
FUNCTIONAL DESIGN
OF

DATA-FLOW NETWORKS

Peter Held

Delft University of Technology
May 1996

FUNCTIONAL DESIGN
OF

DATA-FLOW NETWORKS

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,

door het College van Dekanen aangewezen,
op maandag 20 mei 1996 te 10.30 uur

door

Pieter Cornelis HELD

elektrotechnisch ingenieur
geboren te ’s-Gravenhage

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr.ir. P.M. Dewilde

Toegevoegd promotor: Dr.ir. E.F. Deprettere.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. P.M. Dewilde, TU Delft, promotor
Dr.ir. E.F. Deprettere, TU Delft, toegevoegd promotor
Prof.dr. F.P. Quinton, IRISA, Rennes, Frankrijk
Prof.dr. S. Vassiliadis, TU Delft
Prof.dr.ir. J.A.G. Jess, TU Eindhoven
Prof.Dr. -Ing. O.E. Herrmann, TU Twente
Dr.ir. K.A. Vissers, Philips Research, Eindhoven

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Held, Pieter Cornelis

Functional design of data-flow networks /
Pieter Cornelis Held. - [S.l. : s.n.] (Den Haag : Dryadis). - Ill.
Thesis Technische Universiteit Delft. - With ref.
ISBN 90-9008182-8
Subject headings: data-flow networks / dependence analysis / system design.

Copyright c
�

1996 by P.C. Held
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic or mechanical, including photocopying,
recording or otherwise, without permission in writing from the author.

Chapter 1

Introduction

Digital signal processing is increasingly used in all kinds of scientific, industrial and consumer ap-
plications. Typical examples can be found in communication (high speed modems, wireless cellu-
lar telephony, in-door cordless communication, audio and video conferencing), multimedia (image,
speech and audio coding and compression), imaging (tomography, synthetic aperture radar, under-
water acoustics), computer graphics (rendering, visualization, virtual reality) and in control (system
identification, plant control, robotica).

In some of these applications, the processing of signals may be very demanding. This may come
from the often huge number of operations that have to be carried out. It may also come from the fact
that the processing of signals has to be carried out in real time. Still other constraints may restrict
implementation volume, power dissipation and storage capacity.

Here is an illustrative example. Suppose a video signal has to be processed at a rate of 50 frames
per second, each frame consisting of ���������	������� pixel elements, and each pixel requiring 128 el-
ementary operations. This results in a throughput rate of about 6,000 million elementary operations
per second. Programmable off-the-shelf processors do not have this computational capacity. More-
over, even if they would have such capacities, low-power constraints might rule them out. Indeed,
the video procession example considered here could be just one component in an audio, video and
data processing unit, say a wireless network node, whose software supervisor is a battery operated
portable CPU. Assuming that this CPU is a laptop computer, it will be clear that all signal processing
components of the wireless network node will have to be very compact and will have to operate in a
low-power low-voltage mode so that they all fit on a board not larger than the size of the laptop and
do not exhaust the laptop power supply whenever the node has to operate in the network.

This example is typical for the applications we have in mind. In these applications, there is a
continuous supply of signals - in the form of samples, one-dimensional sequences, or vectors, two-
dimensional sequences or matrices or whatever appropriate quantity measured in amount per unit of
time. These signals are processed and the processed signals are taken away at the same or a lower rate
than their acquisition rate. The processing, then, is very often in the form of a repetitive invocation of
a relative small number of functions that take a signal - in whatever type it is defined - as an argument
and return a value that may or may not appear as an argument for another function. These functions
are commonly represented as nodes in a graph in which the arcs interconnecting the nodes are the
paths along which the signals flow as arguments of the functions - when flowing toward nodes - and
results of the functions - when flowing away from nodes. These so-called flow graphs clearly reveal
that, in most cases, some of the functions can be evaluated concurrently and - important for us - the
graph has a periodic structure. Indeed, signal processing flow graphs are typically periodic and on

5

6 Introduction

top of that, they sometimes reveal a striking degree of regularity which make them think of crystals
or cobwebs or beehives and the like. As signals may enter and leave the graph at equal and fast rates,
parallelism must usually be exploited to allow the periodic execution to be faultless. Moreover, the
processing of signals is typically to be implemented in field applications, that is, at locations which
do not offer room for large scale implementations. And last but not least the number of applications
requiring low-voltage low-power implementations is growing rapidly.

As a consequence of our focusing on such applications, the classical processor which processes
the operations sequentially, which also has tremendous overhead and demands for large power sup-
ply must be ruled out as candidate implementation architecture. This is not only so for the micro
processor - say the RISC processor - even the traditional signal processor - say TMS320Cx (Texas
Instruments), DSP5600x (Motorola) or ADSP-210x (Analogic Devices) - is designed for too broad an
application range for it to be a feasible platform for implementing our high throughput high density
signal processing applications. These sequential processing systems are thus inadequate and systems
based on parallel and/or pipelined processing have to be considered and designed. Such systems
will inherently be application specific and most likely of type processor array - one dimensional or
higher dimensional - which may or may not fit into a single chip implementation. Notice that parallel
processing not only caters for higher speeds, it also provides a solution to low-power implementation
requirements. Indeed, parallel processor arrays are more cost effective in terms of power consumption
[46].

The conjecture that effective and efficient implementations must be application specific stems
from the following observation. Digital signal processing systems are implementations of architec-
tures into which algorithms are executed. The usefulness of a particular architectural style depends
heavily on the specific features and properties of the algorithms that are to be implemented. For ex-
ample, an architecture whose structure is a mesh of nearest neighbor communicating functions may
not be useful when the algorithm enforces a tree-like structure as a consequence of the algorithm’s
specific internal dependency structure. By contrast, this type of mesh is most suited for the implemen-
tation of convolution-like algorithms such as an inner-product based algorithm for the computation of
the product of two matrices. A judicious analysis of the dependency structure of an algorithm may
reveal that there is a large amount of inherent parallelism in it and that the flow of arguments toward
functions and results away from functions is local. Though the algorithm dependency structure is a
key issue in determining the appropriate architectural structure and style for the implementation of it,
one of the major problems is to make the algorithm’s dependency structure visible, that is, explicit.
Indeed, almost all algorithms are given in the form of an executable program which has been devel-
oped on a workstation or PC in a common imperative language such as C. Such a program has an
inherent sequential execution nature and, therefore, hides whatever parallelism it may have in itself,
as much of the inherent parallelism is captured in artificial dependencies due to the strict ordering
of operations in sequential programs. One can argue that one could get round this difficulty by not
starting from the sequential program specification but developing a suitable algorithm and designing
an accessory architecture simultaneously and at once. However, this is a difficult task and, moreover,
it does not always make sense as it would ignore the tremendous amount of research efforts in algo-
rithm design which, unfortunately, is commonly put in public domain as a sequential program. Thus,
even if a problem solution can be cast in a novel algorithm and a new architecture for it, common
practice is such that existing programs realizing an algorithm are first analyzed and brought into a
form which is void of side effects and transparent with respect to inherent parallelism. Only when
this structure appears not to lead to an efficient accompanying architecture makes it sense to conceive
a redevelopment of the algorithm which will then at least be guarded by and inspired through the
results obtained from the analysis of given executable specifications. Thus, the analysis of programs

Introduction 7

remains a problem and this dissertation proposes a solution to it - at least for a subclass of programs -
and provides an implementation of the procedure by which the analysis of programs from the feasible
class can be carried out automatically.

There is thus a strong - be it not always explicit - interplay between algorithms and architectures,
and for the drawing up of the specification of the ultimate implementation there is a need for methods
to provide workable reference algorithms and to derive from them accompanying architectures for
their execution. For that to be achievable systematically, it is convenient to let both algorithm and
architecture be expressed as flow graphs. The data flow or signal flow graph has proven to be very
powerful even long before the birth of what is now called signal processing. Simulation environments
and design systems that use signal flow graph concepts do exist. Examples are SPW (Cadens), COS-
SAP (Synopsys), DSP station (Mentor Graphics), Signal [24] and Ptolemy [14]. The latter system
is special in that it knows several different models of data flow which allow the specification and
manipulation of heterogeneous or so-called embedded systems. All of these environments and sys-
tems tend to be generic in that they do not distinguish between irregular and regular graphs. Regular
flow graphs have special properties which can be exploited to make their specification, description
and manipulation elegant and tractable. In fact, regular flow graphs have inherent structure whereas
irregular graphs do not have such structure. The latter may require the introduction of structure in
order for them to be turned into efficient implementations. The former, on the other hand, require
special concern in order not to destroy this inherent structure during the process of converting them
into implementations. Architectures that reflect algorithm regularity and are themselves regular are
reminiscent of H.T. Kung’s systolic architectures [44][42], introduced in the eighties. Although sys-
tolic architectures are but concepts and closer to algorithm structures than to architectures, they have
undoubtedly paved the way to what are now called piecewise regular architectures [43].

Roughly speaking, these architectures are computational networks or networks of communicating
functions which are local in time and space. These will be our target architectures, and algorithms that
are naturally executed in such architectures will likewise be our target algorithms. Nested loop pro-
grams are, as a matter of fact, akin of those algorithms and form by far the largest class of algorithms
in signal and image processing. It is a subclass of this class of algorithms to which we alluded above
and for which we propose methods to analyze them and to bring them in flow graph models which do
take the inherent structure into account. They are called reduced-size graphs and the challenge, then,
is to develop methods to transform such graphs from the level of algorithm graph down to the level of
architecture graph without breaking their property of being of reduced size, that is, without destroying
the regularity structure.

The problem that we thus face is basically the following. How can signal processing tasks be
cast into effective and efficient parallel algorithms and accompanying parallel architectures in such a
way that regularity, if present as a structure property, is preserved as much as possible and constraints,
imposed by the application and possibly also from presupposedly inferred implementation limitations,
are obeyed in an as natural way as possible. We are thus seeking for a design methodology which
gently fits the domain of (piecewise) regular algorithm and architecture flow graphs.

This is a rather complex subject. However, the inherent structural property of regularity suggests
that models and methods can be envisaged which can be cast in rigorous mathematical terms, in par-
ticular of a linear integer algebra nature. The intended methodology has been laid down partly in
two European Basic Research Action programs (BRA 3280 - NANA, and BRA 6632 - NANA2) [1].
Partners that took part in the consortium have been IMEC, Louvain, Belgium; ESAT, Katholieke Uni-
versiteit Leuven, Louvain, Belgium; LIP, Ecole Normale Supérieur de Lyon, Lyon, France; INRIA,
IRISA, Campus de Beaulieu, Rennes, France; and CAS, Delft University of Technology, Delft, The
Netherlands. All of them had been engaged in similar research and continued contributing in the area

8 Introduction

after the project came to an end in June, 1995. The objectives of the research were twofold. On the
one hand, ENSL [63], ESAT and DUT concentrated on the development of novel algorithms for par-
allel architectures. On the other hand, INRIA, IMEC and also DUT focused on design methodologies
and synthesis techniques for such architectures. Here, we give a concise view on the partner’s contri-
butions in the design methodology domain, leaving the algorithmic development approaches - albeit
strongly influenced by and affecting in turn the design methodology concepts - undiscussed.

INRIA focussed on the design of fully pipelined hard-wired regular arrays. Their design method-
ology is based on an original technique contributing to the synthesis of ’systolic arrays’, proposed in
1983 [58] and is called dependence mapping or space-time mapping. The INRIA partner developed
a transformational design environment called Alpha aiming at the systematization of the design and
synthesis of complex ASICs [1] [87] [59] [16].

IMEC concentrated on fully customized regular arrays, with the emphasis on efficient exploitation
of ASIC features in generalized regular arrays intended for front-end image and video processing
applications. Specific contributions were related to control, initialization, high-level memory, I/O
management and verification [65] issues. The IMEC partner developed the Cathedral-4 design system,
aiming at the systematization of the design of such arrays, in particular the details related to the
mentioned issues [1] [86].

TU Delft aimed at deriving parallel architectures from regular data-flow graphs obtained from
executable specifications of nested loop algorithms. This dissertation reports on some of the work
contributed here. The DUT partner developed the prototype environment HiFi, which contains a tool
box for the systematic design of piecewise regular algorithms and architectures [1].

Surely, other researchers have contributed in this area, too. Among them, we mention Y.H. Hu
(University of Wisconsin, Madison), S. Rajopadhy and D. Wilde (Oregon State University), L. Thiele
(University of Saarbrucken, Germany), P. Capello (University of California, Santa Barbara), D. Bal-
tus (MIT, Massachusetts, Cambridge), W.B. Burleson (University of Massachusetts, Amherst), R.M.
Owens and M.J. Irwin (The Pennsylvania State University), J.A.B. Fortes and L. Jamieson (Perdue
University, W. Lafayette), S.Y. Kung (Princeton University), M.W. Wolfe and M.S. Lam (Stanford
University), J.-M. Delosme (Yale University, New Haven), T. Meng (Stanford University), U. Baner-
jee (Control Data Corporation, Sunnyvale), J. van Meerbergen (Philips Research, The Netherlands),
and others.

Other design systems that aim at systematic designing of piecewise regular architectures are
DESCARTES [7], and CASPER [73]

It is worth mentioning that one novelty in the approach of the NANA consortium is the successful
strategy to design the algorithm and the architecture together. In this approach, an implementation
is derived from a behavioral specification - usually in the form of an executable program - through a
series of transformations on flow graphs specifying and describing both the algorithm and the architec-
ture. This is only possible for a specific problem or at most a group of similar, coherent or otherwise
related problems. These are usually called application specific or dedicated algorithm-architecture
pairs.

The design environments mentioned above can be situated above the behavioral synthesis systems
or as special domains within behavioral design systems. They share the following main ingredients:

1. representation models of the algorithm and of the architecture

2. basic transformation methods and tools supporting specific stages in the mapping process from
the original algorithm to the final architecture.

3. one or more synthesis scripts along architectural design methodology.

Introduction 9

This dissertation contributes to the first-mentioned point in the context of the HiFi system, i.e.
the consistent modeling of algorithms and architectures. The design systems Cathedral-4 and Alpha
require an algorithm to be entered in the form of an applicative specification written in special design
languages. Cathedral’s design language is called Silage. Alpha-du-Centaur’s design language is called
Alpha, in which the algorithm is expressed as a set of affine recurrence equations. These applicative
specifications express the parallelism in the algorithms.

The HiFi system has another approach and allows an algorithm to be written in a standard impera-
tive language like C, and then to derive automatically the applicative specification from the imperative
program description. More formally, the functional behavior given in the form of an algorithm is re-
fined structurally. The resulting specification is then expressed in the HiFi design model, which is
basically a dependence graph model. The dependence graph expresses explicitly the parallelism. The
model is described below in more detail.

We can characterize the HiFi system by its model and methods or tools, although there are a lot of
other aspects of the design system, software engineering aspects, such as its object-oriented database.
In the following sections, we describe briefly the model and summarize the tools in HiFi system’s
toolbox.

1.1 Algorithm and Architecture model

1.1.1 The model

However complex an algorithm may be, it ultimately has to be executed by a collection of primi-
tive units, which HiFi considers to be finite-state machines. We model a finite-state machine as an
AST node [5]. This architectural model was inspired by the concept of applicative state transitions
(ASTs) as published by Backus [6], and, in acknowledgement of that fact, we have named our node
accordingly.

The capabilities of a primitive unit are specified by a number of behavior descriptions correspond-
ing to each of its states. The behavior can change from state to state (e.g., an ALU may in one state
execute a logic function and, in another an arithmetic operation). Therefore, we say that an AST node
has a temporal behavior.

HiFi looks upon each state of a primitive unit that carries out a specific behavior as a black box
with a number of input and output ports. Its behavior is defined by a relation between the data supplied
at its input ports and the expected data at its output ports. If we do this for all possible input values, the
behavior, as it reveals itself to the outside world, is completely specified and is impartial to whatever
realization form it may take.

In many cases, an explicit specification of the behavior in the form of an input-output table is
infeasible. HiFi allows an implicit specification by means of a function, whose structure is not relevant
to the ultimate architecture.

In fact, the AST node is looked upon as a model for a sequential processor. It consists of

� a set of functions that constitute the operational capabilities of the processor.

� a set of states that keep track of the memory inside the system.

� a selection mechanism that specifies the sequential ordering of function evocation and evalua-
tion.

Thus the AST model logically separates function, state, and function ordering.

10 1.1 Algorithm and Architecture model

A second type of node in HiFi expresses parallelism and is called a structure node. It is a network
of nodes, of either type, in which ports of nodes are connected by edges. The nodes in such a network
are concurrent processes that are only aware of their local state and communicate asynchronously with
each other over edges. The communication between the AST nodes of such a network is akin of the
model of communicating sequential processes (CSP) [80]. In the context of CSP, communication is
seen as a shared event between two subprocesses. This means that the production of data in one AST
process is synchronized with the consumption of data in another AST.

We refer to a structure node as a functional data-flow network. 1 Nodes represent operations and
the edges represent the transfer of values between the nodes. A characteristic property of data-flow
networks is that each input port has precisely one edge attached to it, whereas the number of edges on
an output port is left free. Data-flow networks distinguish themselves from pure data-flow graphs by
the fact that the nodes may have dynamic behavior. That is to say, the function executed by an AST
node may change from state to state. However, in a particular state there can only be one function
active. This function is called the current function. A current function of an AST node fires when
all its inputs contain a token and its outputs are free of tokens. After firing, the input tokens are taken
away and one output token is placed on its output ports [80].

In [45], E. Lee discusses several models: dynamic data-flow (DDF), synchronous data-flow (SDF),
boolean data-flow (BDF), etc. To position the HiFi model, we could say that its single token passing
is a special case of BDF.

1.1.2 Regular Dependence Graph model

So far, the functional data-flow network may appear to be closer to an architecture than an algorithm.
This is at least suggested by the temporal behavior of the AST node. However, we do use the same
model to represent algorithms as well. For this purpose, we assume that the algorithm is statically
specified, that is, if it is given in the form of a program (an executable specification), then this program
must be written in a single assignment code. Assuming, in addition, that all variable dependencies
are manifest (known at compile time), the single assignment program has a graphical representation
which is a special form of a data-flow network and is commonly called a (data) dependence graph
(DG). A DG is special because each and every node in the graph evaluates one, and only one, function
exactly once during the evaluation of the algorithm.
Now, recalling that our main interest is the designing of algorithm/architecture pairs for nested loop
type problem specifications, the DG for such an algorithm has the particular property that it reveals a
high degree of homogeneity, that is, it is systolic-like. To be even more specific, we shall be dealing
with so-called piecewise homogeneous dependence graphs and corresponding piecewise regular flow
graphs [76] which are indexed graphs within so-called linearly bounded lattice [78]. Broadly speaking,
a linear bounded lattice (LBL) is characterized by a lattice and a polytope [66]. An indexed graph
having an LBL support is homogeneous (or regular) if the specification of a node and its dependencies
is independent of the index on the support. A graph is piecewise homogeneous (or regular) if it can
be partitioned in a finite number of LBLs, independent of the size of the graph, and the convex hull of
the set of individual polytopes is again a polytope.
The LBL DG model in HiFi can be compared to the Polyhedral DG model in Cathedral and the affine
recurrence equations model in Alpha. The piecewise regular DG is super imposed on the data-flow
model and has the advantage that an explicit timing model is part of the specification avoiding an
overloading of semantics in a pure applicative specification.

1We could also call them signal flow graphs or data flow graphs. Intuitively, graphs are more abstract and static than
networks which are closer to technical dynamical structures.

Introduction 11

Of course, a real-life application never appears as a pure piecewise regular data-flow graph, there
will always be irregular parts in it. Interactions of regular and irregular parts in flow graphs may
influence efficiency of implementations drastically. It is, therefore, necessary to provide models for
interfacing and interaction of regular and irregular parts in flow graphs, even when irregular parts are
not developed or designed within the system (or the domain of the system) wherein the regular parts
are. Part of the work described in this dissertation has been dealing with this interfacing problem.

Thus, the DG model allows us to express the functionality and the potential parallelism of the al-
gorithm in detail. Simultaneously, the model represents a possible architecture, although it is unlikely
that this architecture meets the requirements of the specification of the application. In addition, the
model allows one to analyze and inspect properties of the algorithm/architecture. One can get good
estimates of the expected computation time, speed-up, etc. and various costs of the architectures that
may be derived from the DG. Based on the result of such an analysis, one may choose for an another
algorithm, or one may modify the algorithm by algorithmic transformations [84].

1.2 Design trajectory

Within the whole spectrum of possible architectures, we can think of two conceptual ones at either
sides of the spectrum to execute an algorithm specified by a DG. At the one end, would be the archi-
tecture based on a flow graph network (a structure node) obtained by the direct mapping of each node
of the DG onto an AST node and of each dependency of the DG onto an edge. This corresponds to full
parallel execution of the algorithm. In HiFi, an algorithm is actually entered as such an architecture
(a DG). This is feasible because we focus on regular architectures that can be described in a reduced
way. At the other end, is the architecture consisting of a single AST node that has a state for each
node of the DG it originates from. This corresponds to sequential execution of the algorithm. This
architecture is very costly in the number of time steps needed to execute the algorithm. The former
one is expensive in number of distinct functions needed for that execution. The objective of the HiFi
design trajectory is to derive an architecture between these two extreme points which is optimal in the
sense that a cost function, in which the various parameters (including execution time, implementation
volume) can be given weights, is minimized. That is, a continuous trade-off can be made between
time, space and memory needed to execute the algorithm on an implementation. For example, a pro-
cessor array will be designed in such a way that its size is independent of the “size” of the algorithm,
the processors are optimally used, and its throughput rate is balanced with the I/O speed of the host
processor.

1.3 The Tools

The tools in the HiFi tool box can be divided into three categories. The first set of tools is concerned
with converting user specifications which do not fit the imposed model into such specifications. The
second set of tools consists of transformation tools that operate on piecewise regular DGs. Finally,
there is the set of support tools among which a data-flow simulator. However, we will not discuss the
latter set of tools, as they are described elsewhere [80].

1.3.1 Conversion Tools

We distinguish between three types of algorithm specifications:

12 1.3 The Tools

nlp2ast

HiPars

sap2dg

NLP

DG

SAP

AST

flatten dg2sap

nlp2ast

Figure 1.1. The three types of specification and their conversion. The solid lines are the
tools we discuss in the dissertation.

� functional input-output specification. This is an input-output map or a relation between an
input and an output that must be a function. 2 As it is at present difficult, if not impossible,
to design implementations directly from input-output function specifications, we allow such
specifications to be replaced by executable program versions written in a subset of the C or
MATLAB programming language [74].

� temporal specification. By temporal specification we mean a specification which is a valid
AST node within the system. An AST node is a particular model for a sequential program
in which there is an explicit sequencing mechanism (control function) that determines the se-
quence in which the functional units are to be evaluated. The functional units themselves are
again executable routines, written in a subset of C or MATLAB, that must have a corresponding
functional input-output specification.

� structural specification. This is a specification expressed as a dependence graph, that is, a
structure node. In it, the leaf nodes must be AST nodes.

These three types of specifications are depicted in figure 1.1 together with their mutual relation-
ships. In this figure, the functional input-output specification is labeled NLP (nested loop program).
The central circle, labeled SAP, is the single assignment code version of the NLP specification. The
SAP specification must exist as the design of an architecture for the implementation of an NLP always
starts out from this specification. However, the HiFi system does not require a SAP specification to be
given. Indeed, one of the tools of the system is a data dependence analysis tool which allow conversion
of NLPs into SAPs.

2The requirement that the relation must be a function (in the mathematical meaning of the word) is important. If an
input-output map cannot be specified as a function, then the specification is formally undefined for the HiFi system.

Introduction 13

input tool output

nested loop program (NLP) HiPars single assignment program (SAP)
single assignment program (SAP) sap2dg dependence graph (DG)

dependence graph (DG) dg2sap single assignment program (SAP)
nested loop program (NLP) nlp2AST applicative state transition (AST)

Table 1.1. The table of conversion tools with type of specification at input and output side.

Although a design session can start from anyone of these three types of specifications, it will often
be the first one that is provided from outside. Assuming that this is the case, the first step will, then, be
the procedural algorithm description to be converted to the DG model in which all parallelism is now
fully explicit. A large part of this dissertation is devoted to the tool

���������
	
by which this conversion

can be done automatically for the defined class of nested loop programs (NLPs). Again, characteristic
of this class of program is that they have static control. Many signal-processing algorithms belong
to this class. The data dependence analysis involved is exact and detailed down to the level of the
iterations of the nested loop program. The output of

���������
	
is a single assignment program (SAP).

We convert it with the tool
	��
� ����� , see chapter 9, into the dependence graph model.

The design process itself can be characterized as a process in which one has to decide which part
of the algorithm has to be processed sequentially (software) and which part of the algorithm has to
be processed in parallel (hardware). Or in terms of the model, which part is to be specified by an
AST-node and which part by a structure node (DGs) and how the parts are interfaced. The design
process is thus a refinement process in which we decompose the initial algorithmic specification, with
two fundamental refinement directions: (1) temporally and (2) structurally.

In the dissertation, we present the models and methods for supporting this refinement process.
In table 1.1 we have listed several tools that we will discuss. The tools are conversion tools which
convert one type of specification into another.

We restrict ourselves primarily to discussing the techniques used by these tools and the way the
types of specification are modeled. The choices about when and on which object to apply the tools
depend to a large extent on the properties of the algorithm and the specification of the system. It is the
task of the designer to make these choices based on thorough understanding of the problem.

1.3.2 Transformation tools

The DG forms a source node in what could be called a design tree. It is a design trajectory with the
objective of deriving a AST/Structure co-design architecture for the execution of piecewise homoge-
neous concurrent algorithms. The trajectory is schematically depicted in figure 1.2 and consists of a
sequence of transformations which typically, but not necessary, take the piecewise regular DG model
input to the transformation sequence. In the DG model, the elements of the network such as ports,
edges and nodes are indexed and grouped in index-domains, which are defined by linearly bounded
lattices [78]. The nodes of the graph are arranged into segments. Each segment is specified by an
index domain and a function specifying the operation of the nodes. The edges between the ports of
the nodes are defined by an index relation between indexed input and output ports of nodes. We will
explain this in chapter 9.

The transformation tools are index transformations. They rearrange the elements by assigning
new indices to the elements. The tools are closed operations in the sense that the result is again a DG,
although a modified one.

14 1.3 The Tools

partitioning

DFG/structure node

regularization

space-time transformation

DG node
transformed

regularized
DG node

DG node

fixed-size array

DG node

projection

partitioned

Figure 1.2. The HiFi design trajectory for piecewise regular DGs.

The most important transformations are: space-time transformation, localization, regularization, par-
titioning and projection. Localization is applied to substitute local, propagating communication for
long-distance and broadcast communication in the DG. Communication is an important cost factor in
parallel processing. By choosing for regular and local interconnects, this cost can be reduced consid-
erably. The space-time transformation introduces space and time dimensions in the DG. The objective
of regularization is to combine several regular pieces into one regular piece that is controlled by exter-
nal controllers. The partitioning tool is used to partition the DG, with large and often parameterized
size, into a two-level hierarchical graph of which the lower level graph (the tile) is of fixed size. The
projection tool is to re-use nodes of the DG by projecting the space-time transformed DG onto a data-
flow graph with memory.
As a DG is presumably piecewise regular, the tools may be applied on each and every piece separately
and independently provided the whole is a feasible graph in the end. For example, overall causality
constraints must be preserved. Thus piecewise linear transformations are feasible transformations and
may lead to mappings that are more optimal than with global transformations [8][61]. The application
of transformations on individual pieces raises the question of how to model the interfaces between
pieces. This crucial and delicate issue has been disregarded too often which is one of the reasons, if
not the reason, why so many ’designs’ are either but conceptual or inefficient. It is not hard to imagine
a DG consisting of, say three, pieces, one of which is transformed to a regular one-dimensional data-
flow array, another one being mapped onto a single AST node whose behavior is implemented onto a
programmable DSP, and the last one being clustered onto another AST node whose behavior is mod-
eled by an irregular flow graph which is implemented in an ASIC. In this ’design’ interfaces between
three constituents will determine, for a great deal, the efficiency of the regular-irregular software-
hardware implementation.
In this dissertation we will pay attention to the modeling of interfaces between the various nodes
that we know: AST-nodes, structure nodes including dependence graphs and being of type regular or

Introduction 15

irregular.

1.4 The output

Eventually, we end up with a possibly hierarchical network of AST nodes, i.e. the system is expressed
as a set of functions structured in time and space.
What is most important is that all network’s nodes are derived from an initial functional algorithm
specification by a series of algebraic transformations such that the constructed network can be shown
to be input-output equivalent to the initial specification.
Even when the initial algorithm is regular, the resulting network will not be purely regular in the sense
that all the nodes perform the same function/operation as is the case in pure systolic arrays. The
transformations will introduce special AST-nodes to take care of the input and output distribution of
data, memory buffers, and switches. The nodes make explicit and take care of additional emerging
synchronization needs. One must be careful to avoid performance degradation due to the appearance
of such nodes. Optimization is mandatory here in order to keep space-time product efficiency as close
to a constant as possible, irrespective of transformations that are applied to turn an initial specification
into an implementable data-flow graph.

The functions that are executed in the states of the AST nodes of the final network will be ex-
ecuted either in software or on hardware. In case these functions are not further refined, that is of
the software/hardware support is not specified, then they are referred to as elementary functions. For
example, table 1.2 lists a set of typical elementary functions. This set of elementary functions is
available in a MATH library.

name expression
cos ���������
	���

sin ����������	���

tan ����������	���

add ��� �����
sub ��� �����
mul ��� �! �
div ��� �#"$�

floor ���&%'�!(
ceil ���&)'�!*
mod ��� �+�

Table 1.2. Table of supported elementary functions.

Finally, some remarks on the realization. Although the output of our system is a network of com-
municating AST-nodes, whose internal functions are elementary, the HiFi model was designed with
software-hardware implementations in mind.
This, of course, means that there must be an interface between the HiFi design system and, if not
HiFi, another design system in which the network can be further refined to take it down to the im-
plementation level. This system may even be an intermediate system requiring again an interface to
yet another system. For example, we might see HiFi as a domain for the Ptolemy system [14][45],
or might wish to link the HiFi system to any one of the currently available behavioral synthesis or
high-level synthesis systems. The difficulty here is that all those systems, including HiFi, are far from
compatible and VHDL [60] is often the only language (originally a hardware description language,

16 1.5 The HiFi system

now extended with some specification capabilities) through which various design systems can interact
with each other. Anyhow, for the downstream to be unblocked, it is necessary that the elementary
functions in HiFi’s function library can be interpreted by the satellite design system in the sense that
they are likewise in the operating system’s library or can be refined in terms of components in its
library. This implies that the granularity of the elementary functions must be fine enough so as to be
not coarser than the coarsest objects known to the adopting design system. Thus if a communication
protocol is to be implemented by a four or two phase handshake protocol [33], then the HiFi single
token passing mechanism must be so refined that such a protocol can be extracted from it. Similarly,
if an AST is to be implemented by a finite-state machine, HiFi must not output AST specifications
which are too far away from FSMs. Finally, HiFi functions can be synthesized to circuits by means of
existing synthesis tools such as DSP station [20]. The input language of of the DSP station is called
data flow language (DFL), which is based on the SILAGE language with some procedural extensions.
By using DSP station, we can automatically translate DFL descriptions of functions to register trans-
fer level, which in turn can be synthesized into digital circuits. An alternative to designing ICs, is to
use standard digital signal processors (DSP). The system has also compilers for DSP processors such
as the ’C30’ and ’C40’ [20].

1.5 The HiFi system

The development of the HiFi system has been a large software engineering enterprise. It includes
the development of a data structure to represent the dependence and flow graph model, and the im-
plementation of several transformation tools. Some of these are described in this dissertation either
completely or partially. Other tools and the completion of the partially described ones can be found
elsewhere [89].

We have set up the system conformable to some general guidelines. Firstly, we have aimed at
an open design system in the sense that it is under the control of the designer who supervises, gears,
and steers the path to follow, makes the design decisions. Secondly, we believe that designing is an
interactive process between the system and the designer. We have implemented various user interfaces
to assist the designer, for instance, to invoke the tools and to select their parameters.

We have chosen to build a toolbox being a collection of relatively small tools instead of large tools
by which large design steps have to be taken in which fine-grain decisions have been automated. The
tools are written in an object oriented language, in our case Objective C. In fact, the whole system
has a strong object oriented flavor [68]. Thus nodes, whether of type AST or of type structure node
are objects, having methods and data encapsulation, and knowing about classes, message passing,
polymorphism and inheritance.
The backbone of the tools is formed by a data structure. The data structure consists of a collection of
objects, representing the piecewise regular model. It contains objects to represent elements such as
ports, nodes, and functions of the network. There are tools for design and separate tools for querying
information about the design.

The HiFi system is built on top of the NELSIS CAD Frame [83], which offers a database consist-
ing of a collection of design objects in which the designs are stored. In addition, NELSIS CAD Frame
offers a number of features to organize the tools and to present them to the designer in a user-friendly
way.

A powerful design concept is hierarchy. The system supports the hierarchical specification of de-
signs. An important reason to use hierarchy is that it reduces the design complexity. The idea is to
start with a design object specified by a procedural program in MATLAB, and to refine this specifi-

Introduction 17

cation step by step into a collection of design objects organized in the form of a design graph. Each
design object captures a description of either a structure, an AST, or a function. To support hierarchy,
the description is split into an interface and a body specification. The hierarchical relationships be-
tween design objects are maintained by the NELSIS CAD Frame. The result of the design process is
a collection of design objects specifying a network or architecture that can be synthesized.

For more information on the HiFi design system, we refer the reader to [23][37][80].

