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Abstract 
 
Multithreaded servers, while relatively simple to design and to implement, tend not to scale well 
for large numbers of concurrent users. Event-driven servers, which do scale well, are generally 
more difficult to design, write, and debug than multithreaded servers. Virtual Threads is a new 
server programming model in which the programmer writes a multithreaded server and a 
preprocessor automatically converts the server to a sophisticated event-driven server. We 
describe our current implementation of Virtual Threads and present benchmarks showing that a 
multithreaded Web server that uses Virtual Threads scales as well as an event-driven server.
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1 Introduction 
Virtual Threads is a new programming model and 
runtime environment for servers. With Virtual Threads, 
a programmer writes her program in C as a 
multithreaded server. The Virtual Threads preprocessor, 
vtify, converts this code to an event-driven model by 
changing functions to use continuation-passing style. 
The Virtual Threads runtime environment then executes 
the converted program as many concurrent state 
machines. 

In Section 1 of this paper, we define terminology that 
we use in the rest of the paper and explain the 
motivation behind Virtual Threads. In Section 2, we 
discuss the design of the Virtual Threads preprocessor 
and runtime environment. In Section 3, we discuss our 
current implementation of continuations, the 
preprocessor, and the runtime environment. We also 
describe a sample application and preliminary 
benchmarks of that application. In Section 4, we 
describes work related to Virtual Threads, and in 
Section 5, we discuss possible future extensions of 
Virtual Threads. 

1.1 Background and 
Terminology 

In this section, we introduce concurrent server 
architectures, including multithreaded/multiprocess 
servers and event-driven servers. Then, we introduce 
the concept of continuations and continuation-passing 
style. 

1.1.1 Concurrent Server 
Architectures 

A concurrent server is a server that does work for 
multiple clients simultaneously. We briefly summarize 
the dominant design strategies for concurrent servers 
here. For a more detailed discussion of server design 
alternatives, we refer the reader to [Stevens1998] and 
[Pai1999]. 

1.1.1.1 Multithreaded/Multiprocess 
Servers 

To write a multiprocess server, a programmer first 
writes a program that handles a single connection. Then 
she writes a second program that runs a copy of the first 
program to handle each connection that the server 
receives. 

The multithreaded server architecture is an 
optimization of the multiprocess architecture. A 

multithreaded server spawns a lightweight process, or 
thread, to handle each connection. 
We will use the terms multithreaded and multiprocess 
interchangeably in this paper. 

1.1.1.2 Event-driven Servers 
To write an event-driven server, a programmer 
decomposes each transaction between client and server 
into a series of events. Examples of these events include 
a server receiving a request from a client and a server’s 
disk controller completing a write operation. Having 
defined a set of events, the programmer then writes a 
separate module to handle each event. 

In a single-process event-driven server [Pai1999], a 
process known as an event loop handles all events that 
occur for all the server’s open connections. In such a 
server, the module that handles an event is a function. 

The asymmetric multiprocess event-driven server 
architecture [Pai1999] handles most events with an 
event loop but uses separate processes when events 
require blocking operations or heavy computation. 

A pipelined server is an event-driven server in which 
the module for each event operates in one or more 
separate threads of control. 

1.1.2 Continuations 
A continuation is an object that stores all the 
information necessary to perform a future computation. 
Such an object generally consists of a function and 
arguments for that function. 

The most common definition of continuations defines 
two operations on them. The callcc operation creates 
a continuation for the current state of the program, 
while the throw operation performs the computation 
that a continuation represents. 

In the continuation-passing style of programming, the 
operations callcc and throw perform some or all of 
the program’s control flow. 

For a more detailed discussion of continuations from 
the point of view of imperative languages, we refer the 
interested reader to [Thielecke1999]. 

1.2 Motivation 
Programmers tend to see multiprocess and 
multithreaded servers as easier to write than event-
driven ones. Undergraduate textbooks, such as 
[Butenhof1997], [Gay2000] and [Stevens1998], teach 
the multiprocess or multithreaded model first and 
mention the event-driven model as a specialized 
approach that is relatively difficult to implement. For 
example, Butenhof writes, “In most cases 
[programmers] will find it much easier to write 



 2 

complex asynchronous code using threads than using 
traditional asynchronous programming techniques” 
[Butenhof1997]. Because of its perceived ease of 
programming, the multithreaded architecture is a 
popular strategy for implementing servers. 

