Interface Automata and Actif Actors
H. John Reekie

Dept. of Electrical Engineering and Computer Science
University of California at Berkeley
johnr@eecs.berkeley.edu

Abstract

This technical note uses the Ptolemy II interface automaton editor to
compose networks of dataflow actors and buffers. The automata are first
described as Actif actors; the composition of the automata together with
a controller automata reveals the combined behavior of the network.

This technical note can be referenced as:

“Interface Automata and Actif Actors,” H John Reekie, UC
Berkeley, November 2002, online at: http://ptolemy.berkeley.eecs/~ johnr.

Or use the following BibTex citation:

Qunpublished{Reekie0201,
author = {H. John Reekiel,
title {Interface Automata and Actif Actors},
month = {November},
year = {2002},
note = {Online at \href{http://ptolemy.eecs.berkeley.edu/"johnr/}
{http://ptolemy.eecs.berkeley.edu/~ johnr/notes/atomicbuffer.pdf}}

1 Introduction

This technical note examines the use of interface automata [1] to compose
dataflow actors, buffers, and a controller. This work was inspired by Lee and

Xiong’s work on behavioral types [3], in which interface automata are used to
construct a hierarchy of types based on the behavior of actors and the “do-
mains” that execute the actors. Lee and Xiong have identified some issues with
this approach, related to the atomicity of reading and writing tokens from and
to channels [4]. I propose here that token reads and writes can be made atomic
easily enough, provided that an actor does not need to check for whether tokens
are present.

1.1 Dataflow actors

I use Actif [5] to describe actors. In Actif, an actor consists of a set of actions,
and has sets of input channels and output channels. An action can fire if it
has sufficient tokens available on the input channels. Figure [1l gives a textual
representation of several actors.

e source produces a single output token each time it fires. The value is
unimportant here.

e sink consumes a single input token each time it fires.

e ndsource will produce either one token on its output, or two tokens on its
output, each time it fires. Which, is chosen non-deterministically.

e ndmerge merges two input streams. If a token is present on the first
channel, it reads it and writes it to the output channel; if a token is
present on the second channels, it reads it and writes it to the output. If
tokens are present on both input channels, it non-deterministically chooses
one of them.

Figure 2| gives the so-called “firing automata” of these actors. The firing
automata indicate in what order the actions of the actor can fire. In the case
of source and sink, there is only a single action, so the automata are trivial. In
the case of ndsource and ndmerge, there are two actions. Each can fire at any
time, provided that the requisite input tokens are present.

1.2 Interface automata

An interface automaton has a single action associated with each transition.
These are input, output, or internal transitions, indicated by the suffix “?”,
“I” or “” respectively. Figure [3 shows the interface automata of the actors
above. Note that, since automata compose by the names of the actions on
the transitions, the name of the automata is encoded into the actions. For
example, the source actor is known as “A” and has actions FireA and ReturnA,
representing a call to fire it, and the return from that call. Similarly, the actor
writes to buffer “1”, and hence has the output action Putl.

There is a straight-forward mapping from the actor’s firing automaton to its
interface automaton. Apart from the renaming mentioned above, each action
in the Actif firing automaton is converted into a series of transitions consisting
of a Fire action, a series of Get and Put actions, and a Return action.

actor source () (float out) {
action a () -> [11);

}

actor sink (float in) () {
action a ([1] -> O);

}

actor ndsource () (float out) start a,b {
action a (() -> [1]) next a,b;
action b (() -> [1,2]) next a,b;

+

actor ndmerge (float inl, float inl) {float out)
start a,b {
action a ([x]1[] -> [x]) next a,b;
action b ([1[yl -> [yl) next a,b;

}

Figure 1: Dataflow actors used in the examples

*Q aCbDb
(@) (0)

Figure 2: Firing automata of the actors used in the examples: a) source and
sink, b) ndsource and ndmerge

;ﬁﬂ@ Put1
FireA ; -

(a) . @ Returna
b

Put1!
@
RetumP! __ Get

, e () Q)P
® * &F‘G_)m Fﬁump

PulTwao

o

PutTwo!
FireD1 PutTwa! @ﬁ
. / @ ReturnD
: FiraD1 .

