
Realtime DSP:

The TMS320C30 Course

Revision 3

20 February 1994

John Reekie
School of Electrical Engineering

University of Technology, Sydney
PO Box 123

Broadway NSW 2007
Australia

email: johnr@ee.uts.edu.au

ii

© John Reekie 1992, 1993, 1994. This document was produced for non-profit
educational purposes. It may be freely copied and distributed in electronic or
paper form for personal and non-fee-paying educational use, provided that it is
copied and distributed intact with the title page and this notice included. For all
other uses and forms of distribution, including but not limited to fee-paying
courses, inclusion with commercial software or literature of any kind, or any other
use not specifically mentioned above, explicit written permission and/or a
licensing agreement must be obtained from the author.

Reception of comments and suggestions on this document is assumed to constitute
permission to incorporate them into future revisions together with an appropriate
acknowledgement.

iii

iv

Contents
Introduction... 1

Assumed knowledge.. 1
Hardware and software requirements... 1
The DSPKit library, and other materials ... 2
Terms of use... 2

The Development Tools ... 3
Overview .. 3
The compiler shell ... 3
The assembler .. 5
The linker ... 6

Basic Instructions .. 9
Architecture overview .. 9
Addressing modes.. 10
Basic data instructions ... 12
Basic control flow instructions .. 17

Conditional Instructions ... 19
Condition flags, codes, and instructions ... 19
Conditional instruction examples ... 22

More On Addressing... 27
Indirect addressing ... 27
The memory map... 30
Direct addressing ... 31

C-Assembler Interfacing ... 33
The stack .. 33
The C calling interface... 35
Register usage .. 39
A minimal calling interface.. 39

Advanced Instructions .. 41
Delayed branches... 41
Repeat instructions ... 43
Parallel Instructions.. 44

Special Addressing Modes .. 51
Circular addressing... 51
Bit-reversed addressing.. 53
Allocating memory arrays.. 55

On-chip Peripherals .. 57
Overview of peripherals .. 57
The timers .. 57
Accessing hardware memory locations in C... 58

Interrupts ... 63
C30 interrupt structure ... 63
Interrupts and polling .. 64
Accessing and controlling interrupts in C .. 66

Memory Management ... 69

Pipeline Conflicts .. 70

1

Introduction

This is a course on programming a special type of micro-processor—the DSP, or
Digital Signal Processor. This particular course is based on the Texas Instruments
TMS320C30 device, which is representative of the Texas Instruments’ floating-point
DSP family. Other members include the TMS320C31 and TMS320C40. There are
several other floating-point DSPs readily available, including the Motorola
DSP96002 and the Analog Devices ADSP-21020.

The focus of the course is on DSP programming. It does not teach digital signal
processing theory, nor does it teach computer programming, since it assumes
some knowledge of both. I have attempted to make the course useful to people
who have a need to know—in other words, for people who need material that
explains concisely what they need to know to complete a particular task. I have
also tried to structure these notes so that they can continue to be used as reference
material.

I expect that the course could be useful as:

— A professional development course for practicing engineers

— An introductory course for thesis and research students working in DSP

They can also form the basis of an introductory undergraduate subject, although
additional exercises and tutoring will be needed.

There are some rough edges and unfinished sections in this document. I hope to
produce another release that corrects these deficiencies in late 1994.

Assumed knowledge
The course assumes that your have at least some familiarity with the C
programming language and some experience with microprocessors and assembler
coding (although not TMS320C30 assembler). You do not need any knowledge of
the digital signal processing theory to do this course (and the course won’t teach
you any), although you will definitely need some knowledge about the application
area for which to intend to write real-time DSP programs. It is well beyond the
scope of this particular course to give you that knowledge.

Incidentally, the breadth of applications in which DSPs can be used is surprisingly
large, and growing: modems and faxes, data encryption, data transmission, speech
compression, speech recognition and synthesis, image compression and
enhancement, robot vision, digital audio, music synthesis, vehicle navigation,
seismic and spectral analysis, radar and sonar, servo and motor control, ECG
monitoring, auditory aids, prosthetics.

Hardware and software requirements
To make effective use of this course, you will of course need access to Texas
Instruments’ development tools. The development system we use in our laboratory
at the University Technology, Sydney, is the Texas Instruments EVM (Evaluation
Module). This is a relatively cheap development system with a single channel of
on-board A/D/A conversion. However, there are many other suitable platforms, as
well as a TMS320C30 simulator.

The software tools you will need access to are:

Realtime DSP: The TMS320C30 Course

2

• Floating-point DSP C Compiler, version 4.5 or later. (You can probably still
make use of these notes if you do not have the C compiler.)

• Floating-point DSP Assembler and Linker, version 4.5 or later.

• TMS320C30 Source Debugger

You will need access to the following manuals:

• TMS320C3X User's Guide, literature number SPRU031B.

• TMS320 Floating-Point DSP Optimizing C Compiler User's Guide, literature
number SPRU034E.

• TMS320 Floating-Point DSP Assembly Language Tools User's Guide, literature
number SPRU035A.

• TMS320C3X C Source Debugger, literature number SPRU053A.

The DSPKit library, and other materials
These notes are only one component of the complete course. Other components
include a set of tutorial exercises, and a library called DSPKit. DSPKit is a library of
TMS320C30 C and assembler code used in our laboratory to simplify the task of
building real-time DSP systems.

If you are taking this course at the University of Technology, Sydney, you will
already have copies of the exercises and the DSPKit documentation.

If you have received these notes over the Internet, then I’m afraid neither the
tutorial exercises nor the DSPKit documentation or software are available just yet. I
hope that I will be able to release the DSPKit software during 1994. If you do read
these notes, I would be grateful if you would let me know how useful you found
them without any additional materials!

Terms of use
This document was produced for non-profit educational use. You can use them
without charge for your own personal education, or as notes for a non-fee-paying
course at a University or other tertiary institution. If you use these notes for these
purposes, please send me your comments and suggestions. My electronic mail
address is johnr@ee.uts.edu.au.

If you are wish to use or develop these notes for any other purpose, you must
obtain permission or a license from me.

Note that you must distribute this document intact, including the title page and
copyright notice. The notice on page (iii) explains it all; here is a copy in case it
got lost:

© John Reekie 1992, 1993, 1994. This document was produced for non-profit
educational purposes. It may be freely copied and distributed in electronic or
paper form for personal and non-fee-paying educational use, provided that it is
copied and distributed intact with the title page and this notice included. For all
other uses and forms of distribution, including but not limited to fee-paying
courses, inclusion with commercial software or literature of any kind, or any other
use not specifically mentioned above, explicit written permission and/or a
licensing agreement must be obtained from the author.

Reception of comments and suggestions on this document is assumed to constitute
permission to incorporate them into future revisions together with an appropriate
acknowledgment.

3

The Development Tools

This chapter describes the TMS320C30 development tools. Read only the first
section at this stage—the rest is intended as reference material. If you need further
information on the development tools, refer to the software manuals.

Overview
The cl30 program compiles, assembles, and links source files to form an
executable file, as illustrated in Figure 1. Each of the tools—compiler, assembler,
and linker—can be invoked individually as well as by the cl30 shell.

C source files Parser

Optimizer

Code generator

C compiler

Assembler

Object files

Assembler files

Linker

Executable files

-z

Figure 1. Development tools flow

The compiler shell

Invoking the cl30 shell
cl30 [–options] [input_files] [-z link_options]

The input files can be C source files (suffix “.c”), assembler files (suffix “.asm”), or
object files (suffix “.obj”). The options control the operation of the compiler—the
most commonly-used options are listed below.

Compiler Options

Options for symbolic debugging

–g Enable symbolic debugging. This option must be set if you wish
to use the C source debugger on your programs, and so is set as
part of the default DSPKit configuration.

–ax Supply the –x option to the assembler.

–as Give the assembler the -s option, causing it to retain symbolic
debugging information. This option must be set to enable
symbolic source debugging.

Options for source code manipulation

–c Compile and assemble without linking.

Realtime DSP: The TMS320C30 Course

4

–n Compile without assembling or linking. The compiler-generated
assembly files are not deleted.

–k Keep the assembly language file produced by the C compiler, but
(unlike the –n option) assemble and link the files. Normally, the
compiler deletes this file after it assembles it; use this option if
you want to examine the code produced by the compiler.

–s Insert C source code as comments into the compiler-generated
assembler files. This option turns on the -k option.

–po Generate pre-processed source files, without compiling,
assembling, or linking. This is useful for checking macro
expansions and correct inclusion of #include files. The generates
files have a “.pp” suffix.

–pl Generate pre-processed source files, but (unlike the –po option)
compile, assemble, and link the files as well.

Options for optimisation

–o Enable full optimisation. Different degrees of optimisation can be
enabled with the -o1 and -o1 options. This may occasionally be
useful if the more aggressive options disrupt correct program
operation1. See the C Compiler User’s Guide for more information.

–mn The –g optimisation disables certain optimisation because they
disrupt debugger operation. The –mn optimisation re-enables
them. Use this option when, for example, measuring the
performance of optimised code.2

–mc Faster float-to-integer conversion. If this option is set, negative
numbers are rounded downwards towards infinity, rather than
towards zero (as specified by the ANSi standard).

–mm Enable fast integer multiplies. Integer multiplies in C use only
24×24-bit multiplication if this option is set, rather than the default
32×32-bit multiplies.

Miscellaneous options

–q Quiet mode. Suppress the printing of functions names—useful for
long compiles.

–mb Select the large memory model. See More on Addressing for
information on the small and large memory models.

–d Define a compiler constant. -dname has the same effect as having
the pro-processor instruction #define name at the start of every
source file. -dname = defn has the same effect as having the pro-
processor instruction #define name defn at the start of every
source file.

1 This may happen with (for example), code written without portability in mind, code
that does not use volatile correctly, code that uses asm statements within the C code,
and under certain pointer usage conditions (see the –ma option in the C Compiler
manual).

2 You will have to be a bit careful when using the debugger, though. Because of the
extensive code re-arrangement of code performed by the optimiser, break-point are
best set within the dis-assembly window rather than in the C source window.

Development Tools

5

Linker options
The –z option specifies the start of the linker options. Usually, this will include a
linker command file, and a few additional options. See Invoking the linker.

The C_OPTION environment variable
The C_OPTION environment variable (in MS-DOS) can be used to set default
options that are always used by the compiler. For example, the default DSPKit
initialisation sets C_OPTION to:

–g –as –mn

The assembler

Invoking the assembler
Usually, you will probably just use the cl30 shell to assemble and link files.
Sometimes, however, you may need to invoke the assembler separately. The
assembler is invoked as follows:

asm30 [–options] input_file [object_file [listing_file]]

By default, the generated object file has the same name as the input file, but with
an “.obj” suffix.

Assembler options

–s Put all symbols into the object file. Without this option, only
global symbols are put into the object file, making debugging
more difficult.

–l Produce a listing file.

–mb Define the .BIGMODEL symbol. By convention, this symbol is
tested to conditionally assemble code for large-memory model
programs.

–q Suppress progress information.

Assembler directives

• .text

Start a new section for program code. The .text section is the default section.
.text

; program code goes here

• .data

Start a new assembler data section.
.text

; data declarations go here

• .bss symbol, value

Reserve value words for the variable named symbol.
.bss array, 100 ; allocate space for 100 words

• .global symbol1, symbol2, ...

Declare the listed symbols as global. List sub-routines and global variables
defined in this file, and external sub-routines and global variables used by this
file.

Realtime DSP: The TMS320C30 Course

6

.global sqrt ; declare external symbol

.global poly ; declare exported symbol

• symbol .set value

Define an assembler constant.

eps .set 1.0e-4 ; error tolerance

• .word value1, value2, ...

Set initialised memory to the listed (integer) values.
bitrev .word 0,4,2,6,1,5,3,7 ; a table of integers

.word table ; the address of bitrev

• .float value1, value2, ...

Set initialised memory to the listed (floating-point) values.
lookup .float 1.3, 4.5 ; define table of floats

• .end

Signal the end of the assembler file.
.end ; EOF

The linker

Invoking the linker
The linker is invoked as follows:

lnk30 [–options] object_files

All linker options and object files can also be specified to the cl30 program
following the –z option.

Linker options

–o file Generate an executable file named “file.out”. If no executable file
is specified, a file named “a.out” is generated.

