
High Level Modeling for Parallel Executions of Nested Loop Algorithms�

Ed F. Deprettere and Edwin Rijpkema
Leiden University

2333 CA Leiden, The Netherlands
fedd,rypkemag@liacs.nl

Paul Lieverse
Delft University of Technology
2628 CD Delft, The Netherlands

lieverse@cas.et.tudelft.nl

Bart Kienhuis
University of California

Berkeley, CA 94720, USA
kienhuis@eecs.berkeley.edu

Abstract

High level modeling and (quantitative) performance analysis of signal processing systems requires high level models for
the applications (algorithms) and the implementations (architecture), a mapping of the former into the latter, and a simulator
for fast execution of the whole. Signal processing algorithms are very often nested-loop algorithms with a high degree of
inherent parallelism. This paper presents - for such applications - suitable application and implemetation models, a method
to convert a given imperative executable specification to a specification in terms of the applicationmodel, a method to map this
specification into an architecture specification in terms of the implementationmodel, and a method to analyze the performance
through simulation. The methods and tools are illustrated by means of an example.

1 Introduction

A new kind of embedded architectures is emerging that is composed of a microprocessor, some memory, and a number
of dedicated coprocessors that are linked together via some kind of programmable interconnect (See Figure 1). These ar-
chitectures are devised to be used in real-time, high-performance signal processing applications. Examples of these new ar-
chitectures are the Prophid architecture [1], The Jacobium architecture [2], and the Pleiades architecture [3], to be used in
respectively, video consumer appliances, adaptive array signal processing, and wireless mobile communications . These ar-
chitectures have in common that they exploit instruction level parallelism offered by the microprocessor and coarse-grained
parallelism offered by the coprocessors. Given a set of applications, the hardware/software codesign problem is to determine
what needs to execute on the microprocessor and what on the coprocessors. Furthermore, what should each coprocessor con-
tain, while being programmable enough to support the set of applications.

The applications that need to execute on the architectures are typically specified using an imperative model of computation,
most commonly C or Matlab. In Figure 1, for example, we show an algorithm written in Matlab. Although the imperative
model of computation is well suited to specify applications, it does not reveal parallelism due to its inherent sequential na-
ture. Compilers exist that are able to extract instruction level parallelism from the original specification at a very fine level of
granularity. They are, however, unable to exploit coarse-grained parallelism offered by the coprocessors of the architecture.
This makes the mapping of the applications onto the architecture difficult.

Instead, a better specification format would be to use an inherently parallel model of computation like Process Networks [4,
5]. This describes an application as a network of concurrently executing processes. It describes parallelism naturally from the
very fine-grained to the very coarse-grained, it does not pre-impose any particular schedule, and it describes each process in a

�To be presented at the IEEE International Conference on Application-specific Systems, Architectures
and Processors (ASAP’2000), July 10 – 12 2000, Boston Massachusetts, USA.

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t] = Vec(r(j,j), x(k,j));
for i = j+1:1:N,

[r(j,i), x(k,i), t] = Rot(r(j,i), x(k,i), t);
end

end
end

Micro
Processor

MemoryProgrammable Interconnect Network

PE PE PE PE0 n21

Application Polyhedral Reduced Dependence Graph

PandaMatParser

DgParser

Spade

ArchitectureProcess Network

Mapping

Figure 1. Mapping the application onto an architecture is difficult because the Model of Computation
of the application does not match the way the architecture operates.

process network using an imperative language. The mapping then becomes putting the processes either on a microprocessor
or on a coprocessor as shown by tools like ORAS [6], or SPADE [7]. Using these tools, a Y-chart [8] can be constructed,
allowing the quality assessment of mappings on architectures.

This paper describes the Compaan tool that automatically transforms a Matlab application into a process network descrip-
tion, as shown in Figure 1. It converts a Matlab application into a polyhedral reduced dependence graph, that is subse-
quently converted into a process network description. The Compaan tool is confined to operate on affine nested loop programs
(NLP) [9], but the applications of interest are often described this way.

The paper also describes the Spade tool that maps the process network description into an architecture network description
and allows simulation of the resulting system thereby using some metrics collectors to analyze the performance of the system.
From here, both the application and the architecture can be tuned (without violating the model rules) to explore the whole
design space.

