy II code that has been reviewed and see deficiencies in it,
which seems to be a regular occurrence when looking at some Ptolemy Classic
code” and “The review process is a great way to encourage/ensure high-quality soft-
ware. I'm really impressed, surprised even, by the effectiveness of this approach.”

Concluding remarks

26 of 43 Software Practice in the Ptolemy Project

4.0 Concluding remarks

It is difficult to quantify the degree to which our software development has improved as
we have adopted the techniques described in Sections 2 and 3. One measure of improve-
ment is the quality of documentation: the Ptolemy II kernel manual is far clearer and
more useful than earlier manuals for this level of code. A second is the lower rate at
which developers encounter problems in our codebase. Although we have not yet offi-
cially released Ptolemy II, feedback from people who have used the developer releases
has been extremely positive.

The intangible benefits are also substantial. We believe we now have more of a culture
of professionalism, where group members are working together and helping each other
identify bugs, propose fixes and build on each other’s work. Members of the Ptolemy II
team are much more aware of each other’s work than the Ptolemy Classic team was.

Part of this change in our development culture has been a shift to finding and fixing
problems much earlier in the release cycle; as a result, we are far more likely to identify
code that needs more work in time to actually do the work. With earlier projects, we
were surprised several times with problems in the implementation of certain features
and packages, which we think would have been avoided if the code had been checked
into the public repository, reviewed, and tested as we do now.

Apart from choosing the right techniques and adapting them appropriately, we have
realized that one of the key ingredients in bringing about these changes has been visibil-
ity. Software is an intangible thing, so it is easy for developers to insert all kinds of cruft
into the codebase and never quite get around to finishing it! Mechanisms such as the
nightly build email, and the web pages with the build and test results and code coverage
statistics, all contribute to an awareness and concern with the state of our product.
Reviewing (informally) these pages on a regular basis highlights problem areas, and
also rewards developers that have taken the trouble to have their code reviewed and to
test it.

Finally, we note that introducing these techniques requires commitment and involve-
ment by senior personnel. Because the real goal is a change in culture, having the
research group leader deeply involved in the process, both leading by example and
(where appropriate) demanding that the standard be maintained, has been a key ingredi-
ent in making these changes.

Concluding remarks

Software Practice in the Ptolemy Project 27 of 43

Acknowledgements
The work described here is also the work of all of the people who have participated in
the process. In particular, we thank

• John Davis

• Ron Galicia

• Mudit Goel

• Heloise Hse

• Jie Liu

• Xiaojun Liu

• Lukito Muliadi

• Michael Shilman

• Neil Smyth

• Michael Williamson

• Yuhong Xiong

Most of these people are part of the Ptolemy project, directed by Professor Edward A.
Lee and sponsored by the Electronics Technology Office of the Defense Advanced
Research Projects Agency (DARPA), the State of California MICRO Program, and the
following companies: the Alta Group of Cadence Design Systems, Hewlett Packard,
Hitachi, Hughes Space and Communications (now merged with Raytheon), Motorola,
NEC, and Philips.

Michael Shilman and Heloise Hse are part of the JavaTime project, directed by Profes-
sor Richard A. Newton and sponsored by the Defense Advanced Research Projects
Agencies (DARPA), Hewlett Packard and Hughes Research Laboratories.

References and Further Reading

28 of 43 Software Practice in the Ptolemy Project

References and Further Reading

[1] Grady Booch, James Rumbaugh, and Ivar Jacobsen, The Unified Modeling Lan-
guage User Guide, Addison Wesley, 1999.

[2] Michael E. Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal 15, nr 3, pp 744 - 751, 1976.

The original paper describing formal inspections. Historically interesting, but Chapter 24 of
Code Complete is more useful now.

[3] Daniel P. Freedman and Gerald M. Weinberg, Handbook of Walkthroughs and,
Inspections, and Technical Reviews, Dorset House, 1990.

Essentially structured as a long FAQ, this rambling set of course handouts is a good reference
but is not essential.

[4] Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, Inc., 1997.

A concise and frank introduction to UML. Recommended if you haven’t already been exposed
to UML or if you don’t have time to study it in detail.

[5] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, October 1994.

The original object-oriented patterns book. Highly recommended.

[6] Jim McCarthy, Dynamics of Software Development, Microsoft Press, 1995.

