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Abstract— New heterogeneous multiprocessor platforms are
emerging that are typically composed of loosely coupled compo-
nents that exchange data using programmable interconnections.
The components can be CPUs or DSPs, specialized IP cores,
reconfigurable units, or memories. To program such platform,
we use the Process Network (PN) model of computation. The
localized control and distributed memory are the two key
ingredients of a PN allowing us to program the platforms. The
localized control matches the loosely coupled components and
the distributed memory matches the style of interaction between
the components. To obtain applications in a PN format, we
have built the Compaan compiler that translates affine nested-
loop programs into functionally equivalent PNs. In this paper,
we describe a novel analytical translation procedure we use in
our compiler that is based on integer linear programming. The
translation procedure consists of four main steps and we will
present each step by describing the main idea involved, followed
by a representative example.

I. INTRODUCTION

Applications envisioned for the next decade in the area of
multi-media, imaging, bioinformatics, and signal processing
have a high computational demand. To satisfy this demand,
new hardware platforms are emerging, referred to as heteroge-
neous multiprocessor platforms. They are typically composed
of loosely coupled components that exchange data using
programmable interconnections such as a switch matrix or
a network on chip. The components can be CPUs or DSPs,
specialized IP cores, reconfigurable units, or memories.

Although building such heterogeneous platforms already
takes place [21], [31], [26], mapping applications onto them
still relies on the ability of a system designer to manually
partition the application’s memory and control across the plat-
form components [8]. This process is typically performed in
an empirical manner, lacking a systematic solution approach.
In this process, a designer primarily focuses on the extraction
of application independent tasks, the synchronization between
the tasks, and on memory management. There are a num-
ber of research projects dealing with the automation of the
mapping process. For example the PICO project [14], [27] is
an effort that aims to automate the mapping of applications
onto platforms consisting of VLIW processors and custom
nonprogrammable accelerators. Another example is the Atom-
ium [3] project dealing especially with memory issues when

mapping applications onto platforms with distributed memory
architectures.

To program heterogeneous multiprocessor platform, we
believe that the Process Network (PN) model of computation
(MoC) is suitable to cope with the multiprocessor charac-
teristic of the new hardware platforms [25]. The PN is a
deterministic MoC that explicitly specifies tasks as processes
and distributed memory as FIFO channels [17]. The localized
control and distributed memory in a PN are the two key
ingredients allowing us to program heterogeneous multipro-
cessor platforms. The localized control matches the loosely
coupled components and the distributed memory matches the
style of interaction between the components. However, writing
an application in PN format is time consuming and error
prone. Therefore, we have built the Compaan compiler [16]
that translates affine nested-loop programs into functionally
equivalent PNs specified in C++ [7] or Java [18] formats. It is
also possible to obtain a hardware implementation of the PN
using the Laura [32] VHDL back-end.

 

Fig. 1. How to translate an affine nested loop application into a Process
Network?

In this paper, we present the analytical procedure our
compiler uses to translate affine nested-loop programs into
PNs. As we will show, the translation consists of four main
steps and we will present each step by describing the main
idea involved followed by a representative example. The paper
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Fig. 2. Deriving a Process Networks in four steps

is organized as follows: In Section II, we give the problem
involved in translating an affine nested-loop program to a
PN. In Section III, we present a four step approach to do
the translation. In Section IV, we give results obtained from
running our compiler and in Section V, we conclude the paper.

II. PROBLEM DEFINITION

The problem we address in this paper refers to the trans-
lation of a sequential application to an equivalent PN spec-
ification, as shown in Fig 1. The class of applications we
consider in this conversion, is confined to nested loops with
static control and affine indices [11]. An example of such
an application is given in the left side of Fig 1, where each
assignment statement is iterated over a convex domain called
iteration space composed of iteration points (IPs) [1]. The
iteration spaces can be parameterized by using for-loops with
parametric bounds as can be observed in the code. The PN that
is generated consists of a number of processes; each process
executing one of the assignment statements present in the
input program for a number of times. For example, process
F1 corresponds to statement ������� , process F2 to statement�����	� , and so on. In the translation from an affine nested
loop program to a PN, two problems are involved. First, the
computation carried out by a sequential application in a single
process needs to be distributed into a number of separate
computational processes. Secondly, the global memory arrays
(e.g., 
 � and 
 � ) used for data storage need to be transformed
to dedicated FIFO buffers that are accessed using a blocking
get primitive, providing in this way a simple inter-process
synchronization mechanism.