1.6 Main Contributions

The concepts and models that are pivotal to HiFi are not new. They were introduced in [5][13][39]
and used to build a simulator in [80]. These basics emerged from the desire and attempts to conceive
a logical and consistent functional design methodology. In it the key paradigm is the flow graph by
which both behavior and structure are modeled. There can be found several flow graph models in the
literature and in other design systems. Our flow graphs are networks in which functions communicate.
Here functions are mathematical functions and have, therefore, precise meaning and properties. The
communication is thus essentially a passing of arguments and results. The functions reside in the
nodes of the network which, in contrast to most flow graph models, are not function nodes but nodes
with function states. They are our AST nodes. Our flow graph thus differs from classical flow graphs,
such as the Kahn model [40] (which is sometimes considered to be the mother of all flow graphs) or
the various flow graphs in the Ptolemy system [45]. Being consistent in a design methodology is one
thing, completeness or closedness is more of a though issue. If the ultimate goal is to produce efficient
implementations of algorithms, then genericity is hard to sustain. Flow graphs may have certain
specific properties - they may be annotated, they may be partially pre-structured or even indexed
- which provoke certain specific approaches which exploit such properties for efficiency sake. If
specific properties are neglected, then the result may be unsatisfactory. This is why most of the design
systems are either biased toward application typical designs and design methodologies, or get stuck at
the level of genuine simulation platform in some generic sense.
As a result, we have concentrated on a particular application domain within the originally generically
thought HiFi system. The domain we have chosen is the one which is missing in most design systems,
that is, the domain of regular flow graphs. When looking at the few competing sides, then, it is seen
that the algorithms - homogeneous algorithms - that lend to such flow graphs, are assumed to be
specified in terms of sets of recurrence equations. As this is, practically speaking, a severe handicap,
we have decided to look, in the first place, closer to the problem of how to specify the algorithm
or program for which a design is to be generated. This is how we arrived at the subclass of nested
loop algorithms which we will introduce in chapter 3. Thus, if an initial specification is a program,
then it will have to belong to a well defined class and from there on we provide transformations and
refinements of the given specification. The design methodology is, indeed, tuned to the domain of
homogeneous algorithms and regular architectures, yet it is fully consistent with the realm of the
original concepts and models.

The main contributions of the dissertation are:

� definition and implementation of the piecewise regular dependence graph model based on the
data-flow model.

� the tool,
���������
	

, that analysis the data dependencies of static nested loop programs and outputs
a functional equivalent program in single assignment form.

18 1.7 A design example

� the tool,
	��
�

����� , that converts the single assignment program into the piecewise regular DG
model.

� the tool,
��������� ����	��

, that creates a hierarchical or abstract DG.

� the tool, ��� � 	��
� , that converts pieces of the DG into procedural program descriptions.

� the tool, �
	 � � � 	�� , that models a nested loop program as an AST.

� organization of the tools by the NELSIS CAD Frame.

� organization of the design in the form of a design graph inside the database of the NELSIS CAD
frame.

It is obvious that, with these contributions, no sufficiently powerful toolbox has yet been con-
structed. However, other tools - that we alluded to earlier - have been built by colleagues in the HiFi
context. They are space-time partitioning, graph tiling, clustering, projection, and control generation
tools. They will be presented elsewhere [89]. With these two sets of tools, realistic designs can be
obtained in a genuine functional way.

1.7 A design example

��

Processing Unit

signal of interest

�

jamming signals

���
� ��� ��� ��� � ���

� � �������
� ����� � ���

�"!
� ���

Figure 1.3. The beamforming problem. Signals from several sources are impinging on an
antenna array. $&% is the signal of interest. ' is a jammer signal. (*) is the main antenna
and (,+.-0/ / / -�(21.34+ are the auxiliary antennas.

In this section, we briefly present an example of a real-life design. Its details can be found in [54].
The underlying problem is the following. A signal of interest (526) is sent from some location in space
and to be received at another location. The receiver has thus to point his receiving antenna (798) in the
propagation direction of the signal (which is a plane wave at the receiver’s site). See figure 1.3.
In practice, however, the receiving antenna will also pick up jammer signals (:) (again plane waves).
So, some ’focusing’ and ’rejecting’ mechanism has to be conceived to separate 526 from : . This is

Introduction 19

achieved through beam forming [75]. Thus, a set of
� �

� auxiliary antennas are so placed that they
essentially receive the jammers.
Let ��	 �
 be the (baseband) signal at the output of the main antenna 7 8 . Let for

� � � � � 	 � � �
 , ��� 	 �

be the (baseband) signals at the outputs of the auxiliary antennas, 7�� � � 7��	�
� , respectively. All these
signals are assumed to be complex valued. Define the difference signal

� 	 �
 as

� 	 �
 ����	 �
 ��� ��
�����
��� � 	 �
 ����	 �

where � � 	 �
 are coefficients used to weigh the auxiliary signals. The task, now, is to find the � � 	 �

such that

������� 	 � �����
 � � is minimal, where � is a signal sampling period and � runs over a finite
time span.

The implementation is in the form of a PCB board bearing four pipelined CORDIC chips [34]
and five programmable gate arrays. This board is a prototyping testboard and other algorithms can be
implemented in the same configuration. A single chip implementation of the beamformer is feasible
and could easily sustain a throughput of the vectors � ��	 �
 � ���
	 �
 � � ����
��$	 �
! of 200.000 per second
with a chip clock rate of 40 MHz.

The design of this architecture went through the following steps, inside HiFi:

� A specification of the beamforming algorithm was given as a nested loop MATLAB program
(The program resembles the one given as program 3.3 in chapter 3).

� HiFi’s tool
���������
	

converted this program to a single assignment program (Chapter 7).

� HiFi’tool
	��
� ����� converted the SAP program to a dependence graph (DG) (Chapter 9).

� HiFi’s tool
� � ��"�	 �����$# � combined the complex functions vectorize and rotate into a complex

CORDIC-AST node.

� HiFi’s tool
	 � ��%.� � � � � �

transformed the DG to obtain maximal throughput.

Outside HiFi:

� Refinement of the complex CORDIC-AST into an irregular flow graph of interconnected real
CORDIC-ASTs. (Interconnected through FPGs).

� Refinement of the real CORDIC-AST into a pipeline CORDIC ASIC.

� Control generation (implementation in XILINX)

� Board connected to data buffer via VME bus.

1.8 Outline

The standard design example in this thesis is the SVD algorithm [31]. In chapter 2, we give an intro-
duction to the SVD algorithm and come up with a nested loop program description of the algorithm,
which is suited for parallel implementation.

In the following chapters, we describe the tool
���������
	

[36][35][41], which is the most important
of the set of tools discussed.

Given a processing problem, HiPars inputs a procedural algorithmic description of the method
chosen for solving it, and outputs a description in ’single assignment form’, which is equivalent to a

20 1.8 Outline

dependence graph. These exhibit the maximal available parallelism in the chosen algorithm. Some
main principles of HiPars go back to Bu’s work [13]; he analyzed the conversion mechanism to the
single assignment form of a restricted class of imperative programs, and Feautrier’s work [25][26]
who proposed effective methods to solve the search problems involved. These methods can only
handle programs with static control. We mean by this that the control variables are known at compile
time as parameters, i.e. values that are independent of the actual data being processed. We do not
require them to be known constants. The attraction of the method is that it can handle symbols as
parameters (parameterized design).

In chapter 3, we define the class of nested loop programs that
���������
	

can take as input. We do
that by representing programs by parse trees. The parse trees define the syntax of the programs but
they are also used as the internal data structure of

���������
	
.

In chapter 4, we formulate the data dependency problem. Data dependencies are the result of
argument passing between functions via the variables of the nested loop program. The kernel of
HiPars is formed by Feautrier’s Parametric Integer Programming (PIP) algorithm, which we use to
find expressions for the data dependencies inside programs analytically. In chapter 5, we annotate the
parse tree with linear inequalities and describe procedures for setting up the input for PIP.

In chapter 6, we explain the Parametric Integer Programming algorithm and describe how a PIP
problem differs from a classical LP problem.

The output produced by PIP can directly be written in terms of parse trees. In chapter 7, we will
combine the output produced by PIP and construct the parse tree corresponding to the single assign-
ment program, which we write as a procedural program in the MATLAB programming language. The
SAP exhibits the precise dependencies between individual operations. The single assignment program
is an executable program and is functionally equivalent to the original nested loop program.

In chapter 9, we present the piecewise regular DG model. The DG forms the algebraic object on
which the transformation can be applied. The elements of the DG are described by index domains,
which we define by linearly bounded lattices. In chapter 8, we describe the relation between linearly
bounded lattices and the control structure of the single assignment programs outputted by HiPars. We
apply some transformations to parts of the DG of the SVD and obtain thus a virtual array.

In chapter 10, we describe the tool
��������� ����	��

, which we have implemented to derive so-called
hierarchical graphs for a given dependence graph. By applying the concept of abstraction we obtain
an overview of the often complex dependence graphs. The number of elements of the hierarchical
graph is directly related to the number of regular pieces in it. In this chapter, we also present the DG
of the SVD algorithm in the form of an hierarchical graph, of which the nodes are graphs themselves.

Often, it is not realistic to implement the DG directly as an architecture, simply because the
number of nodes and edges is too large. To obtain an architecture of reasonable size, we have to
merge or cluster parts of the DG into a single computational node, which we specify by a procedural
algorithm. For this purpose, we have implemented the tool ��� � 	��
� , which we describe in chapter 11.

In chapter 12, we discuss how we model procedural algorithms by AST nodes. The nodes of
the structures at which we arrive are generally mutually dependent, which implies that the nodes
must have have temporal behavior. With the AST, we are able to model this temporal behavior. The
resulting networks are thus networks of concurrently operating sequential processes.

Finally, in chapters 13 - 16, we focus on the software engineering aspects of the HiFi system and
show how the system is set up and organized.

Chapter 2

Example of Specification: SVD

2.1 Introduction

Signal processing problems can often be represented in the form of a system of equations 7 � ��
where the number of equations exceeds the number of unknowns and a least squares solution is

desired. In this chapter, we present the Singular Value Decomposition algorithm which is an attractive
numerical tool to solve such problems. Even if 7 is square, SVD is attractive if a good control of the
numerical accuracy is desired. The matrix 7 is usually first converted to a square matrix on which
subsequently SVD is updated. An application in this sense is the so-called angle of arrival or direction
of arrival (DOA).

In practical situations, the matrix 7 and the vector
�

are measured quantities, for example snap-
shots of received signals, and these are usually corrupted by noise, interferences or quantization ef-
fects. The SVD, then, can approximately recover clean measures. The numerical properties of the
SVD, such as stability and convergence, are well understood [72].

The outline of this chapter is as follows. In section 2.2, we will give a mathematical introduction
to the SVD algorithm and introduce the odd-even Jacobi algorithm developed by Luk [47], which is
especially suited for parallel implementation. In this dissertation, we will analyze the data dependen-
cies of this algorithm by the tool HiPars [37] [22]. HiPars requires a Nested Loop Program to be
written in the programming environment MATLAB [74]. In section 2.3, we present the MATLAB
program for the odd-even algorithm, which we will use as design example throughout.

A well-known application of the SVD algorithm is in finding the least-squares solution � to 7 � ��
problem. This is illustrated in section 2.4 by a practical example. In the DOA, the matrix 7 is build

on observation data. In section 2.4, we discuss the roll of SVD in the DOA problem.

2.2 SVD

The singular value decomposition of a real square matrix 7�� R
�����

is a product decomposition, con-
sisting of two orthogonal matrices � and � , and a non-negative diagonal matrix � � � ��� � 	
	�� � � 	 �

such that:

7 ��� � �
� (2.1)

The 	 � are the singular values of A.

21

22 2.2 SVD

There are several ways to compute the SVD. One of the most famous SVD algorithm is the Golub-
Kahan-Reinsch algorithm [31], which first brings the matrix in upper bidiagonal form. We, however,
take an algorithm described by Luk in [47], which is better suited for parallel implementation.

Luk’s algorithm is based on the classical Jacobi algorithm and computes the SVD of a symmetric
matrix 7 by a series of Jacobi rotations. A Jacobi rotation, denoted : 	 � �������
 , is an orthogonal matrix
which equals the identity matrix except for the four entries:

:	� � � % ��	 	 �
 :	��� � 	
� � 	 �

:�� � � � 	
� � 	 �
 :���� � % ��	 	 �
 (2.2)

The Jacobi algorithm consists of a sequence of operations of the form:

7 � �
� � : 	 � �������
�� 7 � : 	 � �������
 (2.3)

where the angle � is chosen such that the elements
� ��� and

� � � of 7 � are annihilated. For this to
be accomplished � must satisfy:

� � � 	 � �
 �
� ��� � � � �� ��� � � � � (2.4)

Let
�
	�	 	 7
 denote the Frobenius norm of the matrix 7 � � ��� � 	 7
 :

�
	�	 	 7
 �
�

���
�

�

� �
��� ������
� �� � (2.5)

Each step will reduce the
�
	�	 	 7 � �
�
 so that for ����� � 7 � � �

.

The order in which the elements are annihilated matters. When the elements are annihilated in a
cyclic-by-row order, convergence is quadratic [28].

Program 2.1 is the cyclic-by-rows Jacobi algorithm [47]. The program ends when
�
	�	 	 7
 is

smaller than a predefined small number � .

Program 2.1. JACOBI

while (off(�) > �) do

for � = 1 to n-1

for � = � +1 to n

compute � according to equation 2.4

� ����� ����� � ��!#"�� ��� ����� � ��!
end

end

end

For non-symmetric matrices, the algorithm is slightly different and is known as Kogbetliantz’
algorithm. In this algorithm the angle in the left-hand side rotation may be different from the angle in
the right-hand side rotation. (2.3), then becomes (2.6).

7 � �
� � : � 	 � ������� ��
 � 7 � : � 	 � ������� �
 (2.6)

Example of Specification: SVD 23

and the angles � � and � � satisfy:

� � � 	 � � � � �
 �
� ��� � � � �� ��� � � � � (2.7)

� � � 	 � � � � � �
 �
� ��� � � � �� ��� � � � �

It is easy to see that for the symmetric case,
� ��� � � � � , the two angles are identical.

The cyclic Kogbetliantz algorithm is slightly different from the row-cyclic Kogbetliantz algo-
rithm. In the cyclic Kogbetliantz algorithm only elements of the first upper diagonal are annihilated.
To guarantee convergence, additional left and right permutations are needed. The permutations are
carried out implicitly by shifting the rotation angles by � " � . This permutation scheme was suggested
by Gentleman and is described in [56]. It is easy to show that the order in which the elements are
annihilated is equivalent to the cyclic-by-rows ordering scheme [47]. The algorithm converges when
the angle � � is constrained to so-called outer rotations: i.e., � " � � � � � � � � " � [28].

Program 2.2 is the odd-even Kogbetliantz algorithm [47]:

Program 2.2. ODD-EVEN

while (off(�) > �) do

for � = 1 to n-1 step 2

compute ��� and ��� according equation 2.7

� � ��� ��� �
� ��� ��� !#"�� ��� ��� �
� ��� ����!
end

for p = 2 to n-2 step 2

compute ��� and ��� according equation 2.7

� � ��� ��� �
� ��� ��� !#"�� ��� ��� �
� ��� ����!
end

end

An example may clarify the difference between the orderings.

Example 2.1.
Ordering
In this example, we illustrate that the odd-even ordering corresponds with the cyclic-by-rows

ordering taking a matrix 7 of order � . Let 	 � ���
 denote the index of an element of 7 . In the cyclic-
by-rows scheme the elements are annihilated in the following order:

(1,2) (1,3) (1,4) (1,5) (1,6)
(2,3) (2,4) (2,5) (2,6)

(3,4) (3,5) (3,6)
(4,5) (4,6)

(5,6)
The actual ordering in which entries of the matrix are ’visited’ is implicit as the loops sweep only

along the first upper diagonal by taking entries 	 � � ��� �
 . However, due to the permutations, entries
further away from this diagonal are driven toward it. Thus, entries are moved toward the diagonal
and then picked up whereas in the cyclic-by-rows algorithm, the entries are picked up in-place. To
make the actually picked up entry locations visible, choose � � and � � equal to � " � so that the rotations
matrices : become permutations (

% ��	 	�� " ��
 � � and
	
� � 	�� " ��
 � �). The actual ordering underneath

24 2.3 MATLAB Program

the 	 � � � � �
 ordering in the loops of program 2.2 are then:
(1,2) (3,4) (5,6) (1,4) (3,6)
(2,4) (1,6) (3,5) (2,6) (1,5)
(4,6) (2,5) (1,3) (4,5) (2,3)

We see that the odd-even ordering selects the same elements in a slightly different order. Yet, as
far as convergence is concerned, the two programs behave equivalently [48]. �

Note that one sweep (stage) of the odd-even algorithm annihilates elements on the first upper
diagonal. This diagonal has � � � elements. The number of off-diagonal elements of an � � �
matrix is � 	 � � �
 " � . Thus � " � sweeps in the odd-even algorithm correspond to one cycle in the
cyclic-by-rows algorithm.

For some more information on SVD algorithms we refer to the literature [11] [30] [67] [71].

2.3 MATLAB Program

In this section we, give the nested loop program that computes the SVD according to the odd-even
Kogbetliantz algorithm [47]. HiPars requires a nested loop program to be written in the MATLAB pro-
gramming environment, and in a specific way. More specifically, statements or groups of statements
in the body of the program appear as functions that are called by the program.

We give the MATLAB program below. First, we describe the functions that the program calls to
compute the angles and to perform the row and column rotations. Function Angle computes the
angles � � and � � , see program 2.3. If the angle is smaller than

� � ��� � " � we shift it by � " � such
that the angle becomes an outer rotation and satisfies: � " � � � � � � � " � . This implicitly implements
Gentleman’s permutation scheme [55]. If the sign of the angle � � (th1 in the function) is negative,
� " � is added otherwise � " � is subtracted.
Function Angle constrains angle � � . 1

Program 2.3. ANGLE
function [th1, th2] = Angle (A11,A12,A21,A22)

thsum = atan((A21+A12)/(A22-A11));
thdiff = atan((A21-A12)/(A22+A11));

th1= (thsum-thdiff)/2;
th2= (thdiff+thsum)/2;

if abs(th1) < (pi/4),

if sign(th1) == -1,

th1=th1+(pi/2);

th2=th2+(pi/2);

else

th1=th1+(pi/2);

th2=th2+(pi/2);

end

end

1Convergence has also been proven when the angle � � is constrained instead [28].

Example of Specification: SVD 25

The computation : 	 � � � � � ��� ��
 � 7 : 	 � � � � � ��� �
 essentially operates on entries on the intersection
of rows

�
and

� �
� and columns

�
and

� �
� .

We introduce functions RotRow and RotColumn for the row and column rotations, respectively.
See program 2.4 and program 2.5. We have written the functions in matrix form, showing clearly the
row and column rotations. The functions are identical and differ only in their function header.

Program 2.6 shows the piece of code for the row rotations. A similar piece of code is needed for
the column rotations.

Putting things together, we get MATLAB program 2.7 which is a valid executable specification
of the SVD of an M � M real matrix 7 , according to algorithm 2.2. We have replaced the convergence
test with a for-loop statement whose upper bound depends on a parameter N. As the algorithm has a
quadratic convergence, the iterations can be stopped after a sufficiently large value of N ����	 	 � � 	 M

of stages [47].

Program 2.7 starts with computing the angles of rotation for odd-indexed rows after which the
corresponding row rotations and column rotations are carried out. Here, the row rotations precede the
columns rotations. A vice versa ordering is valid as well. The program goes through the same steps
for the even-indexed rows.

Program 2.4. ROTROW

function [y1, y2] = RotRow(th,A1,A2)

V2 = [cos(th) , sin(th); -sin(th) , cos(th)];

v = [A1, A2] * V2 ;

y1 = v(1);

y2 = v(2);

Program 2.5. ROTCOLUMN

function [y1,y2] = RotColumn(A1,A2,th);

B= [cos(th) , sin(th); -sin(th) , cos(th)];

v = B’* [A1;A2];

y1 = v(1);

y2 = v(2);

Program 2.6. ROW ROTATIONS

for j = 1 : 1 : M,

[a(i,j), a(i+1,j)] = RotRow(th1(i), a(i,j), a(i+1,j));

end

26 2.3 MATLAB Program

Program 2.7. ODD-EVEN SVD
Let N and M be parameters.

for stage = 1 : 1 : N,

for i = 1 : 2 : M-1,

[th1(i),th2(i)] = Angle(a(i,i),a(i,i+1),a(i+1,i),a(i+1,i+1))

end

for i = 1 : 2 : M-1,

for j = 1 : 1 : M,

[a(i,j),a(i+1,j)] = RotRow(th1(i),a(i,j),a(i+1,j));

end

end

for i = 1 : 2 : M-1,

for j = 1 : 1 : M,

[a(j,i),a(j,i+1)] = RotColumn(a(j,i),a(j,i+1),th2(i));

end

end

for i = 2 : 2 : M-2,

[th1(i),th2(i)] = Angle(a(i,i),a(i,i+1),a(i+1,i),a(i+1,i+1));

end

for i = 2 : 2 : M-2,

for j = 1 : 1 : M,

[a(i,j),a(i+1,j)] = RotRow(th1(i),a(i,j),a(i+1,j));

end

end

for i = 2 : 2 : M-2,

for j = 1 : 1 : M,

[a(j,i),a(j,i+1)] = RotColumn(a(j,i),a(j,i+1),th2(i));

end

end

end

Example of Specification: SVD 27

2.4 Applications

2.4.1 Least Squares solution to �������
A well-known application of the SVD is to find the least-squares solution of a system of equations
7 � � �

. We illustrate this by a numerical example.
The SVD is used to compute the pseudo inverse 7 � [72] of 7 which implicitly projects vector

�
on the column space of 7 , yielding ‘best fit’ �� . This means that, denoting

� � � � 7 � , the solution
� minimizes the length of

�
:

�� � �	� � � � ��
 �
 �
Let 7 be an

� � � matrix with SVD 7 � � � � � . Let � be a vector of size � and
�

a vector of
size

�
.

The pseudo inverse of 7 which yields the least squares solution for the system

7 � � �
is given by,

� � � � � � � �
where

� � is defined as

�

�
� " 	��

� " 	 ���
�

�

������
�

when
�

is �

�
	��

	 ���
�

�

������
�

Note that small singular values will cause large singular values in the pseudo inverse. Therefore,
for numerical reasons, truncation is required.

Example 2.2.
Least Squares
Let the system of equations 7 � � �

be given by:�������
�

��� � ��� ��� ���
��� ��� ��� � � ��� �
��� � � ��� ��� � ��� �
� ��� � ��� � � � ���
� � � � ��� � ��� � ���
� � � � � ��� � ��� � ��� �

��������
�

�������
�

� �
� �
�!
�#"
�!$
�!%

��������
� �

�������
�

� �& �'
�& �' �& � �

��������
�

28 2.4 Applications

The SVD of matrix 7 produces matrices:

� �

�������
�

� � � � � � � � & � � & � � � � � � �
� � � � � � & � � � � � � � � ��� � &��
� & ' � � ��� � � ��� � � � � � � � & � � � �
� � � � � & � � � � � � � � � ��� � &��
� & ' � ��� � � ��� � � � � � � & � � � �
� ��& � � � � � & � � � � � � � � � ���

��������
�

� �

�������
�

��& � � � � � � � �
� &�� � ' � � � � �
� � � ��� & � � � �
� � � � � � � �
� � � � � ��� �
� � � � � � � �

��������
�

� � �

�������
�

& &�& � � & ' � � � � � � � � � � ' � � � � &
� ��� � � � � � � � � � � & � � & � & � � ��� � � �� ��� ��� ' � � � ��� ��� ��& � � � � � � � � � � � � & � � � �
� ' � � � � � � � � ' � � � � � � &�� � � � ��� � �' � ��� � � � & � � � � � � � � & � � &�& � � � � � � � &
� � � � � � � ' � � � � ' � � � ' � � � ��� � � '�' � �

��������
�

and the solution � � � � � � � is:

� �

�������
�

�� �� �
�
�
�

��������
�

�

2.4.2 Direction of arrival

The aim of the direction of arrival (DOA) estimation problem is the determination of the angles of
arrival of a number of signals impinging on a sensor array [82].

In the ESPRIT model [64][2], the antennas are arranged in a plane and form pairwise identical
sensors. The displacement between the sensors in each pair is constant. We assume that the number �
of impinging signals is less than the number of sensor pairs

�
[82].

Each row of 7 � Z �
���

contains the sampled signal received by the first sensor of the sensor
pair associated with that row. We assume that the number of samples � is larger than the number of
sensor pairs

�
. So the matrix has more columns than rows, ��� �

. For a particular time instant
�
,

the following equation holds �
� �

� 	
�

where
�
� is the

�
-th column of 7 ,

�
is an

� � � transfer matrix and
	
� is the

�
-th column in the � � �

matrix 5 whose rows are the sampled signals impinging on the sensor array. The SVD is used here to

Example of Specification: SVD 29

estimate � , and to provide the column space of
�

as well as the row space of 5 . This, however, must
be done in the practical situation that the equation

�
� �

� 	
� is actually of the form

�� � � � 	
�
� � �

where � � is the
�
-th column of an

� � � noise matrix.
Thus the receiver in the DOA system makes an estimate of the number of signals by looking at the

singular values of the matrix �7 . Large singular values correspond with the signals of interest, small
singular values are assumed to originate from the noise.

� and � � are partitioned as � ��� � � � and

� � ��
� ���� where the

	 � � seperation corresponds to a

partition of
�

in a block of ‘large’ singular values and a block of ‘small’ singular values. For instance,
for the matrix 7 of example 2.2 we would take ��� and � �� of rank three. Generally speaking, we
thus have �

��� � ��� � � � �
� � � � � � ��� �� � ����� � � � �� � � � � � � ��

where the number of columns of �	� is equal to the number of signals � impinging on the array.
The set of second sensors in the antenna array provide a second set of equations [82].

7�
!� �
� 5
(or �7
 � �
� 5 ���
 in practice), where

�
is a diagonal matrix which contains the directions that

have to be estimated. The matrix
�

, hence the directions, can be obtained by solving a generalized
eigenvalue problem, see [82].

2.5 Conclusions

In this chapter we have given an example of how algorithms are specified in the
����� �

environment.
The specification 7&� � � � � is an input-output behavior specification, which, for reasons of vali-
dation ability, is replaced with an executable specification. This specification is a program written in
the MATLAB environment and in a pre-specified way. We have worked out such a specification and
chose it an odd-even ordering algorithm proposed by Luk. It is worthwhile to emphasis again that
any feasible executable specification can be accepted. Thus, a cyclic-by-row version would also have
done. Although this does not imply that all possible implementations for the SVD can be derived
from any arbitrary executable specification, it is sometimes possible to transform an executable spec-
ification into another one by relying on certain rule-based algorithmic transformations. Such methods
could be implemented in tools which might be included in

����� �
’s transformation toolbox. An exam-

ple of such algorithmic transformations in the SVD context can be found in [85] where it is shown
that a cyclic-by-rows SVD program can be so transformed that an input-output equivalent program
results that has a dependence graph which differs in a non-trivial way from the dependence graph of
the original one. In fact a whole class of input-output equivalent programs can be so derived and this
class contains as a matter of fact the odd-even ordered SVD algorithm which we took as the reference
executable specification in this chapter.

Because the variable dependencies of the SVD are complex, we start with the data dependence
analysis of a part of the SVD program, i.e., the loop stages responsible for the column and row
rotations. This subprogram is still interesting because of the step size greater than one in the loops.

30 2.5 Conclusions

The MATLAB functions will not be parsed. The resulting single assignment program is given in
chapter 7. In chapter 9, the result is expressed in the dependence graph model. Finally, the complete
data dependence analysis of the SVD is presented in chapter 10.

Chapter 3

A Class of Nested Loop Programs

3.1 Introduction

In the introduction, we stated that HiPars is a tool that can analyze certain nested loop programs and
produce a description of the program’s data dependencies. In this chapter, we define the class of
nested loop programs that can be analyzed. We do that in terms of parse trees, which are also the
internal data structure of HiPars.

Parse trees are extensively used in the domain of computer science dealing with syntax rules and
language specifications. In that field, a language is written in terms of a grammar [10]. A grammar
gives us the mechanism for translating a program description into a parse tree. Further, the grammar
will check whether the syntax of the program is correct. In this chapter, we define procedures on this
parse tree which are used by the tools of the

����� �
system.

Our main objective is to define the syntax of the class of nested loop program we have in mind.
Pieces of such programs are represented by specific types of nodes in the underlying parse tree.

3.2 Nested Loop Programs

To introduce the subject, consider program 3.1 which is an executable specification of a convolution
of two vectors, a signal � and an impulse response � :

� � � � � ��� ��	 �
 �
�
��

� �
� � 	

�����
�� 	 �

The program consists of two loop statements and a function-call statement in its loop body.

Program 3.1. CONVOLUTION
Let P and N be parameters such that N � P � � .
Let muladd be a function computing 	 ��

� ��� .
Let y, x, and h be real vectors of dimension, N � P
 � , N � P
 � , and P
 � , respectively.

for i = P to N,
for j = 1 to P-1,

[y(i)] = muladd(y(i),x(i-j),h(j));
end

end

It is characteristic of nested loop programs that a relatively small number of statements are re-
peated many times in a lexicographical ordering. Typically, the number of repetitions or iterations in

31

32 3.2 Nested Loop Programs

a program depends on the size of the input data. To make a program description independent of the
size of the input data, we introduce parameters which stand for their possible size. In program 3.1, the
number of iterations depends linearly on the parameters P and N. These parameters and the variables
in programs have to be properly declared and initialized.

Although we allow programs to be parameterized, the parameters must be manifest, that is, known
at compile time. In other words, programs must have static control. Control may not depend on the
value of the variables actually processed. Although this is a major restriction, the class of signal
processing algorithms having static control is huge. The SVD program, given in the previous chapter,
belongs to this class.

We allow the following type of control statements:

� loop statements

� conditional statements

The loop statement forces repetition of the statements inside the loop body a number of times and
in a particular order. After each loop the loop iterator is incremented with the step size or stride. 1

The conditional statement is used to conditionally execute blocks of statements. It is of the form:
if condition,

then-block of statements
else-block of statements

end
The condition is a Boolean expression. If the condition is true, the block of statements of the then
part will be evaluated. If false, the block of statements of the else part will be evaluated.

Apart from control statements, a program may consist of assignment statements, which take the
form of function calls. One or more variables are taken as arguments of the function, and the result
of the function is assigned to one or more variables on the left of the assignment sign. We require
functions to be mathematical functions. In other words, we assume that there are no side effects.

Function calls allow us to specify programs hierarchically. The function specification itself is not
parsed. However, when the body of the function is also expressed as a nested loop program,

���������
	
can analyze this one as well.

Expressions inside loop bounds and inside conditions must be ’affine’ (see chapter 5 for a defini-
tion) expressions on the program’s iterators and parameters (for a precise definition see further).

To illustrate the class of programs that can be written in terms of the statements introduced above,
we give two examples.2

Program 3.2 shows that assignment statements may be placed between loop statements.
Program 3.3 illustrates the use of conditional statements. 3

3.2.1 Variables

The memory inside the nested loop programs consists of variables. We assume that variables with
different names do not overlap in memory. Again, variables have to be declared and initialized.

Variables are referenced in the function-call statements. In a function call the variables on the
right-hand side (RHS) of the assignment statement are read and taken as input arguments. The result
of the evaluation of the function is assigned to the variables on the left-hand side (LHS).

1A step size equal to 1 is commonly not given explicitly in a program. Thus in program 3.1, both step sizes are 1.
2A program does not have to be a perfect nested loop. It may consists of several loop stages.
3The two example programs are derived from the LDU and QR algorithms [31], respectively

A Class of Nested Loop Programs 33

Program 3.2. ASSIGNMENT STATEMENTS
Let F1 and F2 be functions.
Let a and h be variable arrays.
Let N be a parameter.

for k = 1 to N-1,
for j = k+1 to N,

[h(k,j)] = F1(a(k,j),a(k,k));
for i = k+1 to N,

[a(i,j)] = F2(a(i,j),a(i,k),h(k,j));
end

end
end

Program 3.3. CONDITIONAL STATEMENTS
Let F1 and F2 be functions.
Let A and phi be variable arrays.
Let M and N be parameters.

for i = 1 to N-1,
for j = i+1 to N,

for k = i to M,
if k <= i,

[A(i,k),A(j,k), phi(i,j)] = F1(A(i,k),A(j,k));
else

[A(i,k),A(j,k)] = F2(A(i,k),A(j,k),phi(i,j));
end

end
end

end

We require variables to be of type array. A variable array is a collection of variables. Each
variable in the array is identified by the name of the array and a unique index.

Let
�

be a variable array of dimension � . Let 	 	 � � � 	��$
 be an index vector. Then a generic variable
of the array is

� 	 	!� � � 	��$
 . The value of a variable is of a certain data type. Examples of data types are
Float and Integer.

The variables appearing in the program are of the form
� � 	 	 6 � �
! , where 6 is the vector build on

the iterators and
�

the vector build on the parameters. The function
	

is called the indexing function.
We require the indexing function to be ’affine’, see chapter 4, section 4.3, for a definition.

Typically, variables are assigned several times in nested loop programs. Each time a new value is
assigned to a variable, the old value will be lost.

3.3 Index Transformation Statements

Programs may contain transformation statements by which nonlinear index transformations can be
specified, which are often called quasi-linear operators.

Let
�

stand for a linear expression.
Let

�
be a positive integer.

The transformation statements that can be accepted by
���������
	

are:

� � = div(
�
,
�
);

with div the integer division operator, and
�

the divisor.

� � = mod(
�
,
�
);

with mod the modulo operator, and
�

the remainder.

34 3.3 Index Transformation Statements

� � = floor(
�
);

with floor the floor operator, where
�

may have fractional coefficients.

� � = ceil(
�
);

with ceil the ceil operator, where
�

may have fractional coefficients.

� � = equal(
�
);

with equal the identity operator, used to specify linear transformations.

Observe that, apart from the equal operator, all the operators are nonlinear operators.
The variable � may be used inside expressions of a program. They are, just as the loop iterators,

control variables inside the program. The scope of a control variable is the block of statement in
which it is introduced. Expressions may be nested. This means that the expression

�
of an operator

may depend on the control variables defined by other transformation statements.
As said, with these statements we can specify nonlinear index expressions. For example, the index

transformation � �&% 	 ��� �����
 " & (is specified by:

q = floor(2/3*i-j/3)

Remark The appearance of non-linear index transformations does not violate the condition, in-
troduced in the previous subsection, that expressions must be affine. This is clearly illustrated in the
following example, program 3.4.

Program 3.4. INDEX TRANSFORMATION STATEMENTS
Let F1 and F2 be functions.

for i = 1 to M step 2,
for j = 1 to M step 2,

P4 = mod(i,3);
if P4==0,

[a(i,j)] = F1();
end
P6 = mod(j,3);
if P6==0,

[] = F2(a(i,j));
end

end
end

3.3.1 Transformation Operators in Expressions

For ease of programming, we accept that the nonlinear index transformations appear within expres-
sions, including in indexing functions of variables. This violates the earlier affine conditions. How-
ever,

���������
	
will automatically restore these conditions.

For instance, we can rewrite program 3.4 as program 3.5, listed below, with the modulo operators
in the conditional expressions.

If transformation operators occur in expressions,
���������
	

preprocesses the program to replace
transformation operations in expressions by variables that are produced by transformation statements,
that is,

���������
	
converts program 3.5 to program 3.4. Thus,

���������
	
substitutes each operator in

an expression by a control variable and inserts an appropriate transformation statement defining the
control variable just before the expression. After the substitution, affine expressions on the control
variables result. For instance, the expression 2*mod(j,3)-1 will be preprocessed to 2*p-1 and
an additional transformation statement p = mod(j,3).

A Class of Nested Loop Programs 35

Program 3.5. OPERATORS IN EXPRESSIONS
Let F1 and F2 be functions.

for i = 1 to M step 2,
for j = 1 to M step 2,

if mod(i,3) == 0,
[a(i,j)] = F1();

end
if mod(j,3) == 0,

[] = F2(a(i,j));
end

end
end

3.4 Parse Trees

We represent a nested loop program by a parse tree. In this subsection, we introduce some parse
tree definitions and notions. We adopt the definitions from [10] which we quote literally, for ease of
reference.

We define trees as graphs with special properties.

Definition 3.1. GRAPH

A graph
� � 	 � ���
 consists of a nonempty set � of nodes and a set � of edges such that each

edge corresponds to a unique unordered pair of distinct nodes � " � ��� and no more than one edge
corresponds to � " � ��� . The sets � and � are assumed to be finite. �

Definition 3.2. PATH

A path from node
�

to node � in a graph is an alternating sequence of nodes and edges 	 � 8 � � � � � � � � � � � � � � � � � � �

where

� 8 =
�
,
� � = � , and each edge

� � joins nodes
� �
�� and

� � for
�

= � � � � . �

Two nodes " and
�

of the graph are connected if a path exists between the two nodes. A path is
called a simple path if there are no repeated edges.

Definition 3.3. TREE

A tree is a graph such that there is a unique simple path between each pair of nodes. �

If a graph consists of only simple paths, then the graph is a tree. Trees are very useful to represent
hierarchical data structures and are used quite often to analyzing algorithms [10]. A tree with a
unique node designated as the root, is called a rooted tree. We will denote the root by the symbol � .
Henceforth, every tree is a rooted tree. An example of a tree is depicted in figure 3.1.

The level of a node is the number of edges in the path to the root. For example, node � is at level
2. We say that we go down the tree when we go to a node with a higher level. When we go to a node
with a lower level, we say that we go up the tree.

We say that node
� � is a child of node

� � if the level of
� � is one higher than the level of

� � . Node� � is the parent of
� � if

� � is a child of
� � . The descendants of a node are all the nodes of higher

level that can be reached by a path from this node. The descendants of � in figure 3.1 are the nodes� � 	 � � � � . The ancestors of a node are the nodes in its path to the root. The ancestors of
�

in figure 3.1
are � � � . If two nodes have the same parent, we call them siblings. A node with no children is called
a leaf.

Observe that according to definition 3.3 there is a unique path from the root to any node
�

in the
tree. From this follows that each node has exactly one parent.

36 3.5 Modeling Programs as Parse Trees

@

c

b

a

e

d

g

f

h

Figure 3.1. Example of a rooted tree.

3.5 Modeling Programs as Parse Trees

We model programs by representing them as parse trees. Nodes of the parse tree represent pieces
of the program, such as statements, functions, variables, and parameters. Edges represent logical
relations between the nodes according to the structure of the program.

The following types of nodes are used to represent statements:

� a For-node to represent a loop statement

� an If-node to represent the then part of a conditional statement

� an Else-node to represent the else part of a conditional statement

� a Function-node to represent a function in a function-call statement

� an End-node to represent an end statement, which indicate the end of a block of statements. 4

The rules to construct the parse tree are as follows. Each statement of the program is parsed and a
node of the appropriate type is introduced. The parent of a statement node is the node representing the
control statement of the block of statements in which the statement appears. When there is no control
statement, the node becomes a child of the root. After processing all the statements in this manner,
we have obtained the parse tree.

Observe that the level of a node corresponds with the nesting level at which the statement appears.
Functions are represented by Function-nodes, which are leaves of the tree.5 The nodes in the path
from a Function-node to the root represent the active control statements for the function.

According to these rules,
���������
	

derives parse trees from nested loop programs. Figure 3.2
shows the parse tree derived from the SVD program 2.7. The stage loop statement is the first

4End statements are modeled by End-nodes in parse trees. However, we do not draw End-nodes in figures of parse trees
as they are implicitly defined by the tree structure.

5If variables that are used in functions are considered explicitly than they will become leaves. See next section.

A Class of Nested Loop Programs 37

statement and becomes a child of the root. Its loop body consists of six loop stages. Two loop stages
for computing the angles, and four loop stages for carrying out the rotations.

The parse tree reveals precisely the control structure of the program. For instance, Function-
node RotRow has as ancestors two For-nodes that are different from the ancestors of function-node
RotColumn, but share the For-node stage. This resembles exactly the control structure of the
program, in which function RotRow is nested in other loops than function RotColumn, but they
have in common the loop statement with iterator stage.

 ROOT

 stage

 i

 Angle

 i

 j

 RotRow

 i

 j

 RotColumn

 i

 Angle

 i

 j

 RotRow

 i

 j

 RotColumn

 i

 j

 Sink

Figure 3.2. The parse tree of the SVD program.

Expressions in a program must be linear expressions in which only the operators addition, multi-
plication and subtraction are allowed. In chapter 5, we precisely formulate the type of expressions
that can be used. Expressions are represented by the nodes corresponding to the parts of the pro-
gram in which the expressions occur. This means that For-nodes model the lower and upper bound
expressions, If-nodes model the conditional expressions, etc.

3.5.1 Variable-nodes

We represent each occurrence of a variable in the program by a Variable-node. To make a distinction
between the variables on the left-hand side (LHS) and those on the right-hand side (RHS) in a function-
call statement, we introduce the LHS-node and the RHS-node. They are siblings and children of a
Function-node.

A Variables-node has as parent node either a RHS-node or a LHS-node, depending on the position
of the variable in the function-call statement. Figure 3.3 shows a subtree modeling a function-call
statement.

Function

� � � � � � � �

RHSLHS

Figure 3.3. Tree structure of a function-call statement. Variable-nodes are children of
LHS/RHS-nodes.

38 3.5 Modeling Programs as Parse Trees

3.5.2 Parameter-nodes

In order to use
���������
	

, we have to declare the parameters used in the program by means of declara-
tion statements, which are of the form:

%parameter NAME lb ub ;

In each declaration statement, we declare the name of a parameter and its range which is specified
by two integer constants lb and ub, with lb the lower bound and ub the upper bound. We represent
a parameter by a Parameter-node which is inserted as child of the root of the parse tree. Figure 3.4
shows the root of a tree with parameter nodes as children.

P1

@

P2

Figure 3.4. Parameter nodes are children of the root node.

To summarize, we have introduced so far the following types of nodes:

Types of Nodes
For-node
If-node
Else-node
End-node
Function-node
RHS-node
LHS-node
Variable-node
Parameter-node

3.5.3 Index Transformation Statement nodes

We model transformation statements by employing the following types of nodes:

� DIV-node

� MOD-node

� FLOOR-node

� CEIL-node

� EQUAL-node

A Class of Nested Loop Programs 39

 ROOT

 i

 j

 P4

 if -P4

 F1

 P6

 if -P6

 F2

Figure 3.5. The parse tree of program 3.4.

Transformation nodes are control nodes. This means that
���������
	

treats them as such in the
construction of a parse tree. Typically, they are internal nodes of the parse tree. A control node
represents a control variable and its definition. The scope of the control variable is the block of
statements in which it is declared. The parse tree of program 3.4 containing two modulo operations is
shown in figure 3.5. The nodes labeled

� � and
� � are the nodes that represent the modulo operators.

Observe that control node
� � appears only in the control path of Function-node

� � .
3.6 Conclusion

We have defined the subclass of programs that
���������
	

can take as input. Many signal-processing
algorithms can be expressed by programs that belong to this subclass. The control of these programs
must be static but may depend on manifest size parameters. Expressions inside programs must - at
least implicitly - be affine, which is required because of the method

���������
	
uses to find the data

dependencies. Thus to support more complex index expressions we allow non-linear index transfor-
mations, which are interpreted by

���������
	
in such a way that expressions become explicitly affine;

see chapter 5. Programs are written in a procedural programming language in the MATLAB environ-
ment.

By insisting on the use of function calls, programs are hierarchical.
���������
	

does not automat-
ically parse the body of a function. However, when a function is also specified by a nested loop
program,

���������
	
can analyze the body of the function as well.

Programs have been represented as parse trees. The structure of a parse tree resembles clearly the
control structure of a nested loop program. Typically, the internal nodes of the parse tree are the nodes
representing the control statements and the leaves are subtrees, consisting of function and variable
nodes representing the function-call statements. The parse tree forms the internal data structure of���������
	

.

40 3.6 Conclusion

Chapter 4

Data Dependencies

4.1 Introduction

In nested loop programs the order of execution of functions is sequential and is completely determined
by the program’s control statements.

The given sequential ordering is not the only possible ordering in which the functions can possibly
be evaluated. There may be, and in most cases there actually are, other orderings of the functions for
which the algorithm has the same input-output behavior. In particular, functions are ready to evaluate
and could do so as soon as their arguments are available. Arguments are passed between functions via
the variables. Argument passing imposes precedence relations on the functions and define a partial
order. We call these precedence relations data dependencies.1 Once the data dependencies are known,
the parallelism inside the program can be exploited.

The outline of this chapter is as follows. In section 4.2, we describe formally the sequential order
in which the functions are evaluated in nested loop programs. In section 4.3, we give a formal defi-
nition of the notion of a data dependency. Finally, in section 4.4, we formulate the data dependency
problem and outlining the procedure to solve it.

4.2 Lexicographical Ordering

We define the ordering of functions through the ordering of the iterations at which they are evaluated
and their textual positions in the program.

The ordering of the iterations is determined by the loop statements and is called lexicographical
order [9]. We denote the lexicographical order by � . The vector consisting of the control variables,
typically loop iterators, is called iteration-vector. A particular instance of an iteration-vector is called
an iteration. The set of iterations is called the index or iteration space.

Let 6�� 	 � � � � � �
 � and : � 	 � � � � � �
 � be two iterations in the same index space. The relation
6�� : , means that iteration 6 precedes iteration : .
Formally,

	 � � � � � ���
� � � � �
�� � �	�
� � � �	�
��� 6�� : (4.1)

Example 4.1.
Lexicographic Ordering

1In general data dependency may include data-dependent conditions. As we do not allow such dependencies to occur,
confusion is excluded.

41

42 4.2 Lexicographical Ordering

j

0

0

i

Figure 4.1. The lexicographic ordering of the iterations.

Consider the nested loop program 4.1. The iteration-vector of this program is 6�� 	 � � �
 � . Figure
4.1 shows the lexicographical ordering in which the iteration-vector passes through all the iterations.
Just follow the arrows starting at 	 � � �
 . �

Program 4.1. LEXICOGRAPHIC ORDERING
Let F1 and F2 be arbitrary functions.
Let a and b be array variables.

for i = 1 to 5,
for j = 1 to 5,

[a(i,j)] = F1(a(i,j));
[b(i,j)] = F2(b(i,j));

end
end

When functions are called within a single loop body, the iterations at which they are evaluated can
be equal. For instance, in program 4.1, F1 and F2 are both evaluated at 6�� 	 � � �
 � . This means that
equation (4.1) is not sufficient to determine the ordering of functions. We have to take into account,
in addition, the position of the functions in the text of the program.

Let 7�	 6+
 and � 	 :�
 be two arbitrary statements of a nested loop program. We define a Boolean
function ��	 7 � ��
 to determine the textual order of statements. � is true when statement 7 precedes
statement � in the text, else � is false. Thus when

� � � in (4.1), the precedence relation between
the two statements is resolved by ��	 7 � ��
 .

When function-call statements appear in different loop bodies, they will have different iteration-
vectors, that is, they appear in different iteration spaces. When two iteration spaces say � and � have
an intersection, then the two corresponding iteration-vectors, say 6 and : , have a common sub-vector.
This sub-vector is called the common nesting vector of 6 and : . The dimension of this vector is called
the common nesting level

%
. The value of

%
is composed by means of procedure 4.1 below.

Procedure 4.1.
Find Common Nesting Vector
Let 7 and � be two nodes of the parse tree. To determine the common nesting vector of 7 and � ,

we derive the path from node 7 to the root and the path from node � to the root. Then, the procedure
searches for common for-nodes in the two paths, starting from the root-node. The common nesting
vector is formed by the loop iterators annotated by the For-nodes that are in both paths. The size of

Data Dependencies 43

this vector is the common nesting level
%
. The procedure ends when two For-nodes are found that are

not the same. The procedure is outlined below.

find path from node 7 to the root
find path from node � to the root
while nodes in both paths are equal �

if node is For-node �
update common iteration vector�

select the next node in both paths�

�

With the iterator lexicographical ordering (4.1) and the notion of a common nesting level of
function-call statements, we can define the lexicographical ordering of functions.

Definition 4.1. LEXICOGRAPHIC ORDER

Let 6 �&	 � � � � � �
 � and :��&	 � � � � � �
 � be two iterations, and 7�	 6+
 and � 	 :�
 two function-
call statements.
Let

%
be the common nesting level of 7 and � .

Then, we say that 7�	 6+
 precedes � 	 :�
 lexicographically, denoted 7�	 6+
�� � 	 :�
 , if one of the
following hold

�
% � � � ��	 7 � ��

� 	 � � � � � ����� � � � �
 � � �	�
� � � �	�
�
� 	 � � � � � ����� � � � �
 � � � %

� ��	 7 � ��

�

When
% � � the two statements have no iterators in common and the order is determined solely

by the textual order ��	 7 � ��
 .
��	 7 � ��
 also determines the ordering when

� � %
.

By applying definition 4.1 for each value of
�

in the range � � � � % , we get all together
% � �

disjoint cases. We call this process lexicographical expansion.

4.3 Data Dependency

In the introduction to this chapter we noticed that a data dependency originates from argument passing
between functions. Data dependencies thus result from referencing variables during the function calls.

A function call involves three things. First, variables on the right of the assignment statement are
read. Secondly, the function operates on these values and produces output data. Thirdly, the output
data is written to the variables on the left of the assignment statement. A data dependency means that
a function operates on the value that is the result of the evaluation of another function.

We speak of a write access when assigning a variable a value. We speak of a read access when
reading the value of a variable. A data dependency can only result from a read and a write access to
a variable of the same name, since we assume that variables with different names do not overlap in

44 4.3 Data Dependency

memory. LHS variables are read, RHS variables are written to. We refer to a LHS variable and a RHS
variable of the same name as a read-write pair.

We denote a variable by
� 	 	 	 6+

 , with

�
the name of the variable, and

	 	 6+
 a function on iteration-
vector 6 defining the index of the variable. This function is called the indexing function. The dimen-
sion of the variable does not have to be the same as the dimension of the iteration-space. Let 7 be an
integer matrix and

%
an integer constant vector 2 of appropriate size. We require the indexing functions

to be affine functions: 	 	 6 � �
 � 7 6 � %
(4.2)

Example 4.2.
Indexing Function
Let the iteration-vector be 	 � � � � �
 � . The indexing function

	 	 6+
 of the variable
� 	 � � � � �
 is�

� � �
� � ��� *

�� �
�
�

�� +

�
�
��� (4.3)

�

Now we formulate the conditions under which two functions are said to be directly data (variable)
dependent.

Definition 4.2. DIRECT DATA DEPENDENCY

Let
�

be a variable array. Let 7 be the function reading variable
� 	 � 	 :�

 with indexing function

� 	
 at iteration : . Let � be a function writing to variable
� 	 	 	 6+

 with indexing function

	 	
 at
iteration 6 .

Function 7 is direct data dependent on function � if the following three conditions hold:

1.
	 	 6+
 � � 	 :�

2. 6 � :
3. 6 is the lexicographical largest iteration satisfying the first two conditions.

�

In the sequel, we mean direct dependency when we say dependency, except when stated otherwise
explicitly. The first condition in definition 4.2 says that the functions must reference the same element
of the array. The second condition says that the function writing to the variable must precede the
function reading it. The third condition says that an iteration 6
 lexicographical farther away than 6
that satisfies the first two conditions does not exist.

Program 4.2. DATA DEPENDENCY
Let F1 and F2 be functions.

for i = 1 to 5,
[A(i+2)] = F1(B(i+1));
[B(i)] = F2(A(i));

end

The next example analyzes this program with respect to data depedendencies.
2The constant vector may be parametrerized. See also chapter 5

Data Dependencies 45

Example 4.3.
Data Dependency
We investigate by enumeration if there are data dependencies inside program 4.2. Function F1

reads RHS variable B(i+1) and writes LHS-variable A(i+2). Function F2 reads variable A(i)
and writes variable B(i). So there are two read-write pairs: <A(i),A(i+2)>and <B(i+1),B(i)>.

i A(i+2) A(i) B(i) B(i+1)
1 A(3) A(1) B(1) B(2)
2 A(4) A(2) B(2) B(3)
3 A(5) A(3) B(3) B(4)
4 A(6) A(4) B(4) B(5)
5 A(7) A(5) B(5) B(6)

The table lists the variables that are referenced for each value of the loop iterator
�
, � � � � � . The

iteration vector 6 � 	 �
 is one dimensional. For instance, at iteration 6�� 	 �
 variable A(3) is written
and variable A(1) is read. At iteration 6�� 	 &
 the variable A(3) is read. Thus the two iterations are
data dependent. Similarly, we find that the iterations 6 � 	 ��
 and 6 � 	 �
 and the iterations 6 � 	 &

and 6�� 	 ��
 are data dependent.

There are no data dependencies for variable array B because the read accesses to B always precede
the write accesses. This violates the second condition for data dependency.

�

To illustrate the third condition of definition 4.2, we use program 4.3.

Program 4.3. THIRD CONDITION OF DATA DEPENDENCY
Let F1 be a function.

for i = 0 to N,
for j = 0 to N,

[a(i+j)] = F1(a(i+j));
end

end

This program has the read-write pair <a(i+j),a(i+j)>. Assume the program is at iteration
6 � 	 � � �
 � , where the function reads variable a(3). We want to determine at which iteration this
variable was produced.

Figure 4.2 shows all the iterations of program 4.3, in which we have also drawn the line
�#� � � &

defining the iterations 	 � � �
 � writing to variable a(3). To find the lexicographical largest iteration
on the line

�$� � � & , we have depicted the lexicographical order of the iterations of the program given
in figure 4.3.

By enumeration, we find that the variable a(3) is written at the iterations: 	 & � �
 � , 	 � � ��
 � and
	 � � &
 � . By inspecting figure 4.3, we find that iteration 	 � � ��
 � is the lexicographical largest iteration
writing a(3). We conclude that iteration 	 � � �
 � is dependent on iteration 	 � � ��
 � .

4.4 The Data Dependency Problem

The objective is to make the data dependence structure of the program explicit and to model it by a
dependence graph. This requires that we know exactly for any iteration : in the program on which
iteration 6 it is dependent. Observe that this requires more than a dependency test. In a dependency

46 4.4 The Data Dependency Problem

j

0 N

0

N

�	� � �

i

Figure 4.2. Iteration space of program 4.3 with superimposed on it the line ��������� .

i0 N

0

N

�	� � �

j

Figure 4.3. Lexicographical ordering of iterations in program 4.3.

test, we only check whether two iterations are dependent but do not provide detailed information about
the dependency.

It turns out that the data dependency problem can be formulated as an integer linear programming
(ILP) problem. The first two conditions for data dependency define a set of feasible iterations 6 on
which : may be dependent.

The solution is the lexicographical largest iteration of this set. However, the problem is more com-
plex as the solution will in general be depending on : . We can solve this problem by a parameterized
integer linear programming procedure (PIP), which finds the solution as an affine expression on :
[25] [26]. When no solution is found, there is no data dependency.

A complete data dependence analysis of a program involves finding the dependencies for all the
RHS variables appearing in the function-call statements. When there are several LHS variables with
the same name as the RHS variable, there are several read-write pairs of the same RHS variable.���������
	

calls PIP to solve the data dependency problem for each read-write pair separately. After
that, the solutions found for each read-write pair are combined in order to satisfy the third condition
of data dependency.���������
	

uses procedure 4.2 to find all the read-write pairs. For example, according to this
procedure,

���������
	
finds � � � read-write pairs for variable a in the SVD program 2.7.

Data Dependencies 47

Procedure 4.2.
Find read-write pairs
This procedure returns the read-write pairs of a program by doing a Depth First Search (DFS) of

the parse tree of the program. In a DFS search procedure the variables are found in the order in which
they appear in the text. For each RHS variable, the procedure applies a DFS search for LHS variables.
If the name of a LHS-variable is equal to the name of the RHS variable, we have found a read-write
pair. Procedure 4.2 is outlined below.

for each RHS variable in DFS order �
for each LHS variable in DFS order �

if LHS variable name = RHS variable name �
add read-write pair�

�
�

�

4.5 Conclusion

We have formulated the conditions under which functions in nested loop programs are depending
on each other through read-write operations on variables. We have taken into account the fact that
functions may appear in different loop bodies. In such a case it is necessary to determine the common
nesting level. When statements appear in the same loop body, the textual position of the statements to
resolves their ordering.

We have also mentioned that the analysis involves finding closed expressions for the dependencies.
The analysis is thus much more than a data-dependency test. The data dependency problem can be
formulated as an LP problem, which can be solved by PIP that outputs the expressions for the data
dependencies.

In chapter 6 we explain PIP, which is used to find the dependencies for each read-write pair
separately. In chapter 7, we combine the solutions found for the individual read-write pairs of a RHS
variable and come up with the overall solution of the data dependency problem.

48 4.5 Conclusion

Chapter 5

Annotating the Parse Tree

5.1 Introduction

We solve the data dependencies inside nested loop programs by the linear programming algorithm
(PIP). PIP’s input must be in the form of system of inequalities, which specify a parameterized set of
iterations.

In chapter 3, we explained how a nested loop program is modeled by a parse tree. In this chapter,
we annotate the nodes of a parse tree with linear inequalities in order to specify the input for PIP.

The inequalities annotated by the nodes in the path from a particular node to the root define the
set of iterations for which the corresponding statement in the nested loop program is reached. We
call these sets iteration domains. By doing this for the function-call statements, we define the sets of
iterations at which the read and write accesses to variables take place in a nested loop program.

As PIP’s input consists of a set of linear inequalities, we have to model the non-linear transforma-
tion operators inside nested loop programs by linear inequalities. In addition, we have to do this when
the stride of the loop statements is greater than one. We give the linear inequalities for each of these
cases.

We begin this chapter by introducing some notations and definitions of the field of Linear Pro-
gramming [52].

5.2 Notation and Terminology

First of all, we denote the set of integers by Z and the set of reals by R.
Let

� � 	 � � � � � � � � �
 � � R
�

be a vector and
% � R be a constant, and let 6 � 	 � � � � � � � � �
 �

be a vector of variables taking values in R
�
. Then an affine expression is an expression of the form:

� � � � � � � � � ��
� � � � � � %
(5.1)

Or, in vector notation: � 6 � %
(5.2)

Based on this definition, we define a linear inequality as:

� 6 � %�� � (5.3)

An inequality with a smaller than or equal to operator,
�

, can be transformed to the form of
equation 5.3 by taking its negative.

49

50 5.3 The iteration domain

We define an integral polytope as a bounded set of points � taking values in Z
�

specified by a
system of linear inequalities. A polytope defines a complete set of integer index points. Let

�
be the

number of inequalities. With 7 an
� � � integer matrix and

�
a vector in Z � , we define an integral

polytope
�

by [52]: � � � � � Z
� � 7 � � � � � � (5.4)

We allow the constant vector
�

to depend on the program’s size parameters. More precisely,
�

may be
an affine expression on these parameters.
Let

�
be the vector of parameters and let

�
be the number of parameters. With

� � Z � a constant
vector and a matrix � � Z �

� � , we write
�

as:

� � � �����
(5.5)

We use the term domain when we require the points 6 to lie on a lattice. With � an � � �
integral

matrix and � � Z
�

an integral vector, we define a lattice as:

6 � � � � � (5.6)

We call � the offset of the lattice and the columns of � the lattice vectors.
A domain is defined by a lattice and a polytope:

� 6 � Z
� � 6 ��� � � � � 7 � � � � � � (5.7)

We say that the lattice points 6 are generated by the columns of � , with the variables of � bounded
by the polytope.

A domain is dense when it includes all integer points 6 � Z
�

inside the polytope. When not all
integer points inside the polytope are included, we call the domain sparse. This means that the lattice
constraints filter out points of the polytope.

5.3 The iteration domain

We refer to the set of iterations at which a statement is reached in a program as the iteration domain
of the statement. In particular, we want to specify the iterations at which read and write accesses to
variables take place.

We specify sets of iterations by polytopes of the form of equation (5.4).
To obtain these polytopes, we annotate the nodes of the parse tree representing the nested loop

program by linear inequalities. In the following two sections, we define these linear inequalities for
each type of node. After we have annotated the nodes of the parse tree, we easily derive the polytopes
from the parse tree by procedure 5.1.

The polytope of a node’s iteration domain is formed by the inequalities of the nodes in its path
to the root. This procedure can be used to derive the polytope for any node of the parse tree, but is
mainly used for finding the polytopes for the LHS and RHS variables.

Procedure 5.1.
Derive Polytope Let

�
be an arbitrary node of the parse tree. The procedure finds the iteration

domain of
�

by collecting the inequalities of the nodes in the path from
�

to the root. Together the
inequalities form the polytope

�
of the iteration domain. The procedure is outlined below.

Annotating the Parse Tree 51

for each node in the path from node
�

to the root �
add linear inequality to polytope

�
�

�

Each point in a polytope represents an iteration of the nested loop program. The number of points
in a polytope is equal to the number of times the corresponding statement of the program is evaluated.

The dimension of the iteration domain depends on the number of For-nodes in the path. When
there are

�
For-nodes in the path, we say that the nesting level of the node is

�
. The iteration vector

6�� 	 � � � � � �
 of the iteration domain consists of the iterators of the loop statements.

5.4 Annotating the parse tree

Below, we annotate types of nodes by inequalities that belong to dense iteration domains. In section
5.5, we annotate the remaining types of nodes belonging to nondense iteration domains.

The types of nodes are annotated as follows:

� Parameter-node

Let
�

be a parameter represented by a parameter-node. The value of
�

must be an integer
between integer constants

% � and
% � , with � � % � � % � .

A parameter-node is annotated with the inequalities:
% � � � � % � (5.8)

� For-node, stride equal to one

Let
�

be the iterator of a loop statement represented by a For-node. Iterator
�

is bounded by the
lower bound expression 	 and upper bound expression " , with 	 and " affine expressions on the
parameters and the outer loop iterators.

When the stride is equal to one, a For-node is annotated with the inequalities:

	 � � � " (5.9)

� If-node

An If-node is annotated with its conditional expression, which is of the form:

� 6 � � � � (5.10)

� Else-node

An Else-node has always a corresponding If-node in the parse tree. Let the inequality of the
If-node be given by equation (5.10). Then, an Else-node is annotated with the inequality:

� 6 � � � � (5.11)

Since every expression in nested loop programs must be an affine expression, we call them affine
nested loop programs. Below, NLP stands for affine nested loop programs.

52 5.5 Nondense Domains

j

M1

1

M

i

Figure 5.1. Iteration domain of program 5.1

Example 5.1.
Iteration domain
We derive the iteration domain of the function-call statement in program 5.1. The nesting level

of the statement is two. Each loop statement results in two inequalities, one for the lower bound and
one for the upper bound. With the inequalities for the range of parameter � , polytope

�
is specified

by: � � � � �� � � � � �� � � � � �� � � � � �
� � �� � � ��� � �

(5.12)

We have depicted the iteration domain in figure 5.1. �

Program 5.1. ITERATION DOMAIN
Let F1 be a function.
Let M be parameter with range 8�� M � � $.
for i = 1 to M,

for j = i to M,
[a(i,j)] = F1(a(i,j));

end
end

5.5 Nondense Domains

When a nested loop program contains loop statements with a stride greater than one or has non-linear
transformation operators in its expressions, the iteration domains become nondense. However, the
sets of iterations can still be described by polytopes. In chapter 8, we discuss the relation between
the points � of the polytope and the points of the iteration domain defined by the lattice.

Annotating the Parse Tree 53

5.5.1 Stride greater than one

For a loop statement with stride greater than one, the lower and upper bound expressions are not
sufficient to describe the values that the loop iterator takes on. We have to add an additional constraint
specifying that the difference between values of the iterator is a multiple of the stride.

The syntax of a loop statement with stride
�

is:

for
�
= 	 to " step

�
Its semantics is as follows. First the iterator is initialized with the value of 	 . Then as long as� � " , it is incremented by the value of

�
after each loop.

Example 5.2.
Stride Consider the following loop statement with stride three:

for
�
= � to ��� step

&
If we applied equation (5.9) to model this statements, we would get the polytope:

� � � � ��� (5.13)

However, according to the semantics of the loop statement, the iterator
�

of the loop statement takes
on the values � � � � ' � ��� only. Therefore, the polytope includes too many points and does not model
correctly the loop statement. �

The example shows that we cannot specify the iteration domain in terms of the loop iterator only.
Therefore, we introduce an additional control variable to account for the stride. Let � be this variable,
which is an integral variable. Then, we model the stride by the equation:

� � 	 � � � � (5.14)

By taking also the loop bounds into account, we annotate a For-node as follows.

� For-node with Stride greater than one Let
�

be the iterator of a loop statement represented
by a For-node. Let 	 and " be the lower and upper bound expression, respectively. Let

�
be the

stride. With � an integer variable, a For-node with stride
� � � is annotated by:

� � 	 � �
� �� � " (5.15)

The equation together with the inequality of the upper bound form a polytope in the 	 � ���
 space.
The polytope is closed and defines the values of iterator

�
. Thus the nondense iteration domain is

decribed by a polytope in a higher dimensional space. Each additional variable introduces an extra
dimension.

5.5.2 Non-linear Index Transformations

In this section, we model the non-linear operators that may appear in the expressions of the program:
integer division, ceil, floor, and modulo. We define them by linear inequalities for which we also have
to introduce new variables as we did for the stride of loop statements.

In general, non-linear operators will make the data dependence analysis very complex. It is only
because we can define these non-linear operators by linear inequalities that they are allowed inside
nested loop programs.

Definition 5.1. INTEGER DIVISION

54 5.5 Nondense Domains

Let
�

be an integer and let
�

be a positive integer, called the divisor. The result of integer division
of

�
and

�
are integers � and

�
, such that:

� � �
� � � � � � � � � 	 � � �
 (5.16)

We call
�

the divisor and
�

the remainder of the division.
�

We denote the operator computing the integer division by � � � 	 � � �
 in which the value of
�

may
be defined by an affine expression. However,

�
must be a positive integer constant.

When a � � � 	
 operator is used in conditional statements or in the bounds of loop statements, we
cannot describe the polytope of the domain in terms of the loop iterators solely. We have to introduce
a variable � defined by equation (5.16) as additional variable in the polytope.

With a little rewriting of equation 5.16 we obtain two linear inequalities:

� � � � �
� � � 	 � � �
 (5.17)

These inequalities define the value of the variable � . As � � � � � 	 � � �
 , a � � � operation is defined
by these two linear inequalities.

Observe that for each value of
�

and
�

the integer division of
�

and
�

results in a unique value of
� . Therefore, we can replace each � � � 	
 operator by � in the expression of the nested loop program.

Example 5.3.
Integer Division
The values of � � � � � 	 ��� & � �
 with

� � � � � � �� are defined by the inequalities:

� � � � � �
� � ��� & � � � � & (5.18)

These inequalities define a polytope in the 	 � ���
 space, which we have drawn in figure 5.2. Each
point 	 � ���
 � in the polytope stands for a result of the division operator. �

Thus
���������
	

annotates a Div-node as follows:

� Annotating the
� � �

-node
Let � be a variable.
Given an affine expression

�
and an integer constant

�
.

A Div-node of the parse tree is annotated with the inequalities:

� � �
� � � �

	 � � �
 � � � �
� � � � (5.19)

The fact that we can define the operator � � � 	
 by two inequalities makes this operator special.
Below we define the operators

� � � 	
 , 	 	 ��� � 	
 , and
%.� � 	 	
 in terms of a � � � 	
 operator. This implies

that these operators can also be defined by linear inequalities. For details we refer to [36]. With
�#"$�

standing for the real division of
�

and
�
, we define:

�
	 	 ��� � 	 �#"$�
 � � � � 	 � � �

rounds the result of

�#"$�
to the greatest integer smaller than or equal to

�#"$�
.

Annotating the Parse Tree 55

8

��
 "���� 8

��
 "����
� � � "

�

�

��� �

Figure 5.2. The index points defined by � ��� ���	� � � � -�

�

�
%.� � 	 	 �#"$�
 � � � � � 	 � � � �

rounds the result of

�#"$�
to the smallest integer greater than or equal to

�#"$�
.

�
� � � 	 � � �
 � � � �

� � � � 	 � � �

returns the value of the remainder of the integer division.

According to these formulas,
���������
	

rewrites nested loop programs in terms of the � � � 	
 opera-
tors only.

Below, we have listed program 5.2 which is obtained from program 3.5 after substitution of the
modulo operators by integer division operators inside the expressions of the conditional statements.

Program 5.2. PROGRAM WITH INTEGER DIVISIONS
Let M be a parameter.
Let F1 and F2 be two functions.
Let a be a two-dimensional variable array.

for i = 1 to M step 2,
for j = 1 to M step 2,

if i - 3*div(i,3) <= 0,
[a(i,j)] = F1();

end
if j - 3*div(j,3) <= 0,

F2(a(i,j));
end

end
end

By applying procedure 5.1 in order to derive a polytope,
���������
	

will not only find iterators, but
also additional control variables introduced to model strides and non-linear index transformations.

Let q � 	 � � � �����
 be the vector of these additional control variables.
Then the control vector of the polytope is ��� 	 � � � � � � ��� � � �����
 � , not necessarily in this order,

and takes values in Z
� � � . In a way, we have extended the dimension of the iteration space, making

56 5.6 Formulating the Data Dependency Problem

it possible to define the set of iterations by polytopes. Or, in other words, we have transformed the
nondense domain into a dense domain in a higher dimensional space. The number of points in the
nondense domain is equal to the number of points of the polytope. The transformation is thus one-to-
one.

5.6 Formulating the Data Dependency Problem

In this section, we formulate the conditions of data dependency given in chapter 4 as PIP input. The
input of PIP consists of a problem and a context specification, which are both specified by a polytope.

As said,
���������
	

calls PIP for each read-write pais. Let the read-write pair be 	 � 	 � 	 :�

 � � 	 	 	 6+

 ,
with

� 	 � 	 :�

 a RHS variable and
� 	 	 	 6+

 the LHS variable. 6 � : are the control vectors of the left-

hand side and right-hand side variable, respectively.
The values that control vector 6 takes on are specified by a polytope

���
defined by the inequalities

annotated by the nodes in the control path of the LHS variable:
��� � � 6 � 7 � 6 � ��� � � � (5.20)

Polytope
���

describes the set of iterations at which write accesses to the LHS variable take place.
The equations resulting from

	 	 6+
 � � 	 :�
 , which are both affine functions, are:

7�� 6 � � ��� 7�� : � � � (5.21)

The vectors
�	�

,
� � , and

� � are affine expression of the size parameters of the nested loop program.
Note that by the equation the variables of 6 as well as the variables of : enter the system. These

equations are known as Diophantine equations [9]. As this system is underdetermined, solutions will
generally be expressed in the free variables. In our problem, we choose the variables of : to be free
and we keep them in the system as parameters. The solution for 6 will then be expressed in terms of
these parameters [79].

Thirdly, the inequalities corresponding to each case of the lexicographical expansions of 6�� :
are specified. The number of cases depends on the common nesting level as defined by procedure 4.1.

In addition to the above inequalities,
���������
	

adds non-negativity constraints on the variables of
the problem. Together the linear inequalities form a parametrized polytope. We refer to this polytope
as the problem of PIP and denote it by

� � .
The lexicographical largest vector of polytope

� �
� � � � ��
 	 � �
 (5.22)

is the vector on which : is dependent. We use PIP to find this solution vector, if it exists, and call it
the dependency-vector. The set of feasible solutions is parametrized with respect to vector : and the
solution vector will be expressed in terms of the elements of : . Because of this parametrization, PIP
branches internally into a number of cases and returns for each branch a solution-vector. The result
produced by PIP is, in general, a solution tree.

We will now describe the context, which is also specified by a polytype. Because the data depen-
dency problem is parametrized, we have to specify the values that the parameters can take on. The
parameters of the context are the size parameters of the program and the elements of the vector : . The
values of : are defined by the polytope

� � of the RHS variable.
The value of a size parameter, say

�
, is between the range defined by two integer constants

% � and% � : % � � � � % � with
% � � � . In addition, we add non-negativity constraints on the parameters of the

context.
The context is thus defined by:

Annotating the Parse Tree 57

1. the polytope
� � of the RHS variable

2. the ranges of the size parameters.

We represent the context by the polytope
���

.
We denote the input of PIP by the tuple

� � � ��� 	 �.� � % � � � � � � � . In procedure 5.2, we outline the
procedure to formulate the PIP input.

Procedure 5.2.
Formulate PIP input

use procedure 4.1 to find common nesting vector
for each lexicographical expansion �

formulate a PIP Problem
� �

use procedure 5.1 to find polytope
� �

of the LHS variable
add inequalities of the lexicographical expansion
add index equations defined by the indexing functions

formulate a PIP Context
� �

use procedure 5.1 to find polytope
� � of the RHS variable

add constraints on size parameters�

�

As an example, we analyze the data dependencies of the part of the SVD algorithm that performs
the row and column rotations inside the odd stage. We have listed this part, called ’Rotate’, in program
5.3. In this chapter, we formulate the PIP input for a particular read-write pair in this program. In
chapter 7, we present the result of the complete data dependence analysis for the program ’Rotate’ in
the form of a single assignment program.

The parse tree of program ’Rotate’ is shown in Figure 5.3. The program consists of two loop
stages. In the first loop stage the row rotations are carried out. In the second loop stage the column
rotations.

Both function-call statements access variable array
�
. There are four write accesses to variable

�
and four read accesses to variable

�
, which result in � � read-write pairs for which we have to formulate

the PIP input.

Program 5.3. ROTATE
Let M ��� ���!� 8�� be a parameter.
Let RotRow and RotColumn be functions.
Let a be a two-dimensional variable array.

for i = 1 : 2 : M-1,
for j = 1 : 1 : M,

[a(i,j),a(i+1,j)] = RotRow(th1(i),a(i,j),a(i+1,j));
end

end
for i = 1 : 2 : M-1,

for j = 1 : 1 : M,
[a(j,i),a(j,i+1)] = RotColumn(a(j,i),a(j,i+1),th2(i));

end
end

58 5.6 Formulating the Data Dependency Problem

 ROOT

 i

 j

 RotRow

 i

 j

 RotColumn

Figure 5.3. Parse tree of program ’Rotate’.

Example 5.4.
PIP Input
We specify the context and the problem for the read-write pair <a(j,i+1),a(i,j)> of pro-

gram 5.3. The RHS variable a(j,i+1) is the variable appearing as second argument inside the
function call to RotColumn. The LHS variable a(i,j) is the first variable appearing inside the
function call to RotRow.

We first describe the context. The control vector of the RHS variable is :�� 	 � � �
 � . For the sake
of clarity, we give the variables of : the subscript

�
. So : �&	 � � � � �
 � . In addition, the program has

size parameter M.
By applying procedure 5.1 to the RHS variable a(j,i+1), we find its polytope

� � , in which
variable � � models the stride:

� � � � � � ���� � � � � �� � � �� � � �
We complete the specification of the context by adding the inequalities specifying the range of

parameter M:
�
�
�

� � ���
Next we specify the problem. First, we apply procedure 5.1 to find polytope

� �
defining the iter-

ations of the LHS variable:

� � � � � � �
� � � � �� � � � �
� ��� � �

The indexing function of the LHS variable is
	 	 6+
 � 	 � � �
 � and the indexing function of the RHS

is � 	 :�
 � 	 � ��� � � � �
 � . To satisfy the second condition for data dependency
	 	 6+
 � � 	 :�
 , we add:� � � �� � � � � �

Finally, we determine the number of the lexicographic cases we have to solve. By applying pro-
cedure 4.1, we find that the common nesting level is zero. However, the Boolean function � is true
because the function call to RotRow precedes function call to RotColumn in the program. Thus

Annotating the Parse Tree 59

there is only one case to solve.
At this point, we have specified the data dependency problem completely.
Note that the number of cases is equal to two when the LHS variable is taken from the same

statement as the RHS variable. Then we have to consider two cases:
case 1).

� � � � � � � � �

case 2).
��� � � � �� � � � � � � � �

and to define a separate PIP problem for each case.
�

5.7 Conclusion

We have formulated the data dependency problem as a PIP problem, in the form of a parametrized
polytope defining the set of iterations to which a LHS variable is written. The lexicographic largest
iteration of this set is the dependent iteration.

We have shown the procedure used by
���������
	

to annotate each node of the parse tree of a nested
loop program by linear inequalities. This requires the introduction of additional control variables
when the stride of loop statements is greater than one and when the program contains non-linear
index transformations. Extending the dimension of the polytope beyond the dimension of the domain
can be regarded as an up transformation of the nondense domain into a higher dimensional space. By
traversing the path from a node to the root of a parse tree, a polytope can be constructed that describes
the set of iterations at which the corresponding statement is reached.

60 5.7 Conclusion

Chapter 6

Parametric Integer Programming

6.1 Introduction

When we restrict ourselves to the class of nested loop programs and require the programs to have
static control and linear expressions, we can analyze the data dependence by a linear programming
technique (PIP = parametric integer programming) due to Feautrier [25] [26]. In the previous chapter,
we showed that the class of nested loop programs which contains the non-linear operators integer
division, modulo, ceil and floor in its expressions can be converted to the previous. Based on the
definition of integer division, we can express these operators in terms of linear control statements,
allowing us to use PIP for the analysis of these programs too. PIP was introduced and implemented
by [25] and later improved [18].

The outline of this chapter is as follows. We describe the linear programming techniques used by
PIP. After introducing some terminology and notations of linear programming, we explain the classical
dual simplex algorithm for finding an optimal solution of a system of linear inequalities. Then, we
describe how Feautrier modified the dual simplex algorithm in order to find the lexicographic largest
solution of the system. The solution returned by PIP is a closed expression on the parameters of the
system.

6.2 Systems of equations

To introduce linear programming, we consider first a system of simultaneous linear equations. Let
�

be an
�

by � matrix and let d be an
�

-dimensional vector called the constant vector. With x standing
for the vector of variables � � � � � � , we denote the system by:

�
x � d (6.1)

Or, equivalently, in expanded format:

% � ��� � � % � � � � �� $� % � � � � � � �% � ��� � � % � � � � �� $� % � � � � � � �

%
� ��� �

� %
� � � �

�� $� %
�
� � � � � �

(6.2)

61

62 6.2 Systems of equations

We assume that there are fewer equations than variables,
� � � . This means that the system has

either no solution or infinitely many solutions. A solution is any n-tuple
	

of real values for which the�
equations are valid statements. A system for which no solution exists is infeasible.

Example 6.1.
System A system with

� � � and � � � is:

� � � � � � �
�! � � �
� � � � � � �#" � � (6.3)

For instance, tuples
	 � � 	 � � � ' � � � �
 and

	 � � 	 ��� � � � � � ��
 are solutions. �

In order to find system solutions, we need a generic representation of a solution. Since at most�
variables in the system are free, we rewrite it into basic form in order to exhibit a set of such

independent variables, called the basis of the solution. We only consider systems that can be written
in this from. We refer to [12] for proofs that show a system in basic form exists which is equivalent to
the original system.

Definition 6.1. BASIC FORM

Let S be a system of
�

linear equations in
� � �

variables ��� � � � � � � , with
� � � and

� � �
and � � � ���

.
Let 6 be an

�
x

�
identity matrix and 7 be an

�
x
�

matrix.
Let vector x
 be a permutation of x � 	�� � � � �
 and b a constant vector.
System 5 is in basic form if there is a permutation x
 of x such that

� 6 7 x
 � b (6.4)

is equivalent to the original system. �

We call the variables forming the first
�

elements of x
 basic variables and we say that the set of
these variables is a basis for 5 . The remaining

�
elements of x
 are nonbasic variables. By definition,

we call the solution of which all nonbasic variables are equal to zero the basic solution. The basic
solution is unique for a system in basic form. From equation 6.4 follows that the value of the basic
variables are equal to the elements of constant vector b.

Example 6.2.
Basic Form
We can write the system of example 6.1 in basic form with � and �#" as basic variables by

dividing the first equation by the coefficient of � , resulting in the equations:
� �! � � " �
� � � � " �
� � � � �

�#" � � � � � � � � (6.5)

Or in matrix notation:

�
� � �

"
� �

"
�

� � � � � �
���
�
�!
�#"
� �
� �

����
� �

�
� �
� � (6.6)

By setting the nonbasic variables � � and � � to zero, we obtain the tuple 	�� � � � � � �! � �#"
 �
	 � � � � � � � �
 as a basic solution. �

Parametric Integer Programming 63

The basis of a system is, in general, not unique if it exists. If the
�

equations of the system are
independent, we can choose as basis any set of

�
variables, with a nonzero coefficient, from the set

of � variables. Let � denote the factorial operator. Then the number of choices for a basis is typically
equal to

� �
� � ��� " � �'	 � � �
�� . In our example, there are ��� " ��� ��� � � bases:

� � � � � � � � � � � � �! � � � � � � �#" � � � � � � �! � � � � � � �#" � � � �! � �#" � .
Some bases may appear more convenient for specific treatment. Therefore, we may want to change

the basis in a systematic way by pivoting. Suppose that we would like to enter nonbasic variable �
� � �
to the basis. Then we must find a nonzero coefficient of variable �
� � � . Let element

� � � of matrix
7 be this coefficient, which we call the pivot. The pivot operation on a system of equation involves
simple linear operations:

� divide equation
�

by the pivot
� � � . This makes the coefficient of the variable �
� � � equal to one.

� add
� � � � " � � � times equation

�
to all other equations

���� 	
of the system. This makes all

remaining elements
� � � in the column of matrix 7 zero.

� Finally, apply row and column permutations to write the resulting system in basic form.

By pivoting with pivot
� � � , variable �
� � � will enter the basis and variable �
� will leave the basis.

Note that the basis after one pivot operation differs only in one variable. The other
� � � basic

variables will stay in the basis. It is easy to prove that systems obtained by pivoting are equivalent,
i.e., they have the same solution.

We can make the identity matrix implicit and write the system as a condensed tableau. This is a
more pictorial way of representing systems, and it is very often used in LP. The condensed tableau is
defined as follows, with

� � � � �
:

� � � � ... � �� � � � � � � � ...
� � � � �� � � � � � � � ...
� � � � �

.

.

.�
�

�
� �

�
� � ...

�
� �

�
�

The box has two fields that are filled with the elements of matrix 7 and vector b, respectively.
The numbers on the left margin of the box are the subscripts of the basic variables. The numbers � � ,
... � � on the top margin of the box are the subscripts of the nonbasic variables.

Example 6.3.
Condensed Tableau
The condensed tableau of example 6.2 is

� �
3 � " � � " � � �
� � � � �

�

64 6.3 LP problems and methods

6.3 LP problems and methods

At this point, it is appropriate to define the linear programming (LP) problem in primal form. Let	
be a linear function defined by the inner product of a constant row vector c and variable vector

x � 	�� � � � � �
 � . We refer to function
	

as the objective function. The primal LP problem is to
maximize 	 	 x
 � cx (6.7)

subject to the inequalities:
7 x

�
b (6.8)

and non-negativity constraints: � � � � � � � � � � � � � (6.9)

To solve the LP problem, we put this problem in the form of a system of linear equations.
Let a � be a row of matrix 7 , with � � � � �

. We write each inequality a � x � � � � � as an equation� � x � � � � � � � � � � under the constraint � � � � � � . As matrix 7 has
�

rows, there will be
�

such
variables, which we call slack variables. Note that the resulting system of equations is in basic form,
with the

�
slack variables as basic variables and the variables of x as nonbasic variables. In addition,

we add the objective function
� � % � as equation

� � % � � � to the system.
When we put everything together in a condensed tableau, called the primal tableau, we get:

� � � � ... � �� � � � � � � � ...
� � � � �� � � � � � � � ...
� � � � �

.

.

.�
�

�
� �

�
� � ...

�
� �

�
�� � % � � % � ...

� % � �

Two famous methods to solve the primal LP problem are:

� the simplex method

� the dual simplex method

Both methods consist of a sequence of pivoting operations resulting in at most
� �
� steps to a final

tableau, which corresponds with one of three possible outcomes:

1. if all elements of b and
�

c are nonnegative, the basic solution is the optimal feasible solution.

2. the problem is infeasible, i.e. there is no solution at all.

3. the objective function is unbounded above.

We consider only the first two cases. In the problems we are considering, the unboundedness of the
cost function will not appear.

The simplex method can be applied only when the elements
� � are greater than zero,

� � � � � � �
� � � , in the initial tableau. The dual simplex algorithm can be applied when all entries

� % � in the
objective row are nonnegative. The latter situation will always be the case in our problems. In the
following, we consider only the dual simplex algorithm.

Parametric Integer Programming 65

The dual simplex algorithm pivots in such a way that all entries in the objective row remain
nonnegative and will lead, after a finite number of pivot operations, to a tableau with also nonnegative
elements of the constant vector b, if it exists. For more information on this algorithm we refer to [12]
[52]. The rules for selecting the pivot are:

1. select the rows of the tableau of which the constant
� � is negative and which contain negative

elements
� � � .

2. select element
� � � of these rows for which the absolute value of the ratio

% � " � � � is the smallest.

In other words, introduce in the basis a variable causing the highest increase in the value of
�

and
remove from the basis a variable which is not sufficiently constrained by its

�
term (

 $� � � � � � �
�).

The primal LP problem searches the maximum of
�

in the domain defined by the system of
inequalities. We can find the minimum value of

�
by taking the negative of the cost function and

searching for the maximum value of
� �

. As will become clear in later sections, we are especially
interested in finding the minimum.

Example 6.4.
Dual Simplex Algorithm
Suppose we want to find the minimum value of the objective function

� 	�� � � � �
 � ���$� � � � � for
nonnegative variables � � and � � , satisfying the following two linear inequalities:

� � � � � � � � � �� � � � � � � � � (6.10)

Figure 6.1 shows the feasible solutions in the 	���� � � �
 space.
As we are searching for the minimum we use as cost function

�
 � � � � � ���$� � � � � . Next,
we introduce slack variables � and �#" to obtain the equations:

�! � � � � � � � � � �
�#" � � � � � � � � � (6.11)

This system is in basic form with basis � � � �#" � and its condensed tableau is:
� �

3
�
�

�
1

�
� �

� � � � � ��
 ��� � �

We see that all the elements of the cost vector
%

are positive. Therefore, we can apply the dual
simplex algorithm. Both rows have a negative constant, and the negative elements in these rows
are:

� � � � �
� ,
� � � � �

� and
� � � � �

� . Next we determine the ratio
% � " � � � : % % � " � � ��(� ��� ,

% % � " � � ��(� ��� and % % � " � � � (� � . Thus we choose
� � � as pivot.

After pivoting with
� � � , we get the tableau:

� &
� � � � �
�

�
2 �

�
� ��
 � � � � �

66 6.4 Lexicographic Dual Simplex Algorithm

� �� �)

�
�

3 � � 3 ����� 34+ �

3 � ��� ����� 3 �

���

Figure 6.1. The shaded area indicates the feasible solutions defined by the inequalities��� + � � �
	 �
 and ��� + ��� �
	 �
��
 and non-negativity constraints � +���� and � � ��� . The
optimal feasible solution is ��� -�

� .

In this tableau, we see that only the second row has a negative
�

constant and that element
� � � is

the only negative negative element in this row. Thus we pivot with
� � and we obtain the next tableau:

� &
� � " � & " � �
� �

1
"
2

� � " � ��
 � " � � � " � � � �

This tableau is the final tableau because it does not have negative elements
�
. The optimal feasible

solution is
	�� � � � 	 � � � � � � �
 . Therefore, the minimum value of

� � � � for � � � � and � � � �
.
�

6.4 Lexicographic Dual Simplex Algorithm

In example 6.4, the objective coefficient
% � is ten times bigger than

% � . This means that an increase in
the value of variable � � weights ten times as much as an increase in the value of variable � � . Suppose
we let

% � go to infinity, and suppose that we have found an optimal solution
	 � 	 	 � � 	 �
 . Then the

value of the objective function at this optimum is less than or equal to the value of
�

for any other
arbitrary feasible solution 	 � � � � �
 :

% � 	 � � 	 � � % � � � ��� ���% �
	 � � � 	 �
 � 	 � � � 	 �
 � � (6.12)

Parametric Integer Programming 67

Let us further assume that the values of the variables of feasible solutions are bounded, i.e. ����� �
�����

� � " % � �
� . Then there are two cases for which equation 6.12 is true:

� case
� � � 	 � �	� , regardless of the values of

� � and
	 �

� case
� � � 	 � � � and

� � � 	 � �	�

In other words, the optimal feasible solution 	 	 � � 	 �
 is the smallest lexicographical solution.
Before we generalize this result, we consider another property of the pivoting operation, which

is that the computation of values of matrix 7 and vector
�

of consecutive tableaus does not involve
elements of the objective row.
As the optimal feasible solution is the value of

�
in the final tableau, the optimum value is determined

by calculations on values of elements of 7 and
�

only.
In the dual simplex algorithm, we select the pivot on basis of the smallest ratio % % � " � � � (. Now

we introduce another pivot selection rule for the dual simplex algorithm which will result in the
lexicographically smallest feasible solution of the system.

First, we extend the tableau with trivial equations ��� � � � , ... , � � � � � and place them at the
first

�
rows of the tableau, in the order given. In other words we put � � � � � � into the basic set.

Initially
� � � � � � � � � � . When we do not disturb the order of the first

�
rows, the solution for

the vector 	��
� � � � �
 is equal to the first
�

elements of b. We maintain this order by not selecting
pivots from the first

�
rows. In the case where elements of

�
in these first rows are negative, negative

elements of b will always exist in the rows below. This reflects the fact that the first
�

equations are
trivial.

Let a
�

stand for an arbitrary column vector of the extended 7 matrix, � � � � �
.

The lexicographic pivot rules are:

� select the rows with row number
� � �

with negative elements of
�
.

� Let � be the set of column numbers � of columns a
�

with element
� � � � � .

� Determine the smallest lexicographical vector of the vectors:

� ��� � a
�

� � � (6.13)

� Let a 	
�
 	 be this vector. Then we choose element
� � � as a pivot.

Observe that the column pivot is fully determined by the subscripts
�

and
	

of the negative ele-
ments of

� � � in the rows with negative constant
� � .

We conclude that when we modify the rules for selecting the pivot as indicated above, we find the
smallest lexicographical solution. Furthermore, the objective row can be removed from the tableau.
This algorithm is known as the lexicographic dual simplex algorithm. Proofs can be found in [52].

Example 6.5.
Lexicographic Dual Simplex We apply the lexicographic dual simplex algorithm in order to find

the lexicographically smallest solution 	�� � � � �
 that satisfies:

� � � � � � � � � �� � � � � � � � � (6.14)

68 6.5 Integral solution

We add slack variables � and �#" as we did in example 6.4 and we add the trivial equations ��� � � � � �
and � � � � � � � resulting in the tableau:

� �
1

� � � �
2 � � � �
3

� � �
1

� � �
� � � � � �

Observe that the tableau no longer has an objective row.
There are three possible candidates for the pivot:

� � � � � � � � � � � .
To determine the pivot column we compute the vectors:

a �
 � � �

�����
�
�
�
�
�
�

������
� , a �
 � � �

�����
�
�
�
�
�
�

������
� , a �
 � � �

�����
�

�
�
�� �
�

������
� .

Clearly, the last vector is the lexicographically smallest one among the three vectors. So the pivot is� � � . After pivoting, we obtain the following tableau:
� &

1
� � � �

2 � � � � �
� � � � �
� �

2 � � � �
And after pivoting with element

� � � we reach the final tableau:
� &

1
� � " � � � " � �

2 � � � " � �
� � " � & " � �
� �

1
"
2

� � " � �

From the tableau, we read that 	�� � � � �
 � 	 � � �
 is the lexicographically smallest feasible solution.
�

In the preceding sections, we have explained the kernel of the algorithm used to find data depen-
dencies. In the sections to come, we will solve the LP problem when:

� the optimal solution must be an integral solution.

� the constant vector b is symbolic

In the following section, we address the first topic and enter the field of integer linear programming.
Then, we deal with the second topic which will lead us to the symbolic evaluation of expressions.

6.5 Integral solution

So far, we have assumed that the solutions of the system are tuples of real values. In this section, we
restrict the solution to being integer. In particular, we are interested in finding the smallest lexico-
graphical solution in the domain defined by the system 7 x

�
b and nonnegativity constraints.

Parametric Integer Programming 69

The general procedure is to solve the system first without the integer constraint. If the result is
integral we have also solved the integer case. If the result is not integral, we add an inequality contraint
to the system, which makes this solution infeasible but is satisfied by any feasible integral solution.
We say that the inequality cuts off the nonintegral solution and call it a cut plane.

The nonintegral solution is found with the lexicographic dual simplex algorithm explained in the
preceding section.

Example 6.6.
Nonintegral Suppose that we change in example 6.5 the constant

� � of the second inequality from
� to � , the final tableau that results after the same pivot operations is:

� &
1

� � " � � � " � � ��
2 � � � " � & ��
� � " � & " � & ��
� �

1
"
2

� � " � � ��
The solution 	��
� � � �
 �&	 � �� � & ��
 is the lexicographically smallest solution but is not an integral

solution. �

We need a cut that cuts off the optimal nonintegral solution but not any integer solution. The
method that defines such a cut is the Gomory’s cutting plane method.

Definition 6.2. GOMORY FRACTIONAL CUT

Suppose that the optimal feasible solution is vector b, with element
� � not an integer. Let

	 � � and	 � denote the fractional parts of
� � � and

� � , respectively, that is,

	 � � � � � � � % � � � (� � � � � % � � ((6.15)

With �
� � � � � � � � � � �
as nonbasic variables and with � � �
� as additional integral variable,

we define a Gomory fractional cut as:

� � �
� � � � � �
� 	 � � �
� � � 	 � (6.16)

�

The fractions
	 � � and

	 � that appear in equation 6.16 are all positive. For instance,
� � � % � (�� � � 	 � �
 � � . This means that when we add this equation to the system, the optimal solution

becomes infeasible, since
� � �
� � � 	 � is negative.

Example 6.7.
Gomory Fractional Cut
We apply the Gomory cutting plane method to the final system of example 6.6 of which the

optimal feasible solution 	 � � � � � � � � � "

 � 	 � �� � & �� � � �� � & ��
 is not integral. The nonbasic variables are
�! and �#" . Because every element of b is non integral, we can select any row

�
for constructing the

cut. We choose
� . We apply formula 6.15 to compute the fractional parts:

	 � � �� � 	 � � �� and	 � �� . This gives the Gomory cut, with variable � $ as a slack variable:

�!$ � �
� �! � �

� �#" � � �
� (6.17)

�

70 6.6 Parameterized constant vector

We add a cut, as the last row, to the tableau and apply the lexicographical dual simplex method to
get another optimal solution. If this solution is again non integral, we add another cut. This process
continues until we reach an integral solution. The process is proven to be convergent, so that it reaches
the integral optimal solution after a finite number of cuts [25].

Example 6.8.
Continued
We add the cut of equation 6.17 as the last row to the tableau of example 6.6:

� &
1

� � " � � � " � � ��
2 � � � " � & ��
� � " � & " � & ��
� �

1
"
2

� � " � � ��� �
1
"
2

� � " � � � " �
The pivot is

� $ � and after pivoting we get the tableau:� &
� � � � �
� � � � &
� � � � &
� � � � �
� � � � �

The solution 	��
� � � � � �! � �#" � �!$
 � 	 � � & � � � � � �
 is integral and optimal. In this example, we have
obtained the integral solution after adding only one cut. In general, we may have to add a number of
cuts.

�

6.6 Parameterized constant vector

We now consider the case that vector b of the system is parameterized. It is a function of parameters
whose values we do not know. However, we make some assumptions. First of all we assume that the
parameters are nonnegative and, second, that the value of each element of b is defined by an affine
expression of the parameters. Let there be � parameters. Let

�
stand for the vector of parameters, e �

for an integral vector of length � and � � for an integer constant. Then each element
� � is defined by:

� � 	 �
 � e � ��� � � (6.18)

The dual algorithm applies the operations multiplication and addition to compute the value of b.
Now the multiplication of

� ��	 �
 with a constant � is given by � e � � �
� � � . The addition of two

elements
� � 	 �
 and

� � 	 �
 is equal to 	 e � � e�
 � � 	 � � � � �
 . This means that we can evaluate vector
b symbolically and that after each pivot step vector b is of the form of equation 6.18.

There is, however, a problem. In the dual simplex algorithm, we must know the sign of the
elements of b in order to select the pivot row. When the vector is parametrized, the sign depends
on the values of the parameters, which we do not know. For example, suppose that

�
and � are

nonnegative parameters and that element
� � is defined by:

� � � �
� �

� (6.19)

Parametric Integer Programming 71

Then the sign of
� � depends on the values of the parameters

�
and � . Element

� � is negative when
�
� � � , otherwise it is nonnegative.

Therefore when we have a parametrized constant vector, we need additional assertions about the
value of the parameters in order to determine the sign of the elements of b. We call this set of
assertions the context of the system. The context is a system of affine linear inequalities of the
parameters.

After each pivot operation new expressions
� � 	 �
 appear, of which we do not know the sign.

Therefore, we split the problem into two cases. In the first case we assume
� � 	 �
 to be negative and

add the inequality
� � 	 �
 � � to the context. In the second case we assume

� � to be nonnegative
and add

� ��	 �
 � � to the context. Thus the problem branches into a number of mutually disjoint
cases each with its own context defining the sign of b. We solve the LP problem by the dual simplex
algorithm for each case, separately, resulting in either an optimal feasible solution or the conclusion
that the problem is infeasible. We denote the infeasible solution by

�
. The optimal feasible solution is

the value of b in the final tableau. As b is an affine expression of the parameters, the optimal solution
is thus an affine expression of the parameters. The context corresponding to each final tableau defines
the values of the parameters under which the solution is valid.

We present the complete solution of the parametrized integer problem as a tree. The internal
nodes of the tree are the inequalities of the contexts. The leaves of the tree are the solutions of the
final tableau, which is either a vector of which the elements are affine expressions of the parameters
or is infeasible (denoted by

�
). The context of a leaf is defined by the inequalities of the nodes of the

path up to the root node of the tree.
By pivoting, we take the integer division of

� � . As integer division is not a linear operation, we
linearize this term by introducing a new parameter

�
. Parameter

�
is equal to � � � 	 � ��� � � �����
 . We

define
�

by two inequalities, according to procedure 5.19, which we add to the context.
In general, if the absolute value of the pivot is greater than one and the constant term of the pivot

row is parametrized, we introduce a new parameter.

Procedure 6.1.
New Parameter Let

�
be the pivot row, and let the pivot element selected from this row be

� � � .
Suppose that the absolute value of

� � � is greater than one and the
� � is an affine expression of the

parameters.
Then we introduce a new parameter

�
that is defined by the integer division of

� � and
� � � :

� � � � � 	 � ��� � � �
 (6.20)

The new parameter is added to the parameter vector
�

of the system and the following inequalities
are added to the context:

� � �
 � � �
 � � �
	
 � � 	
 � �
 � � � � � � � � � � (6.21)

�

Example 6.9.
Parameterized Constant Vector
Let
�

be a nonnegative parameter,
� � � . Suppose that in the second inequality of example 6.5

the constant is not -4 but equal to
� �

:

� � � � � � � � �
(6.22)

72 6.6 Parameterized constant vector

As usual, we introduce slack variables � and �#" and construct the tableau:
� �

1
� � � �

2 � � � �
3

�
1

� � � � �
� � � � � �

The context of this tableau is
� � � .

We pivot with
� � � � � and obtain:

� &
1

� � � �
2 � � � � �
� � � � �
� �

2 � � � � � �
In the case where

� � � � � � � all elements of b are nonnegative and the tableau is final. But
this inequality can never be true when

� � � . So the context for thia case is empty. Remains the
case

� � � � � � � . We add this inequality to the context. As
� " is negative we have to select a pivot

from this row. The only negative element is
� " � . After pivoting with this element we get the following

tableau:
� &

1
� � " � � � " � 	 �&� � ��
 " �

2 � " � � � " � � � � 	 �&� � ��
 " �
� � " � � � " � � � � 	 �&� � ��
 " �
� � � " � � � " � 	 �&� � ��
 " �

We see that the pivot operation causes an integer division of the expression 	 � � � ��
 by � and
that a multiple of the result is added to other elements of b. Now let

� � be the new parameter and its
value equal to � � � 	 � � � � � ��
 . When we substitute this parameter in the tableau we get:

� &
1

� � " � � � " � � �
2 � " � � � " � � � � � �
� � " � � � " � � � � � �
� � � " � � � " � � �

Again we have to branch. When � � � � � � � , we are finished because element of b is nonnegative.
When � � � � � � � we have to do another pivot step.

This gives the following tableau:
� �

1
� � � � � �

2 � � � �& � � � � � � � � � � �
� � � � � � �

The solution is 	 � � � �
 if
� � � � � � � . There are no other cases left to solve.

Figure 6.2 gives the complete solution tree. The leaves of this trees are the solutions in the context
defined by the path from a leaf node to the root of the tree.

Parametric Integer Programming 73

� � ��� ��� ��� � 1 ��� + � 3 1 � �

���)

3 � 3 + ���)3 � 3 + � �)

1 �	��

� ��� � � + � � � �

+ � 3 1 � �) + � 3 1 � �)

� � ��� � � ��� � + � �) �

Figure 6.2. The solution tree in which the internal nodes model the inequalities of the
context and the leaves the solution-vectors.

�

6.7 Conclusion

We have described how PIP finds the lexicographic minimum solution of a feasible set. However, to
find data dependencies, we will need to find the lexicographical maximum. This is achieved by solving
the problem for the negative values of x, i.e.

�
x, and introducing an unbounded positive parameter

P to satisfy the non-negativity constraints after the substitution (solving for minimum of (P
�

x).
Henceforth, we assume that PIP finds the lexicographical maximum of the problem.

The input of PIP is formed by a parameterized polytope. Because of the parameterization, the
optimum solution is a vector of which the elements are affine expressions on the parameters. Because
of internal branching, the solution returned by PIP is, in general, a solution tree in which the leaves
are the solution vectors and the internal nodes define the context for which the solutions are valid.

A linear programming technique may sometimes turn out to be an unrealistic solution because
of the huge amount of computation time needed to solve the LP problem. However, PIP is very
well applicable, as for realistic problems the number of unknowns, which are the loop iterators and
parameters of a nested loop program, are typically small.

As
���������
	

uses PIP to solve the data dependencies, the nested loop programs are limited to the
affine ones. Another technique for analyzing data dependencies is described in [51]. This technique is
based upon the Omega test and finds the lexicographical maximum of dependence relations by means
of projections. The class of nested loop programs is also affine although some extensions are made to
handle non-affine program fragments. However, they do not express the solution as functions as PIP
does.

74 6.7 Conclusion

Chapter 7

Single Assignment Programs

7.1 Introduction

An application of PIP, Parametric Integer Programming, is to find expressions for the data depen-
dencies inside static nested loop programs as described by Feautrier in [26]. As iterations are integer
valued, the problem of data dependency is an Integer Linear Programming problem.

We solve separately the data dependency problem for each single read-write pair. PIP finds closed
expression for the data dependencies. We represent the output of PIP by parse trees, which we call
solution trees.

When a nested program has several LHS variables of the same name, we have to combine the
solution trees for each individual read-write pair of an RHS variable. We call the process of combining
trees grafting.

Grafting can result in large trees. To limit the size of the tree,
���������
	

removes dead branches
and redundant nodes from the parse tree. We call this process pruning.

���������
	
prunes the tree after

each graft operation.
Finally,

���������
	
adds the solution trees of the RHS variables to the parse tree of the original nested

loop program and writes the resulting parse tree as a single assignment program (SAP), showing the
data dependencies inside the nested loop program at the level of iterations.