The outline of the paper is as follows. Section 2 gives the Y-chart exploration scheme underlying our concept of modeling
and simulation. in Section 3 we present the Matlab-to-Process Network compiler Compaan. Section 4 briefly reviews the
tools MatParser and DgParser that generate from a given imperative specification a single assignment code and a reduced
dependence graph, respectively. Section 5 introduces the tool that generates the processes in the Process Network specification
of an application. Section 6 describes the mapping and simulation tool Spade which is used in the Y-chart exploration scheme.
Results are given in Section 7.

2 The Modeling Concept

In line with Kienhuis et al. [10] we advocate that the development of heterogeneous architectures should follow a general
scheme, which can be visualized by the Y-shaped figure in Figure 2(a), the Y-chart. In the upper right part of Figure 2(a) is the
set of applications that drives the design of the architecture. Typically, a designer studies this set of applications, makes some
initial calculations, and proposes an architecture. The effectiveness of this architecture is then to be evaluated and a compari-
son with alternative architectures is to be made. Architectures are evaluated quantitatively by means of performance analysis.
For this performance analysis, each application is mapped onto the architecture and the performance of each application–
architecture–mapping combination is evaluated. The resulting performance numbers may inspire the architecture designer
to improve the architecture. The designer may also decide to restructure the application(s) or to modify the mapping of the
application(s). These designer actions are denoted by the light bulbs in Figure 2(a).

In this approach, it is assumed that the applications and the architecture are specified in terms of a model of computation
and a model of implementation, respectively. For the parallel execution of signal processing nested loop programs (NLP), a
natural model of computation is the Process Network model [4, 5] which is quite different from the usual imperative model of
computation in which the applications are commonly specified. It is, therefore, necessary to provide a compiler that extracts
the available parallelism from an application described as an NLP, say in Matlab, and automatically convert it into a process
network specification. We thus extend the Y-chart environment shown in Figure 2(a) to the environment shown in Figure 2(b).

The specification of the architecture is in terms of a model of implementation, which is the interconnection of generic
building blocks that are representative for the different types of resources in an architecture. These resources are for example
processing resources, communication resources, and memory resources. The mapping of an application into an architecture
is by means of symbolic instruction traces that connect the application model to the implementation model. This way, the
functional behavior of the application resides in the model of computation and the timing behavior is confined to the model of

2

Applications

Performance
Numbers

Performance
Analysis

Mapping
Architecture

(a) The Y-chart.

Performance
Numbers

in Matlab

Y-chart Environment

Process

Spade

Spade
(no arch.)Architecture

Mapping
Validation

Validation
Application

Network

Compaan

(b) Extended Y-Chart.

Figure 2. The Y-chart (a) and the extended Y-chart (b).

implementation. Thus, compared to the laborious work of writing fully functional architecture models this can save a designer
a lot of time, and therefore enables the exploration of alternative architectures.

In the next section, we focus on the upper right corner in Figure 2(b) which is implemeted in our Compaan tool. In Section 6,
we take a closer look at the Y-chart part in Figure 2(b) which is implemented in our Spade tool.

3 The Compaan tool

We developed the Compilation of Matlab to Process Networks (Compaan) tool, which transforms a nested loop program
written in Matlab into a process network specification. The tool does this transformation in a number of steps, shown in Fig-
ure 3, leveraging a lot of techniques available in the Systolic Array community [11]. In Figure 3, a box represents a result and
an ellipsoid represents an action or tool.

Step 3 in more detail

Process Generation
in more detail

Step 1.

Step 2.

Step 3. Panda

Process

reduced
dependence graph

DgParser

single assignment code

Matlab

dependence graph
polyhedral reduced

process network

network
description

generation
Network

dependence graph
polyhedral reduced

MatParser

data partitioning

linearization

domain scanning

processes

generation

processes

Figure 3. Compaan consists of three tools that transform a Matlab specification into a process
network specification.

Compaan starts the transformation by converting a Matlab specification into a single-assignment code (SAC) specification.
This describes all parallelism available in the original Matlab specification. Next, it derives the polyhedral reduced depen-
dence graph (PRDG) specification from the SAC. From this PRDG, the network description and the individual processes are
derived. The three steps done in Compaan are realized by separate tools, respectively, MatParser, DgParser, and Panda.

