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Abstract. At Leiden Embedded Research Center, we are building a tool chain
called Compaan/Laura that allows us to do fast mapping of applications written
in Matlab onto reconfigurable platforms, such as FPGAs, using IP cores to imple-
ment the data-path of the applications. A particular characteristic of the derived
networks is the existence of selfloops. These selfloops have a large impact on
the utilization of IP cores in the final hardware implementation of a PN, espe-
cially if the IP cores are deeply pipelined. In this paper, we present an exploration
methodology that uses feedback provided by the Laura tool to increase the uti-
lization of IP cores embedded in our PN network. Using this exploration, we go
from 60MFlops to 1,7GFlops for the QR algorithm using the same number of
resources except for memory.

1 Introduction

To better exploit the reconfigurable hardware devices that are coming to market, a num-
ber of companies like AccelChip and Celoxica and research groups around the world [5,
1] are developing new design methodologies to make the use of these devices more
ubiquitous by easing the way these devices are to be programmed. At Leiden Embed-
ded Research Center, we are developing a design methodology that allows us to do fast
mapping of applications (DSP, imaging, or multi-media) written in Matlab onto recon-
figurable devices. This design methodology is implemented into a tool chain that we
call Compaan/Laura [9]. The Compaan tool analyzes the Matlab application and de-
rives automatically a parallel representation, expressed as a Process Network (PN). A
PN consists of concurrent processes that are interconnected via asynchronous FIFOs.
The control of the input Matlab program is distributed over the process and the memory
is distributed over the FIFOs. Next, the Laura tool synthesizes a network of hardware
processors from the PN. Laura derives automatically the VHDL communication struc-
ture of the processor network as well as the control logic (interfaces) of the processors
needed to attach them to the communication structure. The computation that has to be
performed in every processor is not synthesized by the Laura tool. Instead, the tool
integrates commercial IP cores in every processor to realize the complete computation.

When pipelined IP cores are used in a PN processed by Laura, new data can be read
without waiting for the finalization of the current computation. Therefore, a network is
seen as a big pipelined system. To maximize the throughput of a network, we need to
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carefully consider how to couple the pipelines of the processors in a network. In this
coupling, one particular characteristic plays an important role. This is the existence of
selfloops. A selfloop is a communication channel that sends data produced by a pro-
cessor to itself. Selfloops appear very frequently in PNs and they impact the utilization
of IP cores thus have a great impact on the overall performance of PNs. A pipelined
IP core works at maximum throughput if the network provides as many independent
operations as the depth of the pipeline.

In this paper, we present how we can perform a design space exploration to in-
crease the utilization of IP cores. Using exploration, we change in a systematic way the
size of the selfloops as they are a measure of independent operations. This measure is
obtained at compile-time by extending Laura with a Profiler option. This provides sys-
tematic hints for further exploration. Using this profiler, we performed an exploration
that is presented at the end of this paper. In this exploration, we realizes a throughput
improvement from 60MFlops to 1,7GFlops for a QR algorithm, using the same number
of processors.

2 The Compaan/Laura tool chain

In general, specifying an application as a PN is a difficult task. Therefore, we use our
Compaan Compiler [6] that fully automates the transformation of a Matlab code into
PNs. Subsequently, the Laura [11] tool takes as its input this PN specification and gen-
erates synthesizable VHDL code that targets a specific FPGA platform. The Compaan
and Laura tools together, realize a fully automated design flow that maps sequential
algorithms written in subset of Matlab onto reconfigurable platforms. This design flow
is shown in Figure 1.
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Fig. 1. The Compaan/Laura tool chain
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Fig. 2. The Virtual Processor model

In the first part of the design flow, an application specification is given in Matlab to
Compaan to be compiled to a PN representation. The applications Compaan can handle
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are parameterized static affine nested loop programs, which can be described using a
subset of the Matlab language. In the second part of the design flow, Laura transforms a
PN specification together with predefined IP cores into synthesizable VHDL code. The
IP cores are needed as they implement the functionality of the functions calls used in
the original Matlab program. In the third part of the design flow, the generated VHDL
code is processed by commercial tools to obtain quantitative results. These results can
be interpreted by designers, leading to new design decisions. This is done with the help
of Mattransform tool [8] that performs a source-to-source transformation on the Mat-
lab code. By rewriting the Matlab code, we can explore different mappings. When an
obtained algorithm instance meets the requirements of the designer, the corresponding
VHDL output is synthesized by a commercial tool and mapped onto an FPGA platform.
Recently, we have extended Laura with a ’Profiler’ option to provide hints at compile
time that can be used by Mattransform to rewrite the application to increase the perfor-
mance of the input algorithm.