A collection of “rules” and anecdotes for software development. Favorites adopted as develop-
ment mantras include “Don’t break the build” and “Get to a known state and stay there.”
Highly recommended by Reekie, who first saw software development as a social act while
reading it; however, a lot of people don’t like this book.

[7] Steve McConnell, Code Complete, Microsoft Press, 1993.

A wide-ranging treatment of practical software issues, covering topics from coding style to
formal inspections to personal character. Many of McConnell’s arguments are backed by pub-
lished studies, and each chapter includes a wealth of references. Very highly recommended.

[8] Steve McConnell, Rapid Development, Microsoft Press, 1996.

Although not immediately as appealing as his first book, this book is invaluable for both its
frank coverage of topics such as specification and life-cycles, and for its capsule descriptions
of “best-practice” techniques. Highly recommended.

[9] NASA Software Assurance Technology Center, Software Formal Inspection Guide-
book, http://satc.gsfc.nasa.gov/fi/ , 1996.

A good description of a formal inspection process. Includes a collection of check-lists that
would provide a good starting point for developing your own check-lists.

[10] Arthur J. Riel, Object-Oriented Design Heuristics, Addison Wesley, 1996.

[11] James Rumbaugh, Michael Blaha, et al. Object-Oriented Modeling and design,
Prentice Hall, 1991.

References and Further Reading

Software Practice in the Ptolemy Project 29 of 43

The original book on OMT. Chapters 3 and 4 are one of the best and most concise introduc-
tions you will find to static structure modeling, and translates easily into UML. Other than
that, a bit dated now.

[12] James Rumbaugh, OMT Insights, SIGS Books, 1996.

A collection of reprints of Rumbaugh’s columns from the Journal of Object-Oriented Pro-
gramming, some of which are very insightful. Recommended.

[13] James Rumbaugh, Ivar Jacobsen, and Grady Booch, The Unified Modeling Lan-
guage Reference Manual, Addison Wesley, 1999.

[14] Karl Weigers, Creating a Software Engineering Culture, Dorset House Publishing,
1996.

Common sense guide to creating a healthy development culture. We wish we had discovered it
earlier.

Specific guidelines in the Ptolemy Project

30 of 43 Software Practice in the Ptolemy Project

A Specific guidelines in the Ptolemy Project

(From our Web pages.)

This document lists guidelines and checklists for the review process in the Ptolemy
project. It is based on practical experience with making the process as smooth and effec-
tive as possible. The checklists seem long, but we highly recommend that you go
through these to make your reviews as smooth and productive as possible.

A.1 The review process

This is the suggested process for conducting a review in the Ptolemy project. All
reviews follow this same basic format, which deviates from the documented formal
inspection process where we have felt it necessary to streamline the process in our envi-
ronment.

A.1.1 Organizing a review

The author is primarily responsible for getting the review process started. When an
author has code that is ready for review, he or she verifies this by running through the
Development checklist for the type of review. (See lists below).

The author then finds someone willing to be the moderator and they agree on a suitable
time. The first-choice times as of February 1999 are Friday 1:30 – 2:30 and Monday
3:00 – 4:00 pm. The author then runs through the Review preparation checklist. When
completed, the moderator announces the review and requests reviewers.

Here are the steps:

1. Author steps through Development checklist
2. Author finds moderator and they schedule a date
3. Author steps through Review preparation checklist
4. Moderator announces review and calls for reviewers

A.1.2 Conducting a review

The review requires four roles:

• The moderator runs the meeting. In our process, the moderator also acts as reader.

• The author answers questions about the design or code.

• The scribe notes down issues and defects raised at the meeting.

• The reviewers are everyone else. (The moderator and scribe are also reviewers.)

Points to note:

• The scribe is to be determined before the meeting, should the scribe want to bring a
laptop to use.

• Scribing directly into a computer is preferred, since the review notes will be avail-
able much sooner.

Specific guidelines in the Ptolemy Project

Software Practice in the Ptolemy Project 31 of 43

• The scribe must be careful to note the raised issues and defects. Poor scribing makes
rework much more difficult and substantially reduces the effectiveness of the
review.

• The moderator should schedule a second meeting if one meeting proves insufficient.

A.1.3 Completing a review

The review is not completed until the author has completed rework. To be sure, the
author should run through the Rework checklist for the level being reviewed.