The way we approach the translation problem originates
from the work done by Held [13] and Rijpkema [24]. Held
tried to obtain a systolic array for the same class of applica-
tions we consider. Rijpkema was the first one who formulated
the translation to PNs. He partitioned the problem into three
steps as realized in a tool called Panda [16]. In these steps,
he made use of the Ehrhart theory [9], [4]. Due to the
complexity and implementation limitations of this theory [29],
the proposed procedure was validated only for a limited class

of input algorithms. In this paper, we present a new solution
to the translation problem given in Fig 1 that uses Integer
Linear Programming (ILP). As a consequence, our translation
approach fully converts the class of static nested-loop program
with affine indices.

III. SOLUTION

The conversion from an application to a PN takes place
gradually in a number of steps guided by the idea of localizing
the control and distributing the memory as shown in Fig 2.
As a result of a Preprocessing step, the initial sequential
specification is converted to a network representation where
all the executions of one assignment statement are collapsed
into a single process.

This network represents the input of the first step, the
Consumption Restructuring. During this step, we restructure
the data consumption, i.e., each array used for storing data
generated by different producer processes is replaced by a
number of separated memory arrays; one for each producer
process. In the second step, Production Restructuring, we
restructure the data production, i.e., each array used for storing
data consumed by several consumer processes is replaced by
a number of separated memory arrays; one for each consumer
process. After performing the first two steps a distinct piece of
memory is put between a producer and consumer process. This
forms an instance of the classical producer/consumer (P/C)
pair. Depending on the order data is produced and consumed
in a P/C pair, different types of communication mechanisms
should be employed with adequate synchronization policies to
derive a valid PN. This is done in the third step called Com-
munication Model Selection. Using the information obtained
in first three steps, a PN with autonomously running processes
communicating data over FIFO channels is obtained as Java
or C++ code in the last step of our approach called Code
Generation.

The network obtain after the Preprocessing step does not
reveal any degree of parallelism. This it just a partitioned
representation of the application code given in Fig 1. The
topology of this network resembles the Reduce Dependence
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Graph [6] of the application. Each circle from the left part
of Fig 2 represents a process iterating one of the assignment
statements over the same iteration space as the statement is
iterated in the original code. The processes are still executed
one at the time following the same global schedule in which
the correspondent assignment statements are executed in the
original code.

A. Step1 - Consumption Restructuring

In the Consumption Restructuring step, data consumption
is restructured such that each producer process can store
data into a separate memory array. Hence, no two producer
processes write data into the same array. This transformation
is visualized in Fig 3, where array 
 � is replaced by two
different arrays 
 ��� and 
 ��� . Due to the restructuring, the
process �� now has to decide at each execution whether to
read data from 
 ��� , or 
 ��� . Consequently, the iteration space
of process �� gets partitioned into two subdomains. Each
subdomain represents what we call an Input Port Domain
(IPD). Therefore, IPD1 contains the IPs at which process ��
reads data produced by process  � and the other one, IPD2,
contains the IPs at which process �� reads data produced by
process �� . Graphically, the IPDs of a process are visualized
in Fig 2 as black spots located at the end of a consumer process
incoming edge. The partitioning in IPDs is done by adding
linear inequalities to the domain of �� as shown in the code
in Fig 3.