The last mentioned tool, Panda, uses the PRDG description to generate the network description and the contents of the

3

processes in the process network description. The generation of the processes is further decomposed into domain scanning,
data partitioning, and linearization. We elaborate on these tools in Section 4 and Section 5.

In the Matlab–to–Process Network compilation, the role of the PRDG is crucial. A PRDG is a compact representation of
an NLP’s dependence graph. It is a directed graph G = (V;E), where V is a set of node domains and E is a set of edge
domains. The PRDG representation of the algorithm in Figure 1 is shown in Figure 4.

CA

B D

E

a

d

e

g

h

f

b

c

i

l

k

j

Figure 4. An example of a polyhedral reduced dependence graph.

3.1 Node domain

A node domain is characterized by 1) an iterationdomain I = fi = Lk+m^k 2 P\ZngwhereP = fx 2 Qn jAx � bg

is a polytope, 2) a function, and 3) a set of port domains. Here, L and A are integral matrices, and i, k, m, and b are integral
vectors. The function resides in each point in the iteration domain. The function takes its arguments from its input ports and
returns values to its output ports. A particular input port or output port belongs to the node domain’s input port domain (IPD)
and output port domain (OPD), respectively.

3.2 Edge domain

An edge domain is an ordered pair (vi; vj) of node domains together with an ordered pair (pi; pj) of port domains, where
pi is the OPD of vi and pj is the IPD of vj . pi is implicitly defined by an affine mappingM from IPD to OPD which expresses
the data dependency between the output port of the function in vi and the input port of the function in vj .

3.3 Example

To illustrate the notion of node and port domains, we show in Figure 5 part of node domain C in Figure 4. The figure shows
the node domain (a), its iteration domain with the iterators i and j -(we have left out the iterator k)- (b), its port domains (c)-(f),
and its view as it appears in the PRDG (g). Thus, the four port domains (c)-(f) partition the node domain (a).

In (c) and (d), we show IPDs and in (e) and (f), we show OPDs. In (c) we identify two IPDs, ipd1 and ipd2. In (e) we
identify two OPDs, opd1 and opd2. The figure shows one edge domain between opd1 of port domain (e) and ipd1 of port
domain (c).

The PRDG is the intermediate specification between the given Matlab specification and the required process network spec-
ification.

4 MatParser & DgParser

In the path from Matlab to the PRDG, Compaan uses the tools MatParser [12, 9] and DgParser [9]. MatParser is an ar-
ray dataflow analysis compiler that finds all parallelism available in NLPs written in Matlab using a very aggressive data -

4

Node Domain

Iteration Domain Port Domains

3

ipd

opd3opd4

2opd

ipd

ipd

1

2

4

ipd

0

2

3

N

1 2 3 N

1

i

j

(b)

(a)

(d)

1opd

(f)

(e)(c) C

(g)

Figure 5. A node domain and its corresponding port domains.

dependency analysis technique based on integer linear programming [13]. We focus on Matlab since many signal-processing
algorithms are written in this language. Just by writing another language front-end, MatParser can also operate on NLPs writ-
ten in other languages, for example C.

MatParser finds whether two variables are dependent on each other, and moreover, at which iteration. It partitions the
iteration space defined by the for-next loops, and gives the dependence vector between partitions. For the simple program
given in Figure 1, MatParser solves about a hundred parametric integer program problems to find all data-dependencies.

In Figure 6, part of the output of MatParser is shown for the algorithm given in Figure 1. It shows how the iteration space
spanned by the for-next iteratorsk and j is partitioned using if/else statements. Consequently, for different partitions, different
data-dependencies may apply. In case of input argument in0 of function Vec, either a value previously defined by function
Vec should be used (i.e., r1(k� 1; j), defining the data-dependency M (), or a value from the original r-matrix (i.e., r(j; j))
should be used.

DgParser converts the SAC description into the PRDG description, which is a straightforward conversion. Accordingly,
the shape of the node domain is given by the way the for-next loops are defined and the partitioning of the node-domain cor-
responds with the if/else conditions. The terms ipd and opd used in Figure 6 relate to the IPD and OPD defined in Section 5.

5 Panda

Once DgParser has established a PRDG model of an algorithm, the Panda tool can generate a network description and the
individual processes. The network description is straightforward, as it follows the topology of the PRDG. Each node in the
PRDG is mapped onto a single process and each edge is mapped onto an unbounded FIFO. In case of Figure 4, nodes A, B,
C, D, and E will define a process and edges a to l will define an unbounded FIFO.

