
Expression Synthesis in Process Networks generated by LAURA

Claudiu Zissulescu Bart Kienhuis Ed Deprettere
Leiden Institute of Advanced Computer Science (LIACS),

e-mail: {claus,kienhuis,edd}@liacs.nl
Presented at the 16th IEEE International Conference on Application-specific Systems,

Architectures and Processors (ASAP2005), July 23 – 25, 2005, Samos, Greece

Abstract

The COMPAAN/LAURA [18] tool chain maps
nested loop applications written in Matlab onto re-
configurable platforms, such as FPGAs. COMPAAN
rewrites the original Matlab application as a Pro-
cess Network in which the control is parameterized
and distributed. This control is given as param-
eterized polytopes that are expressed in terms of
pseudo-linear expressions. These expressions can-
not always be mapped efficiently onto hardware as
they contain multiplication and integer division op-
erations. This obstructs the data flow through the
processes. Therefore, we present in this paper the
Expression Compiler that efficiently maps pseudo-
linear expressions onto a dedicated hardware data-
path in such a way that the distributed and parame-
terized control never obstructs the data flow through
processors. This compiler employs techniques like
number theory axioms, method of difference, and
predicated static single assignment code.

1 Introduction

The aim of the COMPAAN compiler [8, 18] is
to automatically derive a parallel description from
a nested loop application written in a standard pro-
gramming language like C or Matlab. The applica-
tions COMPAAN targets are compute kernels that be-
long to the domain of multi-media, imaging, bioin-
formatics, and classical signal processing. These ap-
plication are computationally intensive and typically
need to operate under real-time constraints. The out-
put of COMPAAN are Kahn Process Network (KPN)
specifications. A KPN is a deterministic model of
computation that expresses an application in terms
of distributed memory and distributed control. Once
the process network is created, the individual pro-
cesses can either be described in Java [4] or C++

code [5], or as synthesizable VHDL network of pro-
cessors suitable for mapping onto FPGAs [20]. The

Read Execute WriteData In Data Out

TIP=10 ns

TRead < 10 ns TWrite < 10 ns

Worst
slack in IP
Core

Figure 1. Running an IP core effi-
ciently in a LAURA Processor

KPN synthesis to hardware is done by the LAURA
tool [20]. During synthesis, each KPN process is
first mapped to a virtual processor that consists of
a Read, an Execute and a Write Unit. The Read
and Write Units execute a particular control pro-
gram that is derived by COMPAAN. This program
represents the distributed control of a process net-
work. The control program determines at each firing
of the Execute Unit from where data needs to be read
and to where data needs to be written. The Execute
Unit embeds an IP core that implements the func-
tionality of the assignment statement in the origi-
nal Matlab or C program. Each IP Core executes
a firing in a particular clock period, as given by its
worst slack. This clock period becomes an impor-
tant design constraints for our hardware processor,
as the Read and Write Units need to determine the
next read and write operation in less than this clock
period. Only then do the Read and Write Unit not
obstruct the data flow through the Execute Unit. In
Figure 1, we show an IP Core that executes in 10 ns.
As a consequence, the Read and Write Units need to
calculate the next control signals in less than this 10
ns.

The control program in the Read and Write units
is expressed in terms of parameterized polytopes.
By evaluating these, we can support parameterized
control in hardware [6, 13]. The parameterized
polytopes are repeatedly evaluated at run-time. If a
particular iteration is within the space defined by the



polytope, it means that data needs to be read or writ-
ten. An example of a polytope is given in Figure 2.
In it, the variablesM andN are parameters, while i,
j, and stage are iterators from corresponding code.
Each expression in the polytope may also contain
pseudo-linear terms like a DIV (e.g., DIV(i+1,2)).

P =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

M − 3 ≥ 0
N − 2 ≥ 0
−j + 3 ∗M ≥ 0
j −M ≥ 0
2 ∗ i − 1 ≥ 0
i + 2 ≥ 0
−stage +N − 1 ≥ 0
stage − 1 ≥ 0
−i+ 2 ∗DIV (i + 1, 2)− 1 ≥ 0
2 ∗DIV (M + 1, 2)−M − 1 ≥ 0

Figure 2. Example of a set of expres-
sions that defines a polytope.