–m file Generate a map file named “file.map.” The map file shows where
in memory all variables and functions are located.

–q Quiet run.

Linker command files
Many linker options are put into a linker command file, such as that shown in
Figure 2. These options are:

–cr Link with C conventions. Static data is loaded directly into RAM
when the program is loaded.

–c Link with C conventions. Static data is copied from ROM into RAM
during program initialisation.

–heap n Set the size of the C system heap. The default size is 1024 words.

–stack n Set the size of the system stack. The default size is 1024 words.

–l libfile Link with the library libfile. Unresolved references are resolved by
loading code from the library.

Development Tools

7

Memory layout
The linker command file is also used to specify the layout of memory in the
TMS320C30 system, and how the memory is allocated to the various program
“sections.” Figure 3. shows how memory from different object files is allocated into
memory.

The MEMORY keyword introduces the specification of the different regions of
memory. Typically, different regions of memory differ in access speed. The version
shown in Figure 2 is for the TMS320C30 EVM board.

The SECTIONS keyword specifies which program sections are loaded into which
memory regions. The version shown in Figure 2 puts the system stack into one
internal RAM block, and the fast system heap (see the documentation for the
DSPMem memory management software) into the other. All other sections are
placed into the main external RAM.3

/*
 * vam.cmd
 */

-cr /* C link with smart loading */

-stack 1024 /* set the stack to this size */
-heap 2048 /* set the main heap to this size */

-l sys.dbg /* link with DSPKit libraries. Change the */
-l modules.lib /* library suffix to ".dbg" to link with */
-l evmlib.lib /* the debugging versions. It is a good */
-l vlib.lib /* idea to always link with sys.dbg. */
-l clib.lib
-l utility.lib
-l evmrts.lib

MEMORY
{
 VECS: org = 0 len = 0x40 /* interrupt vectors */
 ROM: org = 0x40 len = 0x3fc0 /* external memory */
 RAM0: org = 0x809800 len = 0x400 /* internal RAM 0 */
 RAM1: org = 0x809c00 len = 0x400 /* internal RAM 1 */
}

SECTIONS
{
 vectors: {} > VECS /* interrupt vectors */
 .text: {} > ROM /* program code */
 .cinit: {} > ROM /* C initialization tables */
 .data: {} > ROM /* initialised assembler data */
 .stack: {} > RAM0 /* system stack */
 .bss: {} > ROM /* main variable space */
 .const: {} > ROM /* constant storage space */
 .sysmem: {} > ROM /* main system heap */
 .fastmem: {} > RAM1 /* fast system heap */
}
Figure 2. Typical DSPKit linker command file

3 Additional material on linker sections is required here.

Realtime DSP: The TMS320C30 Course

8

vectors

ROM

vectors.obj

.text

.data

.stack

.bss

0h

40h
file1.obj / .text

file2.obj / .text

file3.obj / .text

file1.obj / .data

file2.obj / .data
file3.obj / .data

Unused

file1.obj / .bss

file3.obj / .bss

4000h

Unused

809800h

809C00h

RAM1

VECS

80A000h

RAM0

Main memory sections are:

• .text Program code

• .data Initialized data storage

• .bss Uninitialized data storage

Each program file uses a certain
amount of each of these sections.
The linker joins the sections from
each program file into a
contiguous block of memory.
Each section is loaded into a
different portion of the
TMS320C30's memory space
before program execution.

Figure 3. Linker sections

9

Basic Instructions

This chapter describes the basic instructions of the TMS320C30 instruction set.
After completing this chapter, you will be able to write simple assembler
programs.

Although the TMS320C30 has a large instruction set, there is a significant amount
of commonality between instructions. Understanding these commonalities makes it
much easier to understand how to use the instruction set effectively. This chapter
has been laid out so as to emphasise these commonalities.

Architecture overview
Figure 4 is a simplified representation of the TMS320C30 CPU architecture (for a
more complete picture, see page 2-4 of the TMS320C3X User’s Guide.

The TMS320C30 contains the following registers:

r0 to r7 Extended-precision registers. These register are the main data
manipulation registers, and can hold either 40-bit floating-point
numbers or 32-bit integer numbers.

Notice that not only are these registers fed directly from the
multiplier and ALU (arithmetic logic unit), but have a direct path
back into the multiplier and ALU. This enables a multiplier and
ALU operation to be performed every instruction cycle.

ar0 to ar7 The auxiliary registers. These registers are commonly used to hold
address values (and are often more conveniently thought of as
address registers), but can also be used for general-purpose
integer arithmetic. Although they are 32 bits wide, only the lower
24 bits are used for address arithmetic.

The auxiliary registers are connected directly to a pair of integer
ALUs, called the ARAUs (auxiliary register arithmetic units). This
enables two address values to be updated every instruction cycle.

ir0 and ir1 The index registers. These registers hold values used as operands
to the ARAUs.

sp, pc, st Stack pointer, program counter, and status register. These registers
are the essential processor control registers.

Others There are a number of registers, used to control other aspects of
the processor’s operation. These will be covered as they are
needed. See pages 2-5 to 2-8 of the TMS320C3X User’s Guide for
an overview of all registers.

Realtime DSP: The TMS320C30 Course

10

Stack pointer
Program counter

Status flags
Other registers

Extended-precision
registers
r0 to r7

Multiplier

ALU Shifter

Auxiliary registers
ar0 to ar7

arau1

arau0

DATA

ir0
ir1

displacement

ADDRESS

Figure 4. Simplified TMS320C30 Architecture

Addressing modes
The TMS320C30 has four addressing modes for operands. Each of these modes
will be illustrated with the ldi instruction, which will be used to load a value into
the r0 register. This is only an introduction to these modes—they will be examined
in more detail later.

• Immediate

The operand is contained in the instruction itself. For example,
ldi 32,r0 ; load the value 32 into r0

• Register

The operand is a register. For example,
ldi sp,r0 ; copy the sp register into r0

• Direct

The operand is the address of a variable in memory. For example,
ldi @count,r0 ; load the variable count into r0

• Indirect

The operand is an auxiliary register containing the address of a variable in
memory. This is like dereferencing a pointer in C. For example,
ldi *ar2,r0 ; load the variable pointed to

; by ar2 into r0

Basic Instructions

11

7 0
Data page
pointer (dp)

02331
Address

Memory

X X

X X

02331
Auxiliary register MemoryX X

15 0
Instruction

Direct addressing

Indirect addressing

15 0
Instruction

Immediate addressing

31 0

Any register

Register addressing

Figure 5. Addressing Modes

Realtime DSP: The TMS320C30 Course

12

Basic data instructions
The data instructions are those that load, store, and operate on data. The other
major group of instructions, control flow instructions, will be covered in the next
section. Not all data instructions are covered here, just the most commonly-used
ones.

Load instructions
Figure 6 illustrates the load instruction group. These instructions load data into a
register, either from memory or from another register. Immediate data (data
contained in the instruction itself) can also be loaded.

Figure 6 also illustrates the format that will be used to describe the addressing
mode of groups of instructions. In this case, the source operand can be accessed
in any of the four addressing modes: immediate, register, direct, or indirect. The
destination register is always a register.

There are two “flavours” of load instruction:

• ldi

Load a 32-bit integer into a register. Register operands can be any register. We
have already seen examples of this instruction.

• ldf

Load a floating-point number into a register. Register operands must be one of
registers r0 to r7. The lower eight bits of the 40-bit destination register are
cleared. For example,
ldf r0,r3 ; copy r0 into r3
ldf -1.0,r5 ; load -1.0 into r5
ldf *ar4,r1 ; indirect load off ar4
ldf @sum,r1 ; Load the sum variable

Register

Immediate Indirect DirectRegister

src r0, r1, etc

inst src, dst

src

dst

*arx @label

Figure 6. Format of the load instructions

Basic Instructions

13

Store instructions
Figure 7 illustrates the format of the store instructions. Store instructions write data
from a register into memory—the source operand is thus always a register, and the
destination operand must be in addressed in either the direct or indirect addressing
mode.

• sti

Store a 32-bit integer into memory. The source operand can be any register.
For example,
sti r0,*ar0 ; indirect variable store
sti st,@mask ; direct variable store

• stf

Store a floating-point register into memory. The source operand must be one
of registers r0 to r7, and is truncated from a 40-bit float to a 32-bit float. For
example,
stf r0,*ar1 ; indirect variable store
stf r2,@maxval ; direct variable store

Register

*arx @label

Indirect Direct

src
dst

inst src, dst

Figure 7. Format of the store instructions

Realtime DSP: The TMS320C30 Course

14

Two-operand unary instructions
Unary instructions are those that operate on a single number, such as negation,
absolute value, and float-integer conversion. Figure 8 illustrates their format. As
usual, only registers r0 to r7 can be specified for floating-point instructions. The
instructions are:

• absi and absf

Take the absolute value of the source operand.

• negi and negf

Negate the source operand.

• float

Convert an integer to a float. The destination operand must be one of r0 to r7.

• fix

Convert a float to an integer. The source operand must be one of r0 to r7.
This instruction generates an overflow error if the source operand is too large
to be represented by a 32-bit integer.

Here are some examples:

negi r0,ar0 ; negate r0 (integer), store in ar0
negf r3,r2 ; negate r3 (float), store in r2
absi ar4,ir0 ; absolute value of ar4 in ir0
float r0,r2 ; r0 (integer) to float, store in r2
fix r2,ir1 ; r2 (float) to integer, store in ir1

If the source operand and the destination operand are the same, then only one
operand needs to be specified. For example, the following instructions are the
same:

absf r1,r1 ; absolute value of r1
absf r1 ; absolute value of r1

Immediate Indirect DirectRegister

src r0, r1, etc

Register

src

dst

ALU/Multiplier inst src, dst

*arx @label

Figure 8. Format of the two-operand unary instructions

Basic Instructions

15

Two-operand binary instructions
Binary instructions operate on two numbers and produce a result. The two-
operand versions of these instructions operate store the result of the operation in
the same register as the second operand. The format of these instructions is
illustrated in Figure 9.

This group of instructions includes the common arithmetic and bit-wise logical
operations. Arithmetic operations are provided in both integer and floating-point
versions, logical operations are integer-only:

• addi, addf, mpyi and mpyf

Add or multiply two numbers.

• subi and subf

Subtract the first operand from the second.

• and, or, and xor

Take the bit-wise and, or, or exclusive-or of two integers.

Here are some examples:

addi 1,r0 ; add 1 to r0 (integer)
subi @length,ar2 ; subtract the length variable

; from ar2
mpyf r0,r0 ; square r0 (float)
or 0400H,ir0 ; set bit 10 of ir0

Register

Immediate Indirect DirectRegister

Implied source
src

dst

src r0, r1, etc

ALU/Multiplier inst src, dst

*arx @label

Figure 9. Format of the two-operand binary instructions

Realtime DSP: The TMS320C30 Course

16

Three-operand binary instructions
All of the instructions listed in the previous section also have three-operand
versions. In this case, the result of the operand does not have to be stored in the
same location as one of the inputs, but can be in some other register.

Figure 10 shows the format of the three-operand instructions. Note that both
operands must be register or indirect—you cannot use immediate values or direct
addressing in three-operand instructions. This is because every instructions must fit
into a 32-bit word, and two immediate or direct operands will simply not fit!

Here are some examples:

addi3 r0,r1,r2 ; r2 = r0 + r1 (integer)
subf3 r0,*ar0,r1 ; r1 = *ar0 – r0 (float)
mpyf3 r0,r0,r1 ; square r0 and put result in r1
and3 ir0,r0,ar3 ; ar3 = ir0 && r0 (integer)

The “3” can be omitted from the instruction mnemonic. This is the style that is
used in this course, since I think it clearer and easier to read. For example,

 addi r0,r1,r2 ; r2 = r0 + r1
subf r0,*ar0,r1 ; r1 = *ar0 – r0

IndirectRegister

src1

r0, r1, etc

Register

dst

ALU/Multiplier inst src2, src1, dst

IndirectRegister

r0, r1, etc

src2

*arx*arx

Figure 10. Format of the three-operand binary instructions

Basic Instructions

17

Basic control flow instructions
Control flow instructions change program execution. The current program address
is contained in the program counter register, or pc. In this section, we will cover
the basic sub-routine call and branch (goto) instructions.

