Timed Actors
DRAFT

H. John Reekie

Dept. of Electrical Engineering and Computer Science
University of California at Berkeley
johnr@eecs.berkeley.edu

Abstract

This technical note explores the notion of time in the context of the
actor model Actif. Actif tries to use the minimum number of constructs
necessary to express actors that will work in a broad range of models of
computation. To this end, in this report I add a single construct to Ac-
tif, which delays the readiness of an actor to fire an action by a certain
amount of time. This has some interesting consequences for the interface
automata used to compose actors.

This technical note can be referenced as:

“Timed Actors,” H John Reekie, UC Berkeley, November 2002,
online at: http://ptolemy.berkeley.eecs/" johnr.

Or use the following BibTex citation:

Qunpublished{Reekie0202,
author = {H. John Reekiel,
title = {Timed Actors},
month = {November},
year = {2002},
note = {Online at \href{http://ptolemy.eecs.berkeley.edu/"johnr/}
{http://ptolemy.eecs.berkeley.edu/~ johnr/notes/timedactors.pdf}}

1 Introduction

An actor in Actif consists of a set of actions, each of which consumes and
produces a fixed number of tokens from and to each input and output channel.
A firing automaton constrains the order in which actions can be fired.

Such actors can be readily translated into an interface automaton. (This
has only been presented informally [2]; a more rigorous presentation is forth-
coming.)

2 Timed Actif

Time is added to Actif with a single concept: after completing an action, the
next set of eligible actions are not enabled until after a given amount of time
has elapsed. This is indicated by the after keyword. (This concept is not
new. Ptolemy II, for instance, has a refireAt () method to perform the same
function.)

For example, here is an actor that emits a value ("1’ in this case) every
second:

actor tick () (int out) {
action a (() -> [1]) next a after 1;

3

When it is first fired, the actor immediately emits the value ’1’ on its output
port. The next eligible action is a; however, this action cannot be executed until
exactly one second has elapsed. The firing automaton of this actor is shown in
Figure 1h.

Here is an actor that reads an input token, then produces it on its output
channel ten seconds later:

actor delay (word in) (word out) start a {
state {
word s;
}
action a ([x] -> []) next b after 10 {
s = X;
}
action b ([] -> [s]) next a;

}

That is, when a executes, it consumes a token and stores it in the variable s.
Exactly ten seconds later, b executes and writes the value to the output channel.
The firing automaton of this actor is shown in Figure [1b.

This actor raises a number of questions. First, what happens if a second
token arrives at the input within ten seconds? The answer is simple: nothing.
This is an illegal condition, and should be detected when we try to compose
this actor into a network that would produce this condition. If the actor is to
allow this, it must be written specifically so that it can receive and buffer input
tokens before producing the corresponding output token.

Second, is there a time delay between firing actions b and a? In this case,
the answer is yes. I'm going to go out on a limb and say that there is always an

2@ b
1@

(a)
(b)

Figure 1: Firing automata of timed actors: a) the tick actor; b) the delay actor

implicit passing of time after any action that returns to the starting state—this
is so that a subsequent sequence of firings can proceed at a different time, which
is what one would expect in, say, a discrete-event simulation.

3 Timed Automata

An Actif actor can be translated into an interface automaton. In a previous note
[2], T used automata to compose actors into dataflow networks. These automata
include:

e ’'get’ and 'put’ actions that interface to communication buffers, and

e ’fire’ and 'return’ actions that provide the interface to a controller, which
governs the execution of the network of actors

For timed actors, we need a way to have the automata represent the passing
of time. Alfaro et al present timed interface automata [1]; that work seems more
suitable for modeling inexact real-time, whereas the approach in this note seems
more suited to modeling exact simulation time.

3.1 Timed transitions

To represent the passing of time, an interface automaton can have one or more
timed transitions. Such a transition represents the passing of an exact amount
of time, and is labeled, say, 10@ to denote the passing of ten seconds!, or t@
to denote the passing of ¢ seconds, where ¢ is a state variable of the actor.
A transition that represents the passing of an “unknown” amount of time is
marked 7@—in effect, this is saying that this automaton is prepared to allow
time to pass as long as it is composed with another automaton that is also
prepared to let time pass.