As shown in Figure 3, the Panda tool divides the generation of a process into three different steps: domain scanning, data
partitioning, and linearization, which we now discuss in more detail using a running example shown in Figure 7.

This figure shows two process network nodes, called the producer and the consumer and an unbounded FIFO channel for
the communication between the two. Also shown is part of a PRDG, consisting of node domains NDp and NDc, the OPD
of NDp (shaded triangle), the IPD of NDc (shaded triangle), and the affine mapping M from IPD to OPD. Panda generates
the top-part of the figure from the bottom-part.

5.1 Domain scanning

The first step in Panda is to scan the node domains by lexicographically ordering the points in the node’s iteration domain.

5

%% Single Assignment Code Generated by MatParser
for k = 1 : 1 : K,

for j = 1 : 1 : N,

if k-2>= 0,
[in_0] = ipd(r_1(k-1, j));

else %% if -k+1 >= 0
[in_0] = ipd(r(j, j));

end
if j-2>= 0,

[in_1] = ipd(x_1(k, j-1, j));
else %% if -j+1 >= 0

[in_1] = ipd(x(k, j));
end

[out_0, out_1, out_2] = Vec(in_0, in_1);

[r_1(k, j)] = opd(out_0);
[x_1(k, j)] = opd(out_1);
[t_1(k, j)] = opd(out_2);

end
end

Figure 6. Single Assignment Code

Thus, given the iteraton domains J = fj = Lpk + mp ^ k 2 Pp \Z
2g for NDp and I = fi = Lck + mc ^ k 2

Pc \Z
2g for NDc, respectively, and the iterator scan orders, say (j2; j1) for NDp and (i1; i2) for NDc, the task is to return

a lexicographical ordering of the domains in terms of a nested loop.
The Fourier-Motzkin procedure [14] is used to accomplish this. Fourier-Motzkin (FM) finds the bounderies of the iterators,

given the iterator scan orders. Thus, FM returns for sort order(j2; j1): f0 � j2 � N ; j2 � j1 � Ng and for sort
order(i1; 12): f0 � i1 � N ; 0 � i2 � i1g. The conversion to a nested loop scanning is then straightforward.

5.2 Data partitioning

MatParser generates a SAC description in which only the IPDs are explicitly specified. This means that the input argu-
ments in0 and in1 in Figure 6, are surrounded by if/else statements, while the output values out0, out1, and out2 are not. A
consequence of this is that output values can be generated that are never used by some input domain, or that one OPD produces

0 1 2 3 4 N=5

0

1

2

3

4

0

N=5

4

3

2

1

0 1 2 3 4 N=5

N=5

ND i

i

j
j2

1

2

1P NDc

P C

Producer Consumer

Fifo buffer

M

Figure 7. Mapping of a PRDG onto a Process Network, running example.

6

tokens for more than one IPD. The second step in Panda is to make the OPDs explicit.
Making the output port domains explicit is illustrated in Figure 8. It shows two communicating node domains NDp and

NDc. The tokens produced by port domain Pp of node domain NDp are to be consumed by port domain Pc of node domain
NDc, as described by the data-dependency with mapping M . Port domain Pp is an OPD and port domain Pc is an IPD. To
make Pp explicit, Panda applies M () that is derived by MatParser, to IPD Pp, which is an operation onZ-polyhedra [15].

NDND
ipdPp

M()

cP

CP

opd

Figure 8. Making the output port domain explicit.

The procedure goes as follows. Starting point is the relation between IPD and OPD through M. Given the IPD (MatPars
output) f0 � i1 � N ; 0 � i2 � i1g of NDc, and the affine mapping M : fj1 = i1 ; j2 = i2 � 1g, the OPD f0 � j2 �

N �1 ; j2+1 � j1 � Ng ofNDp is found. Comparing these port domains with the respective node domains, it follows that
what remains to be checked at run time - to detect the port domains while scanning the node domains - is whether j2+1 � j1
in NDp and 1 � i2 in NDc.

5.3 Linearization

The channels between processes are one-dimensional FIFO buffers. Therefore, the order in which a consuming process
reads tokens from a channel must be the same as the order in which tokens are written onto the channel by the producing
process. Of course, the consuming process will in general use the read tokens in a different order (out-of-order consumption).
The channel’s FIFO and the consumer process’s reorder memory are modeled as one one-dimensional memory m. This is
shown in Figure 9.

m

w(j)

r(i)

Figure 9. The producer-to-consumer chaneel FIFO and the consumer’s memory modeled as a linar
memory m.

m is a logical storage structure (LSS) [16], and there is one LSS for each opd=ipdpair. The producer node writes tokens into
the LSS in the order given by a write polynomialw(j). The consumer node consumes tokens from this LSS in the order given
by a read polynomial r(i). The write polynomial follows from a ranking of the OPD of the producer. The ranking follows the
order resulting from the domain scanning and data partitioning steps. The read polynomial satisfies r(i) = w(M (i)), where
M (i) is the affine mapping from the IPD of NDc to the OPD of NDp. The ranking inNDp in the running example is shown
in Figure 10. The corresponding write polynomial is given as

w(j1; j2) = �
1

2
j22 + (N �

1

2
)j2 + j1 � 1 (1)

7

The corresponding read polynomial for NDc is given by

r(ii; i2) = w(M (i1; i2)) = w(i1; i2 � 1)

= �
1

2
i22 + (N +

1

2
)i2 + i1 � (N + 1)

(2)

The linearization method in Panda relies on methods to count the number of integral points contained within a polytope
using so-called Ehrhart Polynomials [17]. These methods are implemented in the library PolyLib [18].

0 1 2 3 4 N=5

N=5

0

4

3

2

1

0 1 2 3 4

0

1

2

3

4

N=5

N=5

P c
i1

ij

j

2

1

2

ND ND

0 1 2 3 4

5 6 7 8

9 10 11

12 13

14

M

Figure 10. Ranking of node domains to derive read and write polynomials for addressing the LSS m

between producer and consumer.

The three steps domain scanning, data partitioning, and linearization result in a control program as shown in Figure 11 for
the running example.

NDp

for j2 = 0 to N
for j1 = j2 to N

[out] = f(� � �); � � � = f(in);

in = m(r(i1; i2));

end

end

end

end

end

if (j2 + 1 � j1)

end

m(w + +) = out;

NDc

for i1 = 0 to N
for i2 = 0 to i1

if (1 � i2)

Figure 11. Control program for writing in-order to the channel and reading - possibly out-of-order -
from memory

.

As can be seen from the figure, NDp’s j-loopnest scans the port domain and produces in each and every point the output of
the function’s firing in these points. If the condition j2+1 � j1 is true, then the output values are put in-order to the channel.
NDc gets these values from the channel and puts them into a reordering memory. NDc’s i-loopnest scans the port domain
and if the condition 1 � i2 is satisfied, then the input value for the function residing in the node domain at the scan point is
read from the reordering memory at address m(r(i)) = m(w(M (i))).

6 The Spade tool

The Spade tool was designed to execute Y-charts as shown in Figure 2(a). Spade makes a clear distinction between appli-
cations and implementations. An application imposes a workload on the resources provided by an architecture. The workload

8

consists of both the computation workload and the communication workload. The resources can be processing resources, such
as programmable cores or dedicated hardware units, communication resources, such as bus structures, and memory resources,
such as RAMs or FIFO buffers. The architecture design process is concerned with the specification of the resources that can
best handle the workloads imposed by the target applications.

In Spade, applications and architectures are modeled separately. An application is modeled as a Kahn Process Network
(KPN) that is a functional model relatively free of architectural aspects. Vice versa, an architecture is modeled as an imple-
mentation network in which the resources are taken from a library of generic building blocks. The architecture is constructed
for all applications from the benchmark set. Such a decoupling enables reuse of both applications and architectures and facil-
itates an explorative design process in which applications are subsequently mapped onto an architecture.