Branch
The branch instruction, br, causes program execution to jump to the specified
address. The address is stored in the instruction word as 24 bits, so br can jump to
anywhere in the TMS320C30’s 16-megabyte address range.

...
+----- br nextup ; jump to nextup
| ...
| ...
+-> nextup:

...
Figure 11. The branch instruction

Subroutine call and return
The sub-routine call instruction, call, causes execution to branch to a separate
subroutine. When it completes, the called subroutine must execute a sub-routine
return instruction, rets, to return to the calling program.

Subroutine call and return is discussed in depth in the chapter on interfacing C and
assembler code. Briefly, however, the call instruction causes the address of the
instruction just after the call (the return address) to be pushed onto the stack.
Then, the address of the specified sub-routine is loaded into the program counter,
so that program execution continues in that sub-routine. The destination address is
stored as 24 bits in the instruction word, so the called sub-routine can be located
anywhere in the TMS320C30’s 16 megabyte address space.

The rets instruction pops the return address off the stack and loads it into the
program counter. Thus, the instruction executed after rets is the one following the
call. Because the stack is used, subroutine calls can be nested to an arbitrary
depth.

Caller Callee

... +-> process:

... | ...
call process ----+ ...
... <-------+ ...
... | ...
... +----- rets
...

Figure 12. Subroutine call and return

The decrement-and-branch instruction
The decrement-and-branch instruction, db, decrements an auxiliary register and
branches to the specified location if the register becomes negative. This is useful
for implementing for-loops in assembler. The auxiliary register is loaded with the
number of times through the loop less one, and decremented at the end of the
loop. Figure 13 illustrates this use of db.

Realtime DSP: The TMS320C30 Course

18

for (ar0 = n-1; ar0 >= 0; ar0--)
{

...
block
...

}

...
ldi @n,ar0 ; load the counter into ar0
subi 1,ar0 ; set to n–1

+-> loop:
| ...
| block ; execute loop body n times
| ...
+----- db ar0,loop ; decrement and branch

...
Figure 13. for-loop using the decrement-and-branch instruction

Note that this loop will always execute at least once.

19

Conditional Instructions

The TMS320C30 provides a complete set of conditional instructions and codes to
access them. These codes and instructions are similar to those in conventional mi-
cro-processors, with some additions:

• A flag for arithmetic underflow as well as overflow

• Latched underflow and overflow flags

• Conditional load, call, and return instructions as well as conditional branches

This chapter has two sections. The first lists the conditions, flags, codes and
instructions. The second gives examples of the use of conditional instructions. You
should read quickly through the first section, and refer to its tables while studying
the second section.

Condition flags, codes, and instructions

Condition flags
Table 1 lists the condition flags. These flags are contained in the status register,
and are set and cleared according to the result of executing certain instructions.
These flags can then be used to select the execution of conditional instructions—
that is, instructions that execute only if the flags indicate a certain condition.

Table 1. Conditional Flags

Flag Meaning Instructions that set
z Result is zero Integer and floating-point arithmetic, loads
n Result is negative Integer and floating-point arithmetic, loads
c Result set carry bit Integer arithmetic, rotate and shift
v Result overflowed Integer and floating-point arithmetic
uf Result underflowed Floating-point arithmetic
lv Latched overflow flag Integer and floating-point arithmetic
luf Latched underflow flag Floating-point arithmetic

The z, n, c, v, and uf flags are set only until execution of the next instruction that
affects them. The lv and luf flags are latched—that is, they must be cleared explic-
itly by the program.

Realtime DSP: The TMS320C30 Course

20

Instructions that affect condition flags
Table 2 lists the instructions that affect the condition flags.

Table 2. Instructions that affect condition codes

Instruction Codes affected Remarks
absf, addf, mpyf,
negf, subf

n, z, v, uf, lv, luf Only if the instruction destination is one of R0 to
R7. The three-operand versions of these instruc-
tions (addf3 etc), and the parallel arithmetic-and-
store versions (addf||stf etc) affect the flags in
the same way.

cmpf, cmpf3 n, z, v, uf, lv, luf The destination register must (obviously) be one
of r0 to r7.

absi, addc, addi,
ash, mpyi, negi,
subb, subi

n, z, c, v, lv
(uf)

Only if the instruction destination is one of r0 to
r7. The three-operand and parallel arithmetic-
and-store versions of these instructions affect the
flags in the same way.
The uf flag is always set to zero.

cmpi, cmpi3 n, z, c, v, lv
(uf)

The instruction destination can be any register.
The uf flag is always set to zero.

lsh, rol, rolc, ror,
rorc

n, z, c
(v, uf)

Only if the instruction destination is one of r0 to
r7. The three-operand and parallel arithmetic-
and-store versions of these instructions affect the
flags in the same way.
The v and uf flags are always set to zero.

and, andn, or,
xor, float, ldi, ldf,
pop, popf

n, z
(v, uf)

Only if the instruction destination is one of r0 to
r7. The three-operand and parallel arithmetic-
and-store versions of and, andn, os, and xor in-
structions affect the flags in the same way.
Parallel load and load-store instructions (ldi||ldi,
ldi||sti etc) do not affect any flags.
The v and uf flags are always set to zero.

tstb, tstb3 n, z
(v, uf)

The instruction destination can be any register.
The v and uf flags are always set to zero.

ldi||ldi, ldi||sti,
ldf||ldf, ldf||stf,
push, pushf, sti,
stf, ldicond, ldf-
cond

None None of these instructions affect any flags. They
are listed here to remind you so!

Conditional Instructions

21

Condition codes
Condition codes are attached to certain instructions. For example, the conditional
branch instruction is listed below as bcond, where cond can be any one of the
codes listed in Table 3. For example, the “branch-if-zero” instruction is:

bz label ; branch of last result was zero

Table 3 lists the most commonly used condition codes. (For a complete list, see
page 10-11 of the TMS320C3X User's Guide.)

Table 3. Condition codes

Condition
code

Flags Name Description

u Don’t care Unconditional The instruction is always executed
lt n Signed less-

then
The second operand of a subtract or compare
was less than the first operand

le n || z Signed less-or-
equal

The second operand of a subtract or compare
was less than or equal to the first operand

gt !n && !z Signed greater-
than

The second operand of a subtract or compare
was greater than the first operand.

ge !n Signed greater-
or-equal

The second operand of a subtract or compare
was greater than or equal to the first operand.

eq z Equal The two operands were equal
ne !z Not equal The two operands were not equal
z z Zero The result is zero
nz !z Not zero The result is not zero
p Positive The result is greater than zero
n Negative The result is less than zero

nn Not negative The result is greater than or equal to zero

Conditional instructions
Table 4 lists all the instructions that can take a condition. Note that none of the
conditional instructions can themselves affect the condition flags. For example, the
instruction

ldf @val,r3

will set the flags according to the value loaded into r3. However, a conditional
load will not set the flags:

ldfz @val,r3

The following instructions are therefore not the same:

ldf @val,r3 ; load val and set flags
ldfu @val,r3 ; load val but do not set flags

Also, don’t forget that only loads into r0 to r7 set the flags!

Table 4. Conditional Instructions

Instruction Description
ldicond, ldfcond Load from memory into a register conditionally
bcond, bcondd Standard and delayed conditional branches

dbcond, dbcondd Standard and delayed decrement-and-branch
callcond, retscond, reticond Conditional sub-routine call and return

trapcond Conditional software trap

Realtime DSP: The TMS320C30 Course

22

Conditional instruction examples
In this section, we will study how to use the conditional instructions to implement
particular C constructs and expressions.

if-then
For this construct, program execution jumps past the code block if the condition is
not true. Note that the condition code must be the inverse of what you might
expect. That is, the block of instructions is to be executed only if the comparison
test shows that r0 ≥ 0.0. Therefore, the branch is to be executed if this is not the
case, hence the blt.

if (r0 ≥ 0.0)
{

...
block
...

}

...
cmpf 0.0,r0 ; compare r0 with 0.0

+----- blt label1 ; skip past instructions
| ...
| block ; do block of instructions
| ...
+-> label1:

...
Figure 14. Assembler equivalent of if-then construct

Conditional Instructions

23

if-then-else
In this case, there are two code blocks. The first is skipped if the condition is not
true. Note the branch at the end of the first block.

if (r1 > r0)
{

...
block1
...

}
else
{

...
block2
...

}

...
cmpf r0,r1 ; compare r1 against r0

+----- ble label1 ; branch if r1 ≤ r0
| ...
| block1 ; do if r1 > r0
| ...

 +-+----- b label2 ; skip past second block
 | |
 | |
 | +-> label1:
 | ...
 | block2 ; do if !(r1 > r0)
 | ...
 |
 +---> label2:

...
Figure 15. Assembler equivalent of if-then-else construct

while
A while-loop requires a test-and-branch at the beginning of the loop in case the
condition is already true. Then, a test-and-branch is required at the end of each
loop.

while (r0 ≥ 0.0)
{

...
block
...

}

...
cmpf 0.0,r0 ; compare r0 with 0.0

 +------- blt done ; branch past loop
 | +-> loop:
 | | ...
 | | block ; do loop body
 | | ...
 | | cmpf 0.0,r0 ; end-of-loop test
 | +----- bge loop ; ..and loop again
 +---> done:

...
Figure 16. Assembler equivalent of while loop

Realtime DSP: The TMS320C30 Course

24

while loop with limit counter
The decrement-and-branch instruction can be used to effect to implement while-
loops that must only execute a certain maximum number of times. For example,
suppose one were attempting to evaluate a series approximation function, but
wanted to impose a limit on execution time. Figure 17 illustrates this code.

count = 0;
while (r0 > eps && count < limit)
{

make_new_r0;
count++;

}

...
ldi @_limit,ar0 ; load counter
subi 1,ar0

 +------- bn done ; exit if limit was zero
 |
 | ldf @_eps,r1
 | cmpf r0,r1 ; test
 +------- ble done ; already satisfies test
 |
 | +-> loop:
 | | make_new_r0;
 | | cmpf r0,r1
 | +----- dbgt ar0,loop ; loop until limit or eps
 |
 +---> done ...
Figure 17. while-loop with count

Select maximum
The TMS320C30's conditional load instructions can sometimes eliminate the need
for conditional branches. Since a (non-delayed) branch takes four cycles, this can
be very effective. The code in Figure 18 selects the maximum of two numbers.

if (r1 > r2)
r0 = r1;

else
r0 = r2;

...
ldf r1,r0 ; preload r0 with r1
cmpf r1,r2 ; compare r2 with r1
ldfge r2,r0 ; load r2 if greater or eq
...

Figure 18. Selecting the maximum of two numbers

Conditional Instructions

25

Calculating signum
Figure 19 uses conditional loads to calculate the signum of a number. Note that
this code works only because the conditional loads do not change the condition
flags.

if (r0 > 0)
r0 = 1;

else if (r0 < 0)
r0 = -1;

else
r0 = 0;

...
cmpf 0,r0 ; test r0
ldip 1,r0 ; -> 1
ldin -1,r0 ; -> -1
ldiz 0,r0 ; -> 0
...

Figure 19. alculating the signum of a number

Conditional call and return
When working in the C environment, conditional call and return instructions are
mostly limited in use to simple functions. Because C-callable functions tend to
require additional code before calling (to stack) and before returning (to restore
registers and the frame pointer), only the most minimal C-callable function lend
themselves to direct use of callcond and retscond instructions.

However, in certain situations, good use can be made of these instructions. Figure
20 illustrates a conditional call dependent on the value of a bit in a register:

if (r0[14])
process(r1);

...
pushf r1 ; push argument
tstb 14,r0
callnz _process ; call this if bit set
subi 1,sp ; adjust stack
...

Figure 20. Conditional call

27

More On Addressing

This chapter describes the addressing modes of the TMS320C30 in more depth.
Some special topics (modulo and bit-reversed addressing) are left until Chapter .

Indirect addressing
As we have already seen, the TMS320C30 allows you to access memory via an
address stored in one of ar0 to ar7, analogously to a C pointer. In Figure 4 of
Chapter 3, you can see that these registers have two arithmetic units—called
ARAUs—independent of the main data ALU. The ARAUs give the TMS320C30 very
powerful indirect addressing features.