7.2 PIP’s Output

As explained in the previous chapter, the solution returned by PIP is, in general, a solution tree. The
fact that the solution is a tree, derives from the branching inside PIP.

The solution vectors, represented by the leaves of the tree, are affine expressions in the parame-
ters of the final tableau. We represent these parameters by the parameter vector

�
standing for the

size parameters and a vector � � standing for the remaining parameters. The elements of � � are the
control variable of the RHS variable that are entered as parameters to the context, and the additional
parameters that PIP possibly has introduced to find an integral solution.

Thus a solution-vector is of the form:

� � 7 �	� � � �
� (7.1)

with
�
� a parameterized constant with respect to the size parameters. Often, we write this equation in

the form � � � 	 � �+
 , with
�

an affine function, called the dependency function.

75

76 7.2 PIP’s Output

We define the solution tree produced by PIP.

Definition 7.1. SOLUTION TREE

A solution tree � is a parse tree. The internal nodes of � are nodes of the types: ’If’, ’Else’ and
’Div’. These nodes represent the linear inequalities of the context.

Each leaf node of � represents a solution-vector � , which may be undefined (denoted by
�

).
The domain under which a solution-vector is valid is defined by a polytope

�
� consisting of the

inequalities represented by the nodes in its path to the root. �

Next, we define a dependency by a solution-vector � and the polytope
�
� under which the solution-

vector is valid. We denote a dependency by the tuple
� �

� � � � .
From the tree structure follows that the domains of dependence-vectors do not intersect, i.e. the

domains are mutually disjoint. Moreover, they form a partition of the domain of the right-hand side
variable. This means that a solution-vector exists for each iteration inside the iteration domain of the
RHS variable.

We combine the solution trees for all cases of the lexicographical expansion into a single solution
tree, which is a simple procedure because all cases of the expansion are mutually disjoint.

Example 7.1.
Output of PIP
As illustration, we give the solution-trees produced by PIP for the second RHS variable a(j,i+1)

inside the function call to RotColumn (program 2.5) inside program 5.3 ’Rotate’ listed in chapter 5.
We start by solving the data dependency problem for the LHS variable a(i,j) which first

appears in the function call to RotRow (program 2.4). Figure 7.1 shows the solution-tree, which we
denote by � � .

 root

 if M-j-1

 p1

 if -j+2*p1-1

(2*p1-1,i+1)

 else j-2*p1

 nil

 else -M+j

 nil

Figure 7.1. Solution-tree ��+ .

Below, we have written the solution in pseudo MATLAB format:

if M-j-1>=0,
p1=div(j+1,2);

Single Assignment Programs 77

if -j+2*p1-1>=0,
(2*p1 -1,i+1)

else
nil

end
else

nil
end

The tree has three solution-vectors ��� � 	 � � � � � � � � �
 � , � � � �
and �	 � �

. The internal nodes
are of types If-node, Else-node and Div-node and specify the domains under which the vectors are
valid. For instance, the solution vector ��� is valid under the following constraints:

� � � � � � �
� � � � � � � � �� � � � � � � �� � � � � � � � �

The solution tree for the second LHS variable a(i+1,j) in the function call to RotRow is shown
in figure 7.2.

 root

 if j-2

 p1

 if -j+2*p1

(2*p1-1,i+1)

 else j-2*p1-1

 nil

 else -j+1

 nil

Figure 7.2. Solution-tree � � .
This tree has three solution-vectors of which two are undefined. The solution-tree in pseudo

MATLAB format is:

if j-2>=0,
p1=div(j,2);
if -j+2*p1>=0,

(2*p1-1,i+1)
else
nil

end
else

nil
end

78 7.3 Grafting Trees

The solutions for the third and fourth LHS variable are both undefined (
�

).
�

7.3 Grafting Trees

In this section, we combine the solution trees belonging to a particular RHS variable.
Suppose that there are � LHS variables with the same name as the RHS variable. Then we solve

first the data dependency problem for each read-write pair separately by PIP. Let the resulting solution-
tree for each pair

��� � 5 � � � 5 � � be denoted by ��� � � � � � � .
According to the third condition of data dependency, we must find the lexicographic largest

solution-vector among the solution-vectors of the solution-trees � � .
Each tree partitions the domain of the RHS variable. However, domains of vectors of the various

trees may have a nonempty intersection. When there is a nonempty intersection, we have to select the
lexicographically largest solution vector from the vectors valid in the intersection. In other words, we
have to combine the partial solutions �
� into a single solution-tree for the RHS variable. In order to
construct this solution-tree, we have to take the intersection of the domains among all the trees � � and
compare all the vectors defined in each intersection.

First, we describe how we select the largest of two solution-vectors of the verious trees.
Let � � and � � be solution trees of an RHS variable.

Let
	 � � � � � � � � � and

	 � � � � � � � � � be solutions of the trees ��� and � � , respectively. When� ��� � � ���� , if � � � � � we select � � else we select � � :
if � � � � � then

� �
else

� �
(7.2)

By definition, the undefined vector is the lexicographical smallest solution-vector. Thus
�
� � is

always true.
In order to represent the condition in equation 7.2 as a parse tree, we expand the lexicographical

operator in all its cases. The number of cases is equal to the common nesting level of the iteration
vectors corresponding to the left-hand side variables. We call the resulting tree the expansion tree, and
denote it by � . The expansion tree is a solution-tree that has dependency vectors � � and � � as leaves.
We call the operator that returns the expansion tree � of two solution-vectors the expand operator:

� � � � � � � � 	 � � � � �
 (7.3)

Example 7.2.
Expand Operator
We derive the expansion tree of the dependence-vectors of the program ’Rotate’ (5.3).
Both � � and � � define dependence-vectors for the RHS variable a(j,i+1). The dependence-

vector of � � is � � � 	 � � � � � � ��� �
 � . The dependence-vector of � � is � � � 	 � � � � � � ��� �
 � . We
first determine the common nesting level of the iteration-vectors 6�� and 6 � . The elements of 6�� are
the loop iterators of the first loop stage as are the elements of 6 � . So the common nesting level is two.
The first case is:

�
� � � � � �

� � � �

Single Assignment Programs 79

The inequalities of the domains define the equations �
� � � ���

� and �
� � � �

, by which we
substitute the variables

� � and
� � . This gives:

�
�
� �

� . As this is always true, ��� is the largest
solution.
The second case is:

� � � � � � � � � � �
��� � � ��� �

which is always false. Thus the result of the graft operator on ��� and � � is a tree with just one leaf:
� � � � .

�

Now, we give the procedure for combining two solution-trees ��� and � � of a right-hand side
variable. Let � � be an arbitrary solution-vector of � � and � � be an arbitrary solution-vector of � � .
We apply the expand operator on all the possible pairs of solution-vectors 	 � � � � �
 . The resulting
expansion trees will become subtrees in the combined tree.

The procedure in terms of solution-trees is given in procedure 7.1. We call this procedure the graft
operator. Thus given two solution-trees � � and � � , the combined tree � is given by:

� � � ��� 	�� 	 � � � � �
 (7.4)

Procedure 7.1.
Graft Operator The procedure to graft two solutions-trees ��� and � � starts with a DFS to find

all the leaves of � � . Each leaf � � is substituted by the solution-tree � � . After which, the procedure
searches the leaves of the subtree � � . The procedure substitutes each leaf � � by adding the expansion
tree returned by the

� � � � � � operator on ��� and � � . The procedure is outlined below.
Procedure Graft Solution Tree
for each leaf � � in � � �

graft the tree with � �
for each leaf � � in � � �

graft the tree with
� � � � � � 	 � � � � �
�

�

�

Figure 7.3 shows the tree after applying the graft operator on the solution-trees � � and � � given
in the example.

A tree returned by the graft operator is again a solution tree. So we may apply the graft operator
on the tree again, which gives us the following procedure for combining several trees.

Let �&8 be initially be defined as
�

. Let � � � � � � � � be solution-trees of an RHS variable. Then
we get the combined tree by applying the graft operator recursively [26].

� � � � ��� 	�� 	 � �
�� � � �
 (7.5)

The graft operator is associative. This means that we may graft the trees ��� in any order although
the number of branches of the final tree may depend on the ordering.

After applying the recursive procedure to all solution-trees � � , we obtain the complete solution
tree for an RHS variable. We graft this tree in place of the RHS variable-node in the parse tree of the

80 7.4 Pruning Trees

 root

 if M-j-1

 p1

 if -j+2*p1-1

 a_1

 else j-2*p1

 if j-2

 p2

 if -j+2*p2

 a_2

 else -M+j

 if j-2

 p2

 if -j+2*p2

 a_2

 else j-2*p2-1

 nil

Figure 7.3. The tree after grafting and pruning of the solution trees ��+ and � � .

original program. Figure 7.5 shows the parse tree of program ’rotate’ with the solution-trees found for
all the RHS variables grafted on.

7.4 Pruning Trees

Straightforward grafting of the solution-trees may lead to there being many branches. Suppose that
there are � solution-trees and that each of them has

�
leaves. Each time we apply the graft operator

we replace every leaf by the next solution tree. This goes on for � times, resulting in at most:

� �
(7.6)

branches in the final solution tree. The number of branches grows thus exponentially.
We reduce the number of branches considerably by eliminating dead leaves. A dead leaf is a

solution that will never be reached because of conflicting inequalities in its control path, i.e., its domain
is empty. The dead leaves do not contribute and may be pruned from the tree. We use the Omega test
to determine whether a domain is empty [57].

By pruning the tree after each graft operation,
���������
	

expands only branches that define valid
domains.

Apart from the dead leaves,
���������
	

removes also all the nodes in the path or branch until the
first sibling in the path to the root of the tree is reached.

Procedure 7.2.
Prune Operator Let � be a parse tree.
The procedure to prune a tree starts by searching for all leaves in � . The procedure calls for

each leaf the procedure 5.1 to find its domain (polytope) and test whether the domain is empty. If the
domain is empty, the procedure removes the nodes of the dead branch.

for each leaf 	 in � �
derive domain by procedure 5.1
check domain with the Omega Test

Single Assignment Programs 81

if empty domain �
prune tree from dead branch�

�

�
���������
	

also prunes the nodes that are redundant. A node is redundant when its linear inequalities
are redundant of all the dependence-vectors that are descendants of that node.���������
	

uses three simple procedures to check for redundancies. First, it prunes If-nodes when the
same inequality is annotated by a node at a lower level in the tree.
Second, it prunes identical integer division operators introduced by PIP. As the solution trees are
solved independently, it may happen that new parameters in different solution-trees are the same.
Third, it prunes unnecessary branching in the parse tree. A branch is represented in the tree by an
If-node and a corresponding Else-node. When the subtree of the If-node is identical to the subtree of
the Else-node, the branch is unnecessary and can be removed.

1

1

5

5

� 3�� �)

1

1

5

5

� � �� �

� �

Figure 7.4. Removing a redundant branch.

Figure 7.4 shows, on the left side, a domain cut in two parts by the inequality
� � & � � . The

subtrees of both parts are equal to 7 . Therefore, the branch is redundant and we can remove it. This
is depicted on the right-hand side of figure 7.4. Thus the branch as well as one subtree is removed.

7.5 Single assignment program

In the previous section, we constructed a parse tree from a nested loop program that describes all the
data dependencies. In this section, we write this parse tree as a single assignment program.
The definition of a Single Assignment Program (SAP) is given in [92].

Definition 7.2. SINGLE ASSIGNMENT PROGRAM

A Single Assignment Program is a program where every variable is assigned one value only
during execution of the algorithm. �

In order to obtain the single assignment program, we substitute LHS variables, with name
�

and
indexing function

	
, for single assignment variables [13], with unique name

���
and the identity as

indexing function.

82 7.6 Conclusion

Next, we obtain the single assignment program by traversing the parse tree, in DFS order, and
writing down the MATLAB statements referred to by the nodes.

Nodes representing the solution-vectors are written down as follows. When arriving at a solution-
vector

� 	 � �+
 of a particular RHS variable with name
�
, we write the assignment statement, with

� � Z indicating the argument position:

� � ��� �� ipd 	 � � 	 � 	 � �#

where ipd is an identity function.

When the solution-vector is undefined, we write down the same assignment statement but with
variable

� � 	 � 	 � �#

 replaced by the original RHS variable
� 	 � 	 :�

 .

Typically, these statements are placed in the body of a block of nested conditional and transforma-
tion statements, which define the iteration domain for which the dependency is valid. The operators
in the transformation statements are integer division operators.

The single assignment program is a convenient output format because we can directly read the de-
pendencies from the code. In addition, the SAP program is an executable program and is functionally
equivalent to the nested loop program from which it is derived.

When we write down the solution tree of program 5.3 ’Rotate’, we get the single assignment
program 7.1. This program has been generated automatically by the tool ’HiPars’ [36].

The names of the single assignment variables of the row rotations are a 1 and a 2. The names of
the single assignment variables of the column rotations are a 3 and a 4. Observe that the indexing
function of each LHS variable is the identity function. This means that the variables of these arrays
are assigned a value only once, which is in agreement with the definition of a SAP. Note also that the
original variables named a have become input variables.

There are no data dependencies for the row rotations as all inputs of the function RotRow are
input variables. The function RotColumn is dependent on RotRow as it takes values of the single
assignment variables a 1 and a 2 as inputs. For instance, the value of input argument in1 of function
RotColumn is the value of variable a 1 or a 2 depending on the conditional statements.

7.6 Conclusion

A complete dependence analysis of the program involves finding the dependencies for all RHS vari-
ables appearing in the function call statements. An RHS variable can only be dependent on a left-hand
side (LHS) variable of the same name. If there are more LHS variables of the same name,

���������
	
finds first the solution of the RHS variable with each of the LHS variables separately.

���������
	
calls

PIP for each read-write pair, which returns the solution in the form of index vectors and the domains
for which the solutions are valid [25] [26]. The index vector may be undefined, which means that
the RHS variable does not depend on the LHS variable. After applying PIP for all the LHS variables,���������
	

determines the lexicographically largest index vector among the solution-vectors, which is
the dependency. Dependencies are linear functions on the iterators, parameters and variables standing
for the integer divisions. The complete solution of the dependence analysis of a single RHS variable
may consists of multiple dependencies defined on mutually exclusive iteration domains [37].

The output of HiPars is a single assignment program, which is a functional equivalent with the
original nested loop program. The indexing functions of the RHS variables inside the SAP are the
data dependencies, which we wanted to find.

Single Assignment Programs 83

Program 7.1. SINGLE ASSIGNMENT PROGRAM OF ’ROTATE’

for i=1 : 2 : M-1,
for j=1 : 1 : M,

[in0] = ipd(th1(i));

if i-2>=0,
p1=div(i,2);
if i-2*p1-1>=0,

[in1] = ipd(a(i,j));
end

else
[in1] = ipd(a(i,j));

end

[in2] = ipd(a(i+1,j));

[a_1(i,j),a_2(i,j)] = RotRow(in0,in1,in2);

end
end
for i=1 : 2 : M-1,

for j=1 : 1 : M,

if M-j-1>=0,
p2=div(j+1,2);
if -j+2*p2-1>=0,

[in0] = ipd(a_1(2*p2-1,i));
else

if j-2>=0,
p3=div(j,2);
if -j+2*p3>=0,
[in0] = ipd(a_2(2*p3-1,i));

end
end

end
else

if j-2>=0,
p3=div(j,2);
if -j+2*p3>=0,

[in0] = ipd(a_2(2*p3-1,i));
else

if i-2>=0,
p4=div(i,2);
if i-2*p4-1>=0,

[in0] = ipd(a(j,i));
end

else
[in0] = ipd(a(j,i));

end
end

end
end
if M-j-1>=0,

p5=div(j+1,2);
if -j+2*p5-1>=0,

[in1] = ipd(a_1(2*p5-1,i+1));
else

if j-2>=0,
p6=div(j,2);
if -j+2*p6>=0,
[in1] = ipd(a_2(2*p6-1,i+1));

end
end

end
else

if j-2>=0,
p6=div(j,2);
if -j+2*p6>=0,

[in1] = ipd(a_2(2*p6-1,i+1));
else

[in1] = ipd(a(j,i+1));
end

end
end
[in2] = ipd(th2(i));

[a_3(i,j),a_4(i,j)] = RotColumn(in0,in1,in2);

end
end

84
7.6

C
onclusion

 ROOT

 i

 j

 ipd if i-2

 p1

 if i-2*p1-1

 ipd

 else -i+1

 ipd

 ipd RotRow

 i

 j

 if M-j-1

 p2

 if -j+2*p2-1

 ipd

 else j-2*p2

 if j-2

 p3

 if -j+2*p3

 ipd

 else -M+j

 if j-2

 p3

 if -j+2*p3

 ipd

 else j-2*p3-1

 if i-2

 p4

 if i-2*p4-1

 ipd

 else -i+1

 ipd

 if M-j-1

 p5

 if -j+2*p5-1

 ipd

 else j-2*p5

 if j-2

 p6

 if -j+2*p6

 ipd

 else -M+j

 if j-2

 p6

 if -j+2*p6

 ipd

 else j-2*p6-1

 ipd

 ipd RotColumn

F
ig

u
re

7.5.T
he

parse
tree

ofprogram
5.3

’R
otate’onto

w
hich

the
solution-trees

for
allthe

read-w
rite

pairs
are

grafted.

Chapter 8

Linearly Bounded Lattices

8.1 Introduction

In this chapter, we take a closer look at the single assignment program (SAP) produced by the tool
HiPars, whose working we have explained in the preceding chapters. From the user point of view,���������
	

is a tool that takes as input a nested loop program and outputs a program that is in single
assignment form. Here we explain the output of HiPars as it presents itself to the user.

We express the control statements inside the single assignment program, specifying the domains
of dependencies as linearly bounded lattices [78]. Using linearly bounded lattices, we not only have a
sound mathematical specification of the domains but also a way to interpret the result geometrically,
making the data dependence structure easier to understand.

In the next chapter, we convert the single assignment program into a piecewise regular dependence
graph whose description is based on linearly bounded lattices.

The outline of this chapter is as follows. In section 8.2, we convert an example nested loop
program into single assignment form and give the resulting single assignment program, specifying the
data dependencies.
In section 8.3, we give the definition of linearly bounded lattices. In the previous chapters, we will
specified sets of iterations by polytopes. This may lead to high dimensional polytopes, which are
hard to interpreted. In this chapter, we specify the sets of iterations by linearly bounded lattices. By
using lattices the iteration domains are easier to interpret. In sections 8.4 and 8.5, we optimize the
description of the domain by using the Hermite Normal Form, leading to a domain description with
a lower dimensional polytope, and specify the lattice corresponding to this polytope. The result is a
more compact description of the single assignment program, which is easier to comprehend.

8.2 Single Assignment Program

As example, we convert program 8.1 into a single assignment program by
���������
	

. The example
program is just a demonstrator and is not taken from the SVD algorithm.

The program has two loop statements both with stride two and has modulo operators in its condi-
tional expressions.

We will convert it in single assignment form by
���������
	

. Before looking in detail at the SAP
program, we make some general remarks about the format in which HiPars writes a single assignment
program.

85

86 8.2 Single Assignment Program

Program 8.1. DEMONSTRATOR
Let M be a parameter.
Let a be a variable array.
Let F1 and F2 be functions.

for i = 1 to M step 2,
for j = 1 to M step 2,

if mod(i,3) ==0,
[a(i,j)] = F1();

end
if mod(j,3) ==0,

[] = F2(a(i,j));
end

end
end

LHS variables have unique names and are fully indexed. So the indexing functions of these
variables are identity functions.

RHS variables are either single assignment variables or are program input variables. The indexing
functions of the single assignment variables are the dependence functions. The indexing functions of
the input variables do not define dependence relations between the program iterations. We assume the
input variables to be initialized. The iteration domains of the dependencies are represented in the SAP
in the form of control statements, which take the form of conditional and integer division statements.

The SAP produced by HiPars is program 8.2. It has one single assignment variable a 1, which is
a two-dimensional array.

The input argument of function F2 is the value of the temp variable in0, which is condition-
ally assigned in the block of control statements preceding the function call. The control structure is
quite complicated and consists of three conditional statements and four integer division transforma-
tion statements, introducing the additional control variables q1,q2,q3 and q4. Note that the index
transformations are nested.
Figure 8.1 shows the iterations domains of F1 and F2.

The � � � operators are produced by PIP, which
���������
	

calls to solve the integer programming
problem in order to find expressions for the data dependencies inside the nested loop program.

i

j

i

j

Figure 8.1. The iteration domains of F1 (left) and F2. (right)

The assignment to variable in0 with the value of a 1(i,j) defines a data dependency between
the function F2 and the function F1.

Linearly Bounded Lattices 87

Program 8.2. SINGLE ASSIGNMENT PROGRAM
Let M be a parameter.
Let F1 and F2 be two functions.
Let a 1 be a two-dimensional variable and in0 a temp variable.
Let q1, q2, q3 and q4 be control variables.

for i=1 to M step 2,
for j=1 to M step 2,

if mod(i,3) == 0,
[a_1(i,j)] = F1();

end

if mod(j,3) == 0,

q1=div(i+1,2);
if -i+2*q1-1>= 0,

q2=div(j+1,2);
if -j+2*q2-1>= 0,

q3=div(2*q1+2,3);
if -i+3*q3-3 >= 0,

q4 = div(q3,2);
in0 = a_1(i,j);

else
in0 = a(i,j);

end
else

in0 = a(i,j);
end

else
in0 = a(i,j);

end

F2(in0);

end
end

end

88 8.2 Single Assignment Program

We specify the set of iterations at which F2 depends on F1. This set is equal to the set of iterations
for which the variable a 1(i,j) is reached in the SAP.

Because a single assignment program belongs to the class of nested loop programs we defined in
chapter 3, we can apply procedure 5.1 for deriving the polytope for variable a 1(i,j). As explained,
the procedure sets up a parse tree, annotates the nodes with linear inequalities, and constructs the
polytope.

For ease of reference, we give here once more the linear inequalities by which an integer division
operator � � � � � 	 � � �
 is annotated in the parse tree:

� � � � �
� � � 	 � � �
 (8.1)

Example 8.1.
Index Transformation In program 8.2, the value of control variable q3 is defined by the assign-

ment statement:

q3 = div(2*q1+2,3);

In inequality 8.1, we substitute
� � � � � � & , � � & , � � � , and obtain:

� � 	 � � � � ��
 � & � � � (8.2)

Figure 8.2 shows the points 	 � � ���
 � of the polytope for � � � � � ��� . The points are:

	 � � �
 � 	 � � ��
 � 	 & � ��
 � 	 � � &
 � 	 � � �
 � 	 � � �+
 � 	 ' � ��
 � 	 � � ��
 � 	 � � �
 � 	 ��� � '

q1

q3

Figure 8.2. The values of control variable q3 defined by div(2*q1+2,3).

�

The piece of code defining the domain of variable a 1(i,j) has four control variables q1, q2,
q3 and q4, each defined by an integer division operator. In addition, the program has two loop
iterators: i and j. So the resulting polytope has six variables and lies thus in a six-dimensional space
Z % . The polytope is:

Linearly Bounded Lattices 89

��� � � � � � � �
��� � � � � � � �� ��� � � � � � � �
� � � � � � � � �
� � � � � � � � �� � � � � � � � � �

� � � � � � & � � �
� � � � � � & � � �� ��� & � � & � �

� � � � " � �
� � � � " � �

8.3 Linearly Bounded Lattices

We are interested in the values of the loop variables for which statements inside a program are reached.
The example above shows that polytopes can be complicated, which makes it not easy to derive this
information. In this section, we distinguish, therefore, between the loop variables and control variables
standing for the integer division.

To specify the values of the loop iterators, we define domains by linearly bounded lattices [23]
[77] [78].

Definition 8.1. LINEARLY BOUNDED LATTICE

Let
�

be a polytope in Z � . Let � be the vector of control variables ranging over polytope
�
. Let 6

be a vector taking values in Z
�
.

With � a matrix of size � � �
and � an integer vector, we define a linearly bounded lattice

�
as

the set of points 6������ � � with � � �
:

� � � 6 � 6 � ��� � � � � � � �
(8.3)

�

We say that the lattice points 6 are generated by the columns of � , with the variables of � bounded
by the polytope. We call � the offset of the lattice and the columns of � the lattice vectors.

Now let the elements of 6 be the loop variables. We split the lattice matrix � as � � � � � , with ���
an � � � identity matrix and � � a � � 	 �&� ��
 zero matrix,

���

�����
�
� � �

� � �

� � �

������
� (8.4)

90 8.4 Reducing the dimension of the polytope

and specify the values of the iterators by:

6 � � ��� � � � � �
The lattice specifies the relation between the index points 6 in Z

�
and the points � in Z � , with

� � � .
The decomposition is valid when the variable of � belonging to � � are defined by integer division
operators. Each null column in � corresponds to a variable introduced by an integer division operator.
When there are integer division operators, the lattice specification takes the form of a projection. The
points 6 are obtained by projecting the points in the polytope onto the iteration space. The fact that
we may project the polytope follows from the definition of integer division. The number of points in
polytope

�
equals the number of points of domain

�
. Thus for each iteration in

�
corresponds only

one point in polytope
�
.

Example 8.2.
Lattice The lattice of the iteration domain for variable a 1(i,j) is:

� �
� � � � � � � � � �

� � � � � ���
�������
�

� �
� �
� �
� �
�
� "

��������
�
� � �

��� (8.5)

Figure 8.3 shows the iteration points for which function F2 depends on F1.
�

i

j

Figure 8.3. F2 depends on F1 at the iterations indicated by the black dots.

8.4 Reducing the dimension of the polytope

By exploring the fact that some of the control variables of the polytope originate from integer division
transformations, we can reduce the number of variables of the polytope considerably. Often, we need
no more variables than the nesting level of the original statement in the program.

Linearly Bounded Lattices 91

The method is based on the Hermite normal decomposition [52]. Other approaches can be found in
[49] [57].

Let � � 	 � � � ��� �
 � be the vector of variables defined by the division operators. To find the
lattice defined by the integer divisions and other inequalities involving the variables of � , we write
the inequalities defining � � � ’s as equations by setting the constant 	 � � �
 in equation 8.1 to zero.
Let

�
be the matrix of which the rows are the normals of these equations. Let 6 be the vector of the

loop iterators. We write the system of equations defined by the � � � operators as:� � 6
� � � �

Example 8.3.
System of Equations With 6 � 	 � � �
 � and � � 	 � � ��� � ��� ��� "
 � , the system of equations corre-

sponding to program 8.2 is:

� � � � � � �
��� ��� � � � �
� � � � & � � �
� � � � " � �

Thus matrix
�

is

� �
���
�
� � � � � � �
� � � � � � �
� � � � � & �
� � � � � � �

����
�

�

We assume that the system has a solution. Otherwise, we would have removed this piece of code
from the program by dead code elimination procedures.

The system has
�

equations in � � �
variables. Because each row introduces a variable � � it

follows that the rows of
�

are independent. The null-space of the system is thus � -dimensional, equal
to the dimension of the iteration space. We call the variables corresponding to the null-space the free
variables of the system.

To find the solution, we use the Hermite normal decomposition [52]. This procedure gives us two
unimodular matrices

� � and
� � such that:� � � � � � �� � � �

in which the matrix
�

is called the Hermite normal form of
�

. Matrix
�

is nonsingular and has
thus an inverse, because the rows of

�
are linearly independent. Observe that matrix

� � consists of
the vectors of the � null-space vectors of

�
as
� � � � � . Therefore, any linear combination of the

vectors of
� � added to a given solution

	
will also be a solution of the system. Because we are only

interested in the values of 6 , we decompose matrix
� � into

� � � , size � by � , and
� � � and decompose

matrix
� � into matrices

� � � and
� � � as follows:

� �
�

� � � � � � � � � � � � �� � � � � � �

92 8.5 Lattice Offset

Now, the columns of matrix
� � � are the lattice vectors. Thus the Hermite normal form gives us

directly lattice matrix � defined by the � � � s.

Example 8.4.
Hermite Normal Form The Hermite normal decomposition of matrix

�
gives:

� � �

�������
�

� � � � �
� � � �
� � � � �
� � � �
� � � � �
� � � � �

��������
�

and matrix
� � :

� � �

�������
�

� �
� �& �
� �
� �
� �

��������
�

The values of the iteration vector 6 � 	 � � �
 � are generated by the matrix
� � � . With � � the vector of

free variables, we write 6 , with offset � still to be determined, as:

6��
�

� �
� � � � � � �

�

8.5 Lattice Offset

Next, we have to find the lattice offsets. Let �&� 	 � � � � � �
 � be a constant vector consisting of the
divisors of the integer divisions, with remainder

� �
between � � � � � �

� . An offset � must first of
all be an integral solution of the system:

0
� � � �

� � � � (8.6)

Apart from these inequalities, there may be other inequalities in the program that restrict the value of
� . Inequalities not involving � are disregarded as they do not affect the lattice offset.

Let
� � � � � � � be the system of all inequalities involving � . We assume that

� � � � � � .
When this assumption is satisfied, we use the vectors of

� � � as lattice vectors because the variables
corresponding to

� � � are free.
Let � � be the vector of variables corresponding to matrix

� � and let � � be the vector of variables
corresponding to matrix

� � .
We define 	 � � �
 � as �

�
� � � � � � � �

�
� �
� � � (8.7)

Linearly Bounded Lattices 93

and substitute it in the polytope: � �
�
�
� � � � � (8.8)

resulting in the polytope: � � � ��� � � � � (8.9)

This polytope defines all the lattice offsets � � � � ��� � and we call it the lattice offset domain.
The number of offsets depend on the value of the divisors

� � � � � � � �
. The lattice corresponding

to the polytope is defined by:

6�� � � ��� � � � (8.10)

� � � � ��� � (8.11)� � � � � � � � � (8.12)

The lattice is bounded by the other inequalities in the nested loop program, such as loop bounds.
These inequalities together form a polytope and define with the lattice an iteration domain.
A special case is when the offset domain contains a single point. Then the lattice descriptions reduces
to 6 � � � � � � � � , and we do not have to enumerate the lattice offset domain.

Example 8.5.
Lattice Offset
In program 8.2 there are three conditional statements defining inequalities that depend on � :

� � � � � � � � � � �� � � � � � � � � � �� � � &
� � & � & � �

After the substitution 6 � � � � � � and � � � � � � � , we get inequalities in variables of � � :
� � � � �� � � � �� � � � � � &

By applying the same substitution in equation 8.6, we obtain the inequalities:� � � � � � �� � � � � � �� � � � � ��
� � � � � � ��" � �

After some computation we find that � � � 	 � � � � � � � � � � �
 � is the only solution. So that the
offset is

� � � � ��� � � 	 & � � �
 �
.

�

94 8.6 Result

8.6 Result

When the column vectors of a lattice � of an iteration domain form a basis of the iteration space, the
iteration domain becomes easier to interpret.

In the case of the example, the values that iterator vector 6 � 	 � � �
 � takes on are defined by the
lattice, bounded by the polytope

�
� :

� �
� � � � � �

� � � � � �
� � � � � &

� ��� (8.13)

Below, we have listed the program 8.3, which we obtained from single assignment program 8.2
by specifying the lattice with two modulo operations.

Program 8.3. PROGRAM WITH MODULO OPERATORS
Let M be a parameter.
Let F1 and F2 be two functions.
Let a 1 be a two-dimensional variable and in0 a temp variable.

for i=1 to M step 2,
for j=1 to M step 2,

if mod(i,3) ==0,
[a_1(i,j)] = F1();

end

if mod(j,3) == 0,

if mod(i+3,6) == 0,
if mod(j+1,2) == 0,

in0 = a_1(i,j);
else

in0 = a(i,j);
else

in0 = a(i,j);
end

F2(in0);

end
end

end

8.7 Conclusion

In this chapter, we have explained the relation between integer divisions inside the single assignment
programs generated by

���������
	
and linearly bounded lattices. The SAP code produced by

���������
	
can be complicated and hard to interpret because of possibly many additional control variables intro-
duced in the domain descriptions. We can optimize the code by reducing the number of variables by
applying the Hermite normal form on the system of equations on the these variables, which are defined
by integer division operators. This decomposition leads to matrices

� � and
� � , with corresponding

variable vectors � � and � � . Matrix
� � defines the lattice vectors with the variables of � � as free

variables. The domain of lattice offsets is formed by a polytope in variables of � � . The polytope is
characterized by matrix

� � and inequalities on the variables standing for the integer divisions.

Linearly Bounded Lattices 95

As a result, we can transform polytopes of iteration domains into linearly bounded lattices char-
acterized by polytopes of lower dimensions and a lattice forming the basis of the iteration domain.
Finally, the result can be used to simplify the single assignment program by using modulo operations.

96 8.7 Conclusion

Chapter 9

Piecewise Regular Dependence Graphs

9.1 Introduction

The single assignment form in which the result of the data dependence analysis is written, is, in fact, an
intermediate format. In this chapter, we convert single assignment programs into dependence graphs
(DG). A dependence graph consists of a set of nodes and a set of edges. Nodes stand for function
evaluations. Edges define precedence relations between the nodes and represent the argument passing
between functions inside the single assignment program. A DG is an applicative specification of the
functional behavior of the single assignment program, which implies that the model is free of memory
and control.

Below, we first consider programs consisting of a sequence of assignment statements only and
derive a DG by enumerating the function calls. After that, we consider programs with control state-
ments. We restrict ourselves to the class of nested loop programs as defined in chapter 3. Because the
number of function evaluations of such programs may be large and may depend on size parameters,
we can no longer use enumeration. Instead, we exploit the regularity of the DG and group edges and
nodes in regular pieces, which we derive systematically from the control structure of the program. We
refer to DGs specified in this way as piecewise regular dependence graphs.

The derivation of the DG from an SAP can be regarded as a refinement step. A functional spec-
ification in the form of a single assignment program is refined structurally into a graph of nodes and
edges. In chapter 15, we show that this refinement may be applied on a node at any level of hierarchy.
Here we assume the refinement to take place on a certain level of hierarchy and treat elements of the
DG, i.e., edges, nodes and ports as elementary elements, without bothering about what is inside them.

The outline of this chapter is as follows. In section 9.2, we give formal definitions of the elements
of a dependence graph, its nodes, ports and edges. As example, we specify a DG by enumeration.
In section 9.3, we derive piecewise regular DGs from programs which contain also control statements.
For this purpose, we have implemented the tool

	��
� ����� that converts a SAP into a DG. The tool takes
as input a SAP, typically generated by HiPars, and outputs the equivalent DG description. As example,
we convert a part of the SVD algorithm 2.7 into a dependence graph. The description is written in the
HiFi design language [80], which is based on Objective C [69] and describes a data structure in which
elements of the DG are represented by objects. The transformation tools of the HiFi system operate
on this data structure. In the appendix, we have listed several objects representing dependence graph
elements.
In section 9.4, we make some remarks about the optimization of the DG description.