In order to evaluate the performance of an application–architecture–mappingcombination, we must provide the interfacing
of application models to architecture models, including specification of mappings. For this purpose, we extend a technique
called trace-driven simulation. This is a simulation technique that has been applied extensively for memory system simula-
tion in the field of general-purpose processor design [19]. We use the technique for performance analysis of heterogeneous
systems. Each process in the KPN produces upon execution a so-called trace, which represents the workload imposed on an
architecture by that process. Thus, a trace contains information on the communication and computation operations performed
by an application process. These operations may be coarse-grain as opposed to classical trace-driven simulation, in which
traces contain information on fine-grain RISC operations only. The traces drive computation and communication activities in
the architecture. These activities are executed as specified by the architecture model. During this execution, time gets assigned
to all events that occur in the architecture model and the performance of the execution of the application on the architecture
can be measured. An example of an application specified as a KPN is shown in Figure 12.

execute

Trace

Process
Port

read write

Process Channel

Figure 12. Example of an application model. Processes are depicted as circles, small circles are
process ports, and the circle segments in the processes are API functions.

Spade offers an Application Programmers Interface (API) for application modeling that contains the following three func-
tions.

� A Read function. This function is used to read data from a channel via a process port. Furthermore, the function gen-
erates a trace entry - a symbolic read instruction - in the trace of the process by which it is invoked, reporting on the
execution of a read operation at the application level.

� A Write function. This function is used to write data to a channel via a process port. It also generates a trace entry - a
symbolic write instruction, reporting on the execution of a write operation.

� An execute function. This function performs no data processing, but only generates a trace entry, reporting on pro-
cessing activities at the application level. The Execute function takes a symbolic instruction as an argument in order to
distinguish between different processing activities. For example, such an instruction may correspond to a Vec or Rot
function in the application code in Figure 1.

The trace entries generated by the read and write functions represent the communication workload of a process. The trace
entries generated by the Execute function represent the computation workload of a process. The trace entries can be used
either to drive the architecture simulation, or, when executing the application stand-alone, to analyze the computation and
communication workload of an application. Such an analysis may return the number of times an operation in a process fires

9

and how many tokens were transported over a FIFO channel between processes. This is shown in Figure 13, which describes
the same network as given in Figure 4. The values of the parametersN andK - see Figure 1 - have been 6 and 100 respectively.

594

600

1500

1485

500

600

21

21

1000

1000

15

6

6

15

100

500

500

i

l

j

A C

E

h

g

d

e

c

b
a

k

i
j

h

DB

f

Figure 13. The PRDG with the firing numbers per process and channel/

Thus, processes A and E have 21 executes, processes B and C 600 and so on. In the figure, processes that execute more
frequently are colored darker and the channels have a width depending on their communication load. We can see that, for
example, edge b transported 15 tokens, while edge g transported 500 tokens and edge e transported 594 tokens.

Processor
Port

Exec.
Unit

Y

Bus

I/F

Trace

Fifoo_2X i_2

i_1o_1

Figure 14. Example of an architecture model. There are two processing resources (the dashed boxes),
that each are composed of a Trace Drive Execution Unit and an interface, one FIFO, and a bus.

An example of an architecture model is shown in Figure 14. The processing resources in the architecture model take the
traces generated by the application as input. We have taken a modular approach to allow the construction of a great variety
of processing resources from a small number of basic building blocks. A processing resource is built from the following two
types of blocks.

� A trace driven execution unit (TDEU) which interprets trace entries. The entries are interpreted in the order in which
they are put in the trace, thereby retaining the order of execution of the application process. A TDEU has a configurable
number of I/O ports. Communication via these I/O ports is based on a generic protocol.

� A number of interfaces, which connect the I/O ports of a TDEU to a specific communication resource. An interface
translates the generic protocol into a communication resource specific protocol, and may include buffers to model in-
put/output buffering of processing resources. Currently, we have interfaces for communication via a direct link, via a
shared bus, and via shared memory, both buffered and unbuffered.

10

Apart from the TDEU and interface blocks, the current library contains some generic bus blocks, including bus arbiters,
and a generic memory block. All blocks are parameterized. For each instantiated TDEU a list of symbolic instructions and
their latencies and throughputs have to be given. This list specifies which instructions from the traces can be executed by the
processing resource and how many cycles each instruction takes when executed on this processing resource. Both latencies
and throughputs can be obtained from a lower level model of a processing resource, from estimation tools or they can be
estimated by an experienced designer. For instances of the interface blocks, buffer sizes can be given. For a bus instance, the
bus width, setup delay, and transfer delay can be specified. Recall that the generic building blocks are abstract performance
models; they only model the timing and synchronization of the architecture. The application model captures the functional
behavior.

Once both an application model and an architecture model have been defined, mapping can be performed. This means that
the workload of the application has to be assigned to resources in the architecture as follows.

� Each process is mapped onto a TDEU. This mapping can be many-to-one, in which case the trace entries of the processes
need to be scheduled by the TDEU. The scheduling policy can be selected and specified by the user.

� Each process port is mapped one-to-one onto an I/O port. This mapping also implicitly maps the channels onto a com-
bination of communication resources and memory resources, possibly including user defined blocks, such as a specific
bus model or memory interface. Typically, these resources do not have an equivalent element in the application model.

The simulation of the application model is based on the Pamela [20] multi-threading environment, where each Kahn pro-
cess is executed in a separate thread. The simulation of the architecture model is currently based on TSS (Tool for System
Simulation), which is a Philips in-house architecture modeling and simulation framework [21]. The library of generic blocks
is implemented as a library of TSS modules. The generic building blocks already contain collectors for different performance
metrics. The metrics for which data is collected during simulation is resource specific. More on Spade can be found in [22].

7 Modeling and simulation results

For the application shown in Figure 1 we have derived the PRDG and KPN specifications shown in Figure 4. From the ex-
ecution and transmission counts in Figure 13, we see that some processes execute many times (i.e., nodeB, C, and D), while
others do so sporadically (i.e., A and E). Based on this insight, we suggested a partition for the architecture as shown in Fig-
ure 1; the frequently executing processes are mapped on coprocessors whereas the incidentally executing processes are put on
the microprocessor. Consequently, channels fa; b; i; kg map onto the low-bandwidth communication structure that connects
the coprocessors with the microprocessor. Edges fc; d; f; gg map onto the programmable interconnect network, which is the
high - bandwidth communication structure. Edge e and edges fi; j; hgmap onto internal communication structures inside the
coprocessor for nodeC and D, respectively. This very high-bandwidth communication is thus kept local to the coprocessors.
The specific architecture specified and used in Spade is shown in Figure 15.

Coprocessor
B C

Coprocessor
D

Aa Ab

Microprocessor

El Ek

Bc Bd Cc Cg Cf Dd Df Dg

input

CaCk Dl Db

output

Coprocessor
E H I

InterBC

InterBD

MicroProcessor/Coprocessor Bus

InterDC

InterCD

(A/E)

Figure 15. The architecture for the modeling and simulation example

11

The architecture consists of a microprocessor (Mp), three coprocessors (Cp), a Mp-to-Cp bus with businterfaces with a sin-
gle buffer space, and FIFO interconnects local to the coprocessors. A bus-transfer takes d cycles and a FIFO-channel transfer
takes one cycle. Coprocessor C and coprocessor D receive symbolic execute instructions with two parameters, latency (l)
and throughput (t). Simulation results are shown in Tablee 1 an Table 2. The values of the parameters l and t are 21 and 1

cycles, respectively.

Table 1. Simulated execution times for problem sizes N = 4; 6; 12; 16 and K = 100; 200 and bus-delay
d = 0; 10.

K = 100 K = 200

N d=0 d=10 d=0 d=10
4 2153 2256 4253 4356
6 2204 2467 4304 4567

12 6706 7908 13306 14508
16 12102 14316 24102 26316

Table 2. Problem period � in cycles for problem sizes N = 4; 6; 12; 16 and bus-delay d = 0; 10.
N d = 0 d = 10

4 21 21
6 21 21

12 66 66
16 120 120

In Table 2, the problem period� is defined as � =
T (K+�K)�T (K)

�K
in cycles. For values ofN for which 1

2�(N�1)�N �

l, the execute instruction’s latency is dominating.

8 Conclusion

With the toolset presented in this paper, certain nested loop Matlab programs can be converted to Kahn Process Networks
and mapped onto a high-level architecture description for simulation and performance analysis on a high level of abstraction.
Not discussed in the paper is a tool for performing transformations on the intermediate PRDG specification of the application.
Examples of such transformations are index transformations and PRDG unrolling. In the example given in the paper, the
PRDG was index transformed to improve the utilization of the pipelined operations Vec and Rot in the architecture. The
transformation unrolling typically results in a higher degree of parallelism. All elements of the Compaan tool are implemented
in Java. Part of it is integrated in the Ptolemy II framework (see www.gigascale.org/compaan).

9 Acknowledgement

The authors want to thank Pieter van der Wolf and Kees Vissers from the Philips Research Laboratories for valuable discus-
sions and support. They are also indebted to Vincent Loechner from INRIA for the Polylib guidance and support. The work
was supported in part by the universities of Delft and Leiden, in part by Philips Research and in part by the MARCO/DARPA
Gigascale Silicon Research Center.

References

[1] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess, “Prohid, a data-driven multi-
processor architecture for high-performance dsp,” in Proc. ED&TC, Mar. 17-20 1997.

[2] Edwin Rijpkema, Ed F. Deprettere, and Gerben Hekstra, “A strategy for determining a jacobi specific dataflow proces-
sor,” in Proceedings ASAP’97 conference, July 1997.

12

[3] Arthur Abnous and Jan Rabaey, “Ultra-low-power domain-specific multimedia processors,” in VLSI Signal Processing,
IX, 1996, pp. 461–470.

[4] Gilles Kahn, “The semantics of a simple language for parallel programming,” in Proc. of the IFIP Congress 74. 1974,
North-Holland Publishing Co.

[5] Edward A. Lee and Thomas M. Parks, “Dataflow process networks,” Proceedings of the IEEE, vol. 83, no. 5, pp. 773–
799, May 1995.

[6] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf, “The construction of a retargetable simulator for
an architecture template,” in Proceedings of 6th Int. Workshop on Hardware/Software Codesign, Seattle, Washington,
Mar. 15–18 1998.

[7] Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, “A methodology for architecture exploration of
heterogeneous signal processing systems,” in Proceedings of the 1999 IEEE Workshop in Signal Processing Systems,
Taipei, Taiwan, 1999.

[8] Bart Kienhuis, Design Space Exploration of Stream-based Dataflow Architectures: Methods and Tools, Ph.D. thesis,
Delft University of Technology, Jan. 1999.

[9] Peter Held, Functional Design of Data-Flow Networks, Ph.D. thesis, Dept. EE, Delft University of Technology, May
1996.

[10] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf, “An approach for quantitative analysis of
application-specific dataflow architectures,” in Proc. ASAP’97, July 14-16 1997.

[11] S.Y. Kung, VLSI Array Processors, Prentice Hall Information and System Sciences Series, 1988.

[12] Bart Kienhuis, “Matparser: An array dataflow analysis compiler,” Tech. Rep. UCB/ERL M00/9, University of Califor-
nia, Berkeley, CA-94720, USA, Feb. 2000.

[13] Paul Feautrier, “Parametric integer programming,” Recherche Opérationelle; Operations Research, vol. 22, no. 3, pp.
243–268, 1988.

[14] C. Ancourt and F. Irigoin, “Scanning polyhedra with DO loops,” in Proc. ACM SIGPLAN ’91, june 1991, pp. 39–50.

[15] Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset, “On ManipulatingZ-polyhedra,” Tech. Rep., Institut de
Recherche en Informatique et Systèmes Aléatoires, 1996.

[16] Alco Looye, Gerben Hekstra, and Ed Deprettere, “Multiport memory and floating point cordic pipeline in jacobium
processing element,” in Proceedings SiPS 98 Design and Implementation, October 1998, pp. 406–426.

[17] Phillipe Clauss and Vincent Loechner, “Parametric analysis of polyhedral iteration spaces,” Journal of VLSI Signal
Processing, vol. 19, pp. 179–194, July 1998.

[18] Doran K. Wilde, “A library for doing polyhedral operations,” M.S. thesis, Oregon State University, Corvallis, Oregon,
Dec 1993, Also published in IRISA technical report PI 785, Rennes, France; Dec, 1993.

[19] Richard A. Uhlig and Trevor N. Mudge, “Trace-driven memory simulation: A survey,” ACM Computing Surveys, vol.
29, no. 2, pp. 128–170, June 1997.

[20] Arjan J. C. van Gemund, “Performance prediction of parallel processing systems: The PAMELA methodology,” in
Proc. 7th ACM Int. Conference on Supercomputing, Tokyo, July 1993, pp. 318–327.

[21] Wido Kruijtzer, “TSS: Tool for System Simulation,” IST Newsletter, vol. 17, pp. 5–7, Mar. 1997, Philips Internal
Publication.

[22] Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers, “A methodology for architecture exploration of
heterogeneous signal processing systems,” to appear in Journal of VLSI Signal Processing, 2000.

13