Indexed addressing
An indirect memory access can be indexed relative to an address contained in an
auxiliary register. For example, the instruction

ldi *+ar0(3),r0

loads the word at (contents of ar0) + 3 into r0. The value 3 is referred to as the
displacement: it is contained in eight bits of the instruction word, and can
therefore be any value between 0 and 255.

The displacement can be subtracted from the auxiliary register as well as added:

addf *-ar2(1),r2

The equivalent C constructions are:

x = *(p+3);
y += *(q-1);

where x and y are variables, and p and q are pointers.

Indexed addressing for structure access

Indexed addressing is an ideal match for access to C-style structures. For example,
suppose you had the following C structure (defined in a header file):

typedef struct {
int size;
float seed;
float *data;

} MyStruct;

To read or modify this structure in an assembler routine, pass a pointer to the
structure to the assembler routine:

MyStruct mydata;
...
myasmfunc(&mydata);

Now, the assembler routine can access the elements of the structure by using
indexed addressing off the structure pointer. To ensure portability, assembler
directives are used to define the same structure in assembler (see the TMS320
Floating-Point DSP Assembly Language Tools User's Guide):

MyStruct .struct ; declare the structure name
size .int ; declare the fields
seed .float
data .word
sizeofMyStruct .endstruct ; so we know its size

Realtime DSP: The TMS320C30 Course

28

Note that the data field is defined as a word, not as a float, because it is a pointer,
not a floating-point number. On the TMS320C30, the .word directive is the same as
the .int and .long directives.

Now, suppose that the myasmfunc routine first loads the pointer to mydata into
register ar1 (see Chapter 6). Instructions in myasmfunc to access mydata might
include:

...
ldi *+ar1(MyStruct.size),ar2 ; load size into ar2
...
subrf *+ar1(MyStruct.seed),r0 ; subtract r0 from seed
...
sti ar0,*+ar1(MyStruct.data) ; update data pointer
...

(Note again that the data pointer is an integer, not a float.)

Note on displacements

The displacement is eight bits for two-operand instructions. Three-operand binary
instructions (see Chapter 3) and parallel instructions (see Chapter 7) allow
displacements of only zero or one. Thus, the following instruction is illegal:

addf *+ar1(3),r0,r1

The index registers
The use of immediate displacements as described in the previous section has some
limitations. In particular, displacements

i) are limited to 255,

ii) can only be zero or one for three-operand and parallel instructions, and

iii) must be constant.

These limitations can be overcome with the index registers, ir0 and ir1. Instead of
specifying an immediate value, specify one of the index registers. For example,

ldf *+ar2(ir0),r2
addi *-ar0(ir1),r3,r0

Obviously, ir0 or ir1 must already contain some meaningful value! In general, the
index registers are used more often with post-modify and pre-modify addressing,
as described in the following sections, than with indexed addressing.

Post-modify addressing
The TMS320C30 supports C-style pointer incrementing directly in hardware. For
example, the pointer update in the C statement

x = *p++;

is done by the C30 instruction

ldf *ar0++,r0

That is, the value at the location pointed to by ar0 is loaded into r0, and ar0 is
then incremented by one (by one of the ARAUs). However, the TMS320C30
assembler can do more than C:

• The increment can be between 0 and 2554:
addf *ar0++(16),r2

4 Three-operand and parallel instructions only allow an increment of one.

More on Addressing

29

• The increment can be an index register:
sti r3,ar2++(ir0)

The increment can also be negative:

and *ar1--(2),r1
stf r4,*ar0--(ir1)

Pre-modify addressing
In C, the increment can also be done before the read from or write to the pointed-
to memory location:

x = *++p;

That is, the pointer is first updated, and the updated value is then used to address
memory. The TMS320C30 supports pre-modify addressing in all the same modes as
post-modify addressing. For example:

ldf *++ar4(2),ar0
addf *++ar0,r0,r1 ; note increment is one here
stf r1,*--ar3(ir0)

Usage of post-modify and pre-modify addressing
Much of the speed of the TMS320C30 for signal processing applications comes
from effective use of addressing and index registers. For example, a common
signal processing operation is to “window” a block of samples:

xsi = xsi × wi for 0 ≤ i < n

where xs is the input vector and w is the window vector. This operation can be
implemented using a decrement-and-branch instruction (see Chapter 3), as shown
in Figure 21. In this code, it is assumed that ar0 points to xs, ar1 points to w, and
r0 contains the length of the vectors, n.

...
ldi r0,ar2 ; load counter
subi 1,ar2 ;

loop:
mpyf *ar0,*ar1++,r0 ; multiply..
stf r0,*ar0++ ; store..
db ar2,loop
...

Figure 21. Windowing using post-modify addressing

In this example, only one of the operands to mpyf is incremented; in general,
however, both can be incremented, since there are two ARAUs. In Chapter 7, we
will see how this loop can be made several times faster.

Realtime DSP: The TMS320C30 Course

30

The memory map
Before we go any further, it would be helpful to learn a little more about the
TMS320C30’s memory map. Figure 22 shows how the 16-megaword address range
is partitioned.

0h

BFh

800000h

802000h

804000h

806000h

808000h

809800h
809C00h
80A000h

0FFFFFFh

Hardware interrupt vectors (12)
Software interrupt vectors (32)

Reserved (Total 192)

Main bus (STRB)

Expansion bus, MSTRB active (8 k)

Reserved (8 k)

Expansion bus, IOSTRB active (8 k)

Reserved (8 k)

Memory-mapped registers (6 k)

RAM block 0 (1 k)
RAM block 1 (1 k)

Main bus (STRB)

16 MBytes

0FFFh

0h

BFh

Internal
ROM
in micro-
computer
mode

Features:
• 24-bit (16 MWord)
 address space
• Two blocks of
 internal RAM
• Memory-mapped
 peripheral I/O

Figure 22. The TMS320C30 memory map

Most of the address space is assigned to the main off-chip bus, and is usually used
for general-purpose external memory. Depending on the design of the particular
board, this memory may be a combination of static and dynamic memory. Static
memory usually has no wait states (that is, no speed penalty), while dynamic
memory typically introduces one or two additional cycles per access. Of course,
very few systems will actually use the whole 16 megaword address space—the
TMS320C30 Evaluation Module, for example, uses only the lowest 16 kilowords.

The TMS320C30 also has the following special memory regions:

• The interrupt vectors (00h to 0BFh)

These locations contain pointers to interrupt service routines, and are
described in Chapter 10.

More on Addressing

31

• The expansion bus (800000h to 802000h and 804000h to 806000h)

The TMS320C30 (but not the TMS320C31) has a second set of data and
address busses, called the expansion bus. This bus is used for external
peripheral devices. Because its usage depends only on the particular hardware
configuration, we will not deal further with this bus in this course.

• The on-chip peripherals (808000h to 809800h)

The TMS320C30 has a number of on-chip peripherals, including two serial
ports, two timers, and a DMA controller. The control registers for these
peripherals, as well as register to control the operation of the main and
expansion busses, are contained within this memory region. Programming the
peripherals is dealt with in Chapter 9.

• The internal memory blocks (809800h to 80A000h)

The TMS320C30 has two consecutive blocks of internal memory, of 1k words
each. These memory blocks are important in achieving full performance, since
they support an instruction read and two data accesses in a single cycle. Ways
of allocating internal memory are covered in Chapter 11, while ways of
maximising device performance are covered in Chapter 12.

Direct addressing
Direct addressing allows memory locations to be addressed by name. The
following code illustrates access to a named memory location:

...

.int count ; declare the variable

...
ldi @count,r0 ; read the variable
...

This form of addressing can also be used to access C variables. For example,
suppose current_ptr is defined in a C file as follows:

float *current_ptr;

An assembler file can access this variable as follows:

...

.global _current_ptr ; declare reference to variable

...
addi @_current_ptr,r2 ; access variable
...

Note the additional underscore in front of the variable name: all C variables and
functions require a prepended underscore when referenced from assembler.

The data page pointer
For direct addressing, the memory address is contained in the instruction word.
Because of instruction encoding limitations, this address can only be 16 bits long,
while the TMS320C30 has a 24-bit address range. As shown in Figure 5 of Chapter
3, the TMS320C30 solves this problem by using the lowest 8 bits of a special
register, the data page pointer, or dp register, to specify bits 16 to 23 of the
effective address. These eight bits specify one of 256 memory “pages,” each of
which is 64 kilowords long.

The effective address (that is, the actual address put onto the address bus) is
therefore a combination of the dp register and the lower 16 bits of the variable’s
address. dp must of course be set to the appropriate value before-hand—this is
done with the ldp (load data page) instruction:

Realtime DSP: The TMS320C30 Course

32

ldp _current_ptr
addi @_current_ptr,r2

Unless it is known that all variables are contained within the same data page, each
and every direct memory access must be preceded by a ldp instruction.

The small and large memory models
Obviously, loading dp before each direct memory access introduces a rather large
overhead. In many systems, all variables can be contained within one data page;
dp need be loaded only once at the beginning of the program. The TMS320C30 C
compiler thus has two “memory models” (similar to the memory models used in
compilers for 8086-series microprocessors): large and small.

The small memory model requires that all directly-addressable data fits into a
single 64 kiloword page. This is the default mode assumed by the C compiler.
Assembler code that is linked with C code compiled in the small memory model
need not (in fact, must not!) load dp, since dp is set up by compiler-generated5

initialisation code.

The large memory model allows directly-addressable data to be located anywhere
in memory. The C compiler generates a ldp instruction before every direct memory
access; all code linked with code compiled in the large memory model must be
written and/or compiled for the large memory model. The large memory model is
specified with the –mb option to the compiler or assembler.

How to cope with both memory models

Obviously, you do not want to write two different versions of every assembler
function you write: one for the small memory model, and one for the large
memory model. You can write code that caters for both models by using the
.BIGMODEL assembler flag: this flag is set if code is assembled with the –mb
option. For example:

.if .BIGMODEL
ldp _current_ptr
.endif
addi @_current_ptr,r2

Note that many assembler routines will not need to insert these kinds of assembler
directives: if a routine receives all its data via its arguments, it may not even need
to use the direct memory addressing mode. This type of routine conforms more
closely to the spirit of modular programming.

How to avoid the large memory model

Note that the 64 kiloword restriction of the small memory model applies only to
directly addressable data—that is, data which is accessed using the direct
addressing mode. You can have much more than 64 kwords of data in your
program, by using indirect addressing. In other words, allocate large memory
arrays using the C heap—the standard routines are malloc() and free(). The
pointers to these large arrays will be directly addressable, but the data itself is
accessed using indirect addressing. Note however that it is not sufficient that all
variables (not including heap-allocated variables) fit into 64 kilowords—they must
all fit into one data page.

See Chapter 11 for more detailed information on allocating and using memory.

5 Well, not strictly true: dp is set up by the initialisation function boot.asm contained in
the C run-time support (RTS) library).

33

C-Assembler Interfacing

Although the TMS320C30 C compiler provides the convenience and high-level
abstractions of the C language for real-time DSP, the compiler is less efficient than
hand-coded assembler. In particular, time-critical sections of code—such as inner
program loops and computationally-intensive algorithms—are usually coded in
assembler. Thus, we need to be able to call assembler programs from C, and vice
versa.

In most of this course, we will write all assembler functions to be “C-callable.” In
other words, they conform to the C compiler’s function calling interface. C-callable
functions are, of course, always produced by the C compiler. Thus, C-callable
functions can be written in assembler or C, and called from assembler or C.

As our example, we will use the function whither, and show how to call this

function from assembler, and how to write a C-callable version of it in assembler.
whither has the C prototype:

float
whither(int size, float seed);

The stack
Since the C compiler's default argument-passing mechanism uses the run-time
stack, some understanding of the C stack is required before dealing with function
interfaces.

The TMS320C30 has a stack exactly like conventional microprocessors. The current
position of the stack is indicated by the stack pointer register, sp. The stack grows
upwards in memory, as illustrated in Figure 23 1.

In the C environment, the stack has four main uses:

i) For holding the return address of called functions

ii) For preserving registers across function calls

iii) For passing arguments to functions

iv) As storage for local variables within functions

In assembler programs, only (i) is mandatory. (ii) to (iv) can be and often are
used, depending on the complexity of the program and on function-calling
conventions. In this section, we deal with (ii) and (iii).