IFor simplicity I assume that the unit of time is seconds.

One wya to generate a timed automaton of this nature from an Actif actor:
after each action with an after clause, insert an additional state, with a timed
transition marked with the appropriate value to the next state. In each cycle,
insert a timed transition labeled 7@ just prior to the return to the start state.

Figure 2a through 2e illustrate a number of timed automata. Figure 2f is a
little different; see Section 4.

3.2 Composing timed automata

What does a timed transition mean? When an automaton reaches a timed
transition labeled t@, it is saying that time must advance by exactly ¢ seconds
when that transition is taken. When we compose actors into a network, we
assume that all actors in the network share the same time. Therefore, timed
transitions are a kind of shared event, as both automata in a composition must
pass time together. If many automata representing actors in a network are
composed, then this means that all actors pass time together. This matches
well with the intuitive notion that time in a discrete-event simulation advances
in global steps.

Suppose we are composing two automata with timed transitions ¢; and to.
If t; and t5 are the same, then we create a timed transition in the composition,
labeled say t1@. That is, the composition of the two automata also passes
exactly t; seconds on this transition. In general, ¢; and to are not identical.
Suppose t; > t3. Then the composition must have a shared transition labeled
to—that is, the two automata will pass the smaller amount of time together.
There will also be a “leftover” amount of time t; — ¢t5. This time will need to
appear on a different transition in the composition, most likely as a result of
combining this “leftover” time with a “don’t-care” timed transition.

Thus, each pair of timed transitions can generate three different transitions,
for the cases t1 < tg, t; = t2, and t; > t5. Following is the scheme I dreamed
up for achieving this desired result.

1. Perform a pre-processing step on the automata P and (. For each pair
of timed transitions labeled t;@ and ¢2@ (where neither is 7@), add an
additional state and two transitions as shown in Figure 3.

2. Compose the automata. Timed transitions are treated like shared actions,
provided that certain conditions are met. These conditions are detailed
below; in essence, they ensure that both automata agree to pass the exact
same amount of time together. If this cannot be guaranteed, then no
transition is produced in the composition.

Here are the rules for producing a timed transition in the composition. p;
etc denotes a predicate on time values only.

(1) 7 ® 7 = 7
(2) T ® = 1
(3) ? @ t = ty
(5) pi/ti ® pafta = (P Ap2AtL=t2)/th

S

1@ @gﬂ!

\ 0
et1!
(a)

g returnDa!
(b)
get1?
put1? put1? @
(c) (d)

@ @gnm ?@/@‘\returnC!
\ get1!
. | @ /
fireC? get! fireC?
(e)

(f)

Figure 2: Some timed interface automata: a) the tick actor; b) the delay actor;
¢) a single-place buffer; d) a single-place buffer with time delay; e) a consumer
with post-fire delay; f) a consumer with pre- and post-fire delay

P Q P
0 (t1-t2)@ (2-t1)@
H@ t2@ @i\ @ @/\ 2@
Q t1>12/ @ 2>t/t1@

(a)
(b)

Figure 3: Pre-processing of timed interface automata: a) before; b) after.

An interpretation of the rules:

1. If two transitions don’t care how much time passes, then together they
don’t care either.

2. If one transition passes ¢t; and the other doesn’t care, then together they
pass t1.

3. Same as above.

4. If both transitions pass a certain amount of time, then together they agree
to pass the same amount of time as long as their time values are equal
and their predicates are true.

Any other possible pairings of timed transitions do not appear in the com-
position. The result of applying the above rules to the automata in Figure 3b is
illustrated in Figure |4, assuming that the two automata also have other “don’t
care” transitions that compose with the ¢; — t5 and t; — ¢1 transitions.