Several researchers have found that multithreaded (and 
multiprocess) servers do not scale well for the large 
numbers of concurrent users that today’s Internet 
applications require [Pai1999] [Welsh2000] 
[Kegel2000]. As the number of concurrent connections 
to a multithreaded server increases, the overhead of 
switching between threads and locking shared resources 
consumes a greater proportion of the server’s time. In 
addition, multithreaded servers have very coarse-
grained admission control. Different parts of the server 
may perform best with different levels of 
multiprogramming, but, since there is one thread or 
process per connection, the programming model forces 
the same level of multiprogramming on all parts of the 
server. 

Event-driven servers largely avoid these performance 
limitations. Since they operate with a small, fixed 
number of threads, event-driven servers can avoid most 
of the task switching and resource locking overhead 
that plagues multithreaded servers. Additionally, since 
they handle each portion of a transaction with a 
separate module, event-driven servers can use the 
optimal level of multiprogramming for each portion of 
the server. 

However, designing, implementing, and debugging an 
event-driven server is relatively difficult. The designer 
of such a server must carefully decompose the server’s 
tasks into a set of events and must assign each of these 
events to the appropriate functional unit of the server. 
The implementer must manage the state of each 
connection separately by hand. Whoever tests and 
debugs an event-driven server needs to reconstruct the 
state of each connection by hand, since stack traces 
only provide information about the server’s event loop. 

1.3 Virtual Threads 
Virtual Threads combine the performance advantages 
of event-driven server architecture with the simplicity 
of the multithreaded server architecture. The 
programmer writes a multithreaded server, and a 
preprocessor converts this code to an event-driven 
server. Our preprocessor, called vtify, converts parts 
of each “Virtual Thread” in the original program to 
continuation-passing style and generates the appropriate 
continuation objects. These continuations are smaller 
than the stacks that normal threads would require. Our 
runtime environment consists of a generic asymmetric 
multiprocess event-driven server that uses continuations 
to handle events. 

2 Design 
In this section, we discuss the design of the 
preprocessor and steps needed to convert a 
multithreaded program to use Virtual Threads. Then, 
we describe the design of the runtime environment that 
executes the Virtual Threads. 

2.1 Preprocessor 
To convert a multithreaded program to one that uses 
Virtual Threads, one must convert each thread in the 
original program to a state machine that stores its state 
in a continuation. This state machine enters a new state 
at every point where the original program performed a 
blocking I/O or called VT_yield(). The Virtual 
Threads preprocessor automatically performs the 
conversion from a multithreaded C program to a state 
machine and also generates the appropriate 
continuations. 

In the following sections, we first introduce the concept 
of multistate functions and the structure of a Virtual 
Thread continuation. Then, we describe the stages of 
preprocessing that our preprocessor uses to convert a 
multithreaded program to a Virtual Threads program. 

2.1.1 Multistate Functions 
To make preprocessing more efficient, we divide the 
functions in a multithreaded program into two classes: 
single-state functions and multistate functions. As its 
name suggests, a multistate function is a function that 
corresponds to more than one state of the state machine 
for a Virtual Thread, whereas a single-state function 
executes entirely inside one state. More precisely, we 
define multistate functions by the following two rules: 

1. The functions VT_yield(), VT_read(), 
and VT_write() are multistate functions.   

2. Any function that calls a multistate function is 
also a multistate function. 

2.1.2 Virtual Threads Continuations 
A Virtual Thread continuation contains all of the 
information that a Virtual Thread will need for any 
future computation. Figure 1 shows the continuation for 

function1 Local Data
function2 Local Data
function3 Local Data

Header info

Figure 1: Structure of a Virtual Thread continuation. 
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a Virtual Thread that uses three multistate functions: 
function1, function2, and function3. The 
continuation contains local variables for each multistate 
function that the Virtual Thread calls, along with a 
header, which stores tracking information for the 
Virtual Thread. 

The Virtual Threads preprocessor rewrites multistate 
functions so that the functions store some or all of their 
variables inside a continuation instead of on the stack. 
These preprocessor conversions guarantee that a 
complete continuation is always present when the state 
machine for a Virtual Thread reaches a state boundary. 
In effect, the preprocessor blends the callcc operation 
into the execution of each multistate function. The 
preprocessor generates a single “outer” function for 
each state machine, and the runtime environment places 
a pointer to this function into the header for each 
continuation. Throwing to a Virtual Threads 
continuation consists of calling this function pointer 
and passing the function a pointer to the continuation. 

In order to prevent continuations from being of 
unbounded size, we do not allow recursion among 
multistate functions. Also, we only allow the Virtual 
Threads runtime environment to throw to a continuation 
once. This second constraint means that the 
preprocessor is free to generate code that reuses old 
continuations with updated local data, instead of 
constructing new ones when state transitions occur. 