1) Approach:: To derive the inequalities of the IPD that
partition the consumer domain, we first identify groups of
producer processes that are writing data into the same memory
array. Let ��� be the set of all the processes � �� that write data
into the memory array 
 and ��� the set of all processes � �� that
read data from 
 . For each process � �� , we replace the writing
in array 
 with a write into a separate array 
 � . To maintain
a correct execution, the corresponding processes � �� have to
consume data from the new memory arrays 
 � . Therefore, we
have to be able to connect the consumption of a data token
with its production. To solve this problem, we make use of
exact data dependence analysis [11], [22], [19]. By performing
the dependence analysis, we get an affine dependency function
together with the domain where this function is valid. This
domain actually is an IPD. Each IPD represents a integral
union of parameterized polytopes containing all IPs at which
the input argument of the assignment statement embedded in
the process is being produced by one process. Without lost of
generality, we will assume that each IPD is represented by only
one integral parameterized polytope of dimension � , ������� "!$#&%('*),+

. Thus, each P/C pair is uniquely represented by a
polytope

 -!.#/%
together with an affine dependency function 0

represented by an integral matrix 1 , and an offset vector 2 ,
i.e., 0 !.34% �51 376 2 .

2) Example:: Consider the code given in Fig 1, where the
statements stm2 and stm3 are responsible for writing data into
a � -d array 
 � from where statement stm4 consumes data.
In the network representation of the original application, we
identify the P/C pairs of processes �8�:9;� !  �=< �� % and�8�?>@� ! �� < �� % , each of them communicating data via the

 

Fig. 3. Consumption restructuring - need for dependences analysis

global array 
 � . We replace in each P/C pair the write into
array 
 � at location 
 ��A BDC�A �EC , with a write into array 
 �=� at
location 
 �=�FA BGCHA �EC and respectively into array 
 ��� at location
 ���IA BGCHA �*C . As a consequence, process  � and �� will write
data into separate memory arrays as shown in the right-hand
side of Fig 3.

To keep the execution of the network correct, we have to
find at each execution of process �� the location in 
 ���
or 
 ��� containing the appropriate input data. This corre-
spondence is obtained using the data-dependency functions
corresponding to the P/C pairs of statements

! �����	�=<J����� � % and! ����� � <K����� � % . In case of pair �8�L9 , we find the dependency
function 0NMPO(Q ! �R<SBT<T� % � ! �R<SBU<S� % being valid on the input
port domain �F���V9W�YX ! �R<SBT<T� %�Z[)L\�] �E^_��^ � < � ^`Ba^1 < � ^b�c^ #ed ��<JB 6 �c^YfFg . Hence, at an IP

! �R<JBU<S� %
belonging to �F���V9 , the process �� consumes data produced
by process  � that is stored in 
 �=��A BDC�A �*C . In case of �8� > ,
by doing a similar analysis, we find the dependency function0 MPO4h ! �R<SBU<S� % � ! �R<SBT<T� % valid on �F��� > �iX ! �R<SBT<T� %`Z) \ ] ��^j�?^ � < � ^jBk^ 1 < � ^j�l^ #md ��<Sn7^oB 6 �&g , such
that process �� has to read data stored in 
 ���IA BGCHA �EC . At this
step we derive also the dependency functions corresponding to
the PC pairs �8� \ � !  ��<  � % and �8�?p,� !  ��< �� % . They are0 MPO4q ! �R<SBU<S� % � ! �R<JB d �=<S� d � % valid on ����� 9 �_X ! �R<SBU<S� %rZ) \ ] ��^s�?^ � < � ^oBt^ 1 < � ^j�l^ #Yd ��<SB 6 �l^ofug and0vMPOxw ! �R<SBU<S�/<Sy % � ! �R<SB d ��< #/% valid on �����V9a�_X ! �R<SBU<S� %rZ) \ ] �V^z��^ � < � ^`Ba^ 1 < � ^z�{^ #ed ��<Jn	^zB 6 �/g .
These functions will be used in the steps 2 and 3 of our
compilation process. |
B. Step2 - Production Restructuring

In the Production Restructuring step, we replace the memory
arrays that are accessed by different consumer processes with a
separate array for each consumer process. This transformation
is visualized in Fig 4, where array 
 � is replaced by two
different arrays 
 ��� and 
 �}� . Due to the restructuring, process � now has to decide at each execution whether to write
data to 
 ��� , 
 �~� , both arrays, or even none of the arrays. The
restructuring will partition the iteration space of process  �
into two subdomains. Each subdomain represents what we call
an Output Port Domain (OPD). Therefore, OPD1 contains the
IPs at which process  � writes data consumed by process  �
and the other one, OPD2, contains the IPs at which process  �
writes data consumed by process �� . Graphically, the OPDs
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of a process are visualized in Fig 2 as black spots located at
the beginning of an outgoing edges of a Producer process. The
partitioning in OPDs is done by adding linear inequalities to
the domain of  � as shown in the code given in Figure 4.