Checking whether an iteration point (stage, i, j)
is enclosed by the polytope P or not, we have to
evaluate all the condition contained by the polytope
(see Figure 2). In software we implement this eval-
uation as a cascade of if-statements. The speed of
evaluation is however low, as the evaluation of each
expression happens in a sequential manner. Evalu-
ating the polytopes on hardware can be done much
faster, as each expression can be evaluated in paral-
lel. Nevertheless, it is still difficult to evaluate the
expressions as part of the Read or Write unit in Fig-
ure 1 in less then 10ns. Complex operations such as
multiplication and integer division may easily take
more than the 10ns for running a stage of the IP
core. In this paper, we introduce the Expression
Compiler that compiles the polytope expressions in
a hardware data-path using a number of techniques
to reduce the evaluation time. As a consequence, we
can evaluate arbitrary expressions in the Read and
Write units faster than the Execute Unit.

The techniques we present as part of the Ex-
pression Compiler take advantage of the repetitive
nature of the polytope evaluation, and algorithmic
techniques like strength reduction of complex oper-
ations to conditional statements, addition, shifts and
Look Up Tables (LUTs). Also, we propose that all
expressions to be compiled in a static single assign-
ment form suitable for future low-level optimiza-
tions, e.g. multiplexors reductions, bit-width com-
putation, and pipelining. However, we do not ad-
dress the issue of the generating the for-loops that
include the polytope P . In this paper we address
only the issues of the generating hardware data-
paths for the expressions within the polytope.

We start by defining the expressions in Section 2.
In Section 3, we describe related work. Section 4

presents our approach to convert expressions effi-
ciently to hardware in a two-step approach. In Sec-
tion 5 and Section 6, we present the techniques to
simplify expressions. The predicated single assign-
ment form is explained in Section 7. Experimental
results are given in Section 8, and we conclude this
paper in Section 9.

2 Pseudo Linear Expressions

A polytope is represented by a set of terms that
are linear or pseudo linear and is defined as:

Expression =

nX

k=0

ck ∗

8
><
>:

MOD(Expression, divider);
DIV (Expression, divider);
ik ;
1.

(1)

where ck and cn are constants, ik is a for-loop itera-
tor, MOD is the remainder of the integer division of
in an expression by a constant divider, and the DIV
is the integer division in an Expression by a constant
divider.

3 Related Work

A KPN network generated by COMPAAN may
be simulated using software KPN simulators where
all expressions that define a polytope are evaluated
in a sequential order. In [7], a similar approach
has been tried for a hardware implementation, but
for only a very limited set of expressions (no mul-
tiplications and pseudo linear operators). To al-
low for an efficient compilation of expressions to
hardware, we investigated a more flexible approach
based on two observations. Our first observation
is that each expression can be evaluated in paral-
lel as they represent a part of a geometrical figure
in a n-dimensional space. A second observation is
that the total evaluation time of an expression can
take longer than the evaluation of an IP block em-
bedded in our network. This is due to the presence
of complex operations such as multiplication and in-
teger division. The elimination of division and mod-
ulo operations from a sequential programs has been
discussed in [16, 12]. Also the PICO project [15]
employs similar techinques to avoid MOD and DIV
operations. Our target is to generate a custom data-
path implementation, and hence, additional issues
have to be taken into account like hardware map-
ping, critical path delay, and the size of the imple-
mentation in hardware.

4 The Approach

For a fast and efficient implementation of the ex-
pression set given in Figure 2 we simplify them into



expressions that use only additions, LUT, and shifts.
Thus, they can be executed in less then a single cycle
of the IP core embedded in the Execute Unit. More-
over, the simplified expressions is represented in a
data-structure that allows us further manipulation to
obtain an optimal hardware implementation in terms
of speed and area (e.g. pipeline, retiming and mul-
tiplexer reduction). For that reason, we have broken
down the conversion from expressions to hardware
in two steps as shown in Figure 3. In the first step,
the input expressions are simplified using high-level
optimizations that are platform independent. In the
second step, the expressions are manipulated to ob-
tain better performing hardware by taking advantage
of mid and low-level optimizations that are platform
dependent.