It is highly probable that, when the Virtual Threads 
runtime environment invokes a continuation, the 
continuation will not be in the computer’s data cache. 
In order to minimize the cost of bringing continuations 
into the cache, it is important to make the continuations 
as small as possible. The preprocessor minimizes 
continuation size by applying two principles: 
1. If the value of a local variable does not need to be 

saved across a state boundary, then that variable 
does not need to occupy space in the continuation. 
Instead, the variable can reside on the event loop’s 
stack, which is generally already in the processor’s 
cache. In particular, if a function is not multistate, 
then none of its variables need to be stored in the 
continuation. 

2. If two local variables (not necessarily in the same 
function) do not contain live data at the same time, 
then those variables may occupy the same space in 
the continuation. 

In general, the properly-optimized continuation for a 
Virtual Thread will require less space than the stack for 
the equivalent conventional thread. 

2.1.3 Stages of Preprocessing 
The preprocessor makes three passes through the code 
for each thread in a multithreaded program. During the 

first pass, the preprocessor identifies which functions 
are multistate. The second pass generates a continuation 
for each multistate function and rewrites the multistate 
functions so that they store variables in the 
continuations. During the third pass, the preprocessor 
merges the individual continuations for the multistate 
functions into a single continuation and merges all of 
the multistate functions into a single function. 

2.1.3.1 Identifying multistate 
functions 

In its first stage, the preprocessor identifies which 
functions contain multiple states. The preprocessor 
makes this judgment in one pass using the following 
algorithm: 

1. Construct a call graph for all functions in the 
original program. 

2. Reverse the direction of each edge in the call 
graph such that each edge points from callee to 
caller. 

3. Starting from the multistate functions 
VT_read(), VT_write(), and 
VT_yield(), perform a breadth-first search 
of the reversed call graph, marking as 
multistate each function that calls a multistate 
function. 

If the preprocessor encounters a cycle among multistate 
functions while performing step 3 of the above 
algorithm, then the original program contains recursive 
multistate functions and is not valid input for the 
preprocessor. 

2.1.3.2 Converting multistate 
functions 

In the second stage, the Virtual Threads preprocessor 
makes all of the necessary conversions on the multistate 
functions: (1) generating preliminary continuations, (2) 
converting multistate functions to use these preliminary 
continuations, and (3) inserting state boundary labels. 

2.1.3.2.1 Generating preliminary 
continuations 

In the first step of the conversion stage, the 
preprocessor generates a preliminary continuation for 
each multistate function. A preliminary continuation 
contains only local data for its associated function. 
Figure 2 shows a sample multistate function 
(function1) called by a thread in an imaginary 
multithreaded program. In order to generate a 
continuation for this function, the preprocessor must 
first locate all of the local data that the function uses. 
This data includes function parameters (arg1) and 
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local variables (local1 and local2). The 
preprocessor then creates a preliminary continuation, 
allocating space for the each local variable the value of 
which needs to remain in memory across a state 
boundary. Figure 3 shows a preliminary continuation 
for function1. Note that the variable local2 does 
not need to reside in the continuation, because 
function1 only accesses local2 in a single state. 

2.1.3.2.2 Converting functions to use 
preliminary continuations 

In the second step of the conversion stage, the 
preprocessor rewrites all of the multistate functions so 
that they use the generated preliminary continuations. 
To do this conversion, the preprocessor first replaces 
the function parameter list with a pointer to the 
preliminary continuation object. Then, in the body of 
the function, the preprocessor replaces references to 
local data with references to data now stored as 
members of the preliminary continuation object. 

2.1.3.2.3 Inserting state boundaries 
In the third step of the conversion stage, the 
preprocessor inserts labels that mark state boundaries in 
the multistate functions. Recall that state boundaries 
occur at places where a Virtual Thread performs 
blocking I/O or calls VT_yield(). 

2.1.3.3 Merging multistate functions 
During its final stage, the preprocessor merges the 
multistate functions and their continuations to form a 
Virtual Thread. The preprocessor performs this merging 
in three steps: (1) generating a Virtual Thread 
continuation as described in Section 2.1.2, (2) 
converting the multistate functions to continuation 
passing style, and (3) merging the multistate functions 
into a single function. 

2.1.3.3.1 Generating the Virtual Thread 
continuation 

In the first step of the merge stage, the preprocessor 
generates a Virtual Thread continuation by merging all 
of the preliminary continuations that it created in the 
previous stage. The preprocessor minimizes the size of 
the merged continuation by following the principles 
outlined in Section 2.1.2. The preprocessor adds a 

header to the beginning of the merged continuation. 
The header includes a function pointer, which points to 
the Virtual Thread function generated in Section 
2.1.3.3.3, and a state ID, which records the next state to 
be executed. 