97

98 9.2 Dependence Graphs

9.2 Dependence Graphs

According to its definition, a single assignment program is a program in which every variable is
assigned one value only during its execution [92].
Because of the single assignment property, we can derive the data dependencies directly from the
program description. The tool HiPars outputs SAPs with the left-hand side variables fully indexed.
As a result, read accesses to these single assignment variables correspond with the data dependencies
inside the program.

To make the dependence structure more explicit, we represent the single assignment program as a
dependence graph. The elements of the dependence graph are nodes, ports and edges. The dependence
graph is functionally equivalent to the single assignment program.

In [80] a primitive or elementary node is defined by input and output ports and a functional be-
havior specifying the input-output behavior of the node.
To specify functional behavior, more formally, we introduce the notion of type. A type is a set of
values. By declaring an object of type � , we specify that the object takes only values ranging over
the set of values � . Examples of data types are ’Integer’ and ’Float’. Structured types are formed by
product sets of types, denoted in the familiar tuple notation.

Definition 9.1. PORT

Let 	 be a name.
Let � be an arbitrary type with

� � � an arbitrary value.
We define a port

�
by the name-type pair:

� 	 � � � . The value of port
�

is the name-value pair� 	 � � � . We � the type and
�

the data value of port
�

. �

The name of a port must be a unique identifier among the set of the node’s input or output ports.
Based on definition 9.1, we define an elementary node.

Definition 9.2. ELEMENTARY NODE

A node
�

consists of input and output ports and a functional behavior.
Let 6 be the input domain formed by the product set of the types of the input ports of node

�
.

Similarly, let � be the output domain formed by the product set of the types of the output ports of
�

.
We define the function

	 � from 6 to � , with
� � 6 and

� � � :

6��� � � � � 	 � 	 �
 (9.1)

as the functional behavior of node
�

. �

The behavior of a node according to this definition is deterministic. Values of the output ports
of a node are completely determined by the current input values. In other words, the output of an
elementary node does not depend on the input of the past (no hidden states).

For instance, we can model a multiplication operation by a node with two input ports
�

and
�

and
one output port � and define

	 � by the expression:

��� �! �

In this example the functional behavior is specified by a simple expression. In general, we specify
the functional behavior

	 � of a node by an algorithm, in the form of a MATLAB program, which gives
the constructive procedure to compute the output from the input of the node. In program 9.1 below,
we have listed the algorithm of the function ’RotRow’ called by the SVD algorithm. It is the same

Piecewise Regular Dependence Graphs 99

 <A1,Float>

 <A2,Float>
 <th,Float>

 <y1,Float>

 <y2,Float>

Figure 9.1. Node ’RotRow’ with its input and output ports. The labels are the name-type
pairs of the ports. All ports have data type ’Float’.

algorithm as the one given in chapter 2 but here expressed in the functions of the math library listed
in table 1.2 in the introductory chapter. It illustrates that a node may stand for complete algorithms
as long as the algorithm has a functional behavior.

Example 9.1.
Node ’RotRow’
We specify node ’RotRow’ by three input ports,

� � � , � � � , and
� � ,and two output ports

� � � and
� � �

all of data type
� 	 ��� � . We name the input ports according to the input variables in the algorithm: 7 � ,

7 � and
� � . Thus, the input ports are:� � � � � 7 � � � 	 ��� � � � � � � � � 7 � � � 	 ��� � � and

� � � � � � � � 	 ��� � � .
Similarly, we name the two output ports � � and � � of data type ’Float’:� � � � � � � � � 	 ��� � � � � � � � � � � � � 	 ��� � � .
Figure 9.1 shows elementary node ’RotRow’ with its input and output ports.

�

Program 9.1. ALGORITHM OF NODE ’ROTROW’
We refer to the math library for definitions of the functions used.
Variables A1, A2 and th are input variables.
Variables y1 and y2 are output variables.
Variable h1, h2,...,h8 are temp variables.

h1 = cos(th);
h2 = mul(A1,h1);
h3 = sin(th);
h4 = mul(A2,h3);
y1 = sub(h2,h4);
h5 = sin(th);
h6 = mul(A1,h5);
h7 = cos(th);
h8 = mul(A2,h7);
y2 = add(h6,h8);

We represent argument passing between functions by edges.

Definition 9.3. EDGE

Let
� � be an input port of a node.

Let
� �

be an output port of another node.

100 9.2 Dependence Graphs

We define an edge
�

by the tuple
� � � � � � � . �

The data type of the token carried by an edge is defined implicitly by the data types of the ports
it connects. The values of the tokens that flow along the edges are the values of the variables in the
underlying single assignment program.

An edge defines a precedence relation between the nodes that it connects. The node of the output
port must be evaluated before the node of the input port. The ordering of the nodes by edges is a
partial ordering.

Now we give a formal definition of dependence graphs.

Definition 9.4. DEPENDENCE GRAPH

A dependence graph,
� �

, is an acyclic graph and consists of a set of nodes
�

and a set of edges
� . The nodes stand for function evaluations and the edges stand for precedence relations between the
functions of the underlying single assignment program.

�

Observe that a DG is an applicative description and is thus free of variables (memory). It is an
alternative specification of the functional behavior of nodes, which we may interpreted as a structural
refinement of the node initially specified by a single assignment program.

When the number of function evaluations is small, we can specify the DG by enumeration. We in-
troduce a node for each function evaluation and an edge for each argument passing between functions
via the single assignment variables.

 <A1,Float>

 <A2,Float>
 <th,Float>

 <y1,Float>

 <y2,Float>

Figure 9.2. The dependence graph of the node ’RotRow’.

Example 9.2.
Dependence Graph of function ’RotRow’
We give the dependence graph for program 9.1 specifying the functional behavior of the node

’RotRow’. It is easy to verify that the program is in single assignment form.
The first function is function cos, which we represent by node

� � . The second function is mul,
which we represent by node

� � . In total there are ��� nodes.
Assume that the input and output ports of the nodes are named

� � � , � � � ,... and
� " � � , � " � � ,...,

respectively. To make the names of ports unique, we refer to ports by their full name, which is the
concatenation of the name of the node and the name of the port.

The second argument of the first function mul is the output of function cos via variable h1,
which we represent by the edge:

� � � 	 � � � � � � � � � " � �

Piecewise Regular Dependence Graphs 101

In total there are 8 edges.
Thus the

� �
is:� � � � � � � � � � � " � � $ � � % � ��� � ��� � ��� � � � 8 � � ��� � � � � � �	 � � " � �	$ � �	% � � � � � � � � .

Figure 9.2 shows the dependence graph. The dashed lines represent edges (links) between un-
connected input and output ports of the nodes to the input and output ports of node ’RotRow’ itself.
These edges (links) correspond to the input and output variables A1, A2, th, y1, and y2.

�

9.3 Piecewise Regular DG

The programs we consider may have control statements and size parameters. This means that the
number of functions evaluations may be large and may depend on the size parameters, which makes
specification of dependence graphs by enumeration impractical, or even impossible.

In order to specify dependence graphs for our class of nested loop programs, we introduce the
concept of node-domains, edge-domains and port-domains. These domain definitions are also the
basis of an hierarchical data structure on which design transformation tools, such as space-time trans-
formation, operate. In chapter 14, we discuss this data structure in detail.

9.3.1 Node-Domains

The number of function evaluations of a program depends on the number of function-call statements
and the size of the iteration domains of these statements. Each iteration in the iteration domain of
a function-call statement corresponds to a function evaluation. The control statements active for the
function-call statement determine the shape of the iteration domain.

We group the set of nodes associated with a function-call statement as node-domains. All the
nodes within a node-domain have by definition the same functional behavior. 1

We identify each node by an index, which is equal to the value of the corresponding iteration
vector.

The iteration domain is characterized by a linearly bounded lattice [77]. Let � be the vector of
control variables and

�
be the polytope corresponding to the function-call statement. With lattice

matrix � defined by � � � � � , ��� an � � � identity matrix and � � a � � 	 � � ��
 zero matrix, as shown
in chapter 8, the iteration domain � is defined as:

��� � 6 � 6 ����� � � � � � � �
(9.2)

Definition 9.5. NODE-DOMAIN

Let ����� be an iteration domain
Let
�

be a node.
A node-domain

� �
is a set of indexed nodes all having the same functional behavior as node

�
:� � � � ��	�� 6 � ��

� �

�

1A node may have its own parameter setting.

102 9.3 Piecewise Regular DG

i

j

Figure 9.3. The node-domain corresponding to the function-call statement ’RotRow’. The
black dots are the nodes computing the function ’RotRow’.

Example 9.3.
Node-Domain
In chapter 7, we derived the single assignment program of program ’Rotate’. In program 9.2

below, we have striped this program to show only the statements which are relevant to the derivation
of node-domains.

We specify the node-domain corresponding to the function-call statement RotRow. The behavior
of the nodes is specified by node ’RotRow’, which we have defined in the previous section.

The control vector of the statement is ��� 	 � � � � �
 � , where variable
�

is introduced to account for
the loop stride. The polytope defining the values of � is defined by:

� � �
� � � � �
� � ��� �
� � �� � �

Next, we specify the lattice. The iteration vector 6 is 	 � � �
 � . Thus, matrix � � is a � � � identity
matrix. The polytope has one additional variable

�
. So matrix � � has one zero column:

� �
� � � � � � �

� � ���
�� �
�
�

�� � � �
��� (9.3)

Figure 9.3 shows the iteration domain for � � �
.

�

9.3.2 Edge-Domains

The structure of a single assignment program corresponds one-to-one to the structure of the original
nested loop as far as the function call statements are concerned. Arguments of a function are as-
signed in assignment statements preceding the function-call statement. As shown in chapter 7, these
statements are of the form:

Piecewise Regular Dependence Graphs 103

Program 9.2. PART OF SAP OF ’ROTATE’
Let M be a parameter.
Let RotRow and RotColumn be functions.
Variable a 1,a 2,a 3,a 4 are single assignment variables.

for i = 1 : 2 : M-1,
for j = 1 : 1 : M,

[a_1(i,j),a_2(i,j)] = RotRow(in0,in1,in2);
end

end
for i = 1 : 2 : M-1,

for j = 1 : 1 : M,
[a_3(i,j),a_4(i,j)] = RotColumn(in0,in1,in2);

end
end

in � � ipd 	 � � 	 � 	 �

In this chapter, we also fully index the argument variables like in � .
As an example, an assignment statement from SAP program 7.1 becomes:

[in1(i,j)] = ipd(a_2(2*p6-1,i+1));

We assume that the names of the argument variables match the names of the input ports of the
node representing the function.

In a way similar to that done for nodes, we group ports into port-domains. We define a port-
domain by a port

�
and an iteration domain � � � :� � � � � � � � � � .

The polytope of iteration domain � � � is the polytope corresponding to the assignment statement.
Let this polytope be denoted by

�
. With the lattice specified by a lattice matrix � � and an offset vector

� � , we define a port-domain
� � � by:

� � � � � � 	 �

� 6 ����� � � � � � � � � � �

The lattice matrix � � can be decomposed into an � � and an � � matrix as we did for the lattice
matrices of node-domains. This means that the lattice points are obtained by projecting the points
inside the polytope on the iteration space.

The indexing function
�

of a right-hand side variable inside an assignment statements is the
dependency function. This function is an affine function on the control vector � of the assignment
statement, and specifies the index 6 � of the output port:

6 � � � 	 � �
 (9.4)

Thus, there is an edge � � 	 ��� � � � 	 �
 between the input port
���

� and the output port
� 	

� .
The domain of the port-domain defining the output ports is formed by the same polytope

�
but

now with dependence function
� 	
 specifying the lattice:

� � � � � � 	 �

� 6 � � � 	 �
 � � � � �

Next, we introduce edge-domains as constructors for edges. By edge-domains we have a reduced
specification of the edges of a DG.

104 9.3 Piecewise Regular DG

We define an edge-domain by a dependence function and a polytope on which the function is
defined.

Definition 9.6. EDGE-DOMAIN

Let
�

be a polytope and ��� the vector ranging over polytope
�
.

Let
� 	
 be an affine function on ��� .
An edge-domain � � is a set of edges of the type:

� � � ��� � 	 ��� � � ��� �
 � � � � � 	 � �
 � � � � � �
(9.5)

�

Observe that the polytope of the edge-domain is the same as the polytope of the input port-domain.
In general, polytopes of edge-domains have more variables and inequalities than polytopes of

node-domains, because the control structure for dependencies inside programs is generally more com-
plicated than the control structure of function calls.

All input ports of a node must be connected. As an input port can have at most one incoming
edge, port-domains of a particular input port are mutually disjoint.
Note that output port-domains can overlap, as output ports may have multiple outgoing edges (broad-
casts).

Figure 9.4. The set of edges specified by an edge-domain for the second input port of the
’RotColumn’ nodes.

Example 9.4.
Edge-Domain
In program 9.3 below, we have listed the part of the single assignment program of ’Rotate’ speci-

fying the input for the second argument of the function RotColumn. There are three assignments to
the input variable in1(i,j).

We specify the edge-domain corresponding to the first assignment to input variable in1(i,j):

[in1(i,j)] = a_1(2*p5-1,i+1);

Piecewise Regular Dependence Graphs 105

Figure 9.5. All the edges for the second input port of the ’RotColumn’ nodes.

The polytope of the edge-domain is defined by:
� � � � � �
� � � � �

� � �
� � �

� � � � � � �
� � � � � � $ � �

The input port-domain corresponding to this edge-domain is the set of input ports named in1
of the RotColumn nodes. We specify the indices of these input ports by the polytope of the edge-
domain, listed above, and the lattice 6 ��� � � � � :

� � �� � � � � � � � �
� � � ���

���
�
� �
� ��
� $

����
� � � �

��� (9.6)

The output port-domain of the edge-domain is the set of output ports named out1 of the RotRow
nodes corresponding to the variable a 1. Its iteration domain is defined by the polytope of the edge-
domain, but now with the dependence function

� 	
 defining the lattice:

� � �
� � � � � � � � �

� � � ���
���
�
� �
� ��
� $

����
� � � � �

� � (9.7)

Figure 9.4 shows the set of edges specified by the edge-domain. There are two other assignment
statements to variable in 1(i,j) in the code. Their edge-domains can be specified similarly. In
figure 9.5, we have enumerated the edges between nodes RotColumn and RotCol specified by the
three edge-domains.

�

106 9.3 Piecewise Regular DG

Program 9.3. PART OF SAP FOR THE SECOND ARGUMENT OF RotColumn
Let p5 and p6 be control variables.
Let a 1 and a 2 be fully indexed single assignment variables.

for i=1 : 2 : M-1,
for j=1 : 1 : M,

if M-j-1>=0,
p5=div(j+1,2);
if -j+2*p5-1>=0,

[in1(i,j)] = a_1(2*p5-1,i+1);
else

if j-2>=0,
p6=div(j,2);
if -j+2*p6>=0,
[in1(i,j)] = a_2(2*p6-1,i+1);

end
end

end
else

if j-2>=0,
p6=div(j,2);
if -j+2*p6>=0,

[in1(i,j)] = a_2(2*p6-1,i+1);
end

end
end
[out0,out1] = RotColumn(in0(i,j),in1(i,j),in2(i,j));

9.3.3 Piecewise Regular DG

To summarize, a piecewise regular dependence graph (PRDG) is modeled by:

� linearly bounded lattices � ,

� � � 6 � Z
� � 6���� � � � � � � Z � � 7 � � � �

with � and � integer constants, which may be parameterized.

forming the support of:

� node-domains (
� �

) defining sets of indexed nodes all of the same type:� � � ��� 	�� 6 � ��

� �

� port-domains (
� �

) defining sets of indexed ports:

� � � � � 	�� 6 � � � � �

� edge-domains (� �) defining sets of edges characterized by an affine mapping
�

from an input
port-domain,

� � � , to an output port-domain,
� � �

:

� � � � 	 � 	 � � �+
 � � 	 � � � � � � � � � � � � : � � 	 6+
 �

Definition 9.7. PIECEWISE REGULAR DG

Piecewise Regular Dependence Graphs 107

A piecewise regular
� � 	 � ���
 is a directed graph

� 	 � ���
 with� � � � � � � � � � � � a set of node-domains defining the set of nodes
�

and
� � � � � � ��� � � � � a set of edge-domains defining the set of edges � . �

A piecewise regular DG is a reduced description of a dependence graph.
We now discuss the piecewise regular DG corresponding to SAP program ’rotate’. The

� �
of

’rotate’ consists of two node-domains
� � � and

� � � which represents the nodes ’RotRow’ and
’RotColumn’, respectively. The dimension of the index domains of both node-domains is two. In the
SAP produced by

���������
	
, there are six edge-domains specifying edges between the node-domains.

In addition, there are edge-domains specifying edges between the input and output ports of the DG
itself.

To simplify the edge structure, we apply an index transformation on the node-domain of ’RotCol-
umn’: 	 �
 � �

 � 	 � � �
 [86]. This results in the DG depicted in figure 9.6. It shows clusters of � � �
rotations that are independent of each other.

Figure 9.6. The dependencies between the node-domains of DG ’rotate’ after index trans-
formation.

To show a more complicated example, we have derived the DG for the loop body of the loop
statement of stage inside the SVD program. This loop body consists of six loop stages with function
calls to Angle, RotRow and RotColumn. Three loop stages correspond to the odd-indexed row
and column rotations and the other three to the even indexed. We have added two additional loop
stages. In the first loop stage, array A is initialized and in the last loop stage the result is read out.
Thus, the complete program consists of eight loop stages.

Figure 9.7 shows the dependence graph of the loop body without the dependencies for the angles
th1 and th2. In the upper right corner of the figure, the set of nodes initializes the array A. The nodes
in the lower right corner of the figure read out the result. We have applied a similar transformation on
the second node-domain of the function RotColumn. Note that each node-domain still has its own
index space.

The angles are broadcasted into the array, see figure 9.8, which can be localized in order to obtain
a locally connected DG. This DG can be regarded as a full-sized array. We can transform it further by

108 9.4 Optimization

the transformation HiFi system’s tools.

9.4 Optimization

An important optimization is the removal of redundant inequalities and variables from the polytopes
of edge-domains and node-domains.

For this purpose, we use existing methods: (1) the Chernikova routine [27] and (2) the omega
test [57]. The Chernikova computes the extreme boundary points of a polytope, which is the dual
representation of a polytope.
The omega test is a software routine that is based on the Fourier-Motzkin elimination method. It tries
to derive equations from the polytope. Variables that are defined by equations can, in certain cases, be
removed.

Both methods treat parameters as variables. As a result, parameterized polytopes will generally
consist of more inequalities than nonparameterized polytopes. It depends on the context whether an
inequality is redundant or not. An inequality may be redundant for certain parameter values but may
be not for other parameter values. From this follows that we can optimize HiFi descriptions further
once we have set the value of the parameters for a specific application.

9.5 The tool ’sap2dg’

We have implemented the tool sap2dg. The tool inputs a single assignment program and converts it
into a piecewise regular DG described in the HiFi design language.

The output of the DG is a data structure in which objects represent the node-, edge-, and port-
domains defining the elements of the DG. In the appendix, we have listed several example objects.

The data structure has a tree structure. The child objects of the root are the node-domain objects
and the edge-domain objects. The port-domains are children of the node-domains to which they
belong.

9.6 Conclusions

We have explained how nested loop programs in single assignment form are represented by piecewise
regular DGs, which are applicative specifications of the single assignment programs.

We have obtained a compact description of DGs by specifying the elements by index domains.
By using index domains we have an algebraic well-defined specification on which we can apply
transformations such as space-time transformation, partitioning and projection [23].

The piecewise regular DG can be used for the whole class of single assignment programs that���������
	
outputs. The number of node-domains is equal to the number of function-call statements

and the number of edge domains is equal to the number of RHS variables inside the single assignment
program. However, a DG may consist of irregular parts as well, as we have illustrated by the example
given at the beginning of this chapter.

By means of port-domains we specify for each input port and output port of a node the edge
to which it is connected. This is necessary because in a data-flow architecture the communication
between the nodes is asynchronous. As a consequence, we have to specify when a node must read
its input ports and when it must write to its output ports, i.e., we have to specify control for each
individual port.

Piecewise Regular Dependence Graphs 109

Figure 9.7. The dependence graph of the loop body of the loop statement stage of the
SVD program for M = 8, extended with an input and an output stage. The edges and
nodes of the angles are not drawn.

110 9.6 Conclusions

Figure 9.8. The nodes of the function Angle and the edges broadcasting the angles to the
nodes computing the rotations.

Piecewise Regular Dependence Graphs 111

9.7 Appendix: HiFi Objects

Below, we give example objects, which belong to the piecewise regular DG description of ’rotate’.
The objects are written in the HiFi design language, which is based on objective C. The objects are
generated by the conversion tool

	��
� ����� .

Example 9.5.
Polytope
We create a polytope object by the method name of the class Polytope. We set matrices 7

and � with the methods setAMatrix and setBMAtrix, respectively. We specify the parameters
of the polytope by the method setParVector. Below, we have listed the polytope object for the
function call to RotColumn. This polytope has one parameter � and three control variables: ’i’,
’j’, ’p’ . It lies thus in Z .
polyRotColumn = [Polytope create];
[polyRotColumn setKVector: (’i’; ’j’; ’p’)];
[polyRotColumn setAMatrix: (
0,-1,0;
0,1,0;
-1,0,0;
1,0,0;
1,0,-2;
-1,0,2)];
[polyRotColumn setBMatrix: (
0,-1;
1,0;
0,-1;
1,-1;
0,1;
0,-1)];
[polyRotColumn setParVector: (’M’)];

�

Example 9.6.
Iteration Domain
We create a iteration domain object by the method create of the class Domain. We set

the polytope of the domain by the method polyRotColumn. We set the lattice by the method
setLattice. The lattice is defined by an AffineMap object.

Below, we have listed the object for the node-domain of the function call to RotColumn. The
iteration-vector is 6 � 	 i � j
 � . Thus matrix � � is a � � � identity matrix. In addition, the polytope
has one control variable

�
, to model the stride. So lattice matrix � is extended by addition of a zero

column.

aDomain = [Domain create];

[aDomain setPolytope: polyRotColumn];

112 9.7 Appendix: HiFi Objects

lattice = [AffineMap create];
[anAffineMap setAMatrix: (1,0,0;

0,1,0)];
[anAffineMap setBMatrix: (0,0,0;

0,0,0)];

[aDomain setLattice: lattice];

�

Example 9.7.
Node-domain
We create a node-domain object by the method name of the class NodeDomain. We set the type

of the node and the domain with the methods setNodeType and setDomain, respectively. The
code for the node-domain of RotColumn is:

ND_RotColumn = [NodeDomain name: ’ND_RotColumn’];
[ND_RotColumn setNodeType: ’RotColumn’];
[ND_RotColumn setDomain: aDomain];

�

Example 9.8.
Edge-Domain We create an edge-domain object by the method name of the class EdgeDomain.

In addition, we have to specify the names of an input port domain and an output port-domain.
An edge-domain corresponding with the input argument of the function RotColumn in program 9.3
is specified below. We set its attribute polytope to polyIn1. We have not listed the HiFi code for
this polytope. The port-domains IPD and OPD are specified in the HiFi codes below.

ED = [EdgeType name: ’ED’];
[ED setToNodeName: ’ND_Column’];
[ED setToPortName: ’IPD’];
[ED setFromNodeName: ’ND_RotRow’];
[ED setFromPortName: ’OPD’];
[ED setPolytope: polyIn1];

�

Example 9.9.
Input Port-Domain We create an input port-domain by the input:type method of the class

PortDomain, by which, in addition, the name and type is set. The type is a reference by name to
another port.
The input port-domain belonging to edge-domain ED is specified by input port a 1 of node RotColumn
and a domain. We specify the domain by the polytope of ED 10 and a lattice matrix Li, which takes
the form of a projection matrix. We set lattice matrix Li with method setToMap.

IPD = [PortDomain input: ’IPD’ type: ’in1’];
[IPD setVariable: ’a_1’];
[ND_RotColumn addPortDomain: IPD];

Piecewise Regular Dependence Graphs 113

Li = [AffineMap create];
[Li setAMatrix: (1,0,0,0;

0,1,0,0)];
[Li setBMatrix: (0,0; 0,0)];
[Li setParVector: (’M’)];
[ED setToMap: Li];

�

Example 9.10.
Output Port-Domain We create an output port-domain by the method PortDomain. We have to

specify a name and a type. The type is a reference by name to another port.
The output port-domain belonging to edge-domain ED is formed by the ports named out1 of the
RotColumn nodes. The domain is defined by the polytope of ED and a lattice matrix Lo, which is
equal to dependence function

� � 	 2p6
�

1 � i � 1
 � . We set lattice Lowith the method setFromMap.

OPD = [PortDomain output: ’OPD’ type: ’out0’];
[OPD setVariable: ’a_1’];
[ND_RotRow addPortDomain: OPD];

Lo = [AffineMap create];
[Lo setAMatrix: (0,0,0,2;

1,0,0,0)];
[Lo setBMatrix: (0,-1;0,1)];
[Lo setParVector: (’M’)];
[ED setFromMap: Lo];

�

114 9.7 Appendix: HiFi Objects

Chapter 10

Hierarchical Graphs

10.1 Introduction

In the previous chapter, we presented the model for piecewise regular dependence graphs. Although
they are described in a reduced way, the descriptions can still be complex, even for a small nested
loop program, such as the SVD program 2.7.

The reason for this complexity is that parallelism is expressed at the level of iterations. As a result,
the DG is often so detailed that it offers few insights to a designer. To retain overview, we use the
concept of abstraction, which leads us logically to hierarchical graphs. By applying abstraction we
hide detail without losing it.

The definitions of the elements of hierarchical graphs are based on the well-known recursive
definition of sets. The elements of a set are either singletons or sets themselves. Singletons can be
viewed as the most elementary kind of set. For example, in classical set theory there is just one
singleton, namely � , see [32]. An hierarchical element is a set of elements, which may be hierarchical
themselves. We refer to ’singleton’ elements as elementary.

We use port-domains, node-domains and edge-domains of DG descriptions as set constructors.
Note that there are many other ways to specify sets.

We have already applied abstraction when we modeled function evaluations by nodes of depen-
dence graphs. There too, we are only interested in what a node computes, i.e., its functional behavior.
Of course, each node computes according to a certain algorithm but we consider this algorithm only
as a specification of the functional behavior.

In contrast to elementary nodes, we know the structural refinement of hierarchical nodes, which
we specify by dependence graphs too. Along the same line of argument, we can also temporally refine
nodes. Temporal decomposition of nodes is discussed in chapter 12.

Just as elementary nodes, hierarchical nodes have input and output ports. Ports of (hierarchical)
nodes can be connected by (hierarchical) edges. A set of nodes interconnected by (hierarchical) edges
is called an hierarchical graph. Often, we will not explicitly mention that an element of a graph is
hierarchical when it is clear from the context or when it is not relevant.

More formally, we consider an hierarchical graph as a composition or structuring of the underlying
DG into segments specifying the structure of hierarchical nodes. The composition of a dependence
graph into segments is arbitrary. Any composition of the underlying DG into segments, which are
connected in some way, can be the basis of the hierarchical graph. We compose the graph according
to the structure of the DG description in terms of port-, node- and edge-domains.

We create for each DG node-domain an hierarchical node. The number of assignment statements

115

116 10.2 Hierarchical Graphs

in the nested loop program is usually small and equal to the number of node-domains. As a result, the
graph will consists of a few number of nodes. The number of edges then equals the number of data
dependencies between the segments.

Other rules apply for hierarchical graphs. They may be cyclic, and hierarchical ports may have
multiple incoming edges. The main rule is that the underlying dependence graph, obtained by flatten-
ing the hierarchical graph, must be a valid one.

In section 10.2, we derive the hierarchical graph from the DG of ’Rotate’. In section 10.3,
we present the tool ’HiCompose’ that derives hierarchical graphs from a DG description. Then, we
present the hierarchical graph of the SVD algorithm and discuss its complexity.

The drawings in this dissertation were made with the tool ’HiView’, which we implemented to
display graphs. The advantage of hierarchical graphs is that they are two dimensional, regardless of
the dimension of the iteration spaces of the underlying DG. We believe that a geometrical view on
graphs is helpful to the designer in coping with the design complexity.

10.2 Hierarchical Graphs

In this section, we give definitions of hierarchical ports, nodes and edges and compose, as an example,
an hierarchical graph from the dependence graph corresponding to the SAP program ’rotate’ listed in
the appendix of chapter 7. The structure of a hierarchical graph corresponds one-to-one with the
structure of the DG in terms of port-, node-, and edge-domains, which we will use as constructors of
hierarchical elements.

First we define a hierarchical port.

Definition 10.1. HIERARCHICAL PORT

Let 	 be a label.
Let � � � be a port-domain.
An hierarchical port 7 � is defined by the name-type pair

� 	 � � � ��� and is a set of ports, which may
be hierarchical themselves:

7 � � � � � � � � � � �
(10.1)

We call 	 the name and � � � the type of port 7 � . �

Observe the resemblance to definition 9.1 of elementary ports. Here, elementary ports are con-
sidered to be singleton. The type of an hierarchical port is not a set of data values but a set of ports.
Hence, we cannot really speak about the value of an hierarchical port because the port is a set of
individual ports each having its own value. The grouping of ports into sets does not have a functional
meaning, although it is sometimes useful to think of the value as the composition of the values of its
individual ports.

To introduce the notion of hierarchical nodes, suppose that we cut a dependence graph into a
number of segments. Further, assume that we use as cuts the inequalities (half-planes) of the node-
domains of the DG description. Then, we obtain as many segments as there are node-domains in the
DG description. Our objective is to represent each segment of the graph by a segment node whose
structure is defined by a segment.

Depending on the way the edges of a segment cross cuts, we classify them into three kinds: local,
incoming and outgoing. Local edges are edges connecting node ports of the same segment, they are
edges that do not cross a cut. These edges are of the local structure of the segment node. Incoming
edges depart from nodes of other segments. Outgoing edges arrive at nodes of other segments.

Hierarchical Graphs 117

According to definition 9.6, an edge-domain is specified by a dependence function, an input port-
domain

� � � , and an output port-domain
� � �

. We use the port-domains of non-local edges as the
type of the hierarchical ports of the segment nodes. A

� � � of an incoming edge-domain becomes the
type of an input port of a segment node. An

� � �
of an outgoing edge becomes the type of the output

port of a segment node.

Definition 10.2. SEGMENT NODE

Let
� �

be a node-domain and � � , � � , and ��� be the sets of incoming, outgoing, and local
edge-domains of

� �
, respectively. Let ����� � � � ��� � � � � ��� � � � � � ��� � �

�
be the set of input port-

domains of the incoming edge-domains. Let � � � � � � � � � � � � � � � � � � � � � � �

�
be the set of output

port-domains of the outgoing edge-domains.

A segment node consists of �
� input ports of which the types are the port-domains of � � , � � output
ports of which the types are the port-domains of � � , and a segment comprising the nodes of

� �
and

local edges. The elements of the segment may be hierarchical themselves.

�

= hierarchical output port

ROTROW

= hierarchical input port

Figure 10.1. Segment node ’ROTROW’ with its (hierarchical) ports, which are sets of ports.

In the previous chapter, we specified the DG of ’rotate’ by two node-domains and six edge-
domains between the node-domains. Figure 10.1 shows the external view of segment node ’ROTROW’.
The node itself contains a graph segment and its ports are sets of ports. In a way, the segment is the
structural refinement of node ’ROTROW’.

More generally, we speak of a DG node when we specify the structure of a node by a dependence
graph, instead of a single segment. The DG node can be regarded as the result of merging a number
of segment nodes.

As stated in the introductory chapter, we can also temporally refine nodes. When the type of
refinement, structural or temporal, is not relevant to the discussion, we speak about hierarchical-
nodes.

At the higher level graph, we connect the segment nodes with hierarchical edges.

Definition 10.3. HIERARCHICAL EDGE

Let ����� � � � � � � � � � � � � be an edge-domain.
Let 	 be a label.

An hierarchical edge 7 � � � 	 � ������� is the set of edges, which may be hierarchical themselves,
defined by:

118 10.3 The tool ’HiCompose’

= hierarchical edge

ROTCOLUMNROTROW

th2

th1

a

= hierarchical output port

= hierarchical input port

Figure 10.2. The hierarchical graph of ’rotate’ comprising two segment nodes intercon-
nected by hierarchical edges.

7 � � � � � � � ����� �
(10.2)

�

Note that each individual edge of the set must be an element of type � ��� , i.e.,
� � 	 � � � � �
 � � � �� � � � � � � � � �

. The individual edges are connected according to the dependency function of the
edge-domain. Ports connected by edges must match. This means that the type of the input port must
match the type of the output port. 1 However, an hierarchical edge may connect a subset of the ports
of an hierarchical input port. This implies that, in contrast to elementary ports, hierarchical input
ports may have multiple incoming edges, as long as after expansion this will not cause a conflict at
the elementary port level.

The graph obtained after we have connected segment nodes by their edges has two levels of hier-
archy as its nodes are graphs themselves. By applying abstraction on the graph again, we can add a
third level of hierarchy. It is an recursive construction. In principal, there is no limit to the level of
graph hierarchy.

Example 10.1.
The hierarchical graph of ’rotate’
Figure 10.2 shows the hierarchical graph of ’rotate’ consisting of the segment nodes ’ROTROW’

and ’ROTCOLUMN’ and hierarchical edges connecting the ports of the nodes. The graph itself has
three input by which it may be connected at a higher level graph. �

10.3 The tool ’HiCompose’

We have implemented the tool ’HiCompose’ for composing hierarchical graphs. The tool takes as
input a dependence graph description and outputs a graph of segment nodes and hierarchical edges.

The procedure of ’HiCompose’ consists of two steps.
1The level of hierarchy of ports may differ from the level of hierarchy of their nodes.

Hierarchical Graphs 119

Let
�

be the set of node-domains and � be the set of edge-domains of a DG.
Step 1 of the procedure creates for each node-domain

� � � �
a segment node 5 � :

� specify the structure of 5 � by the node-domain
� �

and local edges-domains � � � � � .
� specify an input port of 5 � for each incoming edge-domain � � � � � and declare the

� � � of
� � to be the type of the port.