Once the author completes rework, he or she informs the moderator, who verifies that
the Web page has been updated with responses to the review. The author then updates
the rating tags in the appropriate files, and announce the updated page. Note that we do
not require that the moderator actually verify that rework has been completed properly,
only that the Web page has been updated with responses to each issue raised in the
review meeting. An author is of course always free to sit down with the moderator or
someone else and check some part of the rework.

A.2 Mini-reviews

Sometimes a mini-review is required. A mini-review is typically a good idea if the
author has made a significant change to the design during rework, but not significant
enough to warrant a full re-review. A mini-review is a very good idea if someone modi-
fies code that has already been reviewed.

We have not codified a process for a mini-review. Use your judgment.

A.3 Moderator checklist

The role of the moderator is crucial for successful reviews. If you are moderator for a
review, print out this list and refer to it throughout the review process.

1. With the author, schedule a time for the review.
2. Announce the review and recruit reviewers.
3. Remind the author that review materials must be ready and announced at least three

days prior to the review. Remind the author that review materials must be stable for
this time.

4. Verify that the proposed material can be covered in the time scheduled for the meet-
ing (75 - 90 minutes).

5. Ensure that enough reviewers of the right type will be present. If not, re-announce
the review and/or walk around and ask for reviewers.

6. Make sure that there is a scribe nominated for the review.

7. Send a reminder to the eallocal1 mailing list the day before the review.
8. At the start of the review meeting, state:

The purpose and scope of the meeting.
The time at which the meeting will finish. For example, “This is a design review of
the Expression package. We are starting at 1 o’clock and will finish at 2:15.”

1. eallocal contains all of the developers in our group.

Specific guidelines in the Ptolemy Project

32 of 43 Software Practice in the Ptolemy Project

9. During the meeting, paraphrase the review material to focus the reviewers' attention
on the right things.

10. During the meeting, keep the reviewers focussed on the review material. Do not
allow discussion not directly related to the stated purpose of the meeting.

11. Finish the meeting on time. Schedule another meeting if the review materials were
not completed.

12. At the conclusion of the meeting, thank the participants.
13. At the conclusion of the meeting, remind the scribe to update the review Web page

with noted issues within 24 hours.
14. When the author informs the moderator of completion of rework, verify that the

Web page has been updated with the author's responses.

A.4 Author checklist – yellow

Yellow is a commitment to an initial architecture and design. Yellow requires a descrip-
tion of the design, UML static structure diagrams, and javadoc-produced API docu-
mentation.

A.4.1 Development

1. The package has a design document.
2. The design document includes a complete static structure diagram.
3. make docs runs with no errors or warnings on classes scheduled for review.
4. All methods produce documentation in the javadoc output.

5. Review the output of ptspell *.java .1

A.4.2 Review preparation

1. Probable review date and time agreed with moderator.
2. Web page created for review and under version control.
3. Web page contains HTTP links to:

Design document including UML
javadoc output

4. Moderator notified of readiness.

A.4.3 Rework

1. Each item on review Web page annotated with a response contained in <block-
quote> ...</blockquote> .

2. Notify the moderator that the rework has been completed.

1. ptspell is a spell-checker that understands, for example, thisVariableName . It also
has other commonly-occurring words, such as our names, in its dictionary. This makes spell-
checking code quite do-able.

Specific guidelines in the Ptolemy Project

Software Practice in the Ptolemy Project 33 of 43

3. After the moderator approves, update the @AcceptedRating tag1 of all relevant
files and announce the completed rework to the ptdesign mailing list.

A.5 Author checklist – green

Green is a commitment to an implementation of the design. Green requires solid and
tested code.

A.5.1 Development

1. Run make clean all JFLAGS=-deprecation and fix any warnings. If it is not
possible to fix the warnings, consider adding the @deprecated tag.

2. Review the output of ptspell *.java .
3. make docs does not produce any errors or warnings.

4. util/testsuite/chkjava *.java does not produce any warnings.2

5. Run jindent *.java to reformat code to Ptolemy group style standards.

A.5.2 Review preparation

1. Probable review date and time agreed with moderator
2. Web page created for review and under version control.
3. Web page lists the classes under review and contains an HTTP link to the design

document (for reference, not for review).
4. Moderator notified of readiness.

