
Presented at the 35th Asilomar conference on Signals,
Systems, and Computers, November 4 - 7, 2001, Pacific
Grove CA USA. Copyright © QinetiQ Ltd, 2001.

Compilation from Matlab to Process Networks Realised in FPGA

Tim Harriss, Richard Walke – QinetiQ Ltd, Malvern, UK
 Bart Kienhuis, Ed Deprettere - Leiden University, Leiden, The Netherlands

 Abstract

Compaan is a software tool capable of automatically
translating nested loop programs, written in Matlab, into
parallel Kahn process network descriptions suitable for
implementation in hardware. In this paper we present a
tool for converting these process networks into FPGA
implementations. The QR decomposition algorithm is
used to demonstrate the capability of the tool to quickly
generate high-performance parallel implementations.
This allows us to rapidly explore a range of
transformations, such as loop unrolling and skewing, to
generate a circuit that meets the requirements of a
particular application. We present results showing how
the control logic complexity and number of clock cycles
vary with these transformations.

1 Introduction

It is now quite common for digital signal processing
algorithms to be developed using Matlab, because it has
built-in support for many signal-processing operations.
Unfortunately, Matlab’s imperative model of computation
does not directly yield the parallel implementations
necessary to address the performance requirements of the
signal processing applications we are interested in.

The Compaan work, by Leiden University, has shown
that a certain class of Matlab programs can be
transformed automatically into a parallel process network
specification. Such process networks use the stream-
based function (SBF) model of computation [1]. This
model enables easy implementation on an array of DSP
chips, or as a custom circuit on an ASIC or FPGA. The
latter has become attractive, as the density of FPGAs is
sufficient to allow large numbers of processors to be
implemented on a single device without the high non-
recurring engineering costs associated with producing an
ASIC.

The aim of the Compaan environment is to automate
the transformation of DSP algorithms specified as nested
loop programs (NLP) into parallel hardware
implementations. Compaan takes an NLP and uses a
three-step process (see Figure 1) to extract parallelism and

produce a parallel process network description based on
the SBF model of computation. Firstly, the MatParser tool
uses data dependence analysis techniques to extract the
parallelism from the Matlab code. MatParser produces a
single assignment code (SAC) description of the
algorithm, in the form of a set of affine nested loops. The
next step is DgParser which reduces the data
dependencies expressed in the SAC into a polyhedral
reduced dependence graph (PRDG). Finally, the Panda
tool translates the PRDG description into the SBF process
network description.

MatParser

PANDA

DgParser

VHDL Visitor

Matlab

Single Assignment Code

Polyhedral Reduced Dependence Graph

SBF Network SBF Objects

Network Entity Node Entities

Le
id

en
 U

ni
ve

rs
ity

Q
in

et
iQ

Figure 1: The Compaan process

We have extended the Compaan flow with a fourth
step that translates the process networks into hardware.
This paper focuses on this fourth step.

The Panda tool constructs an abstract data-structure of
the process network using the SBF model of computation.
In this data-structure, the SBF network and the various
SBF objects or nodes are described. The tool that we have
constructed, translates this abstract description into a
VHDL network entity and a number of VHDL node
entities. The translation is performed by means of a visitor
[5] - a software engineering technique that makes it easy
to operate on the various elements of the abstract data
structure generated by Panda.

2 Stream Based Function Computation
Model

The SBF computation model describes a number of
processing nodes that are interconnected by
communication channels, as shown below:

Node

FIFO
channel

Figure 2: SBF Network Example

The model specifies that the network control is
performed locally in the nodes (i.e. the control is
distributed), each working independently. The
communication channels are defined as infinite FIFO
buffers with non-blocking writes and blocking reads,
allowing asynchronous communication between the
independent nodes. Each SBF node or object is modelled
as containing a controller, a state, and a function
repertoire, where the latter is F∈{ fa, fb, …fn} .

Controller

fa

fb

fn

State

FIFO

Figure 3: SBF node configuration

The function repertoire defines all the calculations,
which can be carried out by a node, and which ports
should be used for data input and output for each
calculation. The operation of the node is characterised by
the order these functions are performed and thus is
dictated by the controller. The operation of the controller
is described by the binding function and the transition
function. The binding function specifies which repertoire
function to use in the current state, and the transition
function defines which state follows the current state.

3 Realising Process Networks in Hardware

VHDL was chosen to describe the process network in
hardware as it is widely supported by industry standard
simulation and synthesis tools. It provides full control
over the detail of the implementation and QinetiQ have a
library of fixed and floating-point parameterised
components optimised for FPGA implementation.

The process network description, in VHDL, is a
hierarchical design consisting of a number of SBF node
components interconnected at the top level. The FIFOs
specified in the process network model of Figure 2 have
been absorbed into the nodes.

3.1 Node Design

Each node employs a FIFO buffer on each input port
and contains a function unit and a number of multiplexers
(mux) and de-multiplexers (demux). This configuration is
shown in Figure 4.

Function
Unit

Communication Channel
FIFO
MUX / DEMUX
Controller

Output
PortsInput

Ports

In
pu

ts

ou
tp

ut
s

Figure 4: General Node design

In a Compaan process network, the actual calculation
performed by each function in a node’s repertoire is the
same, but the data is read from or written to different
ports. This is known as a function variant repertoire. The
demuxes and muxes provide the variation by switching
the data on the inputs and outputs of the function units.

The demuxes are controlled separately to the muxes to
allow pipelined function units to empty when the input is
stalled. Each controller contains the state, transition
function and the relevant part of the binding function
defined in the SBF model.

3.2 Communication Channels

Data transfer within the node and between nodes is
performed over communication channels employing a
request-acknowledge hand-shaking protocol. Hand-
shaking is necessary because the FIFOs and function units
may not always be ready to transmit valid data.

3.3 FIFO Design

The process network model specifies that
communications take place through unbounded FIFO
channels. Fortunately there is a bound at which a
particular algorithm will run deadlock free. At present this
is found through simulation.

As shown in Figure 5, the FIFO design is based around
a dual port RAM with counters to generate the read and
write addresses. Additional control is required to check

for empty and full states and to interface with the
communication channels.

Dual Port RAM

Acknowledge

Input
data

Output
data

Request

Acknowledge

Request

Read
Address

Generator

Write
Address

Generator

Controller

Port A

Port B

Write address

Write enable
Data in

Read address

Data out

Input
Port

Output
Port

Figure 5: FIFO design

4 An Example: QR Decomposition

QR decomposition is a mathematical algorithm
commonly used to solve an over-specified set of linear
equations in a least squares sense. Our interest in this
algorithm is for calculating weights in an adaptive
beamforming system [2]. The fact that it falls under the
umbrella of nested loop algorithms, as well as being well
understood, has made it a good test for the Compaan tool
flow throughout development. It also makes it a good test
for the complete algorithm to hardware flow discussed in
this paper.

QR decomposes a matrix X, using unitary rotations,
into an upper-triangular matrix R, which in our
application can be back substituted to provide the least
squares weights. The QR algorithm employed is based
around the iterative Givens Rotations method [2].

As shown in Figure 6, QR employs two operations:
vectorize and rotate. Vectorize takes a vector formed by
an element of X and an element of R and rotates it
through an angle such that the X element is forced to zero.
The rotate operation takes a similar vector but rotates it
through an angle previously calculated by a vectorize
operation. Within the QR implementation, these two
operations are combined to rotate a row of the X matrix
vector against each row of the R matrix, zeroing the
leading element in the X row each time.

R matrix elements

Rotation angles

X matrix elements

Vectorize

Rotate

Figure 6: QR data dependencies

For purposes of explanation, part of the Matlab code
written as input to Compaan is shown below, and
describes the Givens rotations calculations.

for k = 1:1:K,

for j = 1:1:N,
[r(j,j),t] = vectorize(r(j,j),x(k,j));
for i = j+1:1:N,

[r(j,i),x(k,i),t] = rotate(r(j,i),x(k,i),t);
end

end
end

In addition, other loops may be required to initialise
the R matrix and provide input and output for the X and R
data matrices. In the description, three loop indices have
been used: j counts down the rows of the R matrix, i
counts along each row of R and k counts complete Givens
rotations updates (i.e. rows of X). The loop bounds K and
N are constant parameters whose values are the number of
QR updates and number of columns in the X matrix
respectively.

The process network produced by Compaan for this
code consists of five interconnected nodes; as shown in
Figure 7.

x

x

x

x

r

r

r

r

rout

xin

outputR

rotate

vectorize

initialR

inputSamples

t

r

t

r

Figure 7: QR Process Network

The calculation is performed by the vectorize nodes
and rotate nodes. The other three handle all the
initialisation and input/output. It is worth noting that the
network contains one node for each function call in the
original code (note that the input/output function calls
were omitted from the code segment presented earlier in
the paper). The detail of the calculation performed by a
node, in order to execute its function, is as yet undefined,
and is not relevant at this level of the design process since
Compaan only addresses data flow. Ultimately, the node
detail must be provided by the designer although there is
no reason why it cannot be another Compaan process
network. We consider a specific implementation of these
nodes later in this paper.

The VHDL description contains the network
interconnection and control required to schedule the data
through the nodes. It also implements the parameters K
and N as generics, and hence can be synthesised for any
size of QR problem.

5 A Basic Implementation of QR

In order to implement QR on an FPGA, the five
function units were developed. The vectorize and rotate
nodes were designed to make use of the built-in fixed-
point multipliers available in the Xilinx Virtex II FPGA
family [3]. The basic vectorize algorithm was
implemented using adders, multipliers and a multiplier
based inverse-square-root core. The function units were
developed for 16-bit fixed-point input and output data.

A simulation of this complete design was performed
and the results compared against a set of previously
generated reference values. Figure 8 shows the simulation
waveforms for a system with 20 inputs and 40 input
sample vectors (N=20, K=40).

Figure 8: QR simulation results - a) reference,

b) network output, c) error.

The error between the actual and reference signals is of
the order of 2% and can be attributed to the difference
between double precision floating-point and 16-bit fixed-
point arithmetic.

The VHDL network and node descriptions were
converted to a circuit netlist using a commercial tool, and
then passed through Xilinx’s FPGA place-and-route tools.
The resulting layout is shown in Figure 9.

(b)

(a)

(b)

(a) – rotate
(b) – vectorize

Figure 9: Layout of QR implementation on Xilinx

XCV1000E FPGA.

The large, dense areas correspond to the vectorize and
rotate function units, and the remaining resources make
up the control structures.

The XCV1000E device was chosen to allow
implementation on current hardware. Because of this, it
was necessary to use multiplier cores instead of the
dedicated multiplier resources available on Virtex II. The
cores correspond to the 15 dense rectangular areas on the
layout, which would not be necessary on Virtex II,
leaving a relatively small amount of control logic.

The data extracted from the simulation and place-and-
route is as shown in the following table:

 Total

clock
cycles

Max
clock
freq.
(MHz)

Updates
per milli-
second

Total LUTs
used for
node
control

Node control
LUTs per
update per
micro-second

QR 2300 35 15.2 4978 327.2

Table 1: Design properties for QR; N=20, K=40.

A single update consists of 20 vectorize operations and
190 rotate operations, each of which contain 11 or 4
multiplies respectively and 2 adds. This gives a total of
980 multiply and 420 add operations per update which
equates to over 20 million operations per second,
compared to a potential 595 million. This poor utilisation
can be attributed to two things: Firstly, limitations in the
control and FIFO designs; Work is ongoing to address
these. Secondly, and perhaps more significantly,
limitations in the schedule, causing processors to stall.
Addressing the latter is considered in the next section.

It is worth noting that it took about 15 minutes to
process the design from Matlab to a hardware
implementation suitable for download onto an FPGA. The
majority of this time is taken up with synthesis and place-
and-route – Compaan took about 10 seconds to process
the Matlab file.

6 Compar ison of Optimising Transforms

The first transform, called skewing, can be used to
address the schedule limitations mentioned in the
previous section. Inefficient use of pipelined function
units occurs when the data dependencies in a network are
such that a node is forced to wait for input data, possibly
from one of its own outputs. This is the case for the QR
network where the vectorize node waits for data from the
rotate node (see Figure 6). The transformation skews the
order of execution so that nodes are operating on data
from previous updates (iterations of k loop).