� specify an output port of 5 � for each outgoing edge-domain � � � � � and declare the
� � �

of � � to be the type of the port.

Thus the original port-domains of the nonlocal edges are used as types of ports. A
� � �

of each
nonlocal edge-domain is used as the type of the output-port and a

� � � is used as the type of the input
port of the corresponding segment nodes. This is another application of port-domains. Observe that
hierarchy does not introduce new elementary elements.

Step 2 of the procedure interconnects the segment nodes with hierarchical edges. We add an
(hierarchical) edge for each nonlocal edge-domain and connect the corresponding hierarchical input
port and output port. The type of each (hierarchical) edge is specified by an edge-domain.

To summarize: the hierarchical graph is an irregular graph consisting of

� segment nodes for each node-domain in
�

� hierarchical edges for each edge-domain in � .

10.4 Data Dependence Analysis of SVD

In this section we present the data dependence graph of the Singular Value Decomposition algorithm
generated by HiPars [37] [22]. First we discuss the complexity of the DG of the SVD algorithm.
Next, we present the DG in the form of an hierarchical graph.

10.4.1 DG of SVD

The SVD algorithm has 12 LHS variables and 20 RHS variables and has a quite complicated depen-
dence structure. Table 10.1 gives an overview of the data dependencies between the variables of
program 2.7. We have placed the LHS variables of program 2.7 at the top margin of the table and
the RHS variables at the left margin of the table. We have indicated dependent variables with the
character d. The table shows that HiPars has found in total � � dependencies.

Each row of the table shows on which LHS variables an RHS variable depends. From the table,
we see that an RHS variable may be dependent on more than one LHS variable.

Program 10.1 shows a piece of the SAP describing the data dependencies for the variable a(i+1,i+1)
which is the fourth argument of the function Angle.

From the code, we derive that the function Angle is dependent on the function RotColumn
inside the odd part and on the function RotColumn inside the even part of the algorithm, via the
single assignment variables a 4 and a 8, respectively. Further, it depends on the initialization loop
stage via variable a 1(i+1,i+1).

The control variables are stage, p56, and i.
The dependence functions are:�
 � � 	 	�� � � � � � � � � � � � � ��� �
 � ,

120 10.5 Conclusion

th1(i) th2(i) a(i,j) a(i+1,j) a(j,i) a(j,i+1) th1(i) th2(i) a(i,j) a(i+1,j) a(j,i) a(j,i+1)

a(i,i) d d
a(i,i+1) d d d
a(i+1,i) d d d

a(i+1,i+1) d d
th1(i) d
a(i,j) d d d d d d

a(i+1,j) d d d d d d
a(j,i) d d d d

a(j,i+1) d d d d
th2(i) d
a(i,i) d

a(i,i+1) d
a(i+1,i) d

a(i+1,i+1) d
th1(i) d
a(i,j) d d d

a(i+1,j) d d d
a(j,i) d d d d

a(j,i+1) d d d
th2(i) d

Table 10.1. Table of dependencies between RHS and LHS variables.

�
 $ � 	 	�� � � � � � � � � � � � � � � ��� �
 � and�
 � 	 ��� � � ��� �
 � .
The domain of the dependence functions are specified by the active control statements.
The other data dependencies are specified in a similar way.

10.4.2 Hierarchical SVD Graph

Figure 10.3 shows the hierarchical graph for the SVD algorithm. The graph consists of 8 segment
nodes called input, output, AngOdd, RowOdd, ColOdd, AngEvn, RowEvn and ColEvn. The
segment nodes performing the rotations contain three-dimensional graph segments. The segment
nodes computing the angle and the input-output segments contain two-dimensional graph segments.

There are in total � � hierarchical edges between the segment nodes. Not all the edges are visible
because the line segments of the edges overlap in the figure.

Table 10.2 shows the number of edges between the segments. The diagonal elements of the table
are the number of local edge-domains of a segment node. Each row specifies for a segment node the
number of incoming edges and the segment node from which they come. For instance, segment node
AngEvn has

�
incoming edges coming from segment node ColOdd.

10.5 Conclusion

Our main objective has been to regain overview of complex DG descriptions. We have shown how
hierarchy helps to reduce the design complexity. A rather complex DG is simplified to a small irregular

Hierarchical Graphs 121

Program 10.1. SAP CODE FOR INPUT VARIABLE in3

if stage-2>=0,
p56=div(i+1,2);
if -i+2*p56-1>=0,

if M-i-3>=0,
[in3] = ipd(a_8(stage-1,2*p56,i+1));

else
[in3] = ipd(a_5(stage-1,2*p56-1,i+1));

end
end

else
[in3] = ipd(a_1(i+1,i+1]));

end

[out0,out1] = Angle(in0, in1,in2,in3);

AngOdd

RowOdd

ColOdd

AngEvn

RowEvn

ColEvn

outputinput

Figure 10.3. Hierarchical Graph of SVD showing the hierarchical edges between the seg-
ment nodes.

graph where the nodes represent segments and hierarchical edges the data dependencies between the
segments. The number of edges depends on the complexity of the data-dependence pattern.

Our model allows the level of hierarchy of a graph to be greater than two. Moreover, the level
of hierarchy may be different for each element of a graph. In fact, a graph may be a mixture of
hierarchical and elementary elements. An important observation about hierarchical graphs is that they
do not introduce elementary elements. No matter what kind of hierarchical graph we compose from a
DG, after flattening they all should give back the same underlying DG.

As stated in the introduction, many alternative DG compositions are possible. The tool ’HiCom-
pose’ creates segment nodes but this could easily be extended to DG nodes. We have decided not to
do this because we regard merging of segments as design operations. For instance, we can merge two
segment nodes into one DG node.

Graphs, hierarchical or not, are still algorithmical specifications. There is no notion of time yet.
However, it is a small and often desirable step to regard the graphs as networks of concurrently oper-
ating nodes with each node executing a part of the algorithm.

122 10.5 Conclusion

in AngOdd RowOdd ColOdd AngEvn RowEvn ColEvn Out

Input 0 0 0 0 0 0 0 0
AngOdd 4 0 0 3 0 2 6 0
RowOdd 3 2 2 7 0 8 10 0
ColOdd 2 2 12 2 0 0 2 0
AngEvn 0 0 0 8 0 0 0 0
RowEvn 0 0 4 12 2 0 0 0
ColEvn 0 0 0 14 0 8 0 0
Output 0 0 0 3 0 0 2 0

Table 10.2. Table of edge-domains between segments of the DG of SVD.

Chapter 11

Clustering a Graph Segment

11.1 Introduction

In chapters 7 and 9 we derived piecewise regular DGs from nested loop programs. We now describe
a tool that does the inverse operation, it converts dependence graphs into single assignment programs.
For the design system as a whole, this is an important conversion. For instance, after applying linear
scheduling transformations on a graph, we want to obtain a procedural code for the control programs
that govern the scheduling. Or, we want to cluster a set of nodes in order to reduce communication
costs.

The kernel of the conversion is a well-known technique called scanning. It has been described in
[3]. Scanning means that we visit the points of the polytope in the lexicographical order defined by
loop statements. To obtain an executable nested loop program, the loop bounds may depend only on
the loop variables of outer loops.

In this chapter, we describe the tool ’dg2sap’ that derives cluster programs from segments of a
dependence graph. The tool does this in two steps. First, it derives the control structure. Then, it
converts DG’s data dependencies into read and write accesses to single assignment variables of the
cluster program. The tool outputs the cluster program in procedural MATLAB code. Further, the
cluster program has the single assignment property and is functionally equivalent to the dependence
graph.

In this chapter, we do not discuss the choice of basis in which we scan the segment. We assume
that a proper choice of basis has been made by our transformation tool [90]. Also, we avoid questions
about scannability by assuming each segment of the DG to be scannable, i.e., there is a valid sequential
ordering of the nodes. This is a fair assumption in the context of HiFi, because the design is initially
specified by an executable, thus scannable, nested loop program. We can prove by construction that
the design tools maintain this property. The procedure can easily be extended for dependence graphs
consisting of multiple segments. This requires that after deriving the cluster program for each individ-
ual segment of the DG, we have to apply loop-merging in order to construct the cluster program for
the DG. Because

���������
	
gives us the data dependencies between the segments, we can use existing

loop merging techniques as described in [86].

11.2 Scanning Dense Domains

Scanning a domain means visiting each and every point of the domain in a lexicographical order
specified by a nested loop structure.

123

124 11.2 Scanning Dense Domains

In this section, we assume domains to be dense. The scanning of a dense domain is similar to
scanning its polytope because the domain’s lattice is the identity. As a consequence, the stride of the
loops of the cluster program will be equal to one. In section 11.4, we deal with nondense or sparse
domains.

Let � be the polytope of a dense domain and let � � 	 ��� � � � �
 � be its vector of control
variables. The objective is to scan � lexicographically in the order defined by � . To simplify the
explanation, we annotate each control variable with a level 	 � , which equals the position of the variable
in vector � . Eventually, these control variables will appear as loop iterators of the loop statements at
corresponding nesting levels in the cluster program.

Further, we define the level 	�� of an inequality to be the highest level among its variables with
non-zero coefficients. When an expression contains only parameters, its level is zero.

The kernel of the procedure is the classical Fourier-Motzkin elimination method [52]. This tech-
nique is well known and we refer to the literature for more a elaborate explanations of the technique
[3]. The idea is to find for each loop variable a set of constraints that does not contain higher level
variables. In other words, the loop bounds of each for-statement may not depend on the loop variables
of its inner loops. It is important to remark that the elimination procedure is based on real projection.
It finds the set of constraints that bound a loop variable � � by projecting the polytope � on a subspace
set up by all the variables of lower and equal levels, i.e, the 	 � � � � � �
 - space. Thus, constraints
on variable � � are obtained by projection on the 	 ��� � � �
 -space. Constraints on � by projecting on
	 � � � � � � �
 -space, and so on.
After applying the Fourier-Motzkin procedure on polytope � , we obtain a new polytope ��� � of
which the inequalities are sorted on level. This property enables us to scan the polytope by loop
statements.

Example 11.1.
Scanning a polytope
Below we have listed, as example, the inequalities of a polytope of a dense domain with index

vector ��� 	 � � �
 � :

� & � � � � �� � � � � �� � � �
� �

� &
� � �� � � �

�

(11.1)

Figure 11.1 shows the enumerated index points of the polytope (11.1) for � � ��� .
To derive the loop structure of the cluster program, we apply the Fourier-Motzkin procedure that
returns an equivalent set of inequalities. The level of the inequalities is in parenthesis.

	 �
 � � � � � � &
	 �
 � � �

�
	 �
 � � �
	 ��
 � � � � � �
	 ��
 � � � � � � � &
	 ��
 & � � � �

�

�

Clustering a Graph Segment 125

i

j

Figure 11.1. Index points of polytope (11.1) for
� � � � .

11.3 Writing the cluster program in procedural code

We use procedure 11.1 to derive the control structure of the program which scans a polytope. The
procedure we use is a slightly adapted version of the one described in [91].

Below we have outlined the procedure. Procedure 11.1 constructs a parse tree of the cluster
program. It first replaces the greater than operators,

�
, by equal to operators, � , and sorts equations

to level. Then it splits each set of equations of the same level 	 , with � � 	 � �
, into a lower bound set

� � and an upper bound set � � . Equations of � � and � � will appear in the bounds of the for-statement
with loop variable � � at nesting level 	 . The procedure adds an equation to the upper bound set � �
when the coefficient of variable � � is negative. When the coefficient is positive, it adds the equation to
the lower bound set � � .

According to the syntax of for-loop statements, the coefficient of loop iterators must be equal to
one. To achieve this we divide the inequality by the coefficient of the loop iterator. Further, as loop
bounds must be integers, we round the expression to integer by

%.� � 	 or
	 	 ��� � operators. In the case of

a lower bound we take the
%.� � 	 of the expression. In the case of an upper bound we take the

	 	 ��� � .
To illustrate this step of the procedure, consider the following example.

Example 11.2.
Floor and Ceil operator
Suppose that

�
will become a loop iterator and must satisfy the following inequality:

� & � � � � � �
To make its coefficient equal to one, we divide the expression

� &
:

� � 	 � � ��
 " &

126 11.3 Writing the cluster program in procedural code

As the sign of the coefficient was negative, it is an upper bound expression. So we floor it to the
nearest integer:

� � 	 	 ��� � 	 	 � � ��
 " &

�

The lower bound of a loop variable � � is the minimum of the ceiled expressions of � � and its upper
bound is the maximum of the floored upper bound expressions of � � .

For this purpose, we need
� � � and

� � � operators in the cluster program. Of course, these
operators can be left out when the number of inequalities of a bound set is equal to one. We omit this
optimization for demonstration purposes.

Example 11.3.
Max and Min operators Suppose we have a loop iterator � with a lower bound set � � �) 	 � ��
 * �) 	 & � � ��
 * � and an upper bound set � � � % 	 � ���
 (� % 	 & � � ��
 (� .
Then the lower bound of � is the maximum of the expressions of � and the upper bound is the

minimum of of the expressions of � , which we write in MATLAB by min() and max() operators
as follows:

for k = max(ceil(i-j),ceil(3*i-5)) to min(floor(i-j),floor(3*i-5)),

end

�

Procedure 11.1.
Deriving Loop Structure
Let 	 denote the level of an equation. Let � � and � � be sets containing upper and lower bound

equations, respectively.

Let � � � be the polytope returned by the Fourier-Motzkin procedure and sorted to level.
The procedure constructs a parse tree from � � � , corresponding with loop statement at nesting 	 .

The steps of the procedure are:

1. add If-nodes for inequalities on parameters only (level 0).

2. add
%.� � 	 operator for expressions of � � .

3. add
	 	 ��� � operator for expressions � � .

4. add
� � � and

� � � nodes to evaluate the maximum of the ceiled expressions of � � and the
minimum of the floored expression of � � , respectively.

5. add For-node with loop iterator � � and the
� � � and

� � � operations as lower and upper bounds,
respectively.

By repeating the steps for all nesting levels we obtain the parse tree defining the loop structure of
the cluster program.

�

Clustering a Graph Segment 127

Program 11.1 shows the control structure derived from the polytope (domain) of example 11.1
by procedure 11.1. In section 11.6, we complete the cluster program by adding the single assignment
variables.

Example 11.4.
Control Structure
The first statement of program 11.1 is a conditional statement specifying a constraint on parame-

ter � . It contains
%.� � 	 statements for each expression used in the lower bound and

	 	 ��� � statements
for upper bound expressions. The tool ’dg2sap’ introduces temp variables, such as lb0. The temp
variables ma0 and mi0 are assigned to the minimum and maximum value of floored and ceiled ex-
pressions and define the lower and upper bound, respectively.

After the first loop statement, a similar piece of code follows for the second loop of the cluster
program.

�

Program 11.1. CONTROL STRUCTURE

if M-2>=0,
lb0 = equal(1);
lb1 = equal(0);
ma0 = max(lb0,lb1);
ub2 = equal(M);
ub3 = equal(2*M-3);
mi0 = min(ub2,ub3);
for i=ma0 : 1 : mi0,

lb4 = equal(i);
ma1 = max(lb4);
ub5 = equal(3*i);
ub6 = equal(2*M-3);
mi1 = min(ub5,ub6);
for j=ma1 : 1 : mi1,
[out0] = Fn();

end
end

end

11.4 Nondense domains

In this section, we address nondense domains, i.e., the lattice is not the identity. A naive approach
would be to scan the polytope as we did for dense domains. This will lead to unnecessarily high
nesting levels. Instead, we split the problem into two subproblems. First we assume that the domain
is dense and derive the loop structure by procedure 11.1 given in the previous section. Second, we
filter out the values of the loop iterator not on the lattice by means of additional constraints, which
we derive from the lattice of the domain. These constraints are expressed in the form of conditional
statements and transformation statements containing integer division operators.

We believe that by this approach the control structure of the cluster program resembles logically
the nondense domains. For instance, the nesting level of the loop nest will be equal to the dimension
of the domain and the lattice will be defined by integer division (modulo) operators.

Thus, we separate inequalities of the polytope into the ones that define the bounds of the loop
statements of the cluster program and into the ones taking account of the lattice.

128 11.5 Deriving the Div statements

Recall that the index vector 6 of a domain is given by: 6 ����� � � . To separate the variables of 6
into loop and nonloop variables, we use the property, see equation 8.4, that the lattice matrix � may
be decomposed into an � � � matrix � � and zero matrix � � : ��� � ��� � � .

Accordingly, we decompose 6 into 6 � and 6 � , with 6 � the vector of loop variables and 6 � the vector
of the non-loop variables.

From the inequalities depending only on 6 � , we complete the control structure of the cluster pro-
gram, listed in the previous section.

Inequalities in variables of 6 � are added in the form of conditional statements to the control struc-
ture of the cluster program and filter out instances of index-vector 6 that are not on the lattice. We
further add integer-division transformation statements to the control structure to introduce the control
variables needed in this filtering process.

We first have to sort equations to level, because the index transformations may be nested, in the
case of complex lattices. Therefore, to obtain procedural code, we have to insert the div-statements
into the cluster program according to some partial order.

After we have found the sets of inequalities in the nonloop variables, we order the sets such that the
inequalities can be expressed directly in terms of conditional statements and index transformations.
The transformation statements are placed before the block of conditional statements. Together they
define the lattice constraints inside the cluster program.

11.5 Deriving the Div statements

We add index transformation statements containing integer division operators in order to introduce
the non-loop control variables of the cluster program needed for the lattice constraints. By adding
the div-statements, we may not make the constraints on the index tighter. As the inequalities of the
block of conditional statements already specify the lattice, the inequalities associated with the division
operators should not tighten the constraint on the iteration domain.

To explain this more formally, recall that, according to procedure 5.19, we may replace an integer
division by its two defining inequalities, but now with the affine expression

�
written as

� � � � � %
,

with
%

an integer constant and
� � the linear part:

� � � % � � � � � and
� � � % � � � � � � � .

These two inequalities must be redundant to inequalities defining the lattice, which we derived in
the previous section. We check this explicitly by performing a redundancy test. Geometrically, the
lattice points should lie in between the hyper-planes associated by the integer division.

Example 11.5.
Extract div-operator
Suppose we have the inequalities:

� � ��� � � � �� � ��� � � � '
and we must introduce the control variable

�
by an integer division. With the divisor

�
equal to ���

and
� � � �

, we may choose any constant
%

in the range � � % � � .
�

The example shows that there can be an ambiguity in the choice of the constant
%

in the expression
of an integer division. Apparently, there can exist several integer divisions that are redundant for the
inequalities. By default, the procedure selects the smallest value of

%
for the constant inside the

expression. In case of the example
%

is � .

Clustering a Graph Segment 129

Due to this ambiguity, the procedural algorithm of the cluster program may differ from the original
program from which we generated the graph segment by the tool ’sap2dg’. Although they may have
different constants in the expression inside div-operators, it is easy to verify that both programs are
functionally equivalent.

Program 11.2. THE CONTROL STRUCTURE OF SEGMENT-NODE ’ROTROW’
Below, we give the loop structure of the cluster program for segment ’ROTROW’. It contains a
� � � -transformation statement and and two conditional statements on control variable i F to
filter out the even values of � . Note that in the original program this was specified by
stride 2.

if M-2>=0,
lb0 = equal(1);
ma0 = max(lb0);
ub1 = equal(M-1);
mi0 = min(ub1);
for i=ma0 : 1 : mi0,

lb3 = equal(1);
ma1 = max(lb3);
ub4 = equal(M);
mi1 = min(ub4);
for j=ma1 : 1 : mi1,
i_F=div(i-1,2);
if -i+2*i_F+1>=0,

if i-2*i_F-1>=0,

[out0, out1] = RotRow(in0, in1, in2);

end
end

end
end

end

11.6 Adding the Single Assignment variables

In the construction of the cluster program, so far, we have only used the node-domain of the segment.
We now complete the cluster program by converting the segment’s port and edge-domains.

An edge-domain � � � � � � � � � � � � � � stands for a set of edges between segment nodes, and
corresponds to read and write accesses to variables of the cluster program. We assume that variables
are properly declared.

Input port-domains correspond to the read accesses to variables whose values are the arguments of
the function of the segment, with the dependency function as indexing function of the variable. Output
port-domains correspond to write accesses and assign the outputs of the function to the variables. The
left-hand side variables are fully indexed, which implies that the cluster program is a single assignment
program.

We insert the polytope of the edge-domain in the form of a block of conditional statements before
the function-call statement. Note that this is a simple conversion. It does not require loop scanning.
However, the code will typically contain integer division operator statements, which are derived ac-
cording to the procedure outlined in the previous section.

Example 11.6.
Cluster program of segment-node ’ROTROW’

130 11.6 Adding the Single Assignment variables

Below we have listed the complete cluster program that scans the segment-node ’ROTROW’.
Its control structure, clearly resembles the structure of the graph segment in terms of node-domain,
port-domain and edge-domains.

lb0 = ceil(1);
ma0 = max(lb0);
ub1 = floor(M-1);
mi0 = min(ub1);
for i= ma0 : 1 : mi0,
lb3 = ceil(1);
ma1 = max(lb3);
ub4 = floor(M);
mi1 = min(ub4);
for j=ma1 : 1 : mi1,

i_F=div(i-1,2);
if -i+2*i_F+1>=0,
if i-2*i_F-1>=0,
if j-1>=0,
if -j+M>=0,
if i-1>=0,
if -i+M-1>=0,
[in0] = ipd(th1(i));

end
end

end
end

end
p1=div(i-1,2);
if i-2*p1-1>=0,

if i-2*p1>=0,
if -i+2*p1+1>=0,
if i-2>=0,

[in1] = ipd(a(i,j));
end

end
end

end
if -i+1>=0,
if j-1>=0,
if -j+M>=0,
if i-1>=0,
if -i+M-1>=0,

[in1] = ipd(a(i,j));
end

end
end

end

Clustering a Graph Segment 131

end
if j-1>=0,
if -j+M>=0,
if i-1>=0,
if -i+M-1>=0,

[in2] = ipd(a(i+1,j));
end

end
end

end
[out0,out1] = RotRow(in0,in1,in2);

end
end

end
end

�

11.7 Conclusions

We have shown how to derive a nested loop program from dense as well as nondense domains. We
used the Fourier-Motzkin procedure for the derivation of the loop bounds. Another technique is
described by Collard [62] who uses PIP instead of Fourier-Motzkin to construct loops from systems of
affine constraints. Also Chamski uses PIP for the generation of loop bounds [17] and for enumeration
of dense non-convex iteration sets [19].

By separating variables of a polytope into loop and nonloop variables, we obtain a cluster program
of which the control structure resembles logically the domains defined by linearly bounded lattices.

We have implemented the tool ’dg2sap’ that takes as input a segment of a dependence graph and
outputs a functional equivalent single assignment program, which we refer to as the cluster program,
since a set of computations (nodes) have been clustered into a single computational node.

With loop-merging techniques, we can merge several cluster programs of a DG’s graph segments
together into a single program [86]. This technique can be applied because the data dependencies
between the graph segments are known too.

132 11.7 Conclusions

Chapter 12

Specifying Temporal Behavior

12.1 Introduction

Even in effectively parallel algorithms, there are parts of the algorithm that do not lend themselves
well to parallel computation. This may be for several reasons. For instance, the data dependencies
are not static, or are very irregular, or the computations involved are difficult to compute directly on
hardware.

Obviously, we could merely specify these parts functionally, but this leaves out important aspects
of the design, in particular local memory and control. We can hardly neglect these aspects in the
design of distributed parallel networks for cost and performance reasons.

As our algorithms are written in a procedural languages, e.g. MATLAB, a processor can process
these parts sequentially without difficulty. Sequential computation means that the functions of the
algorithm are evaluated one after another.

In this section, we study precisely what it means to run a procedural algorithm in terms of the
processor’s

� memory and

� control.

For this purpose, we need a processor model. In [4], the concept of the AST node model in
our context was formally presented and worked out further in [5] and [81]. It was motivated on the
one hand by Hoare’s work on CSP [38] and on the other by Backus’ critical paper on functional
programming [6].

The choice for the AST node is fundamental [38]. It logically separates function, state, and
function ordering, which in procedural languages are so intertwined [21]. By modeling procedural
algorithms as AST nodes, we completely specify the order in which the functions are evaluated. In
other words, we specify temporal behavior.

An important design aspect which we also model with AST nodes is the memory required by
the processor network. This memory ranges from simple registers to memory buffers in the interface
between the processor network and the host.

The AST concept can also model procedural algorithms containing ’while’ loops, conditional
branching, and data dependent branching. This gives another motivation for the AST model. Parts
of the algorithm not satisfying the constraints imposed for regular array design can stay part of the
design. This means that we can design systems for a much broader class of algorithms than the nested

133

134 12.2 AST nodes

loop programs discussed earlier, however, with the regular parts treated in the more effective way
described there.

By using ASTs, we also address the synchronization effects between the sequentially computed
and the parallelly computed parts of the algorithm. In section 12.3 we discuss the timing behavior of
AST nodes.

Below we model the procedural interpretation of our class of nested loop programs by AST nodes.
This kind of modeling resembles the data-flow modeling of programs as found in [70]. Observe,
however, that in our case it is a temporal specification instead of a structural one.

In section 12.4, we model assignment statements. Then, we model the semantic of control state-
ments: (1) the loop control statement and (2) the conditional statement. Once we have established
this, we give a general procedure for modeling nested loop programs as ASTs.

In this chapter we will mainly describe the internal behavior of the AST, i.e. how it selects its
functions and accesses its local memory. In section 12.3, we deal with how ASTs communicate with
each other.

12.2 AST nodes

The capabilities of a processor can be described by the set of functions it can compute. Let this set of,
say � , functions be:

� � � 	 � � 	 � � � 	 � �

These functions may be simple, like an addition of two numbers, but can also be complex and repre-
sented by an algorithm. We specify the functions as MATLAB programs, as usual.

A processor computes functions one after another in time. It starts, after a reset, with some
particular function, which we call the initial function.

When we write down the functions that the processors executes, we obtain a sequence of function
evaluations such as: 	 � � � �

	 	 � 	 " 	 % 	 � 	 " 	 � � � �
At each moment, the processor performs one of the functions of

�
. The processor has thus some

state. In AST terminology, we say that an AST node has a function state. In each of its function
states, the AST evaluates a function which we assume to be an element of

�
. In general, the number

of function states will be greater than the number of functions, because functions may have multiple
port bindings. For the sake of convenience, we assume that each function state has a unique label.

An AST node has input and output ports, through which it can communicate with other AST
nodes in the network. We explain the communication protocol in section 12.3.

We model local memory of a processor by a special set of state variables. We specify these
variables in the same way we specify ports, by a name and a type. We denote the set of state variables
by � . Ports as well as state variables may be of type array.

When referencing or addressing an array state variable other state variables may be used in its
index expression.

An AST node has local control specifying the ordering of the function states. In addition, the AST
node has a state variable which contains the current function state. We denote this state variable by	

and call it the current state. We call the AST’s set of function states the state space, denoted by 5 .
The value of the current state variable must be an element of the state space 5 . We can compare the
current state variable with the program counter of a sequential processor.

Specifying Temporal Behavior 135

To evaluate a function
	

of a function state, the inputs and the outputs of the function have to be
bound to ports and/or state variables of the AST node. To be more specific, inputs of

	
are bound to

some or all input ports, and/or some or all state variables and outputs of
	

are bound to some or all
output ports, and/or some or all state variables. Note that a function state may bind a subset of the
ports of the AST node.

Let
� � � be an arbitrary input port and

� � be an arbitrary state variable.
With

� � � standing for a formal input of the function
	 � of function state

� � , we define an input binding
by the pair 	 � � � � � � �
 or by the pair 	 � � � � � �
 .
And, similarly, with

� ���
� an arbitrary output port of the AST and

� ���
� a formal output of function

	 � ,
we define an output binding by the pair 	 � ��� � � � ��� �
 or 	 ����� � � � �
 .
Example 12.1.

Function Binding
Suppose we want to evaluate the addition operator

� ��� in a function state, computing
	 " � � �!� �

.
Thus the formal inputs are

�
and

�
and the formal output is

	 " � .
Let us further assume that the AST has two input ports

� ��� and
� � � and one output port

� " � . We
specify the binding function

� ��� as follows:

	 � � � � �
 � 	 � � � � �
 � 	 	 " � � � " �

�

Formally, a function state
�

is a mapping from the input port domain 6 � , the variable space � � ,
and the state space 5 , to the output port domain � � and back to the � � � 5 :� � 6 � � 5 � � � �� � � � 5 � � � (12.1)

Observe that a function state assigns a new value to the current state variable
	

and selects thus
the next function state to be evaluated by the AST. To separate the part of the function that determines
the value of state variable

	
, we decompose the function

	
of
�

in two parts. We call the first part the
application part, and denote it by

	
 . We call the second part the control part, which we denote by
	 �

.
Similarly, we split the variables into a set of data variables, � � and a set of control variables � � .	
 maps from input ports and data variables � � to output ports and � � :

	
 � 6 � � � �� �� � � � � �� (12.2)

and
	��

maps from and to the state space 5 and control variable space � �� :

	�� � 5 � � �� �� 5 � � �� (12.3)

So
	��

determines the value of the next state variable and may update other control variables. In this
way, we have separated data operation from control. This corresponds with the classical separation of
control and data path in digital systems.

Observe that the application part may not change the control variables. The AST model is more
general, but here we restrict ourselves to the class of nested loop programs that have static control.

To summarize, we characterize an AST node by:

� a set of input and output ports 6 and �
� a set of functions

� � � 	 � � � 	 � �

136 12.3 Timing Behavior

� a set of state variables � and the current state variable
	

� a set of function states binding functions of
�

.

An AST is always in one function state at any given period. It starts up in the initial state.
We restrict ourselves to those types of AST nodes that return to the initial function state after a

finite sequence of function states. They have cyclic behavior.
Bindings stand for read and write accesses to state variables (local memory). Each time an AST

node goes to the next function state, it reads the variables bound to the inputs of
	

and, after completion
of the algorithm, writes the output to the bound state variables and bound output ports. The index of
array type variables may depend on other state variables, whose values are assigned at earlier function
states.

The AST node does not model the data paths needed to pass the values from the ports and states
to the functions (circuits). Also the evaluation of the index expressions of variables is not modeled in
detail (memory address generation). However, it is clear that the switching between function states
and the addressing of local memory can cause considerable overhead.

12.3 Timing Behavior

In this section, we describe the timing behavior of AST nodes. We distinguish between the internal
timing behavior and the way the AST nodes communicate with other nodes of the network.

AST nodes can be connected to other AST nodes in the network by edges and communicate with
each other according to the single token pass protocol. As the AST nodes synchronize on token
passing between each other, we say that the network has data-flow control. We do not allow nonde-
terministic behavior.
The single token pass mechanism can be described and implemented by a four-phase handshake pro-
tocol. We refer to [33] for details.

Ports of AST nodes can be in two states: the active state and the passive state. A port is active
when it contains a token. It is passive when it is free of a token. When the output port is active, the
input port of another node that is connected to it is also active. By definition, state variables are always
active.

A function
	 � fires when all the currently bound inputs ports of the AST are active and the currently

bound output ports are passive. Functional behavior does not depend on the arrival times at the ports.
After completion of the function, the current input ports are passivated and the output data is written
to the state variables and the current output ports, which become active. The AST goes to the next
function state after completion of the function.

The control part
	 �

fires after the application part
	
 . The reason for this is that during the com-

putation of the application part, the state space may not be changed.

12.4 Assignments

In this section, we model an algorithm consisting of assignment statements by an AST node. We
make a distinction between statements assigning to data variables and statements assigning to control
variables.

Specifying Temporal Behavior 137

12.4.1 Assignments to data variables

We consider a block of consecutive assignment statements. Each statement is a function call statement
of the following form:

� � � 5
� � � � 5 � � � � � 5 � � � 	 � � 5
� � � � 5 � � � � � 5 �
 �

where � is the function called.
Procedural execution of an assignment statement can be divided into the following steps:

� reading the values of the RHS variables.

� evaluation of the function � on these values.

� writing the output values to the LHS variables.

We identify an assignment statement by a function state whose application part
	
 is the function

� .
Let the formal inputs of � be defined by the sequence � � � � � � � and let the formal outputs of � be

defined by the sequence � � � � � � � .
Assume that the variables referenced in the function call statement have been modeled by state

variables.
Then we bind the inputs to state variables representing the RHS variables in the order as they

appear in the function call, and bind the outputs to the state variables representing the LHS variables.
A block of statements is evaluated statement by statement in the order in which they appear in the

code. The order of function evaluations is thus fixed. The control part
	 �

of a function state is thus
a constant function and refers to the function state corresponding to the next assignment statement in
the block. The function state modeling the last assignment statement returns to the initial function
state.

thsum

plus

init

minus rdiv atan

t1 t2 t3

Figure 12.1. The function states and state variables of the AST node modeling a block of
assignment statements. The square symbols represent function states, the circles repre-
sent state variables. The dashed line segment represent the function bindings.

138 12.4 Assignments

Example 12.2.
Modeling Assignment Statements
Below, we model the block of assignment statements listed in program 12.1. We label the four

statements s1,s2,s3,s4 and represent them by the four function states
� � � � � � � � � � and

� � " , respec-
tively. Apart from these states, the AST node has an initial function state.
The application functions

	
 of these function states are:

	
 � � � � � � � ��� � 	

	
 � � � � � 	 " 	 	

	
 � � � � � � ��" 	 	

	
 � � � � 	 " 	 	

	
 � � " � � � � � 	

The control parts are constant functions:

	�� � � � � � �
	 �

	�� � � � � 	 �
	�� � � � � 	 &
	�� � � � 	 �

	�� � � " � � � � �

Note that the last function state
� � " goes back to the initial function state.

Figure 12.1 shows the state transition graph of the AST node in which the circles represent vari-
ables and the square boxes represent function states. The arrows indicate the ordering of the functions.

�

Program 12.1. ASSIGNMENTS TO DATA VARIABLES
Let plus , minus, rdiv and atan be functions.
Let t1, t2, t3, and thsum be variables.

[t1] = plus(t1,t2); (s1)
[t2] = minus(t1,t3); (s2)
[t3] = rdiv(t1,t2); (s3)
[thsum] = atan(t3); (s4)

12.4.2 Assignments to control variables

These assignment statements are the index transformation statements, which are of the form:

q = t(index-expression) ;

with the function t:
� � " � 	 	
 � � � � 	
 � � � � 	
 � 	 	 ��� � 	
 , or

%.� � 	 	
 .
We represent these statements also by function states. The corresponding control variable is rep-

resented by a state variable. These state variables are special because they may be used in the index
expressions.
Because the function assigns to a control state variable, the control part

	 �
of the function state evalu-

ates the function
�
. In in addition

	 �
determines the next state. The application part

	
 is void.