To show the relation between a function call in Matlab program and an IP core,
we need to explain the way Laura realizes the functionality of the function call. This
functionality is wrapped and executed in a corresponding processor of the derived PN.
To implement the PN in hardware, Laura uses the notion of Virtual Processors and
hardware communications channels (i.e. FIFOs).

A Virtual Processor is composed of four units: a Read unit, a Write unit, an Execute
unit, and a Controller unit, as shown in Figure 2. The Execute unit is the computational
part of a virtual processor. The Read unit is responsible for assigning all the input argu-
ments of the Execute unit with valid data. The Write unit is responsible for distributing
the results of the Execute unit to the relevant processors in the network. The Controller
of the Virtual Processor synchronizes all the units of the processor. The Read unit and
the Write unit can block the next execution when a blocking-read or a blocking-write
situation occurs, thereby stalling the complete processor. A blocking-read situation oc-
curs when data is not available at a given input port. A blocking-write situation occurs
when data cannot be written to a particular output port. In the Execute unit an IP core
is embedded. This IP core implements the functionality specified in the original Matlab
code. The controller automatically fires the execution unit when data is available.

3 Problem Definition

The task to interpret the quantitative results obtained from VHDL traces can be very
difficult in a complex PN network. Therefore, we want to guide the designer using the
tool chain with indications that are obtained from the analysis of the network and prior
knowledge on the IP cores.

Laura’s Virtual Processor is a pipelined processor. Therefore, the filling and flushing
of the pipeline reduces the throughput below the maximum level achievable. One of the
problems that affect the efficiency of our designs is given by the data availability. Data
availability is affected when selfloops are involved. When a processor has a selfloop, it
can happen that the processor want to read data from the selfloop, but that data is still
in the pipeline. Because the data is in the pipeline, the processor has to wait, reducing
the efficiency of the pipeline of the IP core.
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Fig. 3. Simple Example

Let us consider a simple example by looking at the dependency graph (DG) in
Figure 3. This DG is folded by Compaan into a single processor that has a single self-
loop, which corresponds to data dependencies in the i direction. In Compaan, the nodes
in the DG are scheduled. In Figure 3, the schedule is given by the p direction (e.g.
1,2,3,4,..,14,15,16). It is obvious that the operations 1,2,3,4 are independent, i.e. there
is no arrow between them and, therefore, no data dependency. Therefore, the proces-
sor has to store the result of these operations into a temporary memory until they are
consumed by the following 4 independent operations (e.g. 5,6,7,8). In our case, this
memory is a selfloop, implemented as a FIFO channel. Hence, the necessary size for
the selfloop is given by the number of independent operations, which is 4 in the case
given in Figure 3. If we consider an alternative schedule given by the i direction (e.g.
1,5,9,13,..,12,16) the size of the selfloop FIFO is one. In this case, the data is immedi-
ately consumed by the processor after being produced.

Now, let us assume that the processor is pipelined and its pipeline depth is equal to
4. For the first schedule example, the pipeline achieves the maximum throughput be-
cause all the pipeline stages are filled with independent operations. The processor takes
data either from a source (i.e. the first four iterations) or from itself (i.e. the remaining
iterations). In the second schedule example, the pipeline is underutilized because the
data generated by the processor is not yet available at its input due to the pipelining.
This case should be avoided as the pipeline of the IP core is used for only 25% of its
capacity.

4 Solution Approach

The number of independent operations that can be mapped onto a processor is a key
metric to obtain efficient implementations. Hence, we developed a procedure that re-
ports the number of independent operations that are mapped onto a Virtual Processor
that has selfloops. We call this the Profiler of Laura. The procedure computes the size
of a selfloop, which represents the amount of independent operations for a processor.
The number is reported back to the designer who may take the necessary decisions
to improve the quality of the analyzed design. Design decisions such as retiming (i.e.
skewing), loop swapping, adding more streams of the same problem and unfolding can
be applied to control the amount of independent operations that are mapped onto a pro-
cessor. Using the procedure to compute the size of the selfloop and the given design
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decisions, we can close the loop in Figure 1 needed to perform a design space explo-
ration to improve the efficiency of an input algorithm mapped into a reconfigurable
platform.

5 Detecting the selfloop size

Normally, we cannot determine the size of a FIFO in a PN as we only specify the
partial order between the processors. To determine the size of each FIFO would require
a global schedule of the network, which cannot be easily determined. The selfloop is,
however, a special case as this kind of communication channel starts and ends on the
same processor and the writing and reading to/from this channel respects the internal
schedule of the processor. We exploit this special case to determine the size of the FIFO
channel.

We use the polytopes model [2] to represent mathematically a statical nested for
loop program that is taken as input by our tool chain. Each processor is characterized by
a polytope that represents its iteration space. The original for-loops gives us a schedule
on this iteration space. This schedule is implemented in the Read and Write units of
the Virtual Processor and its responsibility is to communicate the right data with other
processors in the network.

The order in which write and read operations are performed over the selfloop de-
pends on the local schedule of the processor. The selfloop size is given by the number
of write operations that are done before the first read operation is performed, which
defines the run in period. Due to the schedule of a processor, it is guaranteed that after
the first read is done, other read operations will follow at constant time intervals, which
defines the steady stage. In this stage, the read operations are interleaved with the write
operations. The steady stage is followed by the run out period, which is characterized
by performing only read operations. Hence, to compute the selfloop size, it is necessary
to determine how many write operations were made in the run in period. This is equiv-
alent to counting the number of integral points in the polytope that defines the run in
period. To compute the points, we made use of the Ehrhart theory [4].

A processor can have one or more selfloops and each selfloop can have a differ-
ent size. The minimum size out of all the processor selfloops represents the minimum
amount of independent operations that are mapped on the IP core. Therefore, we con-
sider this minimum size for our efficiency analysis.

6 Increasing the throughput of a Virtual Processor

The Virtual Processor is a pipelined model; reading, executing, and writing are done
in a pipeline fashion, as shown in Figure 2. To process a token, the read unit requires
τread cycles to fetch the token. The execute unit requires δpipeline cycles in the IP core
to execute. The write unit requires τwrite cycles to write a token into an output FIFO.
To achieve 100% utilization for the IP core in an ideal network, the required number of
independent operations Σ that needs to be mapped on the IP core is given by Equation 1.

Σ = δpipeline + τwrite + τread (1)
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6.1 Pipelined IP cores and independent operation

To optimize the IP efficiency, we need to look at the number of pipeline stages and the
size of the FIFO selfloop. If the size of the FIFO is smaller than the number of pipeline
stages, then we can increase the number of independent operations. This can be done in
two ways. The first way is to apply an unimodular transformation (e.g., skewing, loop
swapping) on the local schedule of the Virtual Processor local schedule that contains
the IP core. The second way is to add

P = Σ − SizeFIFO (2)

independent streams of the same problem to be processed in a pipeline fashion by our
network (i.e., data-stripping). This gives us the necessary independent operations in the
processors for an optimal throughput. These P independent stream must be interleaved
in a optimal way. We relay on Compaan to do this for us by rewriting the original Matlab
code with one extra for-loop that has as upper bound the value P . This loop must be the
inner most loop to achieve the interleaved execution of the streams. If the size of the
selfloop is larger than the number of pipeline stages, then the core is overloaded with
independent operations. We can take advantage of this surplus of independent operation
by unrolling this processor to increase the number of parallel running resources. An
unrolling operation balances the workload on two or more identical processors, and
may improve the performance for the entire algorithm. The proposed procedures of
independent streams and unrolling do not guarantee an efficiency of 100% of the IP
core. This is because the core efficiency depends also on the data dependencies between
different processors.

6.2 Single cycle IP cores and one independent operation

A special case exists when the IP core is not pipelined at all. If a selfloop of size 1
is mapped on the IP core, we have an instance of the classic case of data hazard. In
this situation the selfloop is replaced with a simple wire between the read and write
unit of the virtual processor. This technique is very beneficial, as the wire increases the
throughput of the processor and requires less hardware resources.