4 Examples of interface automata composition

In this section I will illustrate composition of some automata from Figure 2.
First, consider the composition of the tick actor (Figure 2a) with the simple
timed buffer (Figure 2c). Assuming that the system is single-threaded, we can
prune any path that has nested fire-return actions (as in [2]), resulting in the
automaton in Figure 5a. The composition of the tick actor and the timed buffer
passes exactly one second at the completion of each cycle. When this is further
composed with the consumer in Figure 2g, the result is as shown in Figure [5b.

(t1 —tz)@ (t-t)@
t1_t2/t1@/QD
t1>t2/ t2@ t2>t1/t1@

Figure 4: Result of composing timed transitions

The buffer in Figure 2d delays a value that it received by ¢ seconds before
allowing it to be read. This buffer can be used to illustrate some of the issues
that occur with these timed interface automata in a simpler way than using
the delay actor. When the tick actor is combined with this buffer, the result
is shown in Figure 5c. Of the three transitions created by the combination of
the transitions labeled @ and 1@, only one remains, for 1 > ¢. The other two,
t =1 and t > 1 have been pruned—these transitions led to an illegal state
(tick was ready to produce putl, but the buffer was not prepared to receive
it), and were therefore pruned. Referring back to my earlier comment that
composition of two automata should remove illegal conditions, we can see that
this has indeed happened. The case where t > 1, that is, the delay is longer
than the tick interval, is simply not present in the composition. We have not
prevented it from occuring at run-time (assuming that we cannot determine
t prior to execution), but we have at least exposed a condition necessary for
correctness.

If the above automaton is then composed with the consumer of Figure 2e, the
result is null. This consumer does not allow time to advance before it performs
its first get, and so is incompatible with the buffer that delays its output. A
consumer that does compose is the one shown in Figure [2f, which has a “don’t-
care” delay immediately before firing. This latter consumer does not, however,
compose with the earlier automaton of (5a! The reason is that the 7@ transition
forces synchronization of time: in a composition, all automata must be prepared
to pass time together with this “don’t-care” timed transition, even if the amount
of time is zero.

As a result, there is not a straight-forward translation of timed Actif actors
into timed interface automata. (Additional analysis of the network will be
needed to derive the correct automata.) It may be possible to somehow loosen
the meaning of 7Q so that there is; but this would introduce other complications.

get1?

1@ /@*\
\ returnAl

fireA? /,@
\>®\put1 ;

(@)

returnCl!

1@
\ /
fireA? O
put1 ;/’@M@

(b)

get1?

/i;-:@(t“ /@

fireA?MreturnA!
ut1;

p
(©)

Figure 5: Automata composition: a) tick and the simple timed buffer; b) tick,
the simple timed buffer, and the simple timed consumer; ¢) tick and the timed
buffer with delay

This needs to be investigated further.

5 Concluding remarks

Timed interface automata of the nature described here appear to have useful
properties for composing networks of actors and buffers. As we have seen, if we
can generate timed interface automata for timed Actif actors, we can answer
some questions about whether they compose into a network. With some addi-
tional analysis, constraints on the timing embedded into actors can be derived
(for example, that the time delay must be less than a certain amount if the
composition is to remain live).

A picture is beginning to emerge about what a “model of computation” is in
the context of Actif and interface automata. So far, we have seen the following
elements that vary according to the model of computation:

e The mapping from an actor’s firing automaton into an interface automaton
e The interface automata of buffers

e Additions to automata composition (pruning of illegal-fire-return sequences
in single-threaded models of computation; timed transitions in timed mod-
els of computation)

References

[1] Luca de Alfaro, Thomas A. Henzinger, and Marielle Stoelinga. Timed in-
terfaces. In Proceedings of the Second International Workshop on Embedded
Software. Lecture Notes in Computer Science, Springer-Verlag, 2002.

[2] H. John Reekie. Interface automata and actif actors. Online at
http://ptolemy.eecs.berkeley.edu/ johnr/notes/atomicbuffer.pdf, November
2002.

http://ptolemy.eecs.berkeley.edu/~johnr/�

