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 Abstract 

Compaan is a software tool capable of automatically 
translating nested loop programs, written in Matlab, into 
parallel Kahn process network descriptions suitable for 
implementation in hardware. In this paper we present a 
tool for converting these process networks into FPGA 
implementations. The QR decomposition algorithm is 
used to demonstrate the capability of the tool to quickly 
generate high-performance parallel implementations. 
This allows us to rapidly explore a range of 
transformations, such as loop unrolling and skewing, to 
generate a circuit that meets the requirements of a 
particular application. We present results showing how 
the control logic complexity and number of clock cycles 
vary with these transformations. 

1 Introduction 

It is now quite common for digital signal processing 
algorithms to be developed using Matlab, because it has 
built-in support for many signal-processing operations. 
Unfortunately, Matlab’s imperative model of computation 
does not directly yield the parallel implementations 
necessary to address the performance requirements of the 
signal processing applications we are interested in.  

The Compaan work, by Leiden University, has shown 
that a certain class of Matlab programs can be 
transformed automatically into a parallel process network 
specification. Such process networks use the stream-
based function (SBF) model of computation [1]. This 
model enables easy implementation on an array of DSP 
chips, or as a custom circuit on an ASIC or FPGA. The 
latter has become attractive, as the density of FPGAs is 
sufficient to allow large numbers of processors to be 
implemented on a single device without the high non-
recurring engineering costs associated with producing an 
ASIC. 

The aim of the Compaan environment is to automate 
the transformation of DSP algorithms specified as nested 
loop programs (NLP) into parallel hardware 
implementations. Compaan takes an NLP and uses a 
three-step process (see Figure 1) to extract parallelism and 

produce a parallel process network description based on 
the SBF model of computation. Firstly, the MatParser tool 
uses data dependence analysis techniques to extract the 
parallelism from the Matlab code. MatParser produces a 
single assignment code (SAC) description of the 
algorithm, in the form of a set of affine nested loops. The 
next step is DgParser which reduces the data 
dependencies expressed in the SAC into a polyhedral 
reduced dependence graph (PRDG). Finally, the Panda 
tool translates the PRDG description into the SBF process 
network description. 
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Figure 1: The Compaan process 

We have extended the Compaan flow with a fourth 
step that translates the process networks into hardware. 
This paper focuses on this fourth step.  

The Panda tool constructs an abstract data-structure of 
the process network using the SBF model of computation. 
In this data-structure, the SBF network and the various 
SBF objects or nodes are described. The tool that we have 
constructed, translates this abstract description into a 
VHDL network entity and a number of VHDL node 
entities. The translation is performed by means of a visitor 
[5] - a software engineering technique that makes it easy 
to operate on the various elements of the abstract data 
structure generated by Panda. 

 



2 Stream Based Function Computation 
Model 

The SBF computation model describes a number of 
processing nodes that are interconnected by 
communication channels, as shown below: 
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Figure 2: SBF Network Example 

The model specifies that the network control is 
performed locally in the nodes (i.e. the control is 
distributed), each working independently. The 
communication channels are defined as infinite FIFO 
buffers with non-blocking writes and blocking reads, 
allowing asynchronous communication between the 
independent nodes. Each SBF node or object is modelled 
as containing a controller, a state, and a function 
repertoire, where the latter is F∈{ fa, fb, …fn} . 
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Figure 3: SBF node configuration 

The function repertoire defines all the calculations, 
which can be carried out by a node, and which ports 
should be used for data input and output for each 
calculation. The operation of the node is characterised by 
the order these functions are performed and thus is 
dictated by the controller. The operation of the controller 
is described by the binding function and the transition 
function. The binding function specifies which repertoire 
function to use in the current state, and the transition 
function defines which state follows the current state. 

3 Realising Process Networks in Hardware 

VHDL was chosen to describe the process network in 
hardware as it is widely supported by industry standard 
simulation and synthesis tools. It provides full control 
over the detail of the implementation and QinetiQ have a 
library of fixed and floating-point parameterised 
components optimised for FPGA implementation.  

The process network description, in VHDL, is a 
hierarchical design consisting of a number of SBF node 
components interconnected at the top level. The FIFOs 
specified in the process network model of Figure 2 have 
been absorbed into the nodes. 

3.1 Node Design 

Each node employs a FIFO buffer on each input port 
and contains a function unit and a number of multiplexers 
(mux) and de-multiplexers (demux). This configuration is 
shown in Figure 4. 
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Figure 4: General Node design 

In a Compaan process network, the actual calculation 
performed by each function in a node’s repertoire is the 
same, but the data is read from or written to different 
ports. This is known as a function variant repertoire. The 
demuxes and muxes provide the variation by switching 
the data on the inputs and outputs of the function units.  

The demuxes are controlled separately to the muxes to 
allow pipelined function units to empty when the input is 
stalled. Each controller contains the state, transition 
function and the relevant part of the binding function 
defined in the SBF model. 

3.2 Communication Channels 

Data transfer within the node and between nodes is 
performed over communication channels employing a 
request-acknowledge hand-shaking protocol. Hand-
shaking is necessary because the FIFOs and function units 
may not always be ready to transmit valid data. 

3.3 FIFO Design 

The process network model specifies that 
communications take place through unbounded FIFO 
channels. Fortunately there is a bound at which a 
particular algorithm will run deadlock free. At present this 
is found through simulation. 

As shown in Figure 5, the FIFO design is based around 
a dual port RAM with counters to generate the read and 
write addresses. Additional control is required to check 



for empty and full states and to interface with the 
communication channels.  
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Figure 5: FIFO design 

4 An Example: QR Decomposition 

QR decomposition is a mathematical algorithm 
commonly used to solve an over-specified set of linear 
equations in a least squares sense. Our interest in this 
algorithm is for calculating weights in an adaptive 
beamforming system [2]. The fact that it falls under the 
umbrella of nested loop algorithms, as well as being well 
understood, has made it a good test for the Compaan tool 
flow throughout development. It also makes it a good test 
for the complete algorithm to hardware flow discussed in 
this paper. 

QR decomposes a matrix X, using unitary rotations, 
into an upper-triangular matrix R, which in our 
application can be back substituted to provide the least 
squares weights. The QR algorithm employed is based 
around the iterative Givens Rotations method [2].  

As shown in Figure 6, QR employs two operations: 
vectorize and rotate. Vectorize takes a vector formed by 
an element of X and an element of R and rotates it 
through an angle such that the X element is forced to zero. 
The rotate operation takes a similar vector but rotates it 
through an angle previously calculated by a vectorize 
operation. Within the QR implementation, these two 
operations are combined to rotate a row of the X matrix 
vector against each row of the R matrix, zeroing the 
leading element in the X row each time. 
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Figure 6: QR data dependencies 

For purposes of explanation, part of the Matlab code 
written as input to Compaan is shown below, and 
describes the Givens rotations calculations. 

 
for k = 1:1:K, 

for j = 1:1:N, 
[r(j,j),t] = vectorize( r(j,j),x(k,j) ); 
for i = j+1:1:N, 

[r(j,i),x(k,i),t] = rotate(r(j,i),x(k,i),t); 
end 

end 
end 
 

In addition, other loops may be required to initialise 
the R matrix and provide input and output for the X and R 
data matrices. In the description, three loop indices have 
been used: j counts down the rows of the R matrix, i 
counts along each row of R and k counts complete Givens 
rotations updates (i.e. rows of X). The loop bounds K and 
N are constant parameters whose values are the number of 
QR updates and number of columns in the X matrix 
respectively. 

The process network produced by Compaan for this 
code consists of five interconnected nodes; as shown in 
Figure 7.  
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Figure 7: QR Process Network 

The calculation is performed by the vectorize nodes 
and rotate nodes. The other three handle all the 
initialisation and input/output. It is worth noting that the 
network contains one node for each function call in the 
original code (note that the input/output function calls 
were omitted from the code segment presented earlier in 
the paper). The detail of the calculation performed by a 
node, in order to execute its function, is as yet undefined, 
and is not relevant at this level of the design process since 
Compaan only addresses data flow. Ultimately, the node 
detail must be provided by the designer although there is 
no reason why it cannot be another Compaan process 
network. We consider a specific implementation of these 
nodes later in this paper. 



The VHDL description contains the network 
interconnection and control required to schedule the data 
through the nodes. It also implements the parameters K 
and N as generics, and hence can be synthesised for any 
size of QR problem.  

5 A Basic Implementation of QR 

In order to implement QR on an FPGA, the five 
function units were developed. The vectorize and rotate 
nodes were designed to make use of the built-in fixed- 
point multipliers available in the Xilinx Virtex II FPGA 
family [3]. The basic vectorize algorithm was 
implemented using adders, multipliers and a multiplier 
based inverse-square-root core. The function units were 
developed for 16-bit fixed-point input and output data. 

A simulation of this complete design was performed 
and the results compared against a set of previously 
generated reference values. Figure 8 shows the simulation 
waveforms for a system with 20 inputs and 40 input 
sample vectors (N=20, K=40). 

 
Figure 8: QR simulation results - a) reference,   

b) network output,  c) error. 

The error between the actual and reference signals is of 
the order of 2% and can be attributed to the difference 
between double precision floating-point and 16-bit fixed-
point arithmetic. 

The VHDL network and node descriptions were 
converted to a circuit netlist using a commercial tool, and 
then passed through Xilinx’s FPGA place-and-route tools. 
The resulting layout is shown in Figure 9. 
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Figure 9: Layout of QR implementation on Xilinx 

XCV1000E FPGA. 

The large, dense areas correspond to the vectorize and 
rotate function units, and the remaining resources make 
up the control structures.  

The XCV1000E device was chosen to allow 
implementation on current hardware. Because of this, it 
was necessary to use multiplier cores instead of the 
dedicated multiplier resources available on Virtex II. The 
cores correspond to the 15 dense rectangular areas on the 
layout, which would not be necessary on Virtex II, 
leaving a relatively small amount of control logic. 