Write r11 or
r12  ??

 

Fig. 4. Production Restructuring

1) Approach:: To derive the inequalities of the OPDs that
partitions the producer domain, we first identify groups of
consumer processes that are reading data from the same
memory array. Let � � be the set made of all the consumer
processes � �� that are reading data from the same memory
array 
 . For each process � �� , we replace the read of data
from the global array 
 with a read from a separate array
 � . Due to the Consumption Restructuring step, there is only
one process � � that writes data intro 
 . To have a correct
execution, the producer processes � � has to decide at each IP� what are the proper storage arrays 
 � where data has to be
written. Finding for a producer IP � the appropriate storage
arrays, is equivalent with deciding whether � belongs to the
following set:

2������;0 !D -!$#&%�'@) + % �zXS� ] �E�;0 !.34% < 3	Z�!G -!.#&%�'@) + % g�<
(1)

where 0 is the dependency function and
 "!$#&%

is the
parametrized consumer IPD. Finding whether � belongs to2���� can be expressed as the solution of the following
parametric integer linear programming (PIP) problem [10],
with variable x � and parameter � � :

subject to: x � ZE -!.#&% < !$� � %
�v� �m0 ! x � % < !$� � %

objective: c �5� �E�HyP���K� X x � ! �v� % g�< (2)

where condition
!$� � % specifies that the problem domain is

given by the polytope
 -!.#&%

, and
!$� � % imposes that the

problem should include only the integer points � � for which
a consumer point x � exists. Although we are interested only
whether an integral solution exists or not, we choose as
objective the lexico-minimal function. This allows us to gather
additional information which is used in the Code Generation
step to optimize the network memory management. As shown
in [11], the solution of the presented problem is a multistage

conditional expression:

if (y� Ze� 9 % <
then x � ����9 ! �}� % ,

else if (y� Ze� > % <
then x �r��� > ! � � % ,

:

else if (y� Z��8��% <
then x � ��� � ! �}� % .

where
� 9 <�������< � � are disjoint parameterized polytopes subparts

of � and ��9 <�������< � � are affine transformations. Some of the
solution branches can have an empty statement represented
as � � ��� . This corresponds to the case when 0 is not a
surjective function. Only when a producer IP belongs to a
non-empty branch, data is consumed by a consumer process
and it has to be stored into an memory array. Although in
this step, the expressions of the � � functions do not serve a
purpose, they are used in the Code Generation step for the
lifetime analysis of tokens to optimize the network memory
management. Due to the restructuring, an 2���� is the union
of the domains expressed by the non-empty tree branches:2������c� ���� 9 � � < � �j���� . It is easy to observe that this
formulation of an OPD is equivalent to the one given in
Equation 1.

2) Example:: In case of process  � , we have to make
explicit two OPDs, namely 2���� � consisting of the iterations
at which data has to be loaded into 
 ��� and 2���� � consisting
of the IPs at which data has to be loaded into 
 �~� . Since
we have two P/C pairs, the following two PIP problems
(corresponding to �8� \ and to �8�?p ) have to be solved:
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As shown in [10], [23], the two ILP problems can be
solved using algorithms like Lexicographical Dual Simplex or
Fourier-Motzkin Elimination. As a result we get the following
two solution trees �k��9 and �k��> , composed of statements
expressed in the coordinates of the iteration space of process � :
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The two trees from above partition the iteration space of
process  � . While initially the data produced by  � was
always written at 
 A � 6 ��C�A � d � C , now depending on the
constraints specified by the branches of �k� � and �k� � , the
data is written into 
 �~�IA � 6 ��C�A � d � C and/or into 
 �~�IA � 6 ��C�A � d � C
as shown in Fig 4. Observe that the solution tree of �"� � has
two different solution, corresponding to two disjoint domains:� 9 ��X ! � � <S� � <�� � %aZ&) \ ] �8^�� � ^ � <��W^o� � ^ 1 d ��<H� � �# <S ¡^¢� � 6m#£d n�<K��^¢� � ^ � g and � > �¤X ! � � <T� � <�� � %�Z) \ ] ��^s� � ^ � <���^¥� � ^ 1 d ��<�� � � # <S @^s� � 67#od n�<J¦7^� � g . This we interpret as follows: if � � 9 � ! � � <T� � <�� � % is a
producer IP belonging to � 9 at which  9 produces the token � ,
than