= .
H;DE O ADQ? /éu:Twu!
RetumD .] ©‘ - o Fﬁusz

RetumD2

(ﬁ‘]
Gatil C
» Q""’“J
J
Put3
(d) \ 5
Firehiz2 Returnhit

il e, P o
@ Ratumhi 1! Retumhi2! IQ Returnhz

Figure 3: Interface automata of the actors used in the examples: a) source, b)
sink, ¢) ndsource, and d) ndmerge

Buffer1

AP—s—p
\

source sink

Single-place buffer

(a) Example 1: single-action actors, single-place buffer

(1 2 BufferTwo1

D S S
ndsource \ sink

Two-place buffer

(b) Example 2: non-deterministic source with two actions, two-place buffer

1 Buffert (1,0)
A —= >

a1
source >
1 BL{_fEI‘Z (0’1) M Buffer3 Q

B —o<i—

source Single-place buffers

sink

ndmerge

(c) Example 3: non-deterministic merge, single-place buffers

Figure 4: Networks uesd for composition examples

2 Composing interface automata

Interface automata can easily be composed using the interface automaton editor
in Ptolemy II [2]. In this section I show the results of using this editor to compose
the automata representing the components in the networks of Figure 4.

Actors communicate through channels. These can take varying forms, de-
pending on the “model of computation” under which the actors are composed.
Often, they take the form of FIFO queues; single-place buffers are also common.
In these examples, we will use single-place buffers and two-place buffers. The
interface automata of these buffers are shown in Figure [5. Each buffer receives
events that get a token from or put a token into the buffer. In contrast to
Lee and Xiong [3], this approach models a token put or get as a single atomic
operation—there is no call and return, and there is no need to check for presence
of a token. (This latter is because we are using an Actif controller to further
constrain the actors, see below.)

Gell Gell? CelTwo GetTwo?

Pull? PulTwo?

(a) (b)
Figure 5: Interface automata for buffers: a) single-place; b) two-place

2.1 Example 1

Example 1 consists of a source actor, a sink actor, and a single-place buffer
connected as in Figure 4a. Composing them yields the automaton in Figure 6a.
Considering how simple this network is, this automaton turned out to be rather
“messy.” Still, this is what composition of the three interface automata yields.

One way that we can simplify this automaton is to now compose it with a
controller. The controller is Actif parlance for the “environment” (in interface
automata theory); it also performs the same function as a “director” in Ptolemy
II, but specialized for a particular network. A good schedule for Figure l4a is
fairly obviously to fire the source actor A, then fire the sink actor P, then repeat.
The interface automaton of this controller is shown in Figure [7a; composing it
Figure [6a yields the (closed) system shown in Figure [6c.

Note that in Actif, an actor never has to check that tokens are present on its
inputs. This task is done, in effect, by the controller—that is, the controller is
constructed such that an action is fired only if the required tokens are already
present on its input.

It turns out that Figure 6a has a lot of states that will always be removed
when a network is composed with a single-threaded controller. If you examine
this figure, you will see that the first two transitions are FireA? and Putl.
The next state has two output transitions, ReturnA! and FireP?. In a single-
threaded system, FireP? cannot occur at this point, as actor A must return
before another actor can be fired. This is the same limitation Lee and Xiong
noted, but at the actor firing level rather than the token read/write level.

A simple solution is to simply remove the unwanted transitions; if all these
unwanted transitions are removed and unreachable states pruned from the graph,
the result is as shown in Figure [6b. Composing this automaton yields of course
the exact same result as before. Note that:

e This extra pruning step reduces the size of the state space when composing
actors and buffers.

e The input and output actions remaining in Figure6b are the exact inverse
of the controller. In some cases, then, we can derive the controller for a

GeiTwo?

i % ' A

network of Actif actors simply by composing the automata of the actors
and buffers.

2.2 Example 2

Example 2 (Figure 4b) is similar to example 1, but uses a source actor that
non-deterministically outputs either one or two tokens. A suitable controller
for this network is shown in Figure [7Tb. As for example 1, the same comments
apply in respect to pruning the composed automata of impossible call-return
sequences. The result of composing the source, the sink, and the buffer with
the controller is shown in Figure [8a.

2.3 Example 3

Example 3 uses a non-deterministic merge actor to merge the output from two
source actors (Figure 4 c¢). This network is sufficiently complex that the au-
tomata of the actors and buffers cannot be composed without using the con-
troller to constrain the size of the result automata—computing the composition
simply takes too long. By composing the actors with the controller first, the
complete composition is simple enough to compute, and is shown in Figure 8b.

3 Concluding remarks

It seems that for Actif actors that do not have a choice vertex, interface au-
tomata are easily derived and composed. Although I have not shown it in this
report, Actif controllers have a similar state-machine structure to actors, and
so could easily have interface automata derived for them.

If an actor has choice, then an interface automaton cannot be easily derived
for it. I need to look into this more. My intuition is that choice vertices can be
inserted into interface automata and propagated through composition, so that
the result automaton simply preserves the product of the states before and after
the choice.

Independently of Actif, this report illustrates one way in which additional
infeasible states can be pruned while composing automata, by disallowing ac-
tion sequences that conflict with some known property of the desired result
automaton. (In these examples, the property is that calls to Fire cannot be
nested.)

References

[1] L. de Alfaro and T.A. Henzinger. Interface automata. In Proceed-
ings of the Ninth Annual Symposium on Foundations of Software En-
gineering, pages 109-120. ACM Press, 2001. Online at |http://www-
cad.eecs.berkeley.edu/ tah/.

http://www-cad.eecs.berkeley.edu/~tah/Publications/interface_automata.html�
http://www-cad.eecs.berkeley.edu/~tah/Publications/interface_automata.html�

: FireA
FireP
a
() Retuma! /— -
Returns
=|F\E¥_'
2 2
311 Q RelurnP
O atumal
Retume
| P [FireA

»

RetumP!

FireF
Flrﬁﬂs\’.
(b)
Returns
I
_, 13 RelurnP
. Q b

i < S B 1_2 13 1.2 2 4
Fired
I—'LP

PLU HulL.rr
8

Figure 6: Composed automata for Example 1. a) composition of two actors
and a buffer, without fire-return pruning; b) with fire-return pruning; c) after
composing either (a) or (b) with a controller

FireP!
#""'_-""\
Fﬁ””" FireA

(a) RelurnP RelumP?

RetumA?

FireP

\-.._._J

Firad!

RetumDi? /__ 1J~1D2J
o0, 00«
Tsz 02! |'/—? F;JDQ
(b) ireD1!

Firas! _
REtumS?
Returns "

FireS

Returna Firel! __,_._Eii.ﬂ"___*
* @ @ Fired,

ReturnB¥ .
ReturmB BlumA? »
’ F;ﬂB
Retum(?
Returnl @
’ @ FireQ

1 Firafl2!
Firg}!
Returnh2 @ r

Firehz
B

HL[U[[IMé @ Retuembd 17 .

(c)

¥

Figure 7: Controllers for the three example networks

(b)

GelTwa;

220y AT BAEMN, 412 R

ee o @

PulT
Retum$;

iraD1;

Ny (e

O FiraDi2;

\ A2t 6.3 81 3% FARE T1II S EEN At @@

Ratums; O O O O O O O O
F'Ul'l

PulT RelusD2, Fln: (_-netT Retu

1412 11141113 29181111 21161111 29561 111 1966111117 2 1

L L B B M

PutZ; RelurfiB, Fimahd2; GetZ; Futd.

PutT; Retumts, Flrea i Ge‘ .t!
Retumh 1,

i, % N B I

O 18344 459 48119422
h*EéTEF‘nE‘;—‘—‘ -—
O G, O

Figure 8: More composed networks: a) Example 2; b) Example 3

10

2]

John Davis II, Christopher Hylands, Bart Kienhuis, Edward A. Lee, Jie Liu,
Xiaojun Liu, Lukito Muliadi, Steve Neuendorffer, Jeff Tsay, Brian Vogel,
and Yuhong Xiong. Heterogeneous concurrent modeling and design in Java.
Technical Memorandum UCB/ERL M01/12, Electronics Research Labora-
tory, Dept of EECS, University of California at Berkeley, March 2001. Online
at |http://ptolemy.eecs.berkeley.edu/.

Edward A. Lee and Yuhong Xiong. System-level types for component-based
design. In T.A. Henzinger and C.M. Kirsch, editors, EMSOFT 01: Embedded
Software, Lecture Notes in Computer Science. Springer-Verlag, 2001.

Edward A. Lee and Yuhong Xiong. Behavioral types for component-based
design. Technical Memorandum UCB/ERL M02/29, Electronics Research
Laboratory, Dept of EECS, University of California at Berkeley, September
2002. Online at http://ptolemy.eecs.berkeley.edu/.

H. John Reekie and Edward A. Lee. Lightweight components models for em-
bedded systems. Technical Report UCB ERL M02/30, Electronics Research
Laboratory, University of Californa at Berkeley, November 2002. Online at
http://www.gigascale.org/pubs/344.html.

11

http://ptolemy.eecs.berkeley.edu/publications/papers/01/HMAD/�
http://ptolemy.eecs.berkeley.edu/publications/papers/02/behavioralType/�
http://www.gigascale.org/pubs/�

