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Abstract. At Leiden University, we are developing a design methodology that
allows for fast mapping of nested-loop applications (e.g. DSP, Imaging, or Multi-
Media) written in a subset of Matlab onto reconfigurable devices. This design
methodology is implemented into a tool chain that we call COMPAAN/LAURA [8].
This methodology generates a process network in which the inter-process com-
munication takes place in a point-to-point fashion. Four types of point-to-point
inter-processor communication exist in the PN. Two of them use a FIFO like
communication and the other two use a cache like memory to exchange data. In
this paper, we investigate the realizations for the four communication types and
show that point-to-point communication at the level of scalars can be realized
automatically and very efficiently in today’s FPGAs.

1 Introduction

To better exploit the reconfigurable hardware devices that are coming to market, a num-
ber of technologies are developed to handle billions of transistors available in these
new chips. A key idea in these technologies is decoupling the communication from
computation. This decoupling allows the IP cores (the computation part) and the inter-
connect (the communication part) to be design separately [5]. Respecting this design
concept, we are developing a design methodology that allows fast mapping of nested-
loop applications (e.g. DSP, Imaging, or Multi-Media) written in a subset of Matlab
onto reconfigurable devices. This design methodology is implemented into a tool chain
that we call COMPAAN/LAURA [8].

The COMPAAN tool analyzes the Matlab application and derives automatically a
parallel representation, expressed as a Process Network (PN). A PN consists of con-
current processes that are interconnected via asynchronous FIFOs. The control of the
input Matlab program is distributed over the processes and the memory is distributed
over the FIFOs. The LAURA tool synthesizes a network of hardware processors from
the given PN. A key operation in LAURA is to generate the proper hardware commu-
nication mechanism for the point to point inter-processors communication, which may
be a different communication structure than the PN communication FIFO model.
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Our tool flow has been developed for data-flow algorithms, having communica-
tion at the level of scalars (e.g. bytes or words). The communication topology of the
PN is static, derived at compile time. To realize the inter-processor communication,
we use point-to-point communication mechanism. Employing busses and/or complex
Networks-on-Chips (NoCs) [7, 4] for the communication is not feasible due to the de-
lays in the routing process and the usage of large packets instead of scalars in the com-
munication protocol.

As we found out in [10], four types of point-to-point inter-processor communication
exist in the PN we generate. Two of them use a FIFO like communication and the other
two use a cache like memory to exchange data. In this paper, we investigate the realiza-
tions for the four communication types and discuss the effectiveness of the realizations.
The rest of the paper is organized as follows: first, we present the COMPAAN/LAURA
flow in order to understand how the hardware mapping is done by LAURA. Next, we
address the communication channel generation and propose an approach to solve each
communication type. We finish this paper with a discussion over the merits and im-
provements of these approaches in the context of our tool chain.

1.1 COMPAAN/LAURA design flow

The process networks we consider in this paper are derived using the COMPAAN tool
chain. COMPAAN takes as input parameterized static nested loop programs written in
Matlab and converts this code to process networks. An intermediate step is transforma-
tion of the initial Matlab code into single assignment code (SAC) using exact data flow
analysis [3]. The last tool of the flow, called LAURA, is used to generate a VHDL de-
scription of an architecture from a PN description. During this step, each process of the
PN is mapped to an abstract architectural model called Virtual Processor. Each virtual
processor consists of three distinct components:

– An Execute Unit, which is the computational part of the virtual processor. This unit
wraps in an IP core that implements the functionality of the process. Its interface
consists of a number of Input arguments and Output arguments.

– A Read Unit, which is responsible for assigning valid tokens to the input arguments
of the Execute Unit. Since there are more input ports than arguments, the Read Unit
has to select at run-time from which Channel to read tokens using a control program
that is derived by COMPAAN.

– And a Write Unit, which is responsible for distributing the results of the Execute
Unit to different Channels. A write operation can execute only when all the output
arguments of the Execute Unit are available for the Write Unit. Similarly to the
Read Unit, the Write Unit has to select a channel at run-time to write tokens into,
using a control program that is derived by COMPAAN.

The applications targeted by COMPAAN are usually data-flow intensive, requiring large
computational power. Therefore, an important issue in LAURA is the derivation of ef-
ficient communication structures in hardware and is the focus of this paper. Initially,
COMPAAN finds in the input Matlab file, all the possible producer-consumer pairs. At
that level the communication between two processes is done using a multidimensional
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array, represented as a polytope. To select the type of communication a linearization
procedure is employed by the COMPAAN tool which selects the right type of communi-
cation channel.

2 Communication Generation

In a hardware network generated by LAURA, each processor executes an internal control
program at both the Read and Write Units. This program describes a local schedule in
terms of Execute Unit executions. At each execution, also refer to as an iteration, a Read
Unit reads data from a Channel and a Write Unit writes data to a Channel. In the original
Matlab code, the Channel represents the communication on a n-Dimensional array (e.g.,
a[i,j]). This array is replaced by 1-D array by our tool chain in the linearization step.

Read Execute Write

Channel 1

Channel 2

Channel 3

Read Execute Write

Producer Consumer

Virtual Processor 1 Virtual Processor 2

Fig. 1. A Producer-Consumer pair

Figure 1 depicts a classical producer consumer pair. A Virtual Processor 1 sends
data to the second processor called Virtual Processor 2 via the Channel 2. The channel
represents the data dependency between a Read Unit and a Write Unit. This relation
is given by a Mapping function. The linearization step replaces the addressing of an
array with relative addressing scheme based on put and get primitives. Usually, the de-
rived communication channel is a FIFO, however, there are cases in which a FIFO is
not sufficient to linearize a n-dimensional array [10]. We have found that four types of
communication can be distinguished as given in Figure 2. They result from the order-
ing of the iterations at the Producer and the Consumer processes and the existence of
multiplicity for a given token, which means that a token that is sent by Producer is read
more than once at the Consumer side. Hence, depending on the order and existence
of multiplicity, an arbitrary communication channel belongs to one of four disjoint
classes: in-order without multiplicity (IOM-), in-order with multiplicity (IOM+), out-
of-order without multiplicity (OOM-), and out-of-order with multiplicity (OOM+). For
each class an adequate communication mechanism needs to be efficiently synthesized
in hardware in terms of cycles per operation, area and speed.

From experience [10], we know that on average the following distribution can be ex-
pected over the various communication types: type IOM- (80%), IOM+ (10%), OOM-
(9%), OOM+ (1%). Type IOM- together with type IOM+, result in that 90% of the
communication channels, require a FIFO buffer to realize the communication. In the
remaining 10% of the cases, a more complex Reordering Channel is needed.

2.1 In Order communication (IOM-)

In the In Order communication (IOM-) case, the Producer writes data in the Channel
in the same order as the Consumer reads from the Channel. Therefore, this Channel is
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Fig. 2. The four cases of communication between Producer and Consumer

implemented in hardware using a FIFO buffer. It is accessed using the two primitives
put (implemented in the Write unit) and get (implemented in the Read unit). Because
highly optimized implementations of FIFO buffers exist for today’s FPGAs, it takes
each primitive only a single cycle to write data or to read data from a Channel. A
hardware FIFO has finite memory, thus both primitives are blocking, e.g. they halt a
processor when no data is available in a FIFO or when a FIFO is full. Finding a lower
bound on a Channel is a hard problem in PNs and it is outside the scope of this paper,
although a small discussion is given in Section 3.

2.2 In Order with Multiplicity communication (IOM+)

In the In Order with Multiplicity Communication (IOM+) case, the order data is pro-
duced is the same as the order in which data is consumed. However, some data is con-
sumed more than once, breaking the communication model of a FIFO where a get
operation is destructive. In this model, the life-time of a token needs to be taken into
account. Only at the end of the life-time of a token, the token can be released from the
FIFO. While the put primitive remains the same as in the case of IOM-, we added a
new communication primitive which we called the peek primitive. The peek primitive
fetches data from a FIFO buffer without destroying it. To destroy the current FIFO data
a release control is synthesized in the Consumer Read Unit. Also, the output of the FIFO
is registered by the Multiplicity Register which is controlled by the release control. A
peek is only reading the contents of the register, while a get operation is reading a new
value from the FIFO buffer and place it in the Multiplicity Register. The control that
determines the life-time of a token is expressed in the same way the control programs
in the Read and Write Unit are expressed.

2.3 Out of Order communication (OOM-)

In the Out-of-Order communication (OOM-) case, a Consumer reads data in a different
order it has been written by the Producer. Hence, the communication channel allows
a Consumer to fetch data in the order it expect it. We refer to this kind of Channel,
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which allows for run-time reordering of tokens, as a Reorder Channel. The main ele-
ments of this Reorder Channel is the reorder memory and the tagging of tokens that are
written/read to/from the reordering memory. Each token needs to be tagged to allow
the Consumer Process to request particular tokens in the order given by its local sched-
ule. The tag computation takes place in both parts involved in the transaction, i.e., the
Producer side and the Consumer side.
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Fig. 3. The organization of the Reorder channel

In Figure 3, the organization of the Reorder Channel is given. The main element
is the random access memory, called the Reorder Memory. The figure also shows a
Producer that wants to write tokens to the Channel and a Consumer that wants to read
tokens. A token (Data) that is written by the Producer, is temporarily stored in a reg-
ister together with an address. This address is calculated by the tag generator of the
Producer. Each token that is stored in memory has a valid bit, which indicates that a
particular location (address) contains valid data. If the valid bit is set, the Producer is
not allowed to write data and is completely stalled until the address becomes available
again (ACK Producer). Otherwise, the Producer writes the temporarily stored data into
the memory and sets the valid bit. At the other side, the Consumer places a request
command to the Reordering Channel for a particular location given by an address. If
the requested location contains valid data, the Consumer receives an acknowledge sig-
nal(ACK Consumer), and, at the same time, the desired data. If the location does not
contain valid data, the Consumer stalls until valid data becomes available. Given the
organization of the Reordering Channel in Figure 3, two issues determine the design.
One is related with the complexity of the tag generation and the other one is related
with the performance of the reorder channel in terms of clock cycles.

2.4 Tag generation

In the generation of tags, we take advantages of the fact that we operate on polytopes
within COMPAAN. This leads to two different approach we can use to generate the tag.
One approach is based on the Ehrhart enumeration theory [2]. Using this theory, we
obtain a pseudo-polynomial expression that gives an unique integer value for each point
enclosed by the polytope. This approach has been successfully explored in software
in [9]. However, this approach is not suitable for hardware implementation due to the
complexity of the obtained pseudo-polynomial expression. In our example in Figure 4,
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the pseudo polynomial for the polytope enclosing the producer points is given by the
follow expression: (−1/4) ∗ i2 + (N − 5/2) ∗ i + j + [−1, 5/2]i. In this expression,
the pseudo polynomial term [−1, 5/2]i indicates that when the evaluation of mod(i, 2)
is equal to zero, the value -1 is selected; otherwise the value 5/2 is selected in the
polynomial.

In the second approach, we relax the shape that encloses the producer polytope to
a hyper-rectangular shape. We call this hyper-rectangular shape the Bounding Box. For
a Bounding Box, we can make use of classical linearization to convert a n-dimension
rectangle to an one-dimensional array [1, 6]. Find the Bounding Box that best encloses
the polytope is a minimization problem that we solve using integer linear program-
ming. The improvement over the Ehrhart approach is that each Bounding Box can be
addressed using a simple polynomial that can be implemented efficiently in hardware.
The tag for a token is obtained as a function of the iterators of a processor and has the
form tag =

∑N
k=1 ck ∗ xk + x0 + c0 where ck represents a constant, xk is an iteration

space index. Each tag becomes an address for a RAM memory.
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Fig. 4. The Linear realization of the reorder memory

If we extract the Bounding Box at the Producer side in Figure 4, we obtain the write
address, which is (N − 3) ∗ (i− 1) + j − 4. From the address generated by the write
address, the Consumer has to read tokens in the order it desires. It therefore requires a
read address to access the tokens. Since there is a well defined mathematical relation-
ship between the Producer and Consumer as given by the Mapping, we can obtain the
read address by mathematically composing the write address with the mapping func-
tion. Thus, the parameterized read address is equal to (N − 3) ∗ (x − i) + y − 4. In
this case, reordering is induced by the fact that the points in the Consumer polytope are
accessed in a different order then the Producer has written than to the Reorder Channel.

The down side of the Bounding Box approach is that the memory allocated for the
Reorder Memory is larger than needed when compared with the Ehrhart approach. In
Figure 4, the content of the Reorder Memory is given. It shows at which address a par-
ticular token is written. For example, the token from location (6, 7) is written at address
28. This is the 23rd token written by the Producer. This token is read by the Consumer
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at location (6, 7) as the 18th token read. From the content of the reordering memory, we
observe that memory locations exist that are never written or read during the execution
of a network, as given by the ”Nulls”. In the case of an Ehrhart generated address, these
”Nulls” would not exist at the expense of more complex address polynomials that are
difficult to be implemented efficiently in hardware.

2.5 Communication protocol

The Reordering Channel implements a particular communication protocol that involves
writing and reading a token. A write operation uses only the put communication prim-
itive, like we would have done in case of a FIFO Channel. This primitive provides to
the Reorder Channel a token that consists of a tag and data. If place is available at the
location given by the tag, the token is written; otherwise the Producer is stalled realizing
a blocking write. A read operation consists of three communication primitives; a check,
a peek and a get. Together they realize the reading of data from the Reordering Channel
in any desired order. Each primitive performs a particular task:

– check inquires if specific data is present in the Reorder Memory. The desired tag
given to the Reordering Channel as a Request. If that data is present at the ad-
dress given by the tag, the Reordering Channel sends an acknowledge signal to the
Consumer; otherwise the Consumer blocks realizing a blocking read.

– get reads a token from the requested address and set the valid bit to false indicated
that the location if available for writing again. A get operation is therefore destruc-
tive.

– peek reads a token from the requested address but keeps the valid bit high to in-
dicated that the location is still needed for reading. Using the peek operation, the
life-time of a token is controlled.

In the OOM- communication type, we only use the check and get primitives to read
data since no multiplicity is involved. A memory location can be immediately released
when reading a token.

2.6 Out of Order with multiplicity communication (OOM+)

In the Out-of-Order with Multiplicity communication (OOM+) case, a channel has the
same characteristics as the OOM- case. Additional release logic is however added at
the Consumer side to keep track of the life-time of tokens. Consequently, the OOM+
communication type also uses the peek primitive if a token does not yet need to be
released from memory. The get primitive is used when the release logic indicates that
the life-time of a token has come to its end.

3 Memory Allocation Schemes

When implementing a Channel, whether it is a FIFO or a Reordering Channel, we need
to determine a lower bound on the amount of tokens that can be stored in a Channel,
without causing a deadlock to occur. Finding this lower bound in process networks
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is in general a difficult problem. A process network is specified in terms of partial
orderings between a producer and consumer, i.e., the Producer/Consumer pair. To find
a lower bound on a Channel requires, however, a total order on the execution of the
processes in the network. Many different total orders exist; leading to different trade-
offs in evaluation speed and memory requirement. A total order for a PN can be obtained
by scheduling or by doing a run-time evaluation of a process network. Nevertheless,
we would like to avoid both methods. The scheduling interferes with the notion of
distributed control and the run-time evaluation is not a compile time analysis that can be
performed as part of the COMPAAN tool. Also, both the run-time and schedule approach
cannot handle the parameterized nature of the PNs we derive. Instead, we use compile
time allocation schemes. Without going to deep into detail, we currently distinguish two
compile time allocation schemes:

– Memory Allocation without releasing the memory (SAC)
This memory allocation scheme is derived from the single assignment data allo-
cation found by one of the intermediate step of our tool chain. In this scheme, a
memory location is assigned data only once. Hence a Consumer does not need to
release a memory location after it has consumed data from memory. The memory
required on a Channel is the dimension needed to accommodate all produced data,
which is given by the Bounding Box.

– Memory Allocation With releasing the memory (SEQ)
This memory allocation scheme is derived from the original data allocation found in
the sequential input Matlab program. In this scheme, memory locations are re-used
and hence each read or write operation on the Channel has to check if a memory
location is either free or contains valid data.

The SAC allocation scheme results in the fastest execution of a PN as the network can
run with maximum parallelism. Any other allocation scheme, like the SEQ allocation
scheme, may restrict the network parallelism to a more sequential execution scheme,
as explicit checks need to be performed on the validity of data. The guarantee that
the two described allocation schemes do indeed not introduce deadlock due to under
dimensioned communication buffers, is given by the fact that the allocation schemes are
able to run in bounded amount of memory in the sequential execution. We know from
simulation that tighter lower bounds are possible. Further research is needed to develop
techniques to derive these tighter bounds at compile time. We expect that results from
research in memory optimization for sequential code can also be applied to improve the
memory allocation in PNs.

4 Hardware realization

All four communication types can be automatically generated by LAURA and have
been implemented on a VirtexII-6000 platform from Xilinx. A FIFO channel is realized
using different types of memory at compile time depending on the calculated size. If less
than 1024 bits are required, we use RAM16x1D memories, otherwise we use RAMB16
memory blocks. If only a single location is required, we simply instantiate a FIFO
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channel that uses only a register. In case of the Reorder Channels, we always use Block
RAMs to realize the Reordering Memory as a full dual port memory is required.

The hardware realization of a FIFO buffer is the fastest and most efficient one in
terms of cycles per operation, as it requires one cycle per read or write operation. In
the case of a Reordering Channel, the SAC implementation requires still one cycle per
write operation as the availability of a location does not need to be checked. However,
the read operation requires three cycles to read one scalar from the channel. The SEQ
implementation of the Reorder Channel requires up to 2 cycles for a write and 3 cycles
for a read operation. In both the read and write operation, the availability of a location
needs to be checked.

5 Example

To highlight the different characteristics of the communication channels, we looked at
the QR algorithm [11]. This algorithm requires 1 IOM+ and 10 IOM- channels. How-
ever, we can implement these channels also using 1 OOM+ and 10 OOM- channels.
This highlights the differences in the hardware implementation and performance of the
different channels and the benefits of selecting the the right channel type at compile
time. In both cases, the lower bounds on the channels are determined at compile time
using the SAC allocation scheme.

Compile
time
estimations

Memory location 154

Reorder
Channel

Cycles 258

FIFO
Channel

Cycles 128
Memory Size 4928 bits RAM16 11 RAM16x1D 320

Bit width 32 Memory Size 180224 bits Memory Size 5120 bits
Slices 1771 Slices 890

Frequency 100Mhz Frequency 102Mhz

Table 1. Experimental results for various hardware channels.

From Table 1, we observe that the Reorder Channels are more inefficient than FIFO
channels in terms of usage of FPGA memories. The Reorder Memory is realized using
only Select Block RAMs (RAMB16). For the 11 channels, 11 RAMB16 memory blocks
allocated, which is 180224 bits in memory on the FPGA. For each Reordering channel,
we need to allocation at least a RAMB16 block which can accommodate 512 tokens of
32 bit, even if we only need space for 10 tokens. Hence, it is difficult to use the memory
block efficiently; there can be quite some spill. On the other hand, for a FIFO chan-
nel, we can select between Select Block RAMs or RAM16x1D memories, depending
on the required channel size. In this particular case, we use 320 RAM16x1D memory
blocks and the memory used for the FIFO implementation is only slightly larger than
the calculated size using the SAC allocation scheme, i.e., 5120 bits versus the 4928 bits
calculated. Since the SAC allocation scheme is used, the Reorder Channels implement a
fast write operation. Nevertheless, it takes twice the number of cycles to run the QR al-
gorithm (258 cycles) compared to when using FIFO channels (128 cycles). That a read
operation requires 3 cycles, has a big influence on the execution speed of the algorithm.
The number of slices used to implement the QR algorithm with FIFOs is 890 and with
Reordering Channels is 1771. The Reordering Channel requires twice as many slices
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due to the hardware tag generators and the use of RAMB16 memories. Both the execu-
tion speed and number of slices used show that it is indeed very important to select the
proper communication type in order to evaluate an algorithm as fast as possible with
the least amount of resources.

6 Conclusions

The data-flow intensive applications, we target with COMPAAN, require large compu-
tational power and it is important to derive efficient communication structures in hard-
ware. Four point-to-point communication types are distinguished in COMPAAN and we
have shown that for each of them, we can derive efficient hardware in LAURA. Two
types use hardware FIFO implementations and two types use a Reorder Channel im-
plementation, as we presented in this paper. From a case study, we have shown that a
FIFO implementation is the most optimal implementation of a Channel from any point
of view (throughput, hardware resources, memory usage). Because a FIFO can read
and write in a single cycle it can keep up with the maximum data flow through our
virtual processors. From experience, we know that on average 90% of the channels in
an application can be realized with FIFO buffers. In the remaining 10%, we employ the
Reordering Channel implementation. As future work, we are interested to further opti-
mize the Reorder Channel and porting it to other FPGA architectures, e.g. Altera. Also,
we want to investigate new compile time allocation schemes to obtain tighter lower
bounds on the memory needed in the communication channels.
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