- **9.1** Exercises 6 and 7 in Chapter 8 of Lee & Varaiya.
- **9.2** Two complex numbers z_1 and z_2 are described below:

$$z_1 = 1 + i\sqrt{3} \qquad z_2 = \exp\left(i\frac{2\pi}{3}\right) .$$

- (a) Identify each of the following complex numbers as points (or vectors) on the complex plane, using a well-labeled sketch: z_1 , z_2 , z_1^* , z_2^* , $1/z_1$, $1/z_2$, $1/z_1^*$, and
- (b) Determine each of the sums $z_1 + 2z_2$, $z_1^2 + z_2$, and $\frac{1}{2}z_1 + z_2^*$.
- (c) Determine each of the magnitudes $|z_1z_2|$, $|z_1z_2^*|$, $|z_1/z_2|$, and $|z_2/z_1|$.
- (d) Determine each of the following powers of z_1 and z_2 :
 - (i) z_1^2 (ii) z_1^3 (iii) z_1^6 (iv) z_2^4 .

- (e) Determine $z_2^{1/4}$. Be mindful of how many fourth roots z_2 has and identify each of them graphically on a well-labeled sketch of the complex plane.

Express each of your answers in Cartesian form (a+ib), in polar form $(re^{i\theta})$, where r > 0), as a real number, as an imaginary number, or graphically in a well-labeled complex-plane diagram, whichever form is less cluttered and more appropriate.

- **9.3** With little algebraic manipulation, determine each of the following sums:
 - (i) $\sum_{n=0}^{N} \cos(n\theta)$
- (ii) $\sum_{n=1}^{N} \sin(n\theta)$

Hint: You may find geometric series useful.

9.4 Consider the following sixth-order equation:

$$z^6 - 2\sqrt{3}z^4 + 4z^2 = 0.$$

Determine the six solutions (roots) of the equation, and express each root in both a simple rectangular and a simple polar form. Explain your work succinctly, but clearly and convincingly. Also, plot these solutions on a single, well-labeled diagram of the complex plane.

- **9.5** For each set defined below, provide a well-labeled diagram identifying all the points on the *complex plane* that belong to it. \mathbb{C} refers to the set of complex numbers, \mathbb{R} refers to the set of real numbers, and \mathbb{Z} refers to the set of integers.
 - (a) $\{z \in \mathbb{C} \mid |z i| = |z + i|\}$
 - (b) $\{z \in \mathbb{C} \mid \operatorname{Im}(z) > \operatorname{Re}(z)\}$
 - (c) $\{z \in \mathbb{C} \mid 0 < \angle z < \pi/4\}$
 - (d) $\{z \in \mathbb{C} \mid 1 < |z 2i| < 3\}$
 - (e) $\{z \in \mathbb{C} \mid z + z^* = 0\}$
 - (f) $\{z \in \mathbb{C} \mid z = e^{i(2\pi/3)t}, t \in \mathbb{R}\}$
 - (g) $\{z \in \mathbb{C} \mid z = e^{i(2\pi/3)n}, n \in \mathbb{Z}\}$
 - (h) $\{z \in \mathbb{C} \mid \operatorname{Re}(z) > \operatorname{Re}(i^i)\}$