2.1.3.3.2 Converting multistate functions 
to continuation passing style 

In the second step of the merge stage, the preprocessor 
converts all of the multistate functions to use the 
merged continuation instead of the preliminary 
continuations used in the previous stage. The 
preprocessor performs this conversion by changing 
calls to multistate functions to continuation-passing 
style, in which the functions use the Virtual Thread 
continuation and a single shared stack frame in place of 
multiple frames on the C runtime stack. The 
preprocessor generates temporary variables to hold 
function arguments and return values and rewrites the 
multistate functions to use these temporary variables. 

2.1.3.3.3 Creating the Virtual Thread 
In the last step of the merge stage, the preprocessor 
takes the bodies of the multistate functions and merges 
these subfunctions into one Virtual Thread function. 

In order for the Virtual Thread function to jump to the 
appropriate state when the runtime environment passes 
it a continuation, the preprocessor inserts a jump table 
at the beginning of the function. This jump table 
contains entries for each state boundary that the 
preprocessor inserted in the previous stage of 
preprocessing, in addition to a special “start” state. 

Since all of the subfunctions use the continuation to 
store their local data, a Virtual Thread can stop at any 
state boundary and have a continuation already 
prepared. The runtime environment can then throw to 
another Virtual Thread’s continuation, until the other 
Virtual Thread reaches a state boundary. Once this 
second thread is done executing, the runtime 
environment can then restore the first Virtual Thread by 
throwing to its continuation.  

In the next section, we describe the design of the 
runtime environment that controls the execution of a 
Virtual Thread. 

2.2 Runtime Environment 
The runtime environment for Virtual Threads is 
modeled after the asymmetric multiprocess event-

Figure 2: Sample multistate function. 

 int function1(int arg1) { 
    int local1, local2; 
    local1 = function2(arg1); 
        /* function2 is multistate. */ 
    local2 = function2(arg1 + local1); 
    return local1 + local2; 
} 

Figure 3: Preliminary continuation. 

 struct _VT_cont_function1 { 
    int arg1; 
    int local1; 
} 
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driven architecture described in [Pai1999]. We extend 
this architecture to include multiple event loops, and we 
replace the architecture’s external processes with kernel 
threads so that the entire server runs inside a single 
address space. Figure 4 illustrates the architecture of the 
Virtual Threads runtime environment. 

2.2.1 Event Loops 
The Virtual Threads runtime environment creates an 
event loop for each processor of the computer. Each 
event loop runs in a separate kernel thread and 
maintains a separate mapping from events to 
continuations. When an event occurs, the event loop 
throws to the appropriate continuation. A continuation 
belongs to no more than one event loop at a time. 

Each event loop maintains a pair of throwable queues, 
which contain continuations for runnable Virtual 
Threads. A throwable queue is similar to the runnable 
queue of a conventional thread scheduler. At any given 
time, one of these queues is the active queue and the 
other is the yield queue. When a Virtual Thread calls 
VT_yield(), the Virtual Thread inserts its own 
continuation into the yield queue. The algorithm for the 
event loop is shown in Figure 5. 

2.2.1.1 Metathreads 
Each event loop has a pipe (See pipe(2).) that it uses 
as a communication mechanism. A Virtual Thread may 
“migrate” to another event loop by placing a pointer to 
its continuation in the other event loop’s pipe. Each 
event loop has a special Virtual Thread, called the 

Metathread, which reads continuations from this pipe 
and places them on the yield queue. 

2.2.2 Thread Pools 
Some operations do not lend themselves to running in a 
single-threaded event loop. For example, the 
programmer may need to use APIs that block the 
calling kernel thread, or she may need to write CPU-
intensive functions that are difficult to schedule both 
nonpreemptively and fairly. To deal with these 
situations, each Virtual Threads event loop maintains a 
pool of “worker” kernel threads. The worker threads in 
each pool read continuations from a queue and throw to 
them. The Virtual Threads library provides functions 
that allow the programmer to specify that sections of 
her code run on a worker thread. While running on a 
worker thread, a Virtual Thread can perform blocking 
operations, use POSIX thread locks, create new kernel 
threads, and perform computations of arbitrary length. 
When a Virtual Thread finishes executing on a worker 
kernel thread, the worker thread reinserts the Virtual 
Thread into the event loop by writing a pointer to its 
continuation into the event loop’s pipe. 

2.2.3 Clues 
Having multiple event loops creates a need to distribute 
Virtual Threads among the event loops. One approach 
to allocating Virtual Threads to event loops is to use a 
centralized scheduler, placing each new Virtual Thread 
in the event loop with the lowest load. Unfortunately, 
this centralized approach would lead to resource 
contention and poor cache locality. Since each Virtual 
Thread would execute entirely in a given event loop, 
event loops would contend for global resources. 
Furthermore, since each event loop would execute 
every line of a given Virtual Thread, the working set 
size of an event loop could easily exceed the size of the 
processor cache by a large margin [Larus2000]. 