The data extracted from the simulation and place-and-
route is as shown in the following table: 

 
 Total 

clock 
cycles 

Max 
clock 
freq. 
(MHz) 

Updates 
per milli-
second 

Total LUTs 
used for 
node 
control 

Node control 
LUTs per 
update per 
micro-second 

QR 2300 35 15.2 4978 327.2 

Table 1: Design properties for QR; N=20, K=40. 

A single update consists of 20 vectorize operations and 
190 rotate operations, each of which contain 11 or 4 
multiplies respectively and 2 adds. This gives a total of 
980 multiply and 420 add operations per update which 
equates to over 20 million operations per second, 
compared to a potential 595 million. This poor utilisation 
can be attributed to two things: Firstly, limitations in the 
control and FIFO designs; Work is ongoing to address 
these. Secondly, and perhaps more significantly, 
limitations in the schedule, causing processors to stall. 
Addressing the latter is considered in the next section. 

It is worth noting that it took about 15 minutes to 
process the design from Matlab to a hardware 
implementation suitable for download onto an FPGA. The 
majority of this time is taken up with synthesis and place-
and-route – Compaan took about 10 seconds to process 
the Matlab file.  

6 Compar ison of Optimising Transforms 

The first transform, called skewing, can be used to 
address the schedule limitations mentioned in the 
previous section. Inefficient use of pipelined function 
units occurs when the data dependencies in a network are 
such that a node is forced to wait for input data, possibly 
from one of its own outputs. This is the case for the QR 
network where the vectorize node waits for data from the 
rotate node (see Figure 6). The transformation skews the 
order of execution so that nodes are operating on data 
from previous updates (iterations of k loop).  

The second transformation performs loop unrolling, 
forcing Compaan to duplicate the contents of the loop a 
number of times. This results in more nodes, thus 
increasing parallelism. Unrolling can be used in 
conjunction with skewing to optimise a design for specific 



performance and resource requirements. Both unrolling 
and skewing can be achieved by making simple 
modifications to the input code. This is currently done 
automatically using a Perl script but ultimately could be 
included as an optional transform in Compaan. 

To compare the effect of these transformations, 
simulations were run on the QR algorithm with various 
combinations of the transformations. We are particularly 
interested in the control complexity so, for the purpose of 
the tests, the function units were replaced with simple 
single cycle components. Consequently, the data given is 
only useful for comparing the transformations and not the 
QR implementation. The tests were carried out with an 
input data matrix size of 10 by 6. For the unrolled 
algorithms, the outer loop of the main calculation was 
unrolled by a factor three. This has the effect of creating 
three of everything in that loop and partitioning the 
operations between them. Consequently, three vectorize 
and three rotate nodes were created.  

Table 2 shows values for the operating time and speed, 
as well as resource usage, and a ratio for revealing the 
resource cost of the speed increase gained using the 
transformations. The resource usage is measured in LUTs 
(Look Up Tables) - a primitive component on the Virtex 
family of FPGAs [3]. One Virtex CLB contains four 
LUTs. It can be seen from these figures that unfolding 
improves the throughput of the design, but skewing only 
has a positive effect when combined with unrolling. The 
drop in clock frequency is due to the increased 
complexity of the node control logic. 

 
 Total 

clock 
cycles 

Max 
clock 
freq. 
(MHz) 

Updates 
per 
micro-
second 

Total LUTs 
used for 
node 
control 

Node control 
LUTs per 
update per 
micro-second 

Basic 851 91.1 1.07 270 252 

Skew 761 70.7 0.93 315 339 

Unroll 341 70.0 2.05 886 431 

Skew + 
Unroll 

276 68.2 2.47 1362 550 

Table 2: Comparison of designs with various 
transformations. 

The time taken for these designs to be processed from 
Matlab to a hardware implementation ranged up to 60 
minutes. The majority of the time was spent in synthesis 
and place-and-route. 

7 Conclusions and Future Work 

The tests discussed in this paper demonstrate the 
ability of the tool to automatically generate synthesisable 
VHDL implementation of an algorithm specified in 
Matlab. The fact this process takes minutes rather than 

months, significantly reduces the design time of a system 
over a VHDL-only design flow. 

We have also illustrated the use of network 
transformations for design optimisation. These 
transformations can be made automatically and provide 
the potential for extensive design space explorations to be 
undertaken quickly. These can either be performed 
automatically as a batch job and the best picked, or the 
designer can use their knowledge and experience to refine 
the design. Since the optimisations can be applied 
automatically at a high level means the designer does not 
need to worry about the complex low-level designs and 
can, thus, concentrate on higher-level issues. 

To increase the range of potential applications, the 
visitor requires many refinements to improve the VHDL 
implementation. Currently, the control forms a bottleneck 
for the clock speed in complex designs; there is a lot of 
scope for optimisation such as pipelining. Another area 
that needs improvement is the communications 
throughout the system. Currently, three cycles are 
required for a single transaction. This significantly affects 
the performance by limiting the maximum potential data 
rate into a function unit to one sample every three cycles.  

This work clearly demonstrates that SBF process 
networks translate well into hardware. More generally, it 
shows how distributed control can produce efficient 
implementations. Although only a single FPGA is 
targeted in the examples, this distributed control can be 
used to target systems with multiple FPGAs and 
microprocessors. 
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