! � � <S� � 6 ��< d � � 6 f % represents the first (lexicographically
smallest) consumer IP that consumes the token � . Similarly, if� �4> is a producer iteration point belonging to �V> than the first
consumer IP that consumes it is

! �H��< d �$� 6 ��< � % . However,
from the point of view of the distribution of the data the
information regarding different first consumption is irrelevant
here i.e., we are interested only whether a produced token has
to be submitted or not. Therefore, as shown by Fig 4 the two
disjoint domains � 9 and � > represent the output port domain2���� > �Y� 9 �&� > �§X ! � � <T� � <�� � %WZo)L\V] �E^¨� � ^ � <��©^� � ^ 1 d ��<�� � � # <S @^j� � 6[#�d n=g . |
C. Step3 - Communication Model Selection

After performing the Consumption and Production Restruc-
turing, the original application has been partitioned into sepa-
rate tasks in which P/C pairs communicate data over dedicated
memory arrays. In the Communication Model Selection step,
we investigates the communication characteristics of each
P/C pair in order to replace the memory array with a FIFO
based communication structure. As result of this step, a PN
with bounded memory execution is obtained. This is because
a FIFO size equal to the number of IPs included into the
corresponding OPD will be enough to avoid the appearance
of network deadlocks. However, the size of the FIFO can be
decreased using techniques allowing us to find a good balance
between memory space and inter-process parallelism [20], [2].

1) Approach:: There are four communication types for a
P/C pair. These four types of communication are given in
Figure 5. They result from the ordering of the iterations at
the Producer and the Consumer processes and the existence
of multiplicity for a given token, which means that a token that
is sent by the Producer is read more than once at the Consumer
side. We define in a formal way ordering and multiplicity as
follows:

Definition 1 A P/C pair is in-order iff the dependency func-
tion 0«ª !G s'm¬,+N%5 � preserves the order, i.e., every
two Consumer iteration points

3 9}® 3 > are mapped onto two
Producer iteration points � 9 �Y0 !.3 9 % and � > �Y0 !.3 > % such
that � 9}¯ � > . If a P/C pair is not in order we call it out-of-
order.

Definition 2 A P/C pair is without multiplicity iff the map-
ping 0�ª !D �'j¬,+N%� � is injective, i.e., ° 3 9 < 3 > Z± �'
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data dependecy

loop schedule

Fig. 5. Four possible types of P/C data-flow graphs

¬ + ��� �R� 3 9 �� 3 >³² 0 !G3 9 % ���0 !G3 > % . Otherwise we say that
the P/C pair is with multiplicity.

According to these definitions, an arbitrary P/C pair belongs
to one of four disjoint classes: in-order without multiplicity
(IOM-), in-order with multiplicity (IOM+), out-of-order with-
out multiplicity (OOM-), and out-of-order with multiplicity
(OOM+).

To determine the communication pattern of an arbitrary P/C
pair, we need to identify to which of the four classes the
P/C data-flow graph belongs. For that purpose, we introduce
two tests. The Reordering Test determines if a P/C pair is in-
order and the Multiplicity Test determines if a P/C pair is with
multiplicity. Based on these two tests, an arbitrary P/C pair is
classified to one of the four categories. These two tests can be
formulated and solved using ILP. Consider again an arbitrary
P/C pair �8� represented by a parameterized IPD

 -!.#/%
and

a dependency function 0 . According to Definition 1, a P/C
pair is out-of-order, if there exist two Consumer IPs

3 <S� (as
given by conditions

!$� � % and
!.� � % ), such that

3 ® � !$� � % and0 !G3(% ® 0 ! � %L!.� � % . These four conditions form the Reordering
Problem (RP). If a solution exists for the RP, it means that a
P/C pair is out-of-order so the RT is true. Otherwise the P/C
pair is in-order.

´*µ ª
¶···¸ ···¹
3	Z¡!G "!$#&%�'	¬:+v% < !$� � %� Z�!G -!.#&%�'	¬,+N% < !$� � %3 ® �(< !$� � %0 ! � % ® 0 !G3(% � !$� � %

According to Definition 2, a P/C pair has multiplicity if
two different Consumer points

3
and � exists as given by

conditions
!.� � % , !.� � % and

!.� � % , such that they consume one
and the same token from the Producer as given by condition!.� � % . The four conditions form the Multiplicity Problem (MP).
If a solution exists for the MP then the MT is true such that
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Fig. 6. Communication Model Selection

then the P/C pair is with multiplicity.

á`µ ª
¶···¸ ···¹
3âZ�!D -!.#&%�'©¬,+v% < !.� � %� Z¡!D -!$#&%�'	¬:+v% < !.� � %3 �� �4< !.� � %0 !G3(% �m0 ! � % � !.� � %

Both the Multiplicity Test and the Reordering Test are so
called Existence tests as we only need to determine whether
MP and RP have at least an integral solution. The procedure
to determine if a domain contains at least a single integer
point is what we call the Empty Domain Test (ET). To realize
the ET we make use of the Omega Test as provided by
PIP or Omega libraries [22], [10]. The ET is an ILP test
and requires systems of linear constraints. Both 1_� andã � contain non-linear constraints (see for example conditions!.� � % in both problems), but using the lexicographic order,
we can decompose them into subsets of linear constraints
( 1_� � respectively

ã � � ) onto which ET can be applied:1ä� ! 1_� % �§å �Næ � ! 1_� � % and
ã � ! ã � % �§å �Pæ � ! ã � � % .

In case of the RP, the lexicographical order operator ® is
decomposed into subsets of linear constraints. On each subset,
the ET needs to be applied. In case of the MP, the negation is
the non-linear operator. The negation can be rewritten to two
inequalities, as

3 �� �èçé� ® 3:ê83 ® � , where we use again the
decomposition of the lexicographical operator to obtain linear
constraints.

2) Example:: Let us analyze how the presented tests are
used for deciding the type of an arbitrary P/C pair. Due to
space constraints, we present only how the MT applies in
case of �8�rp,� !  ��< �� % . For this purpose we verify whether
the domain specified by the constraints given in 1_�"MPO p
contains integer points. As you can see in 1_�kMPO p , all the
constraints are linear inequalities excepting those specified by
the condition

!$� � % . Because
3

and � are arbitrarily points from
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by using the lexicographical order the condition

!$� � % is
decomposed as the following set of linear conditions:!.3Ië < 3Iì < 3 � < 3 � % �� ! � ë <T� ì <S� � <S� � %îí¶·¸ ·¹

3 ërï � ë ê !$� � 9 %!-3 ë � � ë < 3 ìkï � ì %�ê !$� � > %!-3 ë � � ë < 3 ì � � ì < 3 � ï � � %�ê !$� � \ %
This leads to three instances of the MP. If one of these systems
has a solution, multiplicity is involved, which is the case. The
system made of conditions

!.� � % < !.� � % < !$� � \ % < !.� � % has a solu-
tion. This can be verified by looking, for example, to the points� � � ! �R<SBT<Tð % and � � � ! �R<SBU<Sñ % with ð �� ñ . Both points are
mapped to the same point

! �R<JB d ��< #&% at the Producer side.
By applying the multiplicity and reordering tests to the 4 P/C
pairs in our example, we find that �8�L9 < �8�r> < �8� \ are of type
IOM- and that �8� p is of type IOM+ as shown in Fig 6. |
D. Step4 - Code Generation

In the first three steps, we have created a PN model which
consists of a topology, the iteration spaces of the processes,
the IPDs and OPDs, and the types of the channels. In the
Code Generation step, a software representation is derived
for the PN model. The iteration spaces are converted to for-
statements by making use of Fourier-Motzkin Elimination [5].
The topology, IPDs, and OPDs are transformed into com-
ponents like threads and sets of for and if statements with
linear expressions. For the discussed components, equivalent
implementation exists in the YAPI environment, as C++ [7],
or in the PN-domain of the Ptolemy Framework which is
based on Java [18]. In this step, we also take advantage of
the classification done in the Communication Model Selection
step, to implement an optimal communication structure for
each P/C pair.