Nested for loops
with

Pseudo/Linear
Expressions

High Level Optimizer
High Level Optimizer

Number Theory
Axioms

Method of
Differences

PSSA creation

PSSA

C/C++

PSSA Compiler
(Low level optimizer)

PSSA Compiler
(Low level optimizer)

VHDL

Figure 3. The Expression Compiler
Flow

The High-Level Optimizer implements high-
level and platform independent optimizations. It
converts an expression in three steps to a simplified
structure that allows further optimization.

Number Theory Axioms is exploited to reduce the
strength of expressions to simpler expressions.
Also, expressions that contain DIV terms are
converted to MOD terms as they are simpler to
realize in hardware.

Method of Difference is used to replace multipli-
cations by additions, taking the advantage of
a repetitive evaluation of the polytopes within
KPN control.

Predicated Static Single Assignment is invoked
to perform mid and low-level optimizations,
like constant propagation, dead-code elim-
ination, and retiming for gaining the best
hardware performance.

The Predicated Static Single Assignment Com-
piler optimizes the input Predicated Static Single
Assignment (PSSA) [3] code for a particular target
architecture, taking advantage of today’s research
in PSSA compilation techniques [3]. The PSSA
form is suitable for optimizations either for a micro-
processor [14] or for a reconfigurable platform such
as FPGA [17] in which we are interested. For an
FPGA platform target, the desired operations are:
the reduction of the number of variables used, multi-
plexer optimizations, bit-width, and LUT synthesis
for non linear terms. Finally, the resulting PSSA is
mapped onto a hardware description language like
VHDL, or Verilog by associating a hardware equiv-
alent to each operation/node of the PSSA.

5 Number Theory Axioms

A polynomial expression is composed of lin-
ear terms and pseudo linear terms like MOD and
DIV. These pseudo terms require special compila-
tion techniques to be realized efficiently and fast in
hardware. An important assumption is that a MOD
term can be realized more efficiently in hardware
than a DIV term. A MOD term can be realized,
as we will show when presenting examples, using
look up tables (LUTs) and simple counters. Also,
we avoid calculating the actual integer division by a
constant, leading to a realization that uses less bits.
COMPAAN typically generates polytopes that con-
tain DIV terms when pseudo linear terms are in-
volved. The b ∗ DIV (a, b) form is the most fre-
quently occurring form of a DIV operation found in
our polytopes. See, for example, the expressions in
Figure 2. Since we want to work with MODs rather
than DIVs, we make use of Optimization 5.1 when
possible.

Optimization 5.1
If a DIV term is defined as b ∗ DIV (a, b), then

it is simplified as a−MOD(a, b).

An observation is that Optimization 5.1 can easily
be extended to handle numbers that are a multiple of
b. Conversely, the optimization can also be used to
rewrite MOD terms into DIV terms. There are cases
that a DIV term cannot be converted into a MOD
term. In such case, we employ modern software
compiler techniques to reduce the cost of integer di-
vision [1, 9, 10]. These techniques are based on so-
called scaled reciprocals. In general, the techniques
transform an integer division into a multiplication
with a constant and a shifts expressed, see [10].
Also, we can scale the entire expression with the



constant b to arrive to an expression b ∗DIV (a, b)
in which case Optimization 5.1 holds.

The bit-width result of a DIV(a,b) term is
dlog2(a)e − dlog2(b)e + 1, while the bit-width re-
sult of a MOD(a,b) term is dlog2(b)e. In our flow,
usually, we may assume that b << a, and we can
say that the number of bits needed to represent the
MOD term is less then the number of bits needed to
represent a DIV term. This reinforces our goal to
work with MOD rather than DIV terms.

Besides implementing operations that rewrite
DIV terms in MOD terms, we implemented addi-
tional strength reduction operations to further opti-
mize an expression in a systematic way to calculated
the expression more efficiently using equivalent op-
erators that are cheaper on a target platform. Next,
we give some number theory axioms which we have
implemented in our High-Level Optimizer to sim-
plify modulo operations. Even when the simplifi-
cation does not immediately eliminate operations, it
reduces the complexity of operations and may lead
later on to further optimizations.

Optimization 5.2
Simplifies modulo expressions using the follow-

ing algebraic simplification rules where x and y are
variables, and a, b, and d are constants.