A.5.3 Rework

1. Each item on review Web page annotated with a response contained in <block-
quote> ... </blockquote> .

2. Notify the moderator that the rework has been completed.
3. After the moderator approves, update the @AcceptedRating tag of all relevant

files and announce the completed rework to the ptdesign mailing list.

A.6 Author checklist – blue

Blue is a firm commitment to backwards compatibility. Blue requires a complete
design, implementation, testing, and documentation. A blue review looks for defects in
completed documentation, presentation, and packaging. Currently, we have not had any
blue reviews, so we haven’t developed a check-list.

1. The @AcceptedRating tag contains the code rating level. We are about to make @Rating
a synonym.

2. chkjava is a script that processes source code files looking for problems, such as bad revi-
sion control keywords or javadoc tags, methods with missing comments, and so on.

Notes on Study Groups

34 of 43 Software Practice in the Ptolemy Project

B Notes on Study Groups

(From our Web pages.)

We have been running a study group for about eighteen months now, with topics ini-
tially chosen from various fields of software development, and then expanding into
other areas of interest. Participation in the study group is voluntary. This presents some
challenges for the moderator in encouraging interest and participation.

In my view, the prime measure of a “successful” study group is that each participant
feels that they got something out of it. Here are some thoughts on what can make this
happen.

B.1 Choosing a topic: relevance, concreteness, achievability

Topics need to be something that all participants could conceivably use, if not right
now, then sometime. In the same vein, concrete and “hands-on” techniques are more
likely to be relevant than abstract or hypothetical ones.

To get the most out of a meeting, participants need to do some preparation – this always
makes progress faster and the discussion more lively. To encourage this, the reading
material needs to be short enough to be read and understood fairly rapidly. Ten to fifteen
double pages, although small, nonetheless seems to be a good size for a study group of
this kind.

Participants are much more likely to join and enjoy the study group meetings if what
they get out of it is large relative to what they put into it.

B.2 Moderating the meeting: focus, openness, and enthusiasm

The purpose of the study group is to study something new. To aid this, the moderator
should encourage a “we are doing it by the book” approach, solely for the purpose of
enabling understanding of new ideas without premature rejection.

If a participant disagrees strongly with ideas presented in the reading material, the mod-
erator needs to steer the discussion away from subjects that cannot be verified directly
from the reading material. A participant with a strong dissenting voice should be
encouraged to find suitable reading material to present at a later study group.

The moderator does not need to be an expert in the topic – in fact, I think meetings work
better if the moderator is also learning the material for the first time (although perhaps
having done more background research than the others), as this avoids any possibility of
the meeting turning into a lecture.

Meetings that focus on the topic and material at hand seem to move faster and be more
satisfying than those that wander off into other areas.

Finally, a moderator who is excited about the topic has a much better chance of inspir-
ing the other participants into, um, participating. I have found this surprisingly difficult
to maintain. The moderator also needs to encourage an open and non-threatening envi-
ronment, and to be excited about the input of the participants.

Notes on Study Groups

Software Practice in the Ptolemy Project 35 of 43

B.3 Participation

The best way to encourage participation in the meeting is to build it into the meeting's
structure. Here are some techniques that have worked so far:

Take turns in presenting. Each person is assigned a small section of the reading mate-
rial, and presents it at the meeting. We used this technique to cover object-oriented
design patterns, where we covered seven patterns over the course of two meetings.

Passing the marker. People have the whiteboard marker passed to them and are in con-
trol of what goes on the whiteboard. This basically forces each person in turn to take an
active role in the discussion. This works particularly well if the topic is about or
includes visual notations – drawing the notation on the white-board gives participants a
useful “first step” that overcomes the natural resistance to learning new notation.

Role-playing. Each person assumes a well-defined role and plays it out in the meeting.
This worked well for the software inspection meetings, in which people were assigned
roles such as moderator, scribe, reviewer, and so on.

Round-robin. This tends to be a last-ditch attempt to get people involved. If the topic
has a list of some kind, taking turns around the table to assess, explain, or just read each
element of the list is still better than the moderator doing all the talking!

Another technique is to have a case-study. Case-studies are a little difficult because a) it
is hard to find case-studies that are relevant yet small enough to be covered in a single
meeting, and b) the moderator may have trouble both getting someone to provide a case-
study and for the others to read it prior to the meeting. Nonetheless, when it can be
done, a case-study provides a useful incentive and relevance to the meeting.

A key point to remember in all meetings is that the whole purpose is to learn something
new. It is important not to be distracted by a case study or the broader context in which
the meetings take place (a research project) into turning the study group meeting into a
design or technical meeting. The purpose of the study group meeting is to learn – any
by-products that happen to be useful, such as design insight into the current project, are
great, but must be seen as a happy accident.

Complete Survey Responses

36 of 43 Software Practice in the Ptolemy Project

C Complete Survey Responses

In preparation for writing this report, we prepared an informal survey to solicit direct
feedback from those involved in the development process. We received responses from
most of those who have taken part, with the exception of two who have now left UCB.
All responses are reproduced below. To distinguish the nature of responses, we have
marked those from professor and staff with a dagger. The responses are unedited except
for spelling and minor grammatical errors.

1. At how many design reviews have you been present as author?
2. At how many code reviews have you been present as author?
3. At how many design and code reviews have you been present as a reviewer?

The responses to these three questions are summarized in the following figure:

4. What were the benefits of the reviews your designs went through?
Better design and more confidence.
I got a lot of extremely good feedback about the documentation and naming issues.
This was extremely helpful not only to make the use of the class more clear, but also
helped me rethink the way I designed it.
The reviews revealed quite a few flaws ranging from class structure to method nam-
ing. This was very helpful.

FIGURE 5. Number of reviews attended, as reviewer, author at design review, and author at code review

8

10

8

5

1

4

7

10 10 10

15

5

2

3

1

4

1

0 0

5

2

5

2

1

0 0 0 0 0 0 0

1

3

0

2

4

6

8

10

12

14

16

Person

N
r

of
 r

ev
ie

w
s

Design or code review er

Design review as author

Code review as author

Complete Survey Responses

Software Practice in the Ptolemy Project 37 of 43

One big benefit is a coherent style. This is very important in a large software project,
such as ptolemy, especially for new group members. I also view design reviews as
an affirmation that your architecture is sound, which gives a good sense of closure
on a software package and provides good incentive to move onto other things.
Lastly, reviews encourage other people in the group to reuse code that has already
been written, through the familiarity that was gained by being a reviewer and the
commitment to stability. (I find myself leery to use other peoples working code,
even if it is not changing, simply because the commitment to stability is not there.)
a) Forcing function to get documentation in order and really focus on cleaning up
interfaces; b) good comments and critiques which drastically improved design.
Inputs from the reviewers are generally very useful and give me ideas of designing
certain things differently.
N/A.
N/A.
Better understanding of OO modeling techniques (thus leading to a better design),
clarification of the issues central to the problem and revealing of flaws. Also having
the reviews forced the design to achieve coherence at that point (instead of just plod-
ding along). Finally, and perhaps most importantly, they also gave me, as an author,
time to explain my design, something that may not otherwise have happened except
through the Masters report.
† Forced us to clean up design flaws.
† Exposed quite a few design flaws (some of which were not really correctable, but
most of which were).

5. What were the benefits of the reviews your code went through?
Even better design and more confidence.
My coding style changed (hopefully for the better :-)). The code that I write now is
more compact and the names (including the variable names) are more informative.
[No response]
N/A.
N/A.
N/A.
N/A.
N/A.
† We cleaned the code, started writing tests.
† Caught lots of minor errors, and quite a few insidious errors that would not have
shown up in more thorough testing but would have bitten us later.

6. What were the costs/downside of the design and code reviews? (Time to prepare the
reviews, time needed to rework your design into someone else's design, disruption of
your regular workflow, discouragement caused by negative feedback, discourage-
ment caused by the extra time involved, etc etc.)
Sometimes, since there is a review arranged say in the next week, I have to stop the
current development and wait for the result from the review.

Complete Survey Responses

38 of 43 Software Practice in the Ptolemy Project

The main downside was the time it took me to convert my design to some other
design when the usefulness of the new design wasn't that obvious. Also quite often
the design changes would just be the name of the methods, which can be quite diffi-
cult to update if you have a lot of methods using them. Regarding negative feedback,
etc., I don’t think that it is a hindrance at all. It's just that I would prefer if the people
who review one package even help review the sub-packages. Otherwise, some of the
changes suggested at the sub package levels are conflicting with the packages that
have already turned yellow. (Eg. actor.process and pn.kernel). I think it is a lot to do
with personal tastes.
The time needed to rework is not trivial. It may take a few weeks for me to find time
to do the rework and write the response. But it is worth it.
When doing reviews, it seems that a lot of time is spent preparing material for the
review, which often must be rewritten as a result of the review (such as documenta-
tion, web pages, etc.) However, I feel this time is very small compared to the amount
of time that would be wasted attempting to use packages that were poorly designed
in the first place, and the time that it takes to redesign after a release has occurred.
Takes a long time to prepare for the review, and often times the design is changed
enough that you might have to undo a lot of that work. In contrast, if you just code
the thing, and then use the code some, it's often easy to tell some of the short-com-
ings and you can change your design without having to rewrite comments, etc.
I think the time to prepare the reviews is sort of the downside. There's some stress
too.
I think these costs have sufficient payback from the reviews. We can do better in
conducting reviews of packages used more extensively earlier, since changes in
these packages will cause rework on more designs.
Design/code reviews take time both in preparation and attendance. Often the reviews
seemed to ignore issues such as algorithm used and focused more on issues such as
comments.
Preparing for review does take a good bit of time, and they also reveal design flaws
one would prefer to brush under the carpet...
† It took some time to finish things.
† Time is expensive. But I think these are well worth it.

7. List some good points about the way in which the reviews that you were present at
were conducted.
Don't get into so much details like looking for a particular data structure.
Just discussing the design with a person not familiar with the package brought about
many obvious flaws to the design, that wont be quite apparent to the author. The
good points were that at some of the reviews the reviewers had actually read the
code and had some good suggestions to offer!
I think the format of the review is very good, the job division between the modera-
tor, the scribe, and the reviewer is good.
I think the most important thing about a review is to keep it moving, and not to get
bogged down in small points (which can be very tempting). Reviewers must remem-
ber that they are there to identify defects, not to fix them.
Very well-moderated and kept on track. I like the formality of the reviews.

Complete Survey Responses

Software Practice in the Ptolemy Project 39 of 43

I like that we try to keep the review under 1 hour and 30 minutes, so it doesn't drag
on. Also if somebody goes off track, the moderator would step in so that review is
focused on the right thing. These have been done effectively in the reviews that I've
been to.
Lively discussion and exchange of ideas.
John Reekie does a good job of moving things along.
Strong moderator. Also the author sometimes explained aspects of a design that
were difficult to grasp.
† a) Getting someone else to look over the code is invaluable. b) The code reviews
have prompted me to write test suites.
† The policy of not discussing solutions, when the moderator enforces it, is essential
to keeping the process from getting bogged down.

8. List some bad points about the way in which the reviews that you were present at
were conducted.
We need powerful person as moderators.
Quite often, the reviewers weren't familiar with the code or had put in not effort to
familiarize themselves with the designs and the suggestions they had to offer were
limited to some typos and gratuitous changes to the code or documentation. Also at
least in one case the author and scribe was the same person which slowed down the
review a lot. The moderator would in some cases let the discussion digress com-
pletely.
Occasionally, the scribe does not have enough time to fully understand the point
raised, so the wording of some of the points is not very clear.
Reviewers that have read the code, but don't understand the architecture. It is OK to
ask questions of the author before the review about “the big picture” a) After the
review in which I was reviewer, the author didn't really address most of the points
that were raised. b) I think the attention to detail increases with the quality of the
code. So that by the time an API is bullet-proof, reviewers are nit-picking over the
most trivial little details. I think reviewers shouldn't be obliged to come up with 50
points in every review, and if an API is solid they should just acknowledge that it is
solid and it'll be a better use of everybody's time.
I can't think of anything right now.
Often the approach of “say something positive first and then criticize” is not applied.
Authors will [know] that their work is appreciated if they are told so.
Sometimes a review would spend too long on one issue.
† We are always rushed for time. Some people are not prepared.
† Sometimes the reviewers and moderator focus on trivialities... Time is wasted.

9. What differences did you note in the conduct of the reviews at which Edward was
present? (Or me, or Christopher)
They are the powerful persons. Also, they has more designing/coding experience
than anyone else in the group, so the feedback is more constructive.
With Edward present, the reviews were extremely effective. Though mainly the
feedback came from only Edward. (I think quite often other reviewers - not includ-
ing you or Christopher - were intimidated and refused to come up with useful sug-

Complete Survey Responses

40 of 43 Software Practice in the Ptolemy Project

gestions.) Sometimes even the moderator would not try to be assertive. With you
and to a certain extent Christopher, the review qualities were certainly enhanced.
Without you or Edward, the reviews would normally be a ritual with the author read-
ing the code, the reviewers nodding their head, point out some typos and in a hurry
to get back to their cubicles. The reviews in these cases completely lost their rele-
vance.
 I think Edward (or you, or Christopher) does not ignore any problems, even seem-
ingly minor ones. So the reviewers pay more attention, which is very good.
Reviews where a strong personality modereadered (A new word!) tended to stay on
track better. It is important to take charge as a modereader.
N/A - you were present at all the reviews I was at. Christopher/Edward wasn't
present at any of the reviews. The reviews that [other professors] were at were a lot
more tense than the ones we did solo.
Don't know, I've only been to your reviews.
Edward: more capable of relating problems under review to “big picture” issues.
John: gives very useful comments on software eng. and coding issues, also makes
the discussion more lively. Christopher: no chance to observe.
Edward's criticisms come across as harsh sometimes. John Reekie is a good time
manager. Christopher generally makes meetings more enjoyable.
I was never at a review where one of the three staff were not present. I guess for my
own design reviews I always tried to have one of the three present, partly due to the
relative levels of software experience.
† a) Edward arrives late and leaves early, but this is to be expected, he is busy. b) I
think that reviews that have two of the three of us are better than reviews where I'm
the only one of the three. c) When Edward is around, we do more detailed discussion
about the design. If he is not present, then the review sort of turns into a typo finding
exercise - big design problems are not really discovered.
† The best reviews had at least one senior person present.

10. Would you prefer more or fewer reviews (or the same number)? If so, why?
[Authors’ note: this question was read as “reviewers” in some cases.]
I am not sure. More reviews mean less materials for each one so the reviewers can
have a better understanding about the design. And we don't have to rush in the
review. But, on the other hand, more reviews means long waiting time. For example,
the three CT reviews made me waited for nearly a whole winter break...
About 4 reviewers is just fine. But I think, no review should be held without you or
Edward, or at least Christopher.
I think the same number is OK.
A small number of active reviewers is best. Author, Scribe, reader/moderator, and 1
or 2 reviewers. (The scribe should be kept scribing, not reviewing.
Probably more reviews, but mostly that's my fault for not polishing things up. Also
see #11 below.
I don't know what's the standard. I think too many reviews of one package may not
be necessary. I guess it depends on how big the package is. But too many reviews
can be time consuming.

Complete Survey Responses

Software Practice in the Ptolemy Project 41 of 43

This can be determined by how extensively the stuff to be reviewed will be used:
more extensively, more reviewers. For a very specialized package, 3-4 is good. For
things like kernel, maybe we should have 5-6.
Same.
Same, it worked well.
† I think that we have roughly the right number. I like having fixed times for the
reviews. Having the reviews all over the week makes it less likely that I'll be pre-
pared.
† More. The leverage on my time is very high, I feel. When I'm reviewing other peo-
ple's code, I think it's more efficient than just rewriting the code, which was my old
technique. When reviewing my code, I feel it improves the code considerably, and
also helps disseminate both good practice and an understanding of existing code.

11. Do you think reviews should be conducted earlier or later in the development pro-
cess? If yes to either, when and why?
Early and it would be nice to review more than once, from a designer point of view.
But from reviewer's point of view, may be later.
I think this should be left to the author. But if there are enough people (or for that
matter even one other person) using it, then the review should be quite early.
I think the timing of the review is about right.
I like the time when we do them now, but I also try to get feedback on my design
decisions well prior to a formal review. I think that our timing works because we
generally have informal design reviews as well (meetings with Edward, talking
amongst ourselves, whiteboard discussions, etc.)
I feel it's up to the person being reviewed. My personal bias is towards *later* in the
development process. I think I like to have “my best possible” design reviewed, so
that every criticism “counts” and I've worked out a lot of the bugs by myself. If I do
a design review before things are polished, then it seems like a lot of the comments
are things I thought of anyway. And since in general it's not the reviewer's job to dis-
cuss alternatives during the review, this is of less help to me.
I think design reviews should be conducted once before implementation, once after
some implementation.
Earlier, maybe after the designer has completed his first pass of design, coding, and
testing.
The current timing is fine. This issue is really up to the author though.
One of the key things in getting a review to happen is someone, i.e. Edward, John or
Cxh, suggesting that a review is due/needed. It seems somewhat haphazard, and
there could be benefits in having the design review earlier in the cycle.
† a) If anything, they should be conducted earlier. Lots of people are writing code
that it likely to be thrown away. b) The review process breaks down when we are in
a crunch for a demo.
† Later is more useful. Reviewing very rough code is extremely difficult.

12. Do you think testing and the review process should be more integrated?
It would be nice to look at the test suite at some point of the review, say after design
review and before code review.

Complete Survey Responses

42 of 43 Software Practice in the Ptolemy Project

Perhaps. I think what we need is the code review coupled with testing of the code.
The reviewers should get a chance of looking at the test suites and what it does
before promoting it to yellow. Leaving the test suites to the author is just not good
enough. I think the reviewers need to see whether the test suites actually check the
methods or are present just to save the author from some criticism.
I'm not sure how testing and the review can be more integrated.
I think we should start reviewing our tests, after code coverage has been demon-
strated, to ensure that good test cases are run.
I think testing should be by committee. More specifically, I think a group of people
should design a set of test cases on paper, and then the author (or possibly somebody
else) should implement these test cases and make sure they pass.
Hmm... I'm not sure what you mean by integrating them.
Can we cover the test suite in code reviews?
Level green should require a certain level of code coverage by tests.
Nice idea...

 † Yes, a thousand times yes. I think we need much better test case coverage before
code review. Also, people need to run the spell checker and formatter etc.
† I think testing and coding should be more tightly integrated. I still don't understand
how people can write code without tests.

13. How would you improve the review process? (This can include removing things as
well as adding or changing things.)
I don’t know how you can force this, but I would certainly prefer to penalize the
reviewers if they haven't given even the least thought to the code being reviewed.
Most of the time the reviewers had never even seen the code/documentation till the
review and obviously they did not have any good suggestions to offer.
I would like more detailed notes because the notes that most scribes take are very
brief and hard to follow outside of the context of the review (i.e. a day later when
you are responding to the comments).
I don't have suggestions here, 'cause I've only been to a few and they've been okay
for me.
Authors should come with a list of concerns that they have about their code. I.e.,
“I'm torn between making this algorithm recursive or...” Reviewers can then respond
to these issues. It might even be useful for these points to be sent via mail prior to the
review.
No suggestions.
† Make people follow the checklists. Perhaps if the checklist was not done, we
would cancel the review for that day.
† Find more time for JohnR, Christopher, and me to spend on it.

14. How would you improve the way that software is developed in the Ptolemy group in
general?
I would suggest that more than one person take charge of a domain. There is a major
developer. And a second person who can be fairly familiar about the semantics and
the design of the domain. There are usually many subtle things that can not be

Complete Survey Responses

Software Practice in the Ptolemy Project 43 of 43

resolved (or even explained in the review process). Having a regular people to dis-
cuss with during the design is better than after a design.
More rigorous cross-testing?
Don't know.
Use testing software. Perhaps JTest by Parasoft.
Again, no suggestions as I thought the process was pretty good and really helped me
better understand software engineering.
† Good question.
† Find more time for me to spend on it.

15. Do you have any other comments?
Thanks John!
I think reviews should be more tightly integrated with the testing of the code and the
reviewers should be more involved in the reviews rather than being there just to add
up to the number.
I really think that our review process has had a noticeable effect on the quality of
code that has come out of the group recently. I very rarely look at Ptolemy II code
that has been reviewed and see deficiencies in it, which seems to be a regular occur-
rence when looking at some Ptolemy Zero code. Furthermore, the insistence on
reviews has encouraged me (and others, I believe) to be better programmers individ-
ually, as well.
The review process is a great way to encourage/ensure high-quality software. I'm
really impressed, surprised even, by the effectiveness of this approach.
Good job John!
† You've done a great job with the reviews and other enhancements (UML etc.) to
the software development process.
† We are producing the best code ever to come out of Berkeley. I don't mean that as
hype. I really believe it.