The second transformation performs loop unrolling,
forcing Compaan to duplicate the contents of the loop a
number of times. This results in more nodes, thus
increasing parallelism. Unrolling can be used in
conjunction with skewing to optimise a design for specific

performance and resource requirements. Both unrolling
and skewing can be achieved by making simple
modifications to the input code. This is currently done
automatically using a Perl script but ultimately could be
included as an optional transform in Compaan.

To compare the effect of these transformations,
simulations were run on the QR algorithm with various
combinations of the transformations. We are particularly
interested in the control complexity so, for the purpose of
the tests, the function units were replaced with simple
single cycle components. Consequently, the data given is
only useful for comparing the transformations and not the
QR implementation. The tests were carried out with an
input data matrix size of 10 by 6. For the unrolled
algorithms, the outer loop of the main calculation was
unrolled by a factor three. This has the effect of creating
three of everything in that loop and partitioning the
operations between them. Consequently, three vectorize
and three rotate nodes were created.

Table 2 shows values for the operating time and speed,
as well as resource usage, and a ratio for revealing the
resource cost of the speed increase gained using the
transformations. The resource usage is measured in LUTs
(Look Up Tables) - a primitive component on the Virtex
family of FPGAs [3]. One Virtex CLB contains four
LUTs. It can be seen from these figures that unfolding
improves the throughput of the design, but skewing only
has a positive effect when combined with unrolling. The
drop in clock frequency is due to the increased
complexity of the node control logic.

 Total

clock
cycles

Max
clock
freq.
(MHz)

Updates
per
micro-
second

Total LUTs
used for
node
control

Node control
LUTs per
update per
micro-second

Basic 851 91.1 1.07 270 252

Skew 761 70.7 0.93 315 339

Unroll 341 70.0 2.05 886 431

Skew +
Unroll

276 68.2 2.47 1362 550

Table 2: Comparison of designs with various
transformations.

The time taken for these designs to be processed from
Matlab to a hardware implementation ranged up to 60
minutes. The majority of the time was spent in synthesis
and place-and-route.

7 Conclusions and Future Work

The tests discussed in this paper demonstrate the
ability of the tool to automatically generate synthesisable
VHDL implementation of an algorithm specified in
Matlab. The fact this process takes minutes rather than

months, significantly reduces the design time of a system
over a VHDL-only design flow.

We have also illustrated the use of network
transformations for design optimisation. These
transformations can be made automatically and provide
the potential for extensive design space explorations to be
undertaken quickly. These can either be performed
automatically as a batch job and the best picked, or the
designer can use their knowledge and experience to refine
the design. Since the optimisations can be applied
automatically at a high level means the designer does not
need to worry about the complex low-level designs and
can, thus, concentrate on higher-level issues.

To increase the range of potential applications, the
visitor requires many refinements to improve the VHDL
implementation. Currently, the control forms a bottleneck
for the clock speed in complex designs; there is a lot of
scope for optimisation such as pipelining. Another area
that needs improvement is the communications
throughout the system. Currently, three cycles are
required for a single transaction. This significantly affects
the performance by limiting the maximum potential data
rate into a function unit to one sample every three cycles.

This work clearly demonstrates that SBF process
networks translate well into hardware. More generally, it
shows how distributed control can produce efficient
implementations. Although only a single FPGA is
targeted in the examples, this distributed control can be
used to target systems with multiple FPGAs and
microprocessors.

8 Acknowledgements

This work has been sponsored by the MoD Corporate
Research Programme.

9 References

[1] B. Kienhuis, E. Deprettere, E. Rypkema, "Compilation
from Matlab to Process Networks", Cases ’99, October 1-3,
Washington 1999.

[2] T. J. Shepherd and J. G. McWhirter, “Systolic Adaptive
Beamforming – Radar Array Processing” , Springer Series
in Information Sciences, Vol. 25, 1993, Springer-Verlang
Berlin.

[3] Xilinx Inc., “Virtex-II 1.5V Field-Programmable Gate
Arrays” , DS031 (v1.2) January 15, 2000

[4] T. Stefanov, E. Deprettere, B. Kienhuis, “Exploring
Application Model Instances in System-Level Design” .
Progress Workshop, 2001.

[5] Gamma et al., “Design Patterns, Elements of Reusable
Object-Oriented Software” , Addison-Wesley Professional
Computing Series, 1994