Figure 5: Algorithm for a Virtual Threads event loop. Queue

Event
Loop

Event
Loop

Pipe

Pool of
Kernel

Threads

Pipe

1 event loop per processor

continuations

...

Queue

Pool of
Kernel

Threads

...

Repeat forever:
For Each event e that has occurred

Add the continuation associated with event e
to the active queue.

End For Each

For Each continuation c in the active queue
Throw to c.

End For Each

Swap the active and yield queues.
End Repeat

Figure 4: Virtual Threads runtime environment. 
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To avoid these potential bottlenecks, the Virtual 
Threads runtime environment uses a distributed 
scheduler based on clues. A clue1 (See Figure 6) is an 
object that belongs to exactly one event loop. A Virtual 
Thread may follow a clue by migrating to the event loop 
that owns the clue. If the Virtual Thread is already at 
the appropriate event loop, it does nothing. Clues 
provide a mechanism for creating self-organizing 
pipelined servers. The programmer divides her code 
into pipeline stages by following a clue at the beginning 
of each section of code that corresponds to a stage. At 
runtime, each stage of the programmer’s original code 
runs in exactly one event loop. If there are more stages 
than processors, multiple stages run in the same event 
loop. 

2.2.3.1 The Cluethread 
When the Virtual Threads runtime environment starts, it 
arbitrarily assigns clues among event loops. To balance 
the load between event loops, a special Virtual Thread 
called the Cluethread periodically moves clues from 
one event loop to another to ensure that each event 
loop, and hence each processor, does the same amount 
of work.  

The Cluethread spends most of its time sleeping inside 
a kernel thread pool. Periodically, the Cluethread wakes 
up, reads the load of each event loop, and reallocates 
clues if necessary. Each event loop in the Virtual 
Threads runtime environment keeps track of its own 
processor usage2. To avoid race conditions, the 
Cluethread migrates to a given event loop before 
checking the event loop’s processor usage or moving 
any of the event loop’s clues. 

The Cluethread uses a simple heuristic to decrease the 
communication between event loops. The runtime 

                                                
1 According to the Merriam-Webster Collegiate 
Dictionary, a clue is “something that guides through an 
intricate procedure or maze of difficulties.” 
2 Under Linux, the clock(2) system call returns the 
amount of processor time that the calling kernel thread 
has used. 

environment keeps track of clues that Virtual Threads 
always follow in sequence3. When the Cluethread needs 
to move a clue to balance the load, it attempts to move 
the clue that has the minimal number of following or 
preceding clues on the same event loop. 

3 Current Implementation 
This section describes our current implementation of 
Virtual Threads.  First, we describe how we have 
implemented continuations in C using structs and how 
our current implementation optimizes the size of these 
structs.  Second, we describe the current status of the 
preprocessor and the actual steps that are needed to 
convert a multithreaded program to use Virtual 
Threads. Finally, we describe our current 
implementation of the Virtual Threads runtime 
environment and present a sample application and some 
benchmarks of that application. 

3.1 Continuations 
As described in Section 2.1.2, a Virtual Thread 
continuation contains local data for each multistate 
function that a thread calls in a multithreaded program.  

We will use an example to explain our current 
implementation of Virtual Thread continuations. In this 
example, a main server thread listens for connections 
and spawns a child thread to handle each connection. 
Each child thread runs the function echo_thread to 
handle its connection. Figure 7 shows the C code for 
this function and the Virtual Threads continuation for 
the thread. Let us examine the structure of the 
continuation from bottom to top. 

The bottom of the continuation contains the local data 
for echo_thread, including local variables, function 
arguments, return value, and return state. We wrap the 
function arguments with an alternate generic name for 
each variable inside of a union so that we can refer to 
the arguments with generic macros later. 

                                                
3 To help the Cluethread keep track of clues that Virtual 
Threads follow in sequence, each clue has three fields: 
previous_clue, different_count, and 
same_count (See Figure 6). previous_clue is a 
pointer to another clue object, while the other two fields 
are integers. When a Virtual Thread follows a clue, the 
Thread compares the clue’s previous_clue field to 
the last clue that the Thread followed. If the two clues 
are the same, then the Virtual Thread increments the 
same_count field. Otherwise, the Virtual Thread sets 
previous_clue to point to the last clue that the 
Thread followed and increments different_count. 