Low memory (eg 00H)

High memory

Top of stacksp push: increment sp then write
pop: read then decrement sp

Figure 23. The stack

Realtime DSP: The TMS320C30 Course

34

Push and pop instructions
There are four instructions for storing and loading data to and from the stack:
push, pop, pushf, and popf. push increments the stack pointer, and then writes the
specified 32-bit integer register to the top of the stack. pop loads a 32-bit integer
register with the value at the top of the stack, and then decrements the stack
pointer.

pushf and popf are exactly the same, except that they store and load 32-bit
floating-point values from R0 to R7.

These four instructions are usually used for items (ii) and (iii) above—that is, to
preserve registers across function calls, and to pass arguments on the stack.

Preserving registers
Figure 24 illustrates preserving registers. As we will see in the next section, the C
compiler requires that all functions preserve certain registers. If, for example, R4
and R5 are used in the body of the function, then they must be saved on the stack
on entry to the function, and restored before returning. (For the moment, ignore
the code dealing with the fp register.)

whither:
push fp
ldi sp,fp
push r4 ; save r4 and r5 (as integer)
push r5
...
... ; body uses r4 and r5
...
pop r5 ; restore r4 and r5
pop r4
pop fp
rets

Figure 24. Preserving registers (1)

Stacking function arguments
Figure 25 illustrates how function arguments are stacked. The function whither has
one integer argument and one floating-point argument—the code shown assumes
that they are contained in registers R1 and R0 respectively. After the return from
whither, the stack pointer is restored to its original value with a subtract
instruction.

...
pushf r0 ; second arg
push r1 ; first arg
call whither ; call it
subi 2,sp ; restore stack pointer
...

Figure 25. Passing stack arguments

Saving 40-bit floats
The pushf instruction only saves a 32-bit float. However, R0 to R7 hold 40-bit
floats. There are some situations in which the full 40 bits must be saved. In
particular:

C-Assembler Interfacing

35

• The C compiler requires that R6 and R7 are preserved as 40-bit floats.

• Any of R0 to R7 used in an interrupt service routine must be saved as a 40-bit
float.

A two-instruction sequence is required to push or pop a 40-bit float. To push R0:

push r0 ; push mantissa
pushf r0 ; push 32-bit float

To pop R0:

popf r0 ; pop 32-bit float
pop r0 ; overwrite mantissa

Figure 26 shows the code for whither if R6 is also used in the function body.

whither:
push fp
ldi sp,fp
push r4 ; save r4 and r5 (as integer)
push r5
push r6 ; save r6 (as float)
pushf r6
...
... ; body uses r4 and r5
...
popf r6 ; restore r6
pop r6
pop r5 ; restore r4 and r5
pop r4
pop fp
rets

Figure 26. Preserving registers (2)

Setting the stack size and location
The size and location of the memory allocated for use as the stack is set by the
linker. The default size of the stack is 1024 words. It can be changed by supplying
the "-stack" option to the linker (or after "-z" when invoking the cl30 shell):

lnk30 main.obj whither.obj c.cmd -o prog.out -stack 2048

Usually, however, it is easier to add a line to the linker command file. For
example, add the line

-stack = 512

to c.cmd.

The stack uses the special memory section called ".stack" The location of this
section is set in the linker command file. If you examine the linker command file
c.cmd, you will see a line like:

.stack > RAM1

which puts the stack into RAM block 1. To put the stack into external RAM (which
you have to do if you made the stack larger, for example), change this line to:

.stack > SRAM

The C calling interface
Successfully interfacing C and assembler code is mainly a matter of understanding
the function calling convention. The main points concerning the function interface
are as follows:

Realtime DSP: The TMS320C30 Course

36

i) The compiler passes arguments on the C stack. Arguments are pushed onto
the stack in reverse order—that is, the last argument is pushed first.

The compiler also has an option to pass arguments in registers, but discussion
of this is deferred to a more advanced section.

ii) All arguments are passed as 32-bit values. Integers, floats, and pointers are
passed as-is. Structures are pushed onto the stack element-by-element.

iii) All float, integer and pointer results are return in R0. void functions do not set
R0 to any particular value. Structure results are covered in a later section.

Stack frames and the frame pointer
When a function is called, it creates a stack frame. This is simply the term for the
area of the stack used for that function call. Register AR3 is reserved by the
compiler as a pointer to this area. Understanding the structure of the frame is
crucial to writing C-callable functions. To make code easier to read, a mnemonic is
usually defined for AR3—the following line should appear new the beginning of
your assembler source file:

fp .set ar3 ; use ar3 as the frame pointer

The example code
Figure 27 shows the sequence of instructions when a function is called. The
constructed stack frame is illustrated in Figure 28. This illustrates the full use of the
stack during a function-call sequence, in which the stack frame has three parts:

• Function arguments

• Return address

• Saved frame pointer

• Local variables

• Saved registers

To illustrate the use of the local variable part, we will assume that whither has two
local variables:

float
whither(int size, float seed)
{

int count;
float divisor;
...

}

Many assembler functions do not need all of these fields. A more minimal stack
frame that can be used be many assembler functions is described later.

C-Assembler Interfacing

37

Caller Callee

1 ...
2 +-> pushf r0
3 | push r1
4 | call whither
5 | whither:
6 | +-----> push fp
7 | | ldi sp,fp
8 | | +---> addi 2,sp
9 | | | +-> push r4
10 | | | | push r5
11 | | | | push r6
12 | | | | pushf r6
13 | | | | ...
14 | | | | ldi *-fp(2),ar0
15 | | | | ldf *-fp(3),r0
16 | | | | ...
17 | | | | sti ar0,*+fp(1)
18 | | | | stf r0,*+fp(2)
19 | | | | ...
20 | | | | popf r6
21 | | | | pop r6
22 | | | | pop r5
23 | | | +-> pop r4
24 | | +---> subi 2,sp
25 | +-----> pop fp
26 | rets
27 +-> subi 2,sp
28 ...
29 addf r0,r2
30 ...
Figure 27 Calling a C-callable function

sp

Return address
Saved frame pointer

count

size
seed

fp

Saved registers

Scratch area

*–fp(2)
*–fp(3)

*+fp(1)

*+fp(2)

whither:
 push fp
 ldi fp,sp
 push ...
 ..
 .. *-fp(2)
 .. *-fp(3)
 ..
 pop
 pop fp
 rets

divisor

Figure 28. The stack frame

The function call sequence
The steps in calling a function are as follows:

Line 1: Initially, the stack contains the stack frame of the caller. As far as
the call to whither goes, we only care about what goes on the
stack above this point.

Lines 2 and 3: The caller pushes the arguments onto the stack.

Line 4: The call instruction pushes the return address onto the stack.

Line 6: The callee saves ar3 (the old frame pointer) on the stack.

Realtime DSP: The TMS320C30 Course

38

Line 7: The callee copies the stack pointer into the frame pointer register.
This is the current frame pointer, and is used to access any
variable in the callee's stack frame.

Line 8: The callee reserves space in the local stack frame for local
variables.

Lines 9 to 12: The callee pushes registers that must be preserved onto the stack.

Accessing arguments
The arguments to the function are accessed by using indirect addressing off the
frame pointer. The first argument to the function is two locations below FP, the
second is three locations below, and so on. In Figure 27, the arguments are just
loaded into the AR0 and R0 registers:

Line 14: Load the first argument (size) into AR0.

Line 15: Load the second argument (seed) into R0.

Of course, the arguments can be used directly as operands to other instructions,
and over-written with new values. For example, the following code sequence
doubles the size argument, and stores the new value back into the size variable on
the stack:

ldi *-fp(2),r0 ; load size
addi *-fp(2),r0 ; double it
sti r0,*-fp(2) ; save new value

Accessing local variables
The local variables are also access relative to the frame pointer. They start one
location above the frame pointer:

Line 17: Store R1 into the first local variable (count).

Line 18: Store R0 into the second local variable (divisor).

As for the function arguments, the local variables can be read and written like any
other memory locations by using the register offset addressing mode.

Return sequence
Once the assembler function has finished its processing, the stack frame is
deconstructed in the reverse order to which it was built:

Lines 20 to 23: Preserved register are popped off the stack, in the reverse order to
which they were popped.

Line 24: The stack pointer is adjusted to remove the local variables.

Line 25: The frame pointer register is restored to its original value.

Line 26: The return address is popped of the stack and loaded into the
program counter. The next instruction executed is thus the one
following the call instruction.

Line 27: The caller restores the stack pointer to its initial value.

After execution of line 27, the stack is back in the state it was in before the call to
whither was initiated.

Important rule
The stack must always be restored to its original state. This is important enough to
put it into a box:

Rule: The stack must always be restored to its initial value.

C-Assembler Interfacing

39

Figure 27 shows how stack operations always occur in pairs. Values are pushed
onto the stack at one point, and later are popped off the stack or the stack pointer
adjusted to discard them. These pairs must always be properly nested to maintain
the stack correctly.

After the return, the caller can use the result of the called function (line 24). For a
void function, the caller just ignores the value of R0.

Register usage
Although the example code for whither saved several register, many assembler
functions will not need to save any registers at all (other than the frame pointer).
The C compiler only requires that the registers listed in Table 5 are preserved
across function calls. This has three ramifications on your assembler code:

1. A called function needs to save only these registers on the stack (and only if
they are used, of course). Many assembler functions only need a few
registers—for example, a function that uses R0 to R3, AR0 to AR2, and IR0,
needs to save only the frame pointer (AR3) on the stack.

2. A caller can be sure that registers listed in Table 1 will not be corrupted by
calls to other functions. Thus, variables that are used frequently throughout the
life of a function are usually put into these registers.

3. If a caller wants any values in any other register to be preserved across a
function call, then it must save the variable itself with a push/pop pair around
the function call.

Note that registers R6 and R7 must be saved and restored with push/pushf and
popf/pop instruction pairs, as described earlier.

Table 5. Registers preserved across function calls

Register Compiler usage
r4, r5 Integer register variables
r6, r7 Floating-point register variables
ar3 Frame pointer (fp)
ar4 to ar7 Pointer register variables
sp Stack pointer
dp Data page pointer (small model only)

A minimal calling interface
The previous calling interface example described used the full stack frame created
by the C compiler. When using assembler mainly as a means of ensuring fast
execution of critical code, many functions do not use the full stack frame: In
particular:

Realtime DSP: The TMS320C30 Course

40

• Hand-coded assembler functions tend to use registers for storing temporary
values in. The local variables part of the stack frame is therefore not required,
and lines 8 and 24 of Figure 27 are omitted.

• Assembler functions often need only a few registers, and so do not need to
preserve any registers other than the frame pointer. Lines 9—12 and 20—23 of
Figure 27 are omitted.

• Functions with no arguments may not even need a frame pointer. Lines 6, 7,
and 25 of Figure 27 are omitted.

Figure 29 shows whither with no local variables and no need to preserve any
registers. Figure 30 shows a function with no arguments. This example simply
increments the global variable access_count.

_whither:
push fp
ldi sp,fp
...
ldi *-fp(2),ar0
ldf *-fp(3),r0
...
pop fp
rets

Figure 29. Minimal C-callable function

_access:
ldp _access_count
ldi @_access_count,r0
addi 1,r0
sti r0,@_access_count
rets

Figure 30. Even more minimal C-callable function

41

Advanced Instructions

Although the title of this chapter is “Advanced Instructions,” the instructions
presented here are not necessarily any more difficult to use than those presented
previously! Rather, these instructions are those that distinguish the instruction set
of the TMS320C30 (and other DSP microprocessors) from conventional
microprocessors.

The topics covered in this chapter are delayed branches and repeat instructions,
which reduce the overhead of branching and looping; parallel instructions, which
enable better utilisation of the TMS320C30’s internal resources, and the use of
these features together.

Delayed branches

The TMS320C30 pipeline
Previously, we have seen how loops can be built using decrement-and-branch
instructions or conditional branches. However, the standard branching instructions
are quite expensive: four cycles, whether the branch is taken or not. This is
because the TMS320C30 has a four-stage pipeline: Fetch, Decode, Read, and
Execute. Each stage is operating on a different instruction—that is, while one
instruction is being executed, the following one is having its operands read from
registers of memory, and so on.