MOD(a ∗ x+ b ∗ y, d) = MOD(MOD(a, d) ∗ x+

+MOD(b, d) ∗ y, d)

MOD(x+ y, d) = MOD(MOD(x, d) +

+MOD(y, d), d)

MOD(x ∗ y, d) = MOD(MOD(x, d) ∗
∗MOD(y, d), d)

This optimization is particularly interesting when
the expression of the MOD term contains constant
values. Using Optimization 5.2, we can remove
these constants from the run-time calculation as we
can compute them at compile time. Also, constants
are scaled to small values, i.e., MOD(i+10,3) is con-
verted into MOD(MOD(i,3)+1,3). A special case is
when the divider is a constant of power two. In that
case, we can apply Optimization 5.3.

Optimization 5.3
If the divider of the MOD operation is positive

and is a power of two, then the modulo expression
can be simplified to a bitwise AND operation:

MOD(x, 2n) = x AND (2n − 1)

where (2n − 1) is a string of n ones.

After applying Optimization 5.2, we obtain a MOD
operation with a known range of r = [0, (d −
1)], r ∈ N. For small dividers, this MOD operation
can be implemented using a Look Up Table (LUT)
as in Optimization 6.1 below.

6 Method of Difference (MoD)

Within each processor, a sequence schedule is
executed. This schedule is captured by for loops.
The for-loops define iteration points for which the
polytope needs to be evaluated, e.g., for iteration
point (stage,i,j). Because of the for-loops, a poly-
tope, hence the expressions of the polytope, are eval-
uated repeatedly. This repetitive behavior can be
exploited to simplify the evaluation of our expres-
sions by removing all multiplications and convert
them into additions. This is an important step, as a
multiplication takes more FPGA resources and time
compared to an addition.

The technique that exploits the repetitive behav-
ior is called the Method of Differences (MoD) [2],
as it is based on using differences of the terms of an
expression to calculate the next value. Although the
method of differences can be applied to a polyno-
mial of any degree, we are dealing only with pseudo
linear expressions and thus polynomials of degree
one. Pseudo-linear terms such as MOD we can use
the following optimizations.

Optimization 6.1
The modulo expressions that creates discontinu-

ities within the iteration space can be simplified us-
ing a conditional statement.

Let there be given a modulo expression in a loop of
the following form:

for j = L to U,
exp = MOD(f(j),divider);

end

Where f(j) is a linear function defined as
f(j) = f0 + c ∗ j, with f0, c and divider constant.
Then the loop can be transformed to the following:

for j = L to U,
if j = L then

exp = MOD(f0 + c*L, divider);
else

exp = MOD(exp + c, divider);
end if

end

If L is a constant, then value exp on the TRUE
branch of the if statement is a constant and can
be computed at compile time. Otherwise, Opti-
mization 6.1 is applied recursively to further reduce
the multiplication operation to additions. Optimiza-
tion 6.1 compiles a MOD term into operations that
makes use of LUTs. These LUTs have always the
maximum table length equal with 2 ∗ divider − 1
after applying Optimization 5.2. The bit-width is
equal with dlog2(divider − 1)e. Hence, a LUT
implementation for small values of divider is very
well achievable.



Optimization 6.2
Let expk+1 = MOD(expk + c, d) be a MOD

operation in a nested for loop, then the operation can
be written as:

for j = L to U,
a = exp + MOD(c,d);
if a >= d then

a = a - d;
elsif a < 0 then

a = a + d;
end if
exp = a;

end

7 Predicated Static Single Assignment

The Predicated Static Single Assignment
(PSSA) [3] form is suitable for mid and low-level
optimizations either for micro-processors [14] or
for reconfigurable platforms such as FPGAs [17].
We are primarily interested in optimization for a
FPGA platform. The Static Single Assignment form
requires that every variable within a computation
is assigned a value only once, thereby explicitly
expressing the data-dependency between opera-
tions. The Static Single Assignment form is almost
equivalent to a Dependency Graph (DG), which is
a very suitable form for hardware implementations.
For example, variables for intermediate results
correspond to nothing more than wires that are
required anyway to perform the computation. By
extending SSA with predication, every statement in
the original computation is tagged with a guard that
controls whether or not a statement is actually exe-
cuted. Advanced techniques [17, 19] can be applied
on a PSSA to optimize its output for the FPGA
platform. Examples of mid-level optimizations
are dead code elimination, constant propagation,
and retiming. Examples of low-level optimizations
are minimization of the uses of multiplexors and
bit-width minimization of the PSSA variables.

In the PSSA code, each assignment statement is
predicated with a condition that may be always true.
Each variable is given an unique name to make sure
a value is assigned only once to a variable in an eval-
uation, as required by the Static Single Assignment
form.

The PSSA form can be efficiently used for low-
level optimizations such as bit-width optimization.
This analysis is very useful as it drastically improves
both the area usage and the performance. A data-
path operating on 5 bit integers is smaller and faster
than an operation on 16 bit integer. Since the vari-
ables in an expression depend only on the loop in-
dices, the bit-width of all operators can be derived
from the original loop indices bit-width. The loop
indices depend on the upper and lower loop bounds.

Suppose that Ui is the upper bound for loop index
i, then its bit-width is given by wi = dlog2(Ui)e.
Using this information and the fact that all the op-
eration in a PSSA tree are additions, we can propa-
gate the bit-width constraint along the DG structure
of the PSSA. Using Equation 2, in which variables
in1 and in2 have a particular bit width, we calculate
the required bit-width for the result of the addition.

w(in1, in2) = max(w(in1), w(in2)) + 1 (2)

The result of the PSSA compiler is efficiently
mapped in hardware as a dedicated data-path. We
do not address the problem of generating the hard-
ware for the for-loops (which are implemented as
counters), but we are interested only in a efficient
derivation of the hardware data-path for expressions
in a polytope.

8 Example

In this section we show typical results obtained
with our Expression Compiler, based on one com-
plex examples. We used the Symplify 7.2 tool for
synthesis and the Xilinx ISE 6.2 tool for hardware
mapping on a Xilinx xc2v40 platform.

Consider the example given in Figure 4. It shows
the linear expression 81 ∗ i + 15 ∗ DIV (j, 5) +
MOD(5∗k, 3)−78 that is nested within three for-
loops. We want to map this expression to hardware
using the Expression Compiler as the expression
contains multiplications and pseudo-linear terms.
Applying the number theory axioms will help in this
case to strength reduce the DIV and the MOD op-
erators. In the first phase theDIV term is converted

for (i = 2; i<=1091; i++) {
for (j = 1; j<=i-1; j++) {
for (k = i+1; k<=523; k++) {
exp = 81*i + 15*DIV(j,5) + MOD(5*k,3) - 78;
}// end k
}// end j
}// end i

Figure 4. A pseudo-linear expression

to aMOD term using Optimization 5.2, as follows:
81 ∗ i + (3 ∗ j − 3 ∗MOD(j, 5)) + MOD(5 ∗
k, 3)− 78⇒ 81 ∗ i+ 3 ∗ j −MOD(3 ∗ j, 15) +
MOD(5 ∗ k, 3) − 78. The term MOD(5 ∗ k, 3)
is further strength reduced to MOD(2 ∗ k, 3) us-
ing Optimization 5.3. Next, the expression is com-
piled the MoD code, as it is described in Section 6.
The code we obtain after applying the MoD tech-
nique is given in Figure 5. This code is equivalent to
the original code, but all multiplications and pseudo-
terms are replaced by additions and strength reduced



1. for (i = 2; i<=1091; i++) {
2. if (i == 2) {
3. k1 = 1;
4. } else {
5. k1 = MOD(k1 + 2,3);
6. }
7. if (i == 2) {
8. i0 = 162;
9. } else {

10. i0 = i0 + 81;
11. }
12. for (j = 1; j<=i-1; j++) {
13 k2 = MOD(k1 + 2,3);
14. if (j == 1) {
15. j0 = 3;
16. } else {
17. j0 = j0 + 3;
18. }
19. if (j == 1) {
20. modj1 = 3;
21. } else {
22. modj1 = MOD(modj1 + 3,15);
23. }
24. for (k = i+1; k<=523; k++) {
25. if (k == i+1) {
26. k3= k2;
27. } else {
28. k3 = MOD(k3 + 2,3);
29. }
30. exp = k3 + j0 + i0 - modj1 - 78;
31. }// end k
32. }// end j
33.}// end i

Figure 5. The MoD code

MOD operations. We also change the names of the
variables to make the conversion to the PSSA code
in the last step of the Expression Compiler easier.

As we mentioned in the introduction of this pa-
per, we are only interested to generate the hardware
data-path for each expression of a polytope P . The
scanning of the polytope (i.e. the implementation of
the for-loops) is not the issue of this paper. Thus, we
separate the nested-loops control from the control
associated with the compilation of an expression. To
do so, we transform the MoD code, as given in Fig-
ure 5, in a perfect nested-loop code. This is done
by adding extra conditional statements for the code
that is not in the most inner-loop. Next, the body of
this perfect nested-loop is compiled to a PSSA code.
After rewriting the MoD code to its PSSA form and
generating VHDL, we obtained the hardware data-
path for the input expression. In our current imple-
mentation of the PSSA compiler, we do not yet take
full advantage of the fact that we can break the crit-
ical path using pipeline techniques. Also, we do not
yet employ multiplexer reduction techniques to re-
duce the number of multiplexors used. Figure 6 de-
picts the data-path architecture that evaluates our ex-
ample. In the loop stage, we implement the nested
for-loops. It signalize to the next stage when low-
bounds conditions are true. Each term of the expres-
sion is evaluated in parallel in the expression terms

Loop
Control

81*i

MOD(3*j,15)

3*j

MOD(5*k,3)

SUM exp

Loop Stage Expression terms evaluation result assembly

Figure 6. Expression evaluator archi-
tecture

evaluation stage. The results are summed in the re-
sult assembly stage.

The FPGA mapping of the data-path for the
expression depicted in Figure 4 takes 68 Slices
and runs at 250 Mhz (minimum clock period:
3.997ns). In our evaluation we did not include
the area taken by the Loop Control implementation.
We should be able to integrate IP cores that run at
200 Mhz on a Virtex-II. However, signals rout-
ing in an FPGA negatively affects this number. In
practice, we have found that LAURA has no prob-
lem embedding arbitrary IP cores on a Virtex-II at
100Mhz.

9 Future work and Conclusions

Expressions that contain linear and pseudo-linear
terms can be converted efficiently to hardware us-
ing Expression Compiler, as presented in this pa-
per. The Expression Compiler is needed in LAURA
to make sure that the evaluation of parameterized
polytopes in the Read and Write Unit of a hardware
process happens faster than the evaluation of an IP
Core embedded in the Execute Unit. Only then the
data flow in a KPN network is not obstructed by
control needed to distribute the original application.
Because the control programs in the Read and Write
units are expressed in terms of parameterized poly-
topes, the data flow should even not be obstructed
while supporting parameterized control in hardware.

The Expression Compiler first performs high-
level optimizations based on number theory axioms
and Method of Difference technique. This step
is followed by platform dependent optimizations
using the Predicated Single Assignment Statement
(PSSA). The PSSA form uses only additions, LUTs
and conditional statements, and makes possible an
efficient mapping to FPGAs platforms. Further-
more, the research community has shown that the
PSSA form is well fitted to be mapped in reconfig-
urable hardware [17]. Expression Compiler is a part
of LAURA, helping in improving the quality of the
synthesized network of processors. The Expression
Compiler uses techniques that are so efficient that
we can always run the distributed and parameterized



control faster then any IP core we may try to inte-
grate in an Execute Unit. Therefore, the process net-
works derived by LAURA run efficiently in hardware
for stream based applications. These applications
typically require highly tuned IP cores and LAURA
is able to take full advantages of these IP cores in a
distributed manner. Currently, we have not added all
the low-level optimization in our tool, but the PSSA
form can be further optimized for FPGA platforms
using the synthesis techniques as described, for ex-
ample, in [11].

References

[1] E. Artzy, J. A. Hinds, and H. J. Saal. A Fast Division
Technique for Constant Divisors. Commun. ACM,
19(2):98–101, 1976.

[2] C. Babbage. Passages from the life of a Philosopher.
London, 1964.

[3] L. Carter, B. Simon, B. Calder, L. Carter, and J. Fer-
rante. Predicated static single assignment. In IEEE
PACT, pages 245–255, 1999.

[4] J. Davis II, C. Hylands, B. Kienhuis, E. A. Lee,
J. Liu, X. Liu, L. Muliadi, S. Neuendorffer, J. Tsay,
B. Vogel, and Y. Xiong. Heterogeneous con-
current modeling and design in java. Technical
Report Memorandum UCB/ERL M01/12, Univer-
sity of California, Dept EECS, Berkeley, CA USA
94720, Mar. 2001.

[5] E. de Kock, G. Essink, W. Smits, P. van der Wolf,
J.-Y. Brunel, W. Kruijtzer, P. Lieverse, and K. Vis-
sers. YAPI: Application modeling for signal pro-
cessing systems. In Proc. 37th Design Automation
Conference (DAC’2000), pages 402–405, Los An-
geles, CA, June 5-9 2000.

[6] S. Derrien, A. Turjan, C. Zissulescu, B. Kienhuis,
and E. Deprettere. Deriving efficient control in pro-
cess networks with compaan/laura. International
Journal of Embedded Systems, 2005. inderscience
publishers.

[7] T. Harriss, R. Walke, B. Kienhuis, and E. F. Depet-
tere. Compilation from matlab to process networks
realized in fpga. In Proceedings of the 35th Asilomar
conference on Signals, Systems, and Computers, Pa-
cific Grove, CA, USA, November 4 – 7 2001.

[8] B. Kienhuis, E. Rypkema, and E. Deprettere. Com-
paan: Deriving Process Networks from Matlab for
Embedded Signal Processing Architectures. In
Proceedings of the 8th International Workshop on
Hardware/Software Codesign (CODES), San Diego,
USA, May 2000.

[9] S.-Y. R. Li. Fast Constan Division Routines. IEEE
Trans. Computers, 34(9):866–869, 1985.

[10] D. J. Magenheimer, L. Peters, K. Pettis, and
D. Zuras. Integer multiplication and division on the

hp precision architecture. IEEE Trans. Computers,
37(8):980–990, 1988.

[11] G. D. Micheli. Synthesis and Optimization of Dig-
ital Circuits. McGraw-Hill Higher Education, 1994.

[12] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1997.

[13] H. Nikolov, T. Stefanov, and D. Ed. Modeling and
fpga implementation of applications using parame-
terized process networks with non-static parameters.
In IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 2005.

[14] J. Park and M. Schlansker. On Predicated Exe-
cution. In Technical Report HPL-91-58. HP Labs,
1991.

[15] R. Schreiber, S. Aditya, B. R. Rau, V. Kathail,
S. Mahlke, S. Abraham, and G. Snider. High-level
synthesis of nonprogrammable hardware accelera-
tors. In ASAP ’00: Proceedings of the IEEE Interna-
tional Conference on Application-Specific Systems,
Architectures, and Processors, page 113, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

[16] J. W. Sheldon, W. Lee, B. Greenwald, and S. Ama-
rasinghe. Strength reduction of integer divison and
modulo operations. In Languages and Compilers for
Parallel Computing, Cumberland Falls, Kentucky,
Aug. 2001.

[17] G. Snider, B. Shackleford, and R. J. Carter. At-
tacking the semantic gap between application pro-
gramming languages and configurable hardware. In
Proceedings of the 2001 ACM/SIGDA ninth interna-
tional symposium on Field programmable gate ar-
rays, pages 115–124. ACM Press, 2001.

[18] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis,
and E. Deprettere. System design using kahn process
networks: The compaan/laura approach. In Proceed-
ings of DATE2004, Paris, France, Feb 16 – 20 2004.

[19] A. Stoutchinin and F. de Ferriere. Efficient static
single assignment form for predication. In Proceed-
ings of the 34th annual ACM/IEEE international
symposium on Microarchitecture, pages 172–181.
IEEE Computer Society, 2001.

[20] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. De-
prettere. LAURA: Leiden Architecture Research
and Exploration Tool. In Proc. 13th Int. Confer-
ence on Field Programmable Logic and Applications
(FPL’03), Lisbon, Portugal, Sept. 1-3 2003.