7 QR: A case study

To explain the hints the profiler implemented in Laura presented and how that effects de-
sign decisions, we now consider the QR case, which is widely used in signal processing
applications [10]. The Matlab code for the QR algorithm that can be processed by Com-
paan is presented in Figure 4. It shows two function calls (bcell and icell) surrounded
by parameterized for-loops. Compaan will generate a PN based on the for-loops and
the variables passed on to the function calls. What happens in the bcell and icell is ir-
relevant to Compaan, but not for Laura. The network we obtain is given in Figure 4.
Observe that each function call becomes a process in Compaan and that both the bcell
and icell processes have selfloops.
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The bcell and icell are realized by integrating a bcell and icell IP core on the execute
unit in a virtual processor (See Figure 2) for the icell and bcell function call. The bcell
and icell IP cores are pipelined and have 55 and 42 stages, respectively. To arrive to
an optimal QR implementation each core must, therefore, have 57 and 44 independent
operations, according to Equation 1. We look at QR with the parameters set to the
typically values of N = 7 and T = 21. For the case presented in Figure 4, our profiler
reports for the smallest selfloop of icell a size five and for bcell a size 1. Given the deep
pipelines of the icell and bcell IP cores, both of them are underutilized and the profiler
recommends either to explore a space of additional independent QR streams from 1 to
57, or to perform a skewing operation.

First, we choose to explore the design decision of adding independent streams, and
then we evaluate the design decision of skewing. For each experiment, we derive a
VHDL representation of the algorithm using the Compaan/Laura tool chain that we can
simulate to obtain quantitative data. The execution duration(Nocycles) for each exper-
iment is measured in cycles. Each of the icell(Noicell) and bcell(Nobcell) operations
contain 11 and 16 floating point operations, respectively. The average speed of our QR
network mapped onto an FPGA platform is 100Mhz. We use the next formula to com-
pute how many million floating point operations per second (MFLOPS) can be achieved
in each experiment.

∆ =
Noicell ∗ 11 + Nobcell ∗ 16

Nocycles

∗ 10
6 (3)

7.1 QR: Adding more streams

As we input the original QR algorithm in the chain, the profiler reports that we have
to add 57 independent streams to the bcell IP core and 40 independent streams to the
icell IP core by applying Equation 2. Hence, we choose to explore the space made by
running 1, 10, 20, 30, 40 and 57 independent streams. In this case, the stream represent
complete instances of the QR algorithm. The results of this exploration are given in
Figure 5.

We observe that the saturation point is marked by the running 40 QR instances. At
this point, the profiler reports 4.54 times more independent operations than the icell
can handle. Therefore, we choose to unfold the icell twice and four times respectively.

for k = 1:1:T,
for j = 1:1:N,
[r(j,j), rr(j,j), a, b, d(k) ] =

bcell( r(j,j), rr(j,j), x(k,j), d(k) );
for i = j+1:1:N,
[r(j,i), x(k,i)] =

icell( r(j,i), x(k,i), a, b );
end

end
end
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Fig. 4. The QR matlab code and the equivalent PN
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This leads us to 1764MFLOPS and 1767MFLOPS, respectively. The first transforma-
tion gives us an additional 81MFLOPS, while the second one only a difference of
3MFLOPS. It is obvious that the second operation is not as successful as the first one.
We should also indicate that although we didn’t use more IP cores, we obtained the
higher throughput at the expense of more memory.

7.2 QR: Skewing

A second option to increase the number of independent operations in each processor
is to skew the algorithm in Figure 4. After applying this transformation, the profiler
indicates 7 independent operations in bcell and 21 in icell. However, these numbers are
not sufficient to fill the entire pipeline.

To achieve a higher throughput for our experiment, we must either increase the
dimension of the input problem or add more independent streams, i.e., QR instances.
For the first case the required parameters will be N = 57 and T = 44. For the second one,
a space of 10 independent QRs is suggested by the profiler. We choose to explore 2, 4,
6, 7, and 10 independent streams. The results are shown in Figure 6. The first bar from
the graph represents the throughput of the original QR, the second bar is the skewed
version and the following bars are the values obtained for the skewed QR algorithm
with increasing number of independent QR streams.

We choose to unroll the QR algorithm running 4 QR instances. In this case, the pro-
filer reports a 181% utilization for the icell. Unrolling the icell core twice gives us only
6MFLOPS more throughput compared with the non-unfolded algorithm. This shows us
that the decision was not so successful. The reason for this is that the unfolded icell
cores work in a mutual exclusive fashion, nulling the effect of the unrolling operation.

Fig. 5. QR experiments with additional
streams

Fig. 6. QR experiments with skewing and ad-
ditional streams
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7.3 Discussion

Based on the values given in Figure 6, skewing the algorithm gives us from the begin-
ning an important amount of independent operations that allows to obtain a higher com-
putational throughput without adding independent streams. The skew transformation
fills the pipeline with parallel data that belongs to the same input problem. However,
it may be that the skewing transformation doesn’t achieve the maximum throughput of
the cores and, therefore, solutions such as increasing the dimensions of the input prob-
lem (i.e. changing the values of T and N) or adding more independent streams may be
required.

The existence of parallel operations that belongs to the original algorithm helps the
designer in achieving the maximum throughput with minimum amount of independent
streams added. These operations are exposed to the architecture through the skewing
transformation. In the non-skewed version the saturation of our architecture is reached
around 40 streams, while in the case of the skewed version the saturation point is given
by 6 streams. In real life, it is more likely that only a small number of independent
instances of an algorithm need to be computed at the same time. Therefore, the skewed
version is more appealing to start with in any design space exploration. The overload-
ing of an IP core with many streams can be solved either by increasing the clock speed
for that particular processor (i.e., using various clock domains) or by unrolling it. In
our experiment, we showed that applying high-level transformations (e.g., skewing, un-
folding, data stripping) as offered by the Laura profiler as hints leads to an increased
throughput. Nevertheless, quantitative simulation data is needed to assess its final use-
fulness.

8 Related Work

There are numerous researchers that recognized the need for fast performance estima-
tion to guide the compilation of a high-level application for deriving alternative designs.
The PICO project [5] uses estimations based on the scheduling of the iterations of the
nested loop to determine which loop transformation lead to shorter scheduling time.
The MILAN project [1] provides a design space exploration and simulation environ-
ment for System-on-Chip architectures. MILAN uses simulation techniques to derive
estimates used in the evaluation of a given application. In [3] the authors use an ana-
lytical performance model to determine the best mapping for their processor array. An
analytical model is used also in [7] to derive performance and area for a given nested-
loop program. All these projects are focused on synchronous systems, and, therefore,
a global schedule of their system can be derived at compile time. However, we derive
estimations regarding the throughput of deeply pipelined IP cores in the absence of a
global network schedule. In [8], we have shown already that we can apply loop trans-
formations to increase the performance of our networks.

9 Conclusions and future work

A particular characteristic of the derived networks we obtain from running the Com-
paan/Laura tools, is the existence of selfloops. These loops have a large impact on the
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utilization of the IP cores and in the final hardware implementation of a KPN. This is
especially the case when the IP cores are deeply pipelined. To improve the efficiency,
the designer has to make design decisions like skewing, unrolling, loop swapping and
data stripping. To help the designer to in making these decisions, we have implemented
the profiler in Laura. The profiler uses manipulation of polytopes to compute at compile
time the size of selfloops. This size is indicative for the number of independent oper-
ations available in an algorithm. The computed hints provides by the profiler, help to
steer design decisions. Doing this in a iterative manner, a designer can explore options
to improve the throughput of a process network. In this paper, we have shown for the
QR algorithm that we could improve the performance from 60MFlops to 1.7GFlops by
using the hints from the profiler. Using the hints, we could improve the utilization of
mapping the QR algorithm on a FPGA with deeply pipelined IP cores by a factor of 30,
using the same IP cores albeit at the expense of more memory.

To improve the efficiency, the designer has to make design decisions. These opera-
tions can be expressed at the Matlab level using the Mattransform tool. Currently, the
hints provided by the profiler needs to be manually expressed. Future work is to make
a connection between the Mattransform tool and the hints from the profiler.
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