When a branch instruction is decoded, the TMS320C30 stops reading instructions,
because it does not want to inadvertently execute any portion of the instruction
following the branch instruction inadvertently. This is called “flushing” the
pipeline. When the branch instruction is executed, the program counter is set the
appropriate value, and the TMS320C30 starts filling the pipeline again from the
instruction at that address. Hence the additional cycles taken to execute a standard
branch (whether the branch is taken or not). See Chapter 10 of the TMS320C3X
User’s Guide for detailed information on pipeline operation.

Delayed branches
To eliminate this branching overhead, the TMS320C30 has a set of special delayed
branch instructions. Each of the three types of branching instruction has a delayed
version:

• brd

Delayed unconditional branch

• bcondd

Delayed conditional branch

• dbcondd

Delayed decrement-and-branch with condition

Delayed branches execute the three instructions following the branch instruction,
and then the branch is taken. The branch thus effectively takes only one cycle.
Figure 31 illustrates the use of a delayed branch. The three instructions following
the branch (mpyf, addf, and fix) are executed before the branch is taken.

Realtime DSP: The TMS320C30 Course

42

...
brd proceed ; delayed branch
mpyf r0,r1 ; execute three instructions
addf r2,r1
fix r1

+----- ... <<- branch occurs here
| ...
+-> proceed:

...
Figure 31. llustrating the use of a delayed branch

The three instructions following the delayed branch instruction are already in the
pipeline when the delayed branch instruction is executed. While these three
instructions are being executed, the TMS320C30 continues to fetch and decode
instructions from the branch destination. Therefore, these three instructions cannot
be any instruction that affects the program counter—that is:

• Any standard or delayed branch

• Subroutine call or return

• Interrupt return

• Repeat instruction

• trap or idle

Using delayed branches
For assembler coding by hand, the best way of utilising delayed branches may be
to write your code using standard branches, then convert standard branches into
delayed branches. To take advantage of the delayed branch, move instructions
from before the branch instruction to after it; this must be done carefully! Figure 32
illustrates some example assembler code modified this way. Note the following:

Advanced Instructions

43

• A conditional delayed branch uses the condition codes at the time the
instruction is executed, not the time the branch is actually taken. When
moving instructions to after the branch, you must not affect the condition code
that the branch instruction depends on! In this case, instruction (5) must
immediately precede the branch instruction.

• Instructions cannot be moved past instructions that use their result. In this
case, instructions (1) and (2) cannot be moved; however, (3) and (4) can be,
since (5) does not use their result.

• If there are not three instructions that can be moved after the branch
instruction, then one or two nop instructions must be inserted to make sure
that there are three instructions after the delayed branch. In this case, I have
inserted one nop.

...
(1) subf *--ar1,r0 ; Original code
(2) mpyf r0,r1
(3) addf r1,r1
(4) stf r1,*ar2(3)
(5) subf @incr,r0
(6) bnn notneg ; branch if not negative

...

...
(1) subf *--ar1,r0 ; Code with delayed branch
(2) mpyf r0,r1
(5) subf @incr,r0
(6’) bnnd notneg ; * branch if not negative
(3) addf r1,r1 ; |
(4) stf r1,*ar2(3) ; |
(-) nop ; * (branch occurs)

...
Figure 32. Converting a standard branch into a delayed branch

Converting unconditional branches (br) into delayed branches (brd) is generally
much easier than converting conditional branches, because there is no problem
ensuring that the right condition is tested.

Repeat instructions
The TMS320C30 provides two instructions for repeating a single instruction or a
block of instructions. The repeat instructions take four cycles to execute, but there
are no cycles used for the branch back to the start of the loop. There are thus
referred to as “zero-overhead looping” instructions. They can be particularly
effective when used with parallel instructions—this topic will be covered later in
this chapter.

The TMS320C30 uses three special registers for the repeat instructions:

• rs

The address of the first instruction in the repeat block.

• re

The address of the last instruction in the repeat block.

• rc

The repeat counter.

Realtime DSP: The TMS320C30 Course

44

All of these registers can be used as general-purpose integer registers when not
being used for repeat instructions.

Single-instruction repeat

The rpts instruction executes the instruction following it the specified number of
times. It can be used to sum an array of 32 integers as show in Figure 33.

...
ldi 0,r0
rpts 31 ; loop next instruction

+-> addi *ar0++,r0 ; repeat 32 times
...

Figure 33. Single-instruction repeat

The argument to rpts must be one less than the number of times the following
instruction is to be repeated. In this example, the operand is an immediate value,
but in general, it can use any of the operand addressing modes (immediate,
register, direct, or indirect).

Block repeat

The rptb instruction repeats a block of instructions; the number of iterations is
equal to the value in rc plus one. Its operand is the 24-bit address of the last
instruction in the block, so the rc register must be set up explicitly before
executing the rptb. The code in Figure 34 sums one complex vector into another.
ar0 and ar1 point to the vectors; r0 contains the length of the vectors.

...
ldi r0,rc ; set up loop counter
subi 1,rc

rptb loop ; start loop
+-----> addf *ar0++,*ar1,r0 ; real part
| stf r0,*ar1++
| addf *ar0++,*ar1,r0 ; imaginary part
| loop:
+----- stf r0,*ar1++

...

...
Figure 34. Block repeat

Parallel Instructions
To allow efficient utilisation of the TMS320C30’s internal parallelism, its instruction
set includes a number of “parallel” instructions, of which there are three groups:

• Parallel multiply and add/subtract

• Parallel load and/or store

• Parallel arithmetic and store

Parallel multiply and add/subtract
This instruction is provided to allow both the internal multiplier and ALU to be
used simultaneously. This is in fact the only instruction that allows the TMS320C30
to achieve its peak floating-point rating of 33 MFLOPS (at 33 MHz clock rate).6

6 You can see that the claimed floating-point performance of the TMS320C30 in the
manufacturer’s literature is in fact a very unrealistic figure for almost all applications!

Advanced Instructions

45

Most DSP chips provide a similar instruction, since a multiply-accumulate
operation is the heart of most digital filters.

Figure 35 illustrates the format of the parallel multiply-add/subtract instruction.
There are three points to note:

• There must be two register operands from r0 to r7 and two indirect operands.

• The multiply destination must be r0 or r1, and the addition destination must
be r2 or r3.

• Auxiliary register updates can only be zero (no update), one, ir0, or ir1.

Here are some examples of this instruction:

mpyf r0,r1,r0
|| addf *ar0++,*ar1++(ir0)%,r2

mpyi *ar0,r0,r1
|| subi r1,*ar1,r2

In the second example, r1 is used as both a source and a destination. This is
perfectly legal, since all operands are read before any results are written. In this
case, r1 is read for use in the subi part of the instruction before the result of the
mpyi part is written to r1. Thus, you cannot perform, for example, a multiply, and
an addition which uses the result of the multiply, in one instruction.

Note that both parts of the instruction must be the same “type”—you cannot mix
an integer multiply with a floating-point multiplication, for example.

IndirectRegister

src1

r0, r1, etc

r0 or r1

dst1

ALU

IndirectRegister

r0, r1, etc

src2

*arx*arx

 mpyf/i src1, src2, dst1
|| addf/i src3, src4, dst2

 mpyf/i src1, src2, dst1
|| subf/i src3, src4, dst2

src3

r2 or r3

dst2

Multiplier

src4

Figure 35. Parallel multiply-add instruction format

Parallel load/store instructions
The TMS320C30 can perform three bus accesses per cycle: one instruction read
and two operand reads or writes. The parallel load/store instructions take
advantage of this facility, by allowing two loads, two stores, or a load and a store
to be performed in one instruction.

Figure 36 illustrates the format of these instructions. Note that:

• There are two indirect memory references and two register references from r0
to r7.

• Auxiliary register updates can only be zero (no update), one, ir0, or ir1.

Here are some examples of these instructions:

Realtime DSP: The TMS320C30 Course

46

ldf *ar0,r0 ; load two consecutive vals
|| ldf *ar0++(ir0),r1

ldf *ar0++%,r0 ; copy across buffers
|| stf r1,*ar1++%

sti r4,*ar0 ; store in adjacent posns
|| sti r4,*+ar0

Again, source operands are loaded before destination operands are written, so you
cannot load a value and store the same value in one instruction.

Indirect

ro to r7

*arx

Indirect

*arx

ro to r7

 ldf/i src1, dst1
|| ldf/i src2, dst2

src1 src2

dst1 dst2

Indirect

ro to r7

*arx

Indirect

*arx

ro to r7

 ldf/i src1, dst1
|| stf/i src2, dst2

src1

src2dst1

dst2

Indirect

ro to r7

*arx

Indirect

*arx

ro to r7

 stf/i src1, dst1
|| stf/i src2, dst2

src1 src2

dst1 dst2

Figure 36. Parallel load/store instruction formats

Parallel arithmetic-store instructions
The TMS320C30 can perform a store in parallel with most of its arithmetic
instructions: absf/i, addf/i, and, ash, fix, float, mpyf/i, negf/i, not, or, subf/i, xor.

Figure 37 and Figure 38 illustrate the formats of unary and binary operations in
parallel with a store operation. All registers must be one of r0 to r7. Note also that:

• Unary operations have an indirect operand.

• Binary operations have one indirect operand and one register operand.

• Store operations have an indirect destination.

• Auxiliary register updates can only be zero (no update), one, ir0, or ir1.

Again, the “types” of the instructions must be the same. (fix is paralleled with a sti,
float is paralleled with a stf.) The result of the arithmetic operation cannot be
stored into memory in the same instruction, since the source operands are read
before the destination operands are written. Here are some examples of these
instructions:

Advanced Instructions

47

mpyf r1,*+ar1,r4
|| stf r2,*ar0

absi *ar2++(ir0),r1
|| sti r1,*ar4++(ir0)

subf *--ar2,r1
|| stf r0,*ar0

Notes: (1) The source operands can be written in either order for commutative
operations. (2) r1 will be read before the new value is written. (3) The destination
operand can be omitted if it is the same as the second source.

src2

r0 to r7

dst1

Indirect

*arx

Multiplier

 absf src2, dst1
|| stf src3, dst2

Indirect

*arx

r0 to r7

src3

dst2

Figure 37 . Parallel unary arithmetic-and-store instruction

src2

r0 to r7

dst1

IndirectRegister

src1

*arx

Multiplier

 mpyf src1, src2, dst1
|| stf src3, dst2

r0 to r7

Indirect

*arx

r0 to r7

src3

dst2

Figure 38. Parallel binary arithmetic-and-store instruction

Parallel instructions and loops
The repeat instructions and parallel instructions must be used together to achieve
the performance of which the TMS320C30 is capable. However, there is a small
subtlety in the use of parallel instructions in loops that must be understood.

To illustrate the problem, we will use a loop that simply copies data from one
location to another. Here is an incorrect version of the loop; ar0 points to the
source, ar1 to the destination, and ar2 contains the loop count:

subi 1,ar2 ; set count to 1 less
rpts ar2 ; execute loop
ldi *ar1++,r0

|| sti r0,*ar0++

The problem is that the sti part of the instruction reads r0 before the ldi write to it.
Thus, it is storing the value of r0 from the previous time through the loop! The
solution is to “prime” the loop by loading the first value, executing the loop n–1
times, and then storing the last value:

Realtime DSP: The TMS320C30 Course

48

subi 2,ar2 ; set count to 2 less
ldi *ar1++,r0 ; prime loop
rpts ar2 ; execute loop
ldi *ar1++,r0

|| sti r0,*ar0++
sti r0,*ar0++ ; clean up loop

Note well that the loop counter has two subtracted from it before the loop, instead
of just one. This means that, if this loop occurs in a situation in which the loop
count might be one, then this case must be tested for. (To see why, suppose that
ar2 contained 1. Subtracting two gives 231–1, since ar2 is treated as an unsigned
number. The loop will then execute 232 times—not what was intended!)

Auxiliary register updates in parallel instructions
I have so far skipped a small point but important point about the use of parallel
instructions. All have two indirect operands, which can be incremented or
decremented by zero, one, ir0, or ir1. For example, the code

fix *ar0++,r0
|| sti r0,*ar1++

could appear in a loop that converts an array of floats to integers. But in this case,
the increment is on two different pointers—the integer array is in a different
location to the float array. But suppose that we wanted to write the converted data
back to its original location: then both parts of the above instruction then use the
same auxiliary register, so where should we put the increment operator (++)?