Event
Loopowner pointer

previous_clue

different_count
same_count

Clue

Figure 6: Clues create self-organizing pipelined servers. 
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The continuation for each multistate function called by 
echo_thread appears above the local data. In this 
example, conn_thread calls two multistate 
functions: _VT_ioWriteSock, and 
_VT_ioReadSock. These functions are built-in 
Virtual Threads wrappers for blocking I/O system calls. 
The continuation for each of these functions contains 
their corresponding local data. 

A header, which appears at the top of the continuation, 
contains tracking information for the Virtual Thread. 
Note how, because of a union, the header appears at the 
beginning of every multistate function’s continuation. 
Our current implementation of Virtual Threads 
continuations makes merging preliminary continuations 
very simple. 

Our current implementation of continuations optimizes 
for space at the level of granularity of individual 
functions.  Since echo_thread calls its two 
functions sequentially, it does not need to save the 
states for both functions at the same time. We use a 
union to share the local data space for all of the 
functions that echo_thread calls. The next few 

paragraphs will help to explain these optimizations in 
further detail. 

Figure 8 illustrates the structure of the echo_thread 
continuation 

�
 at a state boundary where the Virtual 

Thread is inside the  
_VT_ioReadSock function. At this point, the Virtual 
Thread stores the local data for _VT_ioReadSock 
within a continuation �  inside of the echo_thread 
continuation. 

Figure 9 illustrates the structure of the echo_thread 
continuation 

�
 at a state boundary where the Virtual 

Thread is inside the _VT_ioWriteSock function. 
Note that the Virtual Thread has stored the 
_VT_ioWriteSock continuation �  inside of the 
echo_thread continuation. 

3.2 Preprocessor 
Our preprocessor, vtify, uses David Gay’s C parser 
to generate an abstract syntax tree (AST) from arbitrary 
Gnu C code. First, vtify searches through the top 
level of the AST for function declarations and generates 
preliminary continuations (as described in Section 
2.1.3.2.1). Next, vtify replaces the arguments in the 
function parameter list with a pointer to the Virtual 
Thread continuation. Then, it removes all local variable 
declarations from the function body. If the function 
declares and initializes any of the local variables in the 
same statement, vtify replaces this statement with an 

Figure 9: echo_thread continuation during call to 
_VT_ioWriteSock. 

 
int echo_thread( int sock ) { 
    char c; 
    while( _VT_ioReadSock( sock, &c, 1 ) 
        == 1 ) { 
        _VT_ioWriteSock( sock, &c, 1 ); 
    } 
    return 0; 
} 
 
/* Continuation for echo_thread */ 
struct _VT_cont_echo_thread { 
    union { 
        /* The header. */ 
        _VT_gdataConthdr_t _VT_header; 
 
        /* Continuations for  
            multistate functions that 
            echo_thread calls */ 
        struct _VT_cont__VT_ioReadSock  
            _VT_child__VT_ioReadSock; 
        struct _VT_cont__VT_ioWriteSock  
            _VT_child__VT_ioWriteSock; 
    }; 
 
    /* Where echo_thread returns to. */ 
    _VT_state_t _VT_retstate; 
 
    /* What is returned. */ 
    int _VT_retvalue; 
 
    /* Function arguments */ 
    union { 
        int _VT_arg1;    /* AKA sock. */ 
        int sock; 
    }; 
 
    /* Local variables in function body. */ 
    char c; 
 
}; 

 

1 

2 

3 

Figure 7: Sample thread with Virtual Threads continuation. 

Figure 8: echo_thread continuation during call to 
_VT_ioReadSock. 
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assignment to the local variable. Finally, vtify 
replaces all references to the original local variables 
with references to members of the preliminary 
continuation. 

Currently, the programmer must merge the preliminary 
continuations together by hand.  Due to the structure of 
our current implementation of continuations, this 
operation is quite mechanical. The programmer only 
needs to insert lines for the function’s header, return 
state, and return value into the continuation; and to 
place at the top of the continuation instances of the 
continuations for the other multistate functions that the 
function calls. 

The current implementation of Virtual Threads supplies 
a library of C preprocessor macros to convert calls to 
multistate functions to continuation-passing style. The 
programmer needs to replace these types of function 
calls with the Virtual Threads macros. This replacement 
is a simple cut-and-paste operation. 

Finally, the programmer copies and pastes the bodies of 
the multistate functions into a single function and 
inserts a label at the beginning of each function. Using 
another C preprocessor macro that our library provides, 
the programmer creates a switch statement at the 
beginning of the top-level function to act as a dispatch 
table. 

To summarize, our current implementation requires that 
the programmer perform some operations by hand. 
However, these operations are mechanical and could 
easily be automated by extending the vtify 
preprocessor. 