1) Approach:: To derive a software description of the
PN takes place in two steps. In the first step, the network
processes are derived. Each iteration space of a process, which
is represented by a matrix, is translated to a nested for-loop
representation. Furthermore, each IPD and OPD is translated
from its matrix representation to a structure of if-statements
that is inserted in the appropriate processes. In the second
step, the network communication structure is derived for each
P/C pair. Based on the type of the P/C pair, we realize the
communication in the follow way:ò IOM- Using only a FIFO buffer that is accessed using a

get and put primitive.ò IOM+ Using a FIFO buffer that is accessed using a get
and put primitive. However additional control is added
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Fig. 7. The final network implementation

to determine the life-time of a token to account for the
multiplicity of tokens.ò OOM- Using a FIFO buffer that is accessed using a get
and put primitive, but at the Consumer process we add
private reordering memory and a controller to perform
the reordering. Since multiplicity is not involved, each
time the controller accesses the reordering memory for
reading data, the corresponding memory location can be
immediately released.ò OOM+ Using a FIFO buffer that is accessed using a get
and put primitive, but at the Consumer process we add
private reordering memory and a controller to perform the
reordering and additional control to keep track of the life-
time of a token. If the life-time of the token has come to
an end, the life-time control releases the memory location
hold by the token in the reordering memory.

The implementations for the different types increase in
their complexity from IOM- to OOM+. The implementation
of IOM- and IOM+ are closely related, except that in IOM-
additional control is needed to know when to read data from
the FIFO. The implementation of OOM- and OOM+ requires
additional reordering memory and a reorder controller. Of
the four models identified, OOM+ is the most expensive
communication structure to be realized. It is also the generic
communication structure since it subsumes all three other
structures.

To perform a compile time lifetime analysis of data com-
municated between Producer and Consumer processes, for
communication type IOM+, we make use of what we call the
Lexicographically minimal Preimage (LmP) [28]. The LmP

maps the domains
� 9 <�������< � � presented in the solution tree

presented in Section III-B into the Consumer domain using
the non-empty functions ��9 ����� � � . These transformations are
the solution to the minimization problem given in Equation 2,
with as objective to find the lexicographical minimal. Hence,
an iteration � Z � 9 !D� 9 % is therefore the lexicographically
minimal IP that consumes the token produced by 0 ! � % . This
means that � is a point at which a new token has to be read
from a FIFO. Once the token is read and removed from the
FIFO, it can be reused as many times as needed, until the next�=ó is found that indicated that a new token is to be read.

The opposite of the LmP is the Lexicographically Maximal
Preimage. This identifies the last consumer IP which uses
a certain input data token. For communication type OOM+,
where the tokens are stored in a reordering memory, the Lex-
icographically Maximal Preimage indicates when a memory
location can be released allowing us to minimize the size of
the reordering memory.

2) Example:: In the example, we focus only on the im-
plementation of the communication types IOM+ and IOM-.
In case of pair �8� 9 < �8� > < �8� \ , we replace the static arrays
 ��� , 
 �=� and 
 ��� with a FIFO buffer. Observe that the absolute
addressing performed on the arrays is now replaced by a
relative addressing using put and get primitives. In case of�8�?p , we replace static array 
 �~� by a FIFO buffer, but we
also need to take into account the life-time of the tokens
flowing over the FIFO due to multiplicity. To find the moment
a process can read a token from FIFO2. we use the LmP.
We map the domain represented by 2����V> through their
correspondent solution functions. Hence, we map the domain�V9 through affine mapping

! �H��<T�$� 6 ��< d �.� 6 f % and we get
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ô � �k9��«X ! �R<SBU<S� %âZ¨) \ ] �¥^l�&^ � < � ^lB*^ 1 < � ^�õ^ #ed ��<JB 6 � � nI<Ty �b� <S�{^b¦ug . Similarly, we map
domain ��> through affine mapping

! �H�=< d �$� 6 ��< � < � % and we
get domain

ô � �t>V��X ! �R<SBT<T� %8Zj) \ ] �©^`�7^ � < � ^�Bö^1 < � ^ä�«^ #ld ��< � ^5�{^ 1 <S� ��� <J÷©^äBÕ^zø d[# g .
Once

ô � �"9 and
ô � �t> have been derived, we can simplify

them in context of the correspondent process IPD by removing
constraints in common with the constraints describing the IPD.

The pseudo code for the PN is shown in Fig 7. It shows the
way the four processes are implemented. It also shows how the
IPDs and OPDs derived in the various steps, are transformed
into if-statement using linear expressions. In case of Process�� , we need to implement the constraints that take care of
the life-time of tokens into account. The simplified

ô � � 9
and

ô � � > are converted to if-statements and inserted to the
IPDs of Process �� . If conditions

ô � � 9 or
ô � � > hold, a

token is read from the FIFO and is reused as many times as
needed before the

ô � � � indicate that the next token needs
to be read. |

IV. IMPLEMENTATION AND RESULTS

The steps presented in Fig 2 are implemented in the tool
chain shown in Fig 8. The first tool, called MatParser [15],
performs an exact data-dependence analysis. This tool im-
plements the Consumption Restructuring step. The Process
Network Generator tool, or PNGen, implements the remaining
three steps and generates a PN description. PNGen replaces
the Panda tool in Compaan. The user can choose the PN to
be generated in C++ or in Java. The generated code allows us
to simulate the PN and to verify that the PN is equivalent
to the original sequential program. It is also possible to
generate hardware for a PN. The Laura tool [32] transforms
the network generated by PNGen into an equivalent VHDL
description that can be synthesized and mapped on an FPGA
platform. The four transformation steps make extensive use of
polyhedron manipulations, matrix decompositions, and integer
linear programming. We relay for these operations within
MatParser and PNGen on existing libraries, like PolyLib [30],
Pip [10], and Omega [22].

In Table I, we present some quantitative characteristics
obtained form compiling 7 applications, of which the M-
JPEG case is described separately in [25] and the QR case
in [12]. For each application, we have given the number of
lines of the original sequential representation, the compilation
time required on a Pentium III processor, and the number
of processes and channels generated. We also show how the
P/C pairs are classified to the four types. Based on this data,
we observed that in approximately 90% of the P/C pairs a
communication structure based on a FIFO buffer is sufficient.
In remaining 10% of the cases, we need to realize a reordering
at the Consumer process, using extra memory and a reordering
controller.

V. CONCLUSION

This paper describes a solution to convert the complete
class of static affine nested loop programs into equivalent PN
representations equivalent using Integer Linear Programming.

 

Fig. 8. Compiler organization

The approach is analytical; there is not a single heuristic
involved. We have shown that the conversion problem can be
divided into 4 steps. For each step, we presented the main idea
of the step, how to realize the step, and how it applies to a
running example.

All the steps and techniques presented have been imple-
mented in software in the Compaan tool chain. Actually, all the
examples given in this paper are generated by this compiler.
We also showed the results we get from running Compaan
on a set of 7 applications from the area of signal and image
processing. The Compaan compiler put us in a great position
to program heterogeneous multiprocessor platforms. Using
PNGen, we obtain software implementations for PNs that can
be mapped and executed on CPUs or DSPs. On the other hand,
using Laura, we can also obtain hardware implementations
for PNs making use of dedicated IP cores and reconfigurable
hardware. An arbitrary mix between hardware and software is
also possible.

As future work, we plan to provide a number of transfor-
mations at the process network level. These network trans-
formations are for example, Channel Merging, in which a
number of channels relating the same network processes are
merged into an single one, Process Splitting, in which the
loop structure of a process is unrolled resulting in this way
a larger number of processes and Process Retiming, in which
the iteration space of a process is rescheduled by applying
unimodular transformations.
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