In all parallel instructions, if both indirect operands use the same auxiliary register,
the correct addresses for both will be generated, but only one of them updates it.
In this particular case, the desired instruction is:

fix *ar0,r0
|| sti r0,*ar0++

Note that the assembler will give a warning that both indirect operands use the
same auxiliary register.

If spare registers are available, you could also do this:

ldi ar0,ar1
..
..
fix *ar0++,r0

|| sti r0,*ar1++

The operand that updates the auxiliary register (if both are the same) is:

• For parallel arithmetic-and-store, and load-and-store

The destination operand of the store. The above instruction is an example of
this.

• For parallel load and parallel store

The second indirect operand. For example,
ldi *+ar0,r1

|| ldi *ar0++(ir0),r0

which loads two consecutive locations into r0 and r1 , and increments the
auxiliary register.

• For parallel multiply-and-add/subtract

The second indirect operand, where the mpyf/i part is “before” the addf/i or
subf/i part. For example,

mpyf *ar0,*ar0++,r1
|| addf r0,r1,r2

Advanced Instructions

49

which squares the pointed-to location and increments the pointer, as well as
adding two registers.

51

Special Addressing Modes

The TMS320C30 has—in common with other modern DSP devices—two special
addressing modes: circular addressing, and bit-reversed addressing. These
addressing modes significantly increase device performance for a number of
common signal processing algorithms.

Circular addressing

Overview
Circular addressing can be used in a surprising number of algorithms: convolution
and correlation, input/output buffers, inter-process communication, Viterbi
decoding, and column-wise matrix addressing.

Consider an FIR filter, as illustrated in Figure 39:

ys(n) = ∑
i = 0

k–1
coeffs(k–i–1) xs(n – i)

xs

N

× coeffs

xs N–k–1
N

k–1
0

ys N

n

× coeffs

xs N+q–k–1
N+q

k–1
0

ys N+q

N+q
n

Figure 39. FIR filtering

The implementation of an FIR filter is often visualised as a shift register: each new
input sample is shifted into one end of the buffer, and the oldest sample discarded
from the other end.

In software, however, the data is stored in an array of memory, rather than in a
shift register. One way to implement the shift register is to actually shift all data
values down through an array:

for each input sample x do
temp1 = x;
for i = k-1 downto 0 do

temp2 = buf[i];
buf[i] = temp1;
temp1 = temp2;

Figure 40 illustrates this process.

Earlier DSP devices, such as the TMS32010, had a special instruction that combined
this data shift with a multiply-accumulate instruction (for implementing filters).

Realtime DSP: The TMS320C30 Course

52

Modern devices, however, provided a more general means of achieving the same
end:

curpos = 0;
for each input sample x do

buf[curpos++] = x;
if (curpos >= k) then

curpos = 0;

Thus, each new input sample is just written into the next location in memory;
when the end is reached; the index into the array “wraps” back to zero. It is this
wrap-around of the array index (actually implemented as a pointer wrap-around)
that is done for free by the circular addressing hardware of the TMS320C30).
Figure 41 illustrates this process.

x
N–k+1

x
N–k+2

x
N–2

x
N–1

x
Nn=N x

N+1

x
N–k+2

x
N–1

x
Nn=N+1 x

N+1
x

N–k+3
x

N+2

x
N–k+3

x
Nn=N+2 x

N+1
x

N–k+4
x

N+2
x

N+3

Time Buffer contents Next sample

Figure 40 Implementing a shift register (1)

Time Buffer contents Next sample

x
N–k+1

x
N–k+2

x
N–2

x
N–1

x
Nn=N x

N+1

n=N+1 x
N–k+3

x
N+2

x
N–k+2

x
N–2

x
N–1

x
N

x
N+1

n=N+2 x
N–k+4

x
N+3

x
N–k+3

x
N–2

x
N–1

x
N

x
N+1

x
N+2

Figure 41. Implementing a shift register (2)

TMS320C30 implementation
To implement a circularly-addressed array of length N in TMS320C30 assembler,
you need:

1. A block of memory, starting on a multiple of

2
log 2 N()+1[] , if N is a power of 2

2
ceil log 2 N()[] , otherwise

For example, a circularly-addressed array of 25 elements must start on a
multiple of 32. An array of 64 elements must start on a multiple of 128.7

7 This is a trap for the unwary: if the block size is a power of two, then it must start at
an address that is aligned at twice its size.

Special Addressing Modes

53

2. An auxiliary register, which is initialised to point to somewhere within the
array.

3. The block size register, bk, which must be initialised to the size of the array.

Supposing that the C variable circbuf contains the address of a suitable piece of
memory for the array. TMS320C30 assembler to write (integer) input values into
this array would be:

ldi @_circbuf,ar4 ; ar4 is circular pointer
loop:

call _readval ; get input sample in r0
ldi 25,bk ; array has 25 elements8

sti r0,*ar4++% ; write and circular modify
b loop

Note that the “%” following the post-increment “++” indicates that the auxiliary
register modification is to take place in circular fashion. Post-decrement addressing
can also be used, and register can be modified by a value between 0 and 255, or
by either of the index registers. Thus, the following instruction is valid:

addi *ar4++(3)%,*ar5--(ir0)%,r2

(As it stands, of course, the above code is useless, since the input data is never
processed! This is only an example to illustrate the addressing mode.)

Bit-reversed addressing

Overview
The common forms of the radix-2 FFT algorithm either requires its input data in
“scrambled” order, or produces its output data in scrambled order. Figure 42
depicts the decimation-in-time FFT with scrambled output data.

8 bk is loaded each time through the loop because the call to _readval may corrupt it
otherwise. If _readval is an assembler routine know not to corrupt bk, then bk can be
loaded once before the loop.

Realtime DSP: The TMS320C30 Course

54

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

x(11)

x(12)

x(13)

x(14)

x(16)

X(0)

X(8)

X(4)

X(12)

X(2)

X(10)

X(6)

X(14)

X(1)

X(9)

X(5)

X(13)

X(3)

X(11)

X(7)

X(15)

W0
16

W0
16

W4
16

W4
16

W2
16

W2
16

W6
16

W6
16

W0
16

W4
16

W2
16

W6
16

W1
16

W5
16

W3
16

W7
16

W0
16

W0
16

W0
16

W0
16

W4
16

W4
16

W4
16

W4
16

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

–1

W0
16

W0
16

W0
16

W0
16

W0
16

W0
16

W0
16

W0
16

Figure 42. Decimation-in-time FFT Butterfly Diagram

The ordering of the output data is commonly referred to as “bit-reversed” order,
because the indexes into the output array can be obtained by reversing the order
of bits in each index. Thus, data items 0, 1, 2, 3 etc, are stored in locations 0, 8, 4,
12, and so on. Re-ordering the data array typically consumes as much as 30% of
the total FFT time on a conventional processor.

Because the FFT is a very commonly-used signal processing algorithm—both in
actuality and as a benchmark for comparing the performance of DSP devices—
most DSP devices provide a special “bit-reversed addressing” mode just for
implementing the data re-ordering.

TMS320C30 implementation
To implement bit-reversed addressing on an array of length N=2n in TMS320C30
assembler, you need:

1. A block of memory, starting on a multiple of N. Thus, bit-reversed addressing
operates only with power-of-2 sized arrays.

2. An auxiliary register, which is initialised to point to the start of the array.

3. Index register 0, ir0, which must be initialised to half the size of the array.

The bit-reversed addressing mode is indicated by a “b” following the post-
increment “++” symbol, as shown in the following code fragment from a bit-
reversed data copying routine:

rptb loop
;

ldf *ar0++(ir0)b,r0 ; load real, store imaginary
|| stf r1,*+ar1
;
loop: ldf *+ar0,r1 ; load next imag, store real
|| stf r0,*ar1++(ir1)

Special Addressing Modes

55

Note that bit-reversed addressing operates only with ir0, and only in post-
increment mode. For more information on bit-reversed addressing, see Chapters 5
and 11 of the TMS320C3x User’s Guide.

Allocating memory arrays
Both the circular and bit-reversed addressing modes require that memory be
allocated on power-of-2 boundaries in memory. There are a number of ways to do
this:

• Use the linker to locate specially-named memory sections at a pre-determined
location.

• Use the linker’s .align directive to specify that a certain memory area be
located on the appropriate boundary.

• Cast a C pointer to a hard-wired address. For example, the C declaration
float *buffer = (float *)0x809800;

will create a C pointer called buffer, pointing to the start of internal memory.

• Create buffers at the correct location using an appropriate dynamic memory
allocator.

The last option is the most flexible. The Texas Instruments C Compiler is now
provided with a suitable allocation routine, balloc(), with which you can specify
the alignment of the block to be allocated.

The DSPKit libraries contain a faster and more flexible set of routines for memory
allocation—see the DSPMem documenation of DSPKit. As a simple example of
their use, the code to create a circular buffer of 25 elements within the
TMS320C30’s on-chip memory will include the following code:

main()
{

float *buffer0;
float *buffer;

processor_init(); /* initialise system */
buffer0 = mem_alloc(25, FastHeap); /* get memory */
buffer = buffer0;

/* use buffer, which is on a 32-word boundary */

mem_free(buffer0, 25, FastHeap); /* free mem */
}

57

On-chip Peripherals

The TMS320C30 contains several on-chip peripherals: two serial ports, two
programmable timers, and a DMA (direct memory access) controller. This chapter
introduces these peripherals and describes how they can be programmed in C. For
detailed information on the peripherals, however, you will need to refer to chapter
8 of the TMS320C3x User’s Guide.

Overview of peripherals
The peripherals are controlled by a number of on-chip registers, located from
808000H to 80807FH in the TMS320C30’s address space (although addresses up to
809BFFH are reserved as peripheral address space). These registers can be read
and written just like any other memory location. Each peripheral circuit has its
own block of memory, as shown in Figure 43.

808000H

808010H

808020H

808030H

808040H

808050H

808060H

808070H

DMA Controller

Timer 0

Timer 1

Unused

Serial Port 0

Serial Port 1

Bus Control

Unused

Figure 43. Peripheral Memory Map

In this chapter, we will look only at the timers—the other peripherals are more
complex, and are described in more detail in following chapters.

The timers
Each timer control block in fact only contains three registers, as shown in Figure
44. The “global control” register contains mode select fields and status flags. The
counter register contains the current timer count; it is incremented at half the clock
rate: if the clock rate is 30 MHz, for example (as it is in the EVM board), the count
register will be incremented at 15 MHz. The period register contains the timer
period; a timer interrupt is generated and the timer counter reset to zero when the
value in the counter register reaches the value in the period register.

See pages 8-2 to 8-11 of the TMS320C3x User’s Guide for information on the
operation of the timer control bits.

Realtime DSP: The TMS320C30 Course

58

Global control

Reserved

Reserved

Reserved

Counter

Reserved

Reserved

Reserved

Period

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Timer 0 Timer 1

808020H 808030H

808021H 808031H

808022H 808032H

808023H 808033H

808024H 808034H

808025H 808035H

808026H 808036H

808027H 808037H

808028H 808038H

808029H 808039H

80802AH 80803AH

80802BH 80803BH

80802CH 80803CH

80802DH 80803DH

80802EH 80803EH

80802FH 80803FH

Figure 44. Timer control block

Accessing hardware memory locations in C
There are a number of ways in which the timer registers can be accessed from C.
Suppose we wish to write a variable, say timer_period, into the period register of
Timer 1. Here is one way:

*(unsigned int *)0x808038 = timer_period;

This C statement creates a pointer to the timer register (which is, after all, just a
memory location as far as the code is concerned), and uses the pointer to write to
the register.

This method is both error-prone and difficult to read; it is easy to inadvertently
type say 0x808083h as the address, for example. One could use macros to define
memory locations; for example,

#define TIMER_1_PERIOD (*(unsigned int *)0x808038)
...
TIMER_1_PERIOD = timer_period;

However, you end up defining a lot of macros! A (better, I think) method is to
define a C structure that mimics the memory layout of the timer control block. In
the DSPKit file periph.h, for example, you will find the following structure
definition:

Peripherals

59

typedef struct
{

timer_control_t control;
unsigned rsv1[3];

unsigned counter;
unsigned rsv2[3];

unsigned period;
unsigned rsv3[7];

} timer_t;

(timer_control_t is defined elsewhere in that file.)