3.3 Runtime Environment 
We have implemented most of the multiprocessor 
version of the Virtual Threads runtime environment, 
including clues, Metathreads, worker thread pools, 
multiple event loops in separate kernel threads, thread-
safe queues, and thread-safe memory pools for 
allocating continuations efficiently. However, since we 
do not have easy access to a multiprocessor, we have 
only tested and debugged our runtime environment in a 
single-processor configuration, with a single event loop 
and one pool of worker threads. 

3.4 Sample Application and 
Preliminary Benchmarks 

As a test of our implementation of Virtual Threads, we 
converted Peter Sandvik’s Simple Web Server 
[Sandvik2000] from a multiprocess architecture to a 
multithreaded architecture using POSIX threads. We 
then converted this multithreaded server to Virtual 
Threads. With our current preprocessor and libraries, 
the conversion from POSIX threads to Virtual Threads 

required approximately two and a half hours, whereas 
the conversion from forked processes to POSIX threads 
required approximately eight hours. 

To test the performance of our current implementation, 
we ran the WebStone benchmark [Mindcraft2000] on 
the Simple Web Server, converted to POSIX threads 
and to Virtual Threads. We also ran the benchmark on 
the Apache Web server for comparison purposes. 

3.4.1 Benchmark Setup 
The server that we used for benchmarking was a 
personal computer running Redhat Linux 7.0 on a 400 
MHz Pentium II processor with 128 MB of memory. 
The client was an IBM Thinkpad T20, also running 
Redhat Linux 7.0 on a 700 MHz Pentium III processor 
with 128 MB of memory. We connected both 
computers to a 100base-TX Ethernet hub. There were 
no other computers attached to the hub. 

Both machines ran in multiuser mode, but we disabled 
their X servers and quiesced the machines before 
running benchmarks. Before each run of the 
benchmark, we restarted the server process on the 
server machine and ran a 2-minute “dry run” of the 
benchmark to put the server in a consistent state. Each 
run of the benchmark lasted five minutes. 

WebStone’s default workload consists of ten files of 
varying sizes. Since all ten files fit easily into the server 
machine’s file system buffer cache, the default 
workload produced very uninteresting results. In 
particular, all the servers ran so quickly that the server’s 
network card was the only factor limiting throughput, 
and HTTP transactions finished so quickly that the 
WebStone clients had difficulty keeping more than 70 
connections to the server open at a time. 

To remedy these problems, we created an alternative 
workload consisting of 250 1-megabyte files. This 
workload did not fit in the server’s buffer cache. The 
architecture of the WebStone clients prevented us from 
using a larger number of smaller files. 

We tested each server with numbers of client 
connections ranging from 1 to 500. 

3.4.2 Benchmark Results 
The results of our benchmarks are shown in Figure 10. 
The Virtual Threads Web server produced no errors, 
even when serving 500 clients simultaneously. When 
serving more than 2 clients, the Virtual Threads Web 
server outperformed both the other servers by as much 
as 250%. These results are similar to those reported in 
[Welsh2000] and [Pai1999], in which event-driven 
servers scaled better than multithreaded servers on I/O-
intensive workloads. 
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4 Relation to Previous Work 
Thread libraries are a very well-studied research area, 
and a full discussion of past research on threads is 
beyond the scope of this paper. [Kavi1998] provides a 
survey of existing implementations of multithreading. 

Two recent user-level thread libraries that are similar to 
Virtual Threads are Gnu Portable Threads 
[Engelschall2000] and Silicon Graphics State Threads 
[SGI2000]. Like Virtual Threads, these libraries 
schedule their threads using an event loop. However, 
the libraries keep a separate stack and register file for 
each thread and must bring the entire stack and register 
file into the cache on a context switch. The thread 
libraries do not have any support for multiple 
processors, and their internal implementations would 
require a complete rewrite to use multiple event loops 
or clues. Furthermore, these libraries force the 
programmer to use only nonpreemptive thread 
scheduling, whereas Virtual Threads allow the 
programmer to use thread pools when nonpreemptive 
scheduling is inconvenient. 

The literature on continuations is almost as large as the 
literature on threads. We refer the systems-minded 
reader to [Thielecke1999] for an accessible introduction 
to the concept of a continuation. 

Functional languages have used continuations to 
implement threads for the past twenty years 
[Wand1980]. Safe functional languages make 
continuations easier to implement than context 
switches. 

Some researchers have used continuations to implement 
threads in imperative languages. For example, Python 
Microthreads [Tismer2000] is a thread package that 
uses the continuation support of Stackless Python 
[Tismer1999]. In unsafe imperative languages such as 
C, however, continuations are considerably more 
difficult to implement, and there has been little work on 
thread libraries that use them. The user-level threads 
package for the Mach operating system [Dean1993] 
used continuations in a limited context inside the library 

functions. Virtual Threads are different from other 
implementations of threads in C in that our 
preprocessor rewrites programs to use continuations 
explicitly. 