Now we can access the timers as follows:

#define TIMER0 ((timer_t *)0x808020)
#define TIMER1 ((timer_t *)0x808030)

...
TIMER0->period = timer_period;

This can be taken a step further: we can define a single C structure to mimic the
whole peripheral memory space! In periph.h, you can find the following structure
definition:

typedef struct
{

dma_t dma; /* DMA controller */
unsigned rsv1[16];
timer_t timers[2]; /* Two timers */
port_t ports[2]; /* Two serial ports */
bus_t bus; /* Bus control */
unsigned rsv2[16];

} peripherals_t;

If you compare this structure with Figure 43, you will see the correspondence
immediately. In order to access the peripheral memory space, the file periph.c
actually defines a pointer to this memory (rather than just using a constant pointer
as before):9

volatile peripherals_t
*peripherals_p = (volatile peripherals_t *)0x808000;

periph.h also defines this macro:

#define peripherals (*peripherals_p)

The period register of timer 1 is thus accessed by

peripherals.timers[1].period = timer_period;

Using the definitions in the file periph.h, you can read or write any peripheral
register in this way.

9 The volatile keyword is used to prevent the optimiser from breaking your code.
Suppose you were polling a flag in the peripheral address space, testing for whether it
had been set yet. The optimiser would see this code as a good opportunity to remove
unneeded code, and would load the flag in question into a register once, before the
loop! As far as the optimiser can tell, the location you are repeatedly testing never
changes, so there is no need to load it each time through the loop. The volatile
keyword informs the compiler that the variable you are examining in fact can be
changed by some external agent (a peripheral circuit, in this case), so it must be read
afresh each time through the loop.

Realtime DSP: The TMS320C30 Course

60

Accessing structure- and bit-fields
The previous section showed how to access whole registers in the peripheral
memory space. However, many registers contain a large number of bit-fields. For
example, Figure 45 shows the structure of one of the timer “global control”
registers.

TSTAT INV CLKSRC C/P HLD GO xx xx DATINDATOUT I/O FUNC

Bit 12—31 11 10 9 8 7 6 5 4 3 2 1 0

XXXXXXXXXXXX

Figure 45. Bit-fields in the timer global control register

Suppose we wished to set bit 6 (the GO bit), without changing any other bits. In
assembler, we have to load the word from memory, set the bit, and write the word
back again. For example,

ldp 808030h
ldi @808030h,r0
or 40h,r0
sti r0,@808030h

We could mimic this in C if we wanted:

temp = peripherals.timers[1].control;
temp |= 0x40;
peripherals.timers[1].control = temp;

However, C also allows you to define bit-fields in structures—that is, structure
elements that are only a given number of bits in size. To illustrate, periph.h defines
the timer_control_t structure as follows:

typedef struct
{

unsigned func : 1 ;
unsigned io : 1 ;
unsigned datout : 1 ;
unsigned datin : 1 ;
unsigned unused1 : 2 ;
unsigned go : 1 ;
unsigned hld : 1 ;
unsigned cp : 1 ;
unsigned clksrc : 1 ;
unsigned inv : 1 ;
unsigned tstat : 1 ;
unsigned rsv1 : 4 ;
unsigned rsv2 : 16;

} timer_control_t;

If you compare this with Figure 45, you will see how the elements of this structure
match the bit fields contained in the timer control register.10 Now, the go bit can
be set by:

peripherals.timers[1].control.go = 1;
Clearly, any of the bits in any peripheral control register can be read or written this
way. To close this chapter, the following code fragment initialises and starts timer
1:

10 Note: The relative order of the declarations in timer_control_t and the control bits is
completely machine-dependent.

Peripherals

61

/*
 * Set all bits of control register to zero.
 */
*(unsigned *)&peripherals.timers[1].control = 0;

/*
 * Set the period register and control bits
 */
peripherals.timers[1].period = timer_period;

peripherals.timers[1].control.clksrc = 1; /* internal clk */
peripherals.timers[1].control.hld = 1; /* release */
peripherals.timers[1].control.func = 1; /* TCLK is o/p */
peripherals.timers[1].control.go = 1; /* start */

63

Interrupts

Interrupts are used to allow a processor to respond to external events; in the
TMS320C30 environment, these events can include a timer time-out, data being
received or transmitted by a serial port, completion of a DMA transfer, or a
command or data from a controlling host computer.

This chapter describes the TMS320C30 interrupt structure, and how to set up and
use interrupts using first the ints module of the DSPKit library, and then assembler
code.

This chapter is still incomplete—contact the author for the current version.

C30 interrupt structure

Interrupt sources
The TMS320C30 has twelve hardware interrupt sources, including a hardware
reset. The names of these interrupts defined by the DSPKit library are:

Reset

Device reset interrupt. This occurs when the TMS320C30 is
powered up. When you start running a program in the
TMS320C30 Source Debugger, the program executes as though a
hardware reset had occurred.

External0, External1, External2, and External3

External interrupt sources. These are triggered by four pins of the
TMS320C30, and are used for communication with the host
computer in the EVM board. In other systems, the use of these
interrupts is determined by the design of the external circuitry.

Transmit0, Receive0

Serial port 0 interrupts. these interrupts are triggered when serial
port 0 has finished transmitting a word or has received a word.

Transmit1, Receive1

Serial port 1 interrupts.

Timer0, Timer1

Timer interrupts. Each of the on-board timers can generate an
interrupt when it times out.

DMA

DMA (direct memory access) controller interrupt. This is triggered
by completion of a DMA transfer.

Interrupt vectors
The first twelve locations of memory are occupied by the hardware interrupt
vectors. These location contain the address of an interrupt service routine (ISR),
which is to process the corresponding interrupt when it occurs. In the TMS320C3x
User's Guide, these locations are shown as in Figure 46:

Realtime DSP: The TMS320C30 Course

64

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

00Bh

RESET

INT0

INT1

INT2

INT3

XINT0

RINT0

XINT1

RINT1

TINT0

TINT1

DINT

Figure 46. TMS320C30 Interrupt Vectors

(Note that the names of these interrupts defined by DSPKit are different to the
names in the User's Guide.)

Interrupts and polling

Basic interrupt operation
Interrupts occur asynchronously of the program being executed by the CPU—in
other words, they can occur at any time. Let us suppose that the CPU is currently
performing some task, such as (say) calculating the power spectrum of a portion
of a signal. While it is doing so, another input sample from the A/D converter
arrives at serial port 0 (which we assume is connected to the converter).

Since serial port 0 has just received a data word, it triggers the Receive0 interrupt.
Assuming that interrupts are currently enabled, the TMS320C30 performs the
following:

1. It disables any further interrupts.

Although we haven’t come to it yet, the GIE bit in the status register, ST, is
cleared.

2. It pushes the current program counter plus one onto the stack.

For example, suppose that the TMS320C30 is executing the ldi instruction in
the following code fragment:

addi *ar0++,r0 ; address 0158H
ldi *ar1,r1 ; address 0159H
mpyi r0,r1,r2 ; address 015AH

The address 015A (hexadecimal) is loaded onto the stack.

3. It loads the value from the corresponding interrupt vector into the program
counter.

In this case, it loads the word at memory address 06H into the program
counter, so that execution continues from that address. Since the location 06H
should contain the address of the interrupt service routine (ISR) for receive
interrupt 0, this ISR will now be executed.

4. The ISR must terminate with a reti instruction, instead of a rets instruction. This
instruction pops the top of the stack into the program counter, and sets the
GIE bit.

In our example, the CPU will continue executing from the mpyi instruction, as
though nothing had ever happened between the ldi and the mpyi instructions

Interrupts

65

Characteristics of interrupt service routines.
As you can see, calling an ISR is very similar to calling a normal subroutine. There
are two key differences:

• An ISR must preserve every register, including the status register (ST). This
ensures that the main program functions correctly even though an ISR can be
executed between any two instructions. You will recall that normal
subroutines only need to preserve certain registers (see C-Assembler
Interfacing).

• An ISR must end with a reti instruction, so that interrupts are re-enabled after
the ISR completes.

Polling
Polling is an alternative method of responding to external events, which is simpler
to program than interrupts, and can sometimes even be more efficient. With
interrupts, the CPU executes its main program without regard for external events;
the external events force the CPU to respond to them by interrupting it. With
polling, however, the CPU must “poll” for external events.

In the case of the data received on serial port 0, the CPU will repeatedly test a bit
in the serial port control registers11 to check whether a word has been received. If
it has, the CPU takes appropriate action. If it has not, the CPU either does
something useful for a short while, or just waits a short while (perhaps as little as
one instruction) before trying again.

A silly analogy may help understand the difference. (Acting out the following
scenarios might help appreciate the analogy!)

Suppose I decided that one of my students has to make me coffee periodically in
order to pass this course. Using an interrupt-driven protocol, the student would
interrupt me when the coffee was ready; I would handle the interrupt by taking
the coffee and drinking it. The sequence of events looks like this:

Me Student

“Make me a cup of coffee!”

Starts making coffee

(Busy working) (Busy making coffee)

(Some time passes....)

“Your coffee is ready”

Stops working, and takes coffee
from student.

Hands me coffee

Drinks coffee, and then goes back
to work

Sits around waiting for next
command.

11 Or the interrupt flag (if) register.

Realtime DSP: The TMS320C30 Course

66

Using a polling protocol, however, I would periodically ask the student whether
the coffee was ready yet. Finally, it would be, and I would then be able to drink it.
The sequence of events looks like this:

Me Student

“Make me a cup of coffee!”

Starts making coffee

(Does a little work) (Busy making coffee)

“Is the coffee ready yet?” “No”

(Does a little work) (Busy making coffee)

“Is the coffee ready yet?” “No”

(Does a little work) (Busy making coffee)

“Is the coffee ready yet?” “Yes”

Stops working, and takes coffee
from student.

Hands me coffee

Drinks coffee, and goes back to
work

Sits around waiting for next
command.

Accessing and controlling interrupts in C
To simplify the use of interrupts, DSPKit provides a utility module called ints,
which contains a number of C-callable routines.

Initialising interrupts
The code sequence below will ensure that all interrupts are reset and all interrupts
vectors cleared. It is contained in the default DSPKit system initialisation routine,
processor_init(). If your program does not start by calling processor_init(), it
should execute the following sequence early on.

disable_interrupts();
clear_pending_interrupts();
disable_all_interrupts();
reset_isrs();

Interrupts

67

Installing and removing interrupts
Interrupt service routines are easily installed at run-time, as illustrated by the
following code fragment from the DSPKit library evmlib, which installs an ISR for
one of the serial ports.12

/*
 * Install the data ISR and abort if error
 */
if (! install_isr(Receive0, c_int50))
{

fatal("AIC interrupt installation error");
}

When closing down a peripheral such as a serial port, the corresponding ISR
should be removed. For example,

uninstall_isr(Receive0);

Coding interrupt service routines
Interrupt service routines can be coded in C, simply by giving the ISR function a
name of the format c_intxx, where xx is a number in the range 00 to 99. For
example, the ISR used in the above examples starts as follows:

static void
c_int50(void)
{

integer item;

/*
 * Read from serial port, convert to 14-bit integer.
 */
item = (peripherals.ports[MYPORT].receive << 16) >> 18;
...

}

12 In fact, this is a simplified version of the code.

69

Memory Management

A typical TMS320C30 system has several regions of memory, of varying sizes and
speeds. Of course, all have at least the on-chip memory, which is capable of up to
three accesses per instruction cycle. Most will have some form of external
memory—perhaps fast zero-wait-state static RAM, or maybe an external program
ROM. More expensive systems may also have much larger memory built with
dynamic RAMs, with one or two wait states. In multi-processor systems, there may
also be shared memory accessible by more than one processor.

Effective use and management of these different memory areas—especially the
precious internal memory—is crucial, and this chapter describes how memory can
be allocated and used effectively. Detailed discussion of the ins and outs of why
internal memory is so precious is left until Chapter 12.

This chapter is incomplete: contact the author for the current version.

70

Pipeline Conflicts

To achieve peak performance from the TMS320C30, it is necessary to understand
how the device’s instruction pipeline works and how instruction ordering and
memory usage interact with the pipeline.

This chapter is not yet complete—contact the author for the current version.