5 Future Work 
The work we have performed this semester has 
produced promising early results but leaves room for 
additional innovation. 

5.1 Preprocessor 
Our current implementation of the Virtual Threads 
preprocessor requires that the programmer perform 
some parts of the conversion to a state machine by 
hand. The steps that currently require human 
intervention are very mechanical in nature, and the 
preprocessor could easily perform those steps 
automatically. Future versions of the preprocessor 
should be entirely automatic, taking C source code as 
their input and calling the C compiler to generate object 
files as their output. 

Future generations of the Virtual Threads preprocessor 
should also perform more aggressive optimizations to 
reduce continuation size. The preprocessor should use a 
dataflow analysis to determine which variables a 
Virtual Thread needs to save across each state boundary 
and should rewrite multistate functions to store only 
those variables in continuations, and only at those 
points in the Virtual Thread where the next time that the 
Thread reads from the variables could be during a 
different state. All other variables can reside in registers 
or on the event loop’s stack, which is more likely to be 
in the processor’s cache than is the continuation. 

Due to the difficulty of performing alias analysis, it 
may be difficult for the preprocessor to determine 
whether a buffer that is a local variable in a Virtual 
Thread is “live” at a given point in the program. 
However, the Virtual Threads runtime environment 
already uses memory pools to allocate Virtual Threads 
continuations. A simple work-around for the alias 
analysis problem would be to allow the programmer to 
use these memory pools to allocate buffers 
dynamically. 

To make optimal use of the current implementation of 
Virtual Threads, the programmer needs to know where 
in her code to insert calls to VT_yield(). Future 
implementations of the Virtual Threads preprocessor 
should free the programmer of this requirement by 
inserting these yield calls automatically. The fact that it 
is sometimes impossible to predict statically how long a 
given section of code will take to execute would make 
it difficult for the preprocessor to insert yields into parts 
of some programs. To deal with those cases, the 
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preprocessor could direct sections of the program to use 
a thread pool instead of running in an event loop. 

The current implementation of Virtual Threads has only 
limited support for dynamic libraries. In particular, a 
dynamic library function must execute within a single 
state of a Virtual Thread, so a dynamic library function 
that blocks or performs complex computations needs to 
run inside a worker thread pool. A simple mechanism 
for allowing multistate functions inside dynamically-
loaded libraries is to suspend the calling Virtual Thread, 
spawn a second Virtual Thread inside the library to run 
the function, and return control to the first Virtual 
Thread when the second Virtual Thread completes. 
Future versions of the Virtual Threads preprocessor 
should automate the process of converting multistate 
functions in dynamic libraries. 

5.2 Runtime Environment 
We have not yet used Virtual Threads on a machine 
with more than one processor. An important piece of 
future work is to obtain a multiprocessor machine in 
order to test and to debug the Virtual Threads runtime 
environment with multiple event loops running in 
parallel. Such an environment would allow us to 
determine the effectiveness of clues for creating self-
tuning pipelined servers. 

The current implementation of Virtual Threads uses 
worker thread pools of a fixed size. However, past 
research has demonstrated that different tasks perform 
better at different levels of multiprogramming. It would 
be beneficial, therefore, for Virtual Threads to have a 
mechanism of dynamically adjusting the size of the 
worker thread pools to obtain the highest possible level 
of throughput. 

The concept of clues offers several intriguing future 
directions. On computers with a large number of 
processors, the programmer may wish for two or more 
event loops to share a clue for increased parallelism. 
One mechanism to provide this sharing is a hashed n-
clue. A hashed n-clue consists of n “subclues”, 
numbered 1 to n, and a hash function. To follow a 
hashed n-clue, a Virtual Thread applies the hash 
function to its continuation pointer to obtain an index 
from 1 to n and follows the appropriate subclue. 
Multiple hashed n-clues could create pipelined servers 
with superscalar pipelines. 

6 Conclusion 
We have successfully implemented an early version of 
Virtual Threads, a system for converting simple 
multithreaded servers to scalable event-driven servers. 
Our implementation consists of a preprocessor that 
converts threads written in C into state machines that 

store information in continuations and a generic 
asymmetric multiprocess event-driven server to run 
those state machines. Preliminary benchmarks of our 
implementation applied to a simple Web server show 
that Virtual Threads provide the performance benefits 
of an event-driven server while allowing the 
programmer to use the intuitive multithreaded server 
programming model. 
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