Specifying Temporal Behavior 139

Example 12.3.
Assignment statement with modulo function
Consider the following assignment statement containing a modulo function:

p1 = mod(i-j, 3);

We model this statement by a function state with
	
 � ��� � � and

	�� � � � � 	
 . Variable
� � is modeled

by a state variable. The function state has bindings with the state variables
�
,
�

and the state variable
representing the constant

&
.

�

12.5 Control Statements

In this section. we model the control statements and describe the procedural interpretation of these
statements in terms of functions, state, and function ordering. First we model loop statements. Then
we model conditional statements.

12.5.1 Loop Statements

The semantics of a loop statement is as follows. Upon entering the loop, the loop iterator is initialized
with the value of the lower bound. Then, the statements of the loop body are repeatedly executed for
as long as the value of the iterator stays between the loop bounds. After each loop, the value of the
iterator is incremented by the stride.

We model a loop statement by three function states and a state variable as follows:

� the loop variable is modeled by a state variable.

� the for function state initializes the loop variable
�

with the value of the lower bound expression.
It has the

� ��	��
state as the next state,

	 � � � ��	��
.

� the test function state evaluates the lower and upper bound expressions and tests whether the
value of

�
is in between the lower and the upper bound. If true, the next function state will be

the function state corresponding to the first statement of the loop body, if it exists. If false, the
next function state will be the function state corresponding to the first statement following the
loop.

� the step function state increments the loop variable
�

with the value of the stride. Its predecessor
is the function state corresponding to the last statement of the loop body. Its next state is always
the test state.

The application parts of these function states are void. All the expressions are thus evaluated by
the control part

	 �
of the function states.

Each loop statement introduces thus its own control variable. We can optimize the number of control
variables of an AST because the scope of the loop variable is limited to the loop body.

Example 12.4.
Loop Statement
Figure 12.2 shows the function states and state variables of the AST corresponding to program

12.2, which consists of a double nested loop and an assignment statement in which the function

140 12.5 Control Statements

in0

init for1 test1

step1for2 test2

Angle step2

stage

i

in1 in2 in3 out0 out1

Figure 12.2. The AST node modeling the loop statement.

Angle is called. The AST has two control state variables to model the loop iterators stage and i,
and six data variable states modeling the variables: in0, in1, in2, in3, out0, out1.

Each loop statement is modeled by three function states. The function state modeling function
Angle is bound to the variable states, which is indicated by the dashed lines in figure 12.2. �

Program 12.2. MODELING LOOP STATEMENTS

for stage=1 : 1 : N,
for i=1 : 2 : M-1,

[out0,out1] = Angle(in0,in1,in2,in3);

end
end

12.5.2 Conditional Statements

We represent conditional statements by function states, which we call branch states. The control part
of a branch state evaluates the condition and selects one out of two possible next function states.

If the condition evaluates to true, the next function state will be the function state corresponding
to the first statement of the block of statements of the then part. Otherwise, the next state will be the
function state of the first statement of the else block.

If the then or else part does not exist, the branch state will branch to the function state corre-
sponding to the first statement following the then or else part. The condition is evaluated by the
control part

	 �
of the branch state. The application part

	
 is void. Thus, when the AST is in a branch

Specifying Temporal Behavior 141

state, its next state is determined by the evaluation of the conditional expression, which may depend
on state variables. Consecutive branch states can be merged into a single branch state with multiple
next states.

a

5

i

j

in1

in2

out

init

if1
plus

minus

Figure 12.3. The AST modeling the conditional statement.

Example 12.5.
Conditional Statement
Consider program 12.3 containing a conditional statement.
We represent this block by one branch state and two function states plus and minus for the

assignment statements. See figure 12.3. Observe that the branch state has two possible next states.
The control part

	 �
of the branch state evaluates

� ��� � � .
�

Program 12.3. CONDITIONAL STATEMENT

if i-j > 5 then,
[a] = plus(in1,in2);

else
[out] = minus(a,in2);

end

12.6 The Tool ’nlp2AST’

We have implemented the tool called ’nlp2AST’ that converts a program written in procedural MAT-
LAB code into an AST specification according the steps outlined above.

The tool sets up a parse tree of the MATLAB program. The internal nodes of the tree are control
nodes, which are modeled by the control function states as discussed above. The leaves of the parse
tree are the function nodes which are modeled by data function states.

The tool creates as many data function states as there are function call statements. It also defines
the control part

	 �
for each function state. The application part, however, is specified by name only

and must be defined separately by another node in the system.
The ordering of the functions inside the AST node can be derived directly from the structure of

the parse tree by traversing the tree in depth first order. It is completely determined by the parse tree.

142 12.7 Conclusion

The number of states can be reduced by merging states. In particular, conditional statements can
be combined. Then it becomes a branch state with multiple next function states. By merging function
states, however, the functions evaluating the conditions become more complex.

We have applied the tool on the segment node AngOdd of the SVD algorithm. Figure 12.4 shows
the state transition graph of the resulting AST node.

To illustrate that AST nodes can also model nested loop programs, we have shown the state transi-
tion graph of the AST node representing the complete SVD program in figure 12.5. The SAP program
corresponding to this AST node is listed in the appendix of this chapter.

stage

i

in0

a_8
a_3

a in1 a_7 a_6 in2
a_5in3

a_4

out0

out1 th1_1
th2_1

init for test

for test

if

p1 if

if

ipd ipd ipd if

p9 if

if

if

ipd ipd if

ipd ipd if

if

p17 if

p18 if

if

if

ipd ipd if

ipd p18 if

if

ipd ipd if

if

p25 if

p26 if

if

ipd ipd p26 if

ipd ipd Angle11opd opd step

step

Figure 12.4. The AST modeling the single assignment program corresponding to segment
node AngOdd.

12.7 Conclusion

We have modeled procedural algorithms by using AST nodes. The function states and state transitions
inside an AST follow logically from the control structure of the program it represents.
In modeling programs by using AST nodes, we clearly separate function, state, and function ordering.
In addition, we separate the functions that are responsible for the control from those operating on the
data. Similarly, we have divided the variable space into a control space and a data space.

Our objective has been to describe clearly what procedural execution involves. The AST model
shows precisely the local memory and the control needed to determine the function ordering.

We have implemented the tool nlp2ast that converts a nested loop program into an AST node.
In other words, the tools converts a functional specification into a temporal specification.

Specifying Temporal Behavior 143

stage
i

th1

th2

a

j

sink

init for test

for test

Anglestep

for test

for test

RotRowstep

step

for test

for test

RotColumnstep

step

for test

Anglestep

for test

for test

RotRowstep

step

for test

for test

RotColumnstep

step

step

for test

for test

Sink step

step

Figure 12.5. The AST modeling of the SVD algorithm.

In the previous chapter, we presented the hierarchical graph of the SVD algorithm. This graph
is cyclic and its segment nodes cannot be specified by functions. However, we can convert each
segment node into an AST node and thus create a network of AST nodes. AST nodes in a network
can communicate with each other and synchronize on token passing. They execute thus in a lock-step
mode.

12.8 Appendix: The SAP of segment node ’AngOdd’

144 12.8 Appendix: The SAP of segment node ’AngOdd’

Program 12.4. SAP OF SEGMENT NODE ’ANGODD’

for stage=1 : 1 : N,
for i=1 : 2 : M-1,

if stage-2>=0,
p1=div(i+1,2);
if -i+2*p1-1>=0,

if i-3>=0,
[in0] = ipd(a_8(stage-1,2*p1-2,i));

else
[in0] = ipd(a_3(stage-1,2*p1-1,i));

end
end

else
[in0] = ipd(a(i,i));

end

if stage-2>=0,
p9=div(i+1,2);
if -i+2*p9-1>=0,

if i-3>=0,
if M-i-3>=0,
[in1] = ipd(a_7(stage-1,2*p9,i));

else
[in1] = ipd(a_6(stage-1,2*p9-2,i+1));

end
else

if M-i-3>=0,
[in1] = ipd(a_7(stage-1,2*p9,i));

end
end

end
else

[in1] = ipd(a(i,i+1));
end

if stage-2>=0,
if M-i-2>=0,

p17=div(i,2);
if i-2*p17-1>=0,

p18=div(i+1,2);
if -i+2*p18-1>=0,
if M-i-3>=0,

if i-3>=0,
[in2] = ipd(a_8(stage-1,2*p18-2,i+1));

else
[in2] = ipd(a_5(stage-1,2*p18,i));

end
else

if i-3>=0,
[in2] = ipd(a_8(stage-1,2*p18-2,i+1));

end
end

end
end

else
p18=div(i+1,2);
if -i+2*p18-1>=0,

if i-3>=0,
[in2] = ipd(a_8(stage-1,2*p18-2,i+1));

end
end

end
else

[in2] = ipd(a(i+1,i));
end

if stage-2>=0,
if M-i-2>=0,

p25=div(i,2);
if i-2*p25-1>=0,

p26=div(i+1,2);
if -i+2*p26-1>=0,
if M-i-3>=0,

[in3] = ipd(a_7(stage-1,2*p26,i+1));
else

[in3] = ipd(a_4(stage-1,2*p26-1,i+1));
end

end
end

else
p26=div(i+1,2);
if -i+2*p26-1>=0,

[in3] = ipd(a_4(stage-1,2*p26-1,i+1));
end

end
else

[in3] = ipd(a(i+1,i+1));
end

[out0,out1] = Angle(in0,in1,in2,in3);
[th1_1(stage,i)] = opd(out0);
[th2_1(stage,i)] = opd(out1);
end

end

Chapter 13

The HiFi Design System

13.1 Introduction

We have build the HiFi system on top of the NELSIS CAD Framework [83], which we use for data
management and to organize the HiFi system’s tools. NELSIS is a flexible environment, which we
have configured for the HiFi system.

We chose the CAD Frame for several reasons. Firstly, the framework features a database consist-
ing of a collection of design objects. The data management of NELSIS supports versioning, concur-
rency control, and the structuring of the design objects by hierarchy relations.

In our case, a design specification is a hierarchical and parametrized specification. We capture the
design specification as a design graph, consisting of a collection of design objects storing types of
nodes and hierarchy relations between the design objects.

Secondly, we use the framework to organize the HiFi system’s tools. By encapsulating the tools
inside the framework, we obtain a coherent set of tools instead of a collection of individual tools.
In addition, we arrange the tools in design flows through which we logically group sets of tools and
specify constraints on the ordering in which the tools can be invoked.

Thirdly, we have used the framework for its graphical user interfaces. It features several browsers,
such as contents browsers, hierarchy browsers, and version browsers. The tools can be invoked by
the mouse, and the design objects on which the tools operate can be specified by a drag-and-drop
mechanism.

In section 13.2, we introduce briefly some NELSIS terminology and describe how the hierarchical
network description is captured as a design graph. In section 13.3, we describe how HiFi-tools are
encapsulated inside NELSIS and organized by flow graphs.

13.2 Design Graph

The database consists of a set of design objects. The data structure of a HiFi network is a hierarchical
structure consisting of node type objects. Each description of a node type is stored inside a separate
design object inside the database. When a node type refers to, instantiates, other node types, we
represent this by hierarchy relationships between the design objects.

A design object contains a description of a node type, which can be divided into:

� the description of the node type’s interface.

� the description of the node type’s body.

145

146 13.2 Design Graph

Figure 13.1. The contents browser showing the design objects stored inside the database
together with their attributes.

� the interface symbol table.

� the body symbol table.

We can list the design objects stored inside the database by a contents browser. See figure 13.1.
The hierarchy relationships between the design objects are represented by acyclic graphs, in which

the nodes are the design objects and the edges represent the relationships between the design objects.
Let
� � and

� � be design objects. We specify a hierarchy relationship between
� � and

� � , denoted
by the pair

� � � � � � � , when
� � is part of

� � . Design object
� � is called the parent and

� � is called
the child.

We use the hierarchy relationships to indicate nesting of functions. For example, the program
’SVD’ calls the functions ’Angle’, ’RotRow’, and ’RotColumn’. The hierarchy relationships are:

	 5 � � � 7 � ��	 �
 � 	 5 � � � ����� ��� �
 � 	 5 � � � ��������� 	 " � ��

The SVD algorithm’s design graph is shown in figure 13.2. In the window, the names of the design
objects are concatenated with their version numbers.

The HiFi system requires that the type of the instances inside a node type be declared explicitly
by means of ’use’ declaration statements. The hierarchy relationships between the design objects
correspond to these declaration statements.
For instance, the ’use’ declaration statements of the node type ’SVD’ are:

NT = [NodeType name: ’SVD’];
[NT use: ’Angle’];
[NT use: ’RotRow’];
[NT use: ’RotColumn’];

The HiFi Design System 147

Figure 13.2. The design graph of the ’SVD’

They declare the functions ’Angle’, ’RotRow’, and ’RotColumn’ being used in the specification
of the body of ’SVD’.

The design graph forms, in a way, the state of the design process. The tools may create design
objects, introduce levels of hierarchy, flatten hierarchy levels, etc. The advantage of hierarchy is that
tools operate only on parts of the design. Most of the tools, such as the conversion tools, modify only
a single design object.

Apart from node type specifications, other design-related data is stored in the database, too. More
precisely, we store (1) input and output data of the HiFi simulator and (2) tool parameter specifications.
NELSIS allows the categorizing of design objects by view-types to indicate the type of data stored
inside design objects. To this end, we have configured the view-types: behavior, data and command.
Design objects of type behavior contain description of node types. Design objects of type data contain
the stimuli data and, finally, tool parameter settings are stored in design objects of type command.

13.2.1 Design Alternatives

Often, we want to try out several design alternatives. NELSIS supports this by means of versions.
Several design objects with the same name and view-type are called versions. The functional behavior
of the versions should be the same. We obtain different design alternatives by substituting design
objects inside the design graph for functional equivalent versions.

The framework assigns to a version a version status, such as WORKING, BACKUP. 1 A WORK-
ING design object can be modified or updated. A design object with status BACKUP is write pro-
tected. Among a set of versions, there can be at most one version with status WORKING. We can
change the status of versions interactively via the version browser.

The tools operate on the design objects and produce new design objects. However, the design

1Other version statuses are ACTUAL, DERIVED and IMPORTED.

148 13.2 Design Graph

Figure 13.3. Version Browser showing the version of design object ’RotRow’.

objects are not placed automatically inside the design graph. For instance, converting design object����� ��� � into a dependence graph with the tool
���������
	

will lead to a new version of design object����� ��� � , which is not yet part of the design graph.
It is the task of the designer to substitute versions inside the design graph. To this end, the designer

makes the version status of the design object that is to become part of the design hierarchy WORKING
and substitutes it for the actual version inside the design graph. Note that a design graph can contain
only a unique version of a particular design object.

For this purpose, we have implemented several tools by which hierarchy relationships between
design objects can easily be added and removed. The design objects that are added to the design
graph must have version status WORKING. We can set the status of a design object via the version
browser. Thus, we can select the version that must become part of the design graph.

Let
�

denote a root design object.
Let

�
denote a child design object.

The hierarchy tools are:

� addHierarchy adds a hierarchy relationship between
�

and
�

. The child must be declared
inside the parent and must have WORKING status.

� removeHierarchy removes the hierarchy relationship between the parent and the child.

� buildDesignGraph, builds the design graph of which
�

is the root. The design graph contains
all the design objects that are declared inside the root design object and its descendants.

� flattenDesignGraph, flattens the design graph of which
�

is the root by removing all the hierar-
chy relationships between them. Further, the tool assigns all the design objects the WORKING
status.

NELSIS features automatic version control for maintaining design consistency. When we edit a
particular version, NELSIS creates a new version of the design object in case:

� its status is BACKUP

� it is a child.

The HiFi Design System 149

Data Management Interface (DMI)

. . . sap2dg dg2sapHiPars

Design Data

CAD Framework

Figure 13.4. The HiFi tools interact with the NELSIS CAD Framework via the Data Man-
agement Interface (DMI).

Therefore the contents of these objects cannot be changed. A child design object is considered part of
its parent design object. Therefore, edits on a child design object will result in a new version in order
to keep the parent unchanged.

Only a root design object with status WORKING can be edited without being the number of ver-
sions increased. This gives another application for the hierarchy tools. Upon editing a design graph,
we call the tool ’flattenDesignGraph’ to create a set of working versions. Then we can apply a couple
of edits on the design objects. Because the design objects have no parent and have WORKING status,
this will not lead to extra versions. When we have finished editing, we call the tool ’buildDesign-
Graph’ to build the design graph consisting of the working versions.

13.3 Organizing the Tools

In this section, we describe how the HiFi tools are encapsulated and how they interact with the CAD
Framework. Further, we show how the tools can be invoked interactively via flow and option browsers.

13.3.1 Interfacing the Tools

NELSIS has a Data Management Interface (DMI) by which the tools can access the database. See
figure 13.4. The DMI routines, such as check-in and check-out of design objects, can be called
by the tools directly. This is called tool integration. We have decided not to do this, but to build a
“wrapper” program that passes the input and output data to and from the tools by files. This is called
tool encapsulation. The advantage of tool encapsulation over tool integration is that the tools remain
independent of the database, i.e., the tools can operate stand-alone without the frame. A disadvantage
is that encapsulation is slower and that database access can only take place at the start and end of a

150 13.3 Organizing the Tools

Figure 13.5. The option browser of the tool ’sap2dg’.

tool run. However, for a system in development, the disadvantages of tool encapsulation do not weigh
up against the advantages.

We have implemented several routines to encapsulate the HiFi tools into NELSIS. The routines to
check out a design object are:

� getDesignObject checks out a design object in UPDATE mode and returns the data structure
of the node type.

� getDesignObjectReadOnly checks out the design object in READONLY mode.

When a design object is checked out it is locked by the database. 2 The locking scheme of
NELSIS guarantees that at most one tool has write permission. This concurrency control allows
several designers to work simultaneously on a design project.

The wrapper tool writes the node type description to a file, invokes a HiFi tool that creates one or
more files containing new node type descriptions, and stores the contents of these files to the database
by the routine:

� putDesignObject

This routine checks in and unlocks the design object.
In addition, the routine sets the attribute ’DOinfo’ of the design object according to the type of

specification of the node type: ’Function’, ’AST’, ’Structure’, or ’NodeType’. The latter indicates
that the body has not been specified yet.

13.3.2 Encapsulating tools with TES

To support the invocation of tools, we encapsulate the tools according to the Tool Encapsulation
Specification (TES) defined by the CAD Framework Initiative [15].

With TES, we can formally specify how a tool is to be invoked, i.e, its command line arguments
and options are specified, with possible constraints between them.

2The contents will indicate locked design objects by creating a version with version number equal to -1.

The HiFi Design System 151

We have written TES description for the tools ’HiPars’, ’sap2dg’, ’dg2sap’ and ’nlp2ast’. When
we invoke a tool for which a TES is defined, NELSIS will start up an option browser. Figure 13.5
shows the option browser for the tool ’sap2dg’. The option browser presents an invocation form,
according to the TES description, showing the arguments and options that can be set. To invoke the
tool, we simply fill in the argument fields and set the options. After pressing on the ’OK’ button, the
option browser builds the command line and invokes the tool.

13.3.3 Flow graphs

We have arranged the HiFi tools in flow graphs. A flow graph can be compound, or an activity.
An activity is a design operation that can be performed by one of the tools encapsulated into the
framework. A compound flow graph is a flow graph containing other flow graphs.

We have configured the tools in several compound flow graphs: ’convert’, ’transform’ and ’edit’.
The tool activities of the ’Convert’ flow graph are:

� HiPars, inputs a design object containing a nested loop program; produces a design object
containing the single assignment program.

� sap2dg, inputs a design object containing a single assignment program ; produces a design
object containing the dependence graph.

� HiCompose, inputs a design object containing a dependence graph; produces a design object
containing a hierarchical graph.

� dg2sap, inputs a design object containing a dependence graph; produces a design object con-
taining the program that scans one of the segments of the dependence graph.

� nlp2ast, inputs a design object containing a nested loop program, produces a design object
containing an AST node description.

Flow graphs have ports, which specify the tool’s (activity) kind of database access. Among other
things, the ports specify the view types and number of design objects that may be checked out and
checked in.

The ports of flow graphs are connected by channels. An activity has only access to design objects
if one of its input ports is connected to the output port of the flow graph that produced the design
object.

The flow graphs can be displayed by flow graph browsers. Figure 13.6 shows the flow graph
’convert’. The rectangles represent the flow graphs (activities). Flow graphs also show the status of
a design object. When we drop a design object in a flow graph browser, it will highlight the channel
connected to the flow graph’s output port that produced the design object. With “balloons”, design
object attributes can be displayed. We have configured the browser to display the version name and
version number of the design object inside the balloon.

The tools to edit, view, and print design objects are arranged in the compound flow graph ’edit’:

� editText, invokes a standard text editor for editing a design description.

� viewText, invokes a standard text editor to view the contents of a design object.

� parseText, checks the syntax of the design description of the input design object.

� importFile, imports the contents of a file into a new design object.

152 13.3 Organizing the Tools

Figure 13.6. The compound flow graph ’convert’.

� exportFile, exports the contents of a design object to a file.

Via the flow graph browser, we can invoke a tool by clicking on its flow graph symbol (rectangle)
by the mouse. A tool can only be invoked if the required input design object has been specified. This
is indicated by the flow browser by highlighting the flow graph symbol corresponding to the tool.

For instance, when we want to view design object ’SVD’, we drag a version from the contents
browser or from the hierarchy browser and drop it into the command flow graph ’edit’. See figure
13.7. We can invoke ’viewText’ by clicking on its symbol.

The transformation tools are arranged in the flow graph ’transform’. These tools operate on design
objects containing dependence graph descriptions. They may produce several design objects contain-
ing the description of the transformed dependence graph. We describe the output produced by some
of these tools in chapter 16. For more information on these transformation we refer to [23][90].

� SpaceTime, performs a space-time transformation of one or more segments of the dependence
graph. The space-time transformation is an affine transformation, which can be specified by the
tool invocation form.

� Partition, partitions the input DG into two dependence-graphs: (1) the tile graph and (2) the tile
node. These node types are stored in separate design objects. The tile graph instantiates the tile
node type. We can use the tool ’buildDesignGraph’ to create a hierarchy relationship between
them.

� Projection, performs a linear projection of a space-time transformed and strictly regular DG
segment and produces a structure-node specifying the resulting data-flow network.

� Regularize, introduces control to make a DG more uniform so that it can be projected.

The HiFi Design System 153

Figure 13.7. The compound flow graph ’edit’ consisting of activities, channels and balloons.
Design objects can be dropped into the balloons, after which the channel to which it is
connected will be highlighted.

13.4 Conclusion

We have configured the NELSIS CAD Frame for the HiFi system.
The design description is captured by a design graph inside the database. Each design object stores

a description of a node type. Hierarchy relationship between design objects correspond to node type
instantiations. Design consistency is maintained by version and concurrency control of NELSIS.

The tools are encapsulated and interface with the framework via a wrapper tool. This keeps the
software of the tools independent of the CAD frame’s software. In addition, the tools can operate
stand-alone. The arguments and options of tools are formally specified by TES. The database access
of tools and the allowed tool invocation ordering is specified by flow graphs. In addition, the tools can
be invoked interactively via the flow graph and option browsers.

154 13.4 Conclusion

Chapter 14

Specifying Node Types

14.1 Introduction

As we explained in the previous chapter, a design specification is stored in several design objects
inside the database. Each design object contains the specification of a parametrized node type. Node
types may refer to each other thus forming a hierarchical design specification. In this chapter, we
explain the specification of the node type.

To support hierarchical specifications, a specification of a node type is separated into an interface
and a body specification. The interface consists of input and output ports of nodes and the parameters.
The body can specify:

� a function

� an AST

� a structure

We have implemented the tool ’HiEdit’ to enter body specifications into the system. The tool ’HiEdit’
allows top-down design and features a graphical user interface. Figure 14.1 shows its main menu.

The specifications are written in the HiFi design language, which is based on Objective C. They
constitute a data structure in which the node type is represented by objects. In the remainder of this
work, we often use the term node instead of node type when the difference is clear from the context,
in order to make the text easier to read. A node may be a mixture of regular and irregular parts. The
HiFi language allows the specification of special objects, based on the definition of linearly bounded
lattices defined in chapter 5, to specify regular parts. Irregular parts are specified by enumeration.

The outline of this chapter is as follows. After introducing in section 14.2 the notations to be
used, we describe the data structure in a grammar-like fashion. We give also the classes to specify
regular parts of a node. In section 14.3, we describe the node object. In section 14.4, we discuss
the input and output port objects. These are the interface objects. In section 14.5 - 14.7, we give the
specifications of functions, ASTs and structures, respectively. These are the three types of bodies.
Finally, we briefly consider the tool ’HiEdit’.

14.2 Notation

The design specifications are written in the HiFi design language which is based on the object-oriented
programming language Objective C [80]. An object consists of attributes constituting the object’s

155

156 14.2 Notation

Figure 14.1. Main Menu of the ’HiEdit’

state, and methods/functions that may operate on that state. Objects are defined by classes.
In this chapter, we mainly focus on the relationships between these objects. As said in the intro-

duction, we specify these relations by a grammar. The precise syntax is illustrated by examples.
Each grammar rule specifies the number of attributes of a class. The attributes themselves are

instances of other classes, which may be defined by other grammar rules. The syntax of a grammar
rule is as follows. A rule starts with the name of a class followed by the symbol := after which the
attributes are specified by a tuple delimited by the characters ’<’ and ’>’. The rule

Class_A := <Class_1, Class_2, ..., Class_n> ;

specifies that an object of Class A has � attributes that are objects of the classes Class � � � � � � � �
.

A class name in the tuple enclosed by curly brackets, such as � 7 � � , means that the attribute is a
set of objects of that class.

The character | separating the class names inside a tuple such as

Class_A := <Class_1 | Class_2 | ... | Class_n> ;

denotes selection, i.e. the attribute is an object of one of the classes of the tuple.
We denote a reference by name to an object by appending ref to the name of the class.
Terminals of the grammar are the classes Name, String, and Integer.
In chapter 5, we used lattices and polytopes to specify regular parts of the design. See equations

5.4 and 5.7. We have implemented the classes Domain, AffineMap, and Polytope to represent
domains and polytopes in the data structure. These classes correspond one-to-one to these formal
definitions and are terminals of the grammar too.

As an example, we give objects with which the domain of example 9.3, given in chapter 9, are
represented. Recall that a domain is characterized by a lattice and a polytope. The control variables
of the control vector � in the example are

�
,
�

and
�

, with 6 � 	 i � j
 � the index vector of the domain,
and there is one parameter � .

A polytope object represents the polytope’s defining system of
�

linear inequalities. Let
�

be the
number of control variables and � the number of size parameters.

Specifying Node Types 157

The attributes of the polytope object are an integer matrix 7 , size
�
�

�
, and an integer matrix � , size�

� 	 � � �
 , with constant last column.
A polytope object is created with the method create of the class Polytope. We set

matrices 7 and � with the methods setAMatrix and setBMatrix, respectively. We specify the
parameter vector by the method setParVector and the vector � of control variables by the method
setKVector. The polytope object for the function-call statement RotRow is

aPoly = [Polytope create];
[aPoly setKVector: (’i’; ’j’; ’p’)];
[aPoly setAMatrix: (
0,-1,0;
0,1,0;
-1,0,0;
1,0,0;
1,0,-2;
-1,0,2)];
[aPoly setBMatrix: (
0,-1;
1,0;
0,-1;
1,-1;
0,1;
0,-1)];
[aPoly setParVector: (’M’)];

A lattice is an affine relation between the vector ��� Z � and the index vector 6 � Z
�

of the
domain and is represented by an AffineMap object. Its attributes are a matrix 7 of size � � �

and
a matrix � of size � � 	 � � �
 .

For our example, we have � � � � � � & and � � � and where the zero column column of the
matrix 7 goes with the variable

�
.

aLattice = [AffineMap create];
[anAffineMap setAMatrix: (1,0,0;

0,1,0)];
[anAffineMap setBMatrix: (0,0;

0,0)];

We create a domain object by the method create of the class Domain. We set the polytope of
the domain by the method setPolytope. We set the lattice by the method setLattice.

The domain object for the function-call statement RotRow is specified by the following code,
with the polytope and lattice objects as specified above.

domain = [Domain create];
[domain setIndexVector: (’i’; ’j’)];
[domain setPolytope: aPoly];

[domain setLattice: aLattice];

158 14.3 The Node Type Class

14.3 The Node Type Class

The specification consists of node type objects and relationships between the node types. The
relationships stand for instantiation of node types by another node types.

Node types are identified by an unique name. The grammar rule for the declaration of the node
type class is

NodeType := <Name, {ChildType}, {Parameter}, Context, Interface, Body > ;
ChildType := <NodeType_ref> ;

The ChildType set contains the nodes that are referred to in the body. A child type object refers
to a node by name. This node type must be stored in another design object inside the database.

Nodes may be parametrized. Parameters may occur in inequalities specifying domains and in the
constant terms of affine expressions.

A parameter is declared by a name and a range.

Parameter := <Name, range>;
range := <c1, c2>;
c1 := <Integer>;
c2 := <Integer>;

Figure 14.2 shows the sub menu of the tool ’HiEdit’ for declaring the parameters. The range of a
parameter is the parameter support on which the node is valid. Additional constraints on a parameter
can be specified by the context, defined by a polytope. For instance, parameter � can be restricted to
even values using the constraint

� � � 	 � � ��
 � � .

Context := < <Polytope> | <> >;

Further, the node consists of an interface specification and a body specification. Separation be-
tween interface and body allows for hierarchical network specification. In section 14.4, we describe
the interface specification.

Recall that the body of a node can be either a function, an AST, or a structure object.

Body = < Function | AST | Structure > ;

In accordance with these types of bodies, we refer to the node as being a function, an AST, and a
structure, respectively. These specifications are defined in sections 14.5, 14.6 and 14.7, respectively.

14.4 Interface Specification

The grammar rule for the declaration of the interface class is

Interface := < {Port} > ;

Port objects are specified by a name and a type. In addition to which, the port is also specified to
be either an input or an output port.

Port := <Name, Kind, pType>;
Kind := <Integer>;
pType := < DataType | HierarchyType>

Specifying Node Types 159

Figure 14.2. Menu for editing parameter objects.

Figure 14.3. Menu for creating port-type objects.

Obviously, we distinguish between elementary and hierarchical ports. We call a port elementary
when its type is a data type, which may be of type domain and may be nested. For instance, a port of
size � � � is specified by a domain consisting of the inequalities � � � � � � � � � � � . Figure
14.3 shows the menu for editing ports.

DataType := < Integer | Float | DataTypeDomain >;
DataTypeDomain := < DataType, Domain> ;

A hierarchical port, however, refers to another port or a set of ports specified by a port-domain.

HierarchyType := < Port_ref | PortDomain >;
PortDomain := <Port_ref, Domain>

The interface specification of a node is generic for the three types of bodies. However, the seman-
tics of a port depends on the type of body. Ports of structures are hierarchical or abstract and disappear
after flattening of the data structure. Ports of functions declare the formal input and output arguments
of the functions. Only the ports of ASTs become ports of the network after expansion of the network
description.

160 14.5 Function

14.5 Function

The body of a node can be a function. We capture functions by objects of the Function class. An
executable specification of the function is contained in the attribute code. It is a procedural program
written in the programming languages MATLAB or C. The attribute code is a string object.

Function := <Name, Code>;
Code := <String>;

When the function calls functions that are captured by another node, this node must be declared
by a ChildType object.

Example 14.1.
Function-Type Below is the description of the node ’RotRow’ of which the body is specified by a

MATLAB program. The names of the ports match the names of the input and output variables of the
program.

NT = [NodeType name: ’RotRow’];
A1 = [NT addPort: [PortType input: ’A1’ type: ’float’]];
A2 = [NT addPort: [PortType input: ’A2’ type: ’float’]];
th = [NT addPort: [PortType input: ’th’ type: ’float’]];
y1 = [NT addPort: [PortType output: ’y1’ type: ’float’]];
y2 = [NT addPort: [PortType output: ’y2’ type: ’float’]];

f = [Function name: ’rotrow’];
code = @{
y1 = A1 * cos(th) - A2 * sin(th);
y2 = A1 * sin(th) + A2 * cos(th);

}@;
[f setCode: code];
[NT setBody: f];

�

14.6 AST

The body of a node can be an AST. We capture ASTs by objects of the class AST. The attributes of
the AST class are a set of state variables and a set of function states in accordance with the definition
of the AST given in chapter 12.

AstType := < {StateVariable}, {FunctionState} >;

Figure 14.8 shows the menu for editing AST nodes.
We specify a state variable by a name and a type which may be a domain. Figure 14.4 shows the

sub menu for editing state variables. The current state variable of an AST is automatically predefined.

VariableState := <Name,DataType>;

The grammar rule for a function state is

Specifying Node Types 161

Figure 14.4. Menu for editing state variables of an AST.

FunctionState := <Name,ApplicationPart,ControlPart,{Binding},NextStateSet>
ApplicationPart := <NodeType_ref | <> >;
ControlPart := < NodeType_ref >;

Function states can be added by the sub menu shown in figure 14.5.
The application and control parts refer to other nodes. This introduces hierarchy in the specifica-

tion of AST nodes as well. The application part and the control part may be void.

Figure 14.5. Menu for editing function states of an AST.

For each function state, we specify the values that the control part of the function state may assign
to the current state variable

	
of an AST by a set consisting of the names of the possible next function

states. The control part of the function state selects one out of the set of next function states.

NextStateSet := < {ToFunctionState} >;
ToFunctionState := <FunctionState_ref> ;

Finally, we bind the formal inputs and outputs of the functions of the function states to the state
variables or ports of the AST node. Each binding is defined by the name of the formal input, the name
of the actual port or state variable, and a possible affine index expression. In the index expression
other control AST variables may appear.

162 14.6 AST

Binding := < FormalPort, Actual, Index >
FormalPort := <PortType_ref> ;
Actual := <PortType_ref | VariableState_ref>;
Index := <AffineMap>;

h8

init

cos mul sin mul

th A1

h1 h2 h3 h4 h5

y1

A2

sub sin mul cos mul add

y2

h6 h7

Figure 14.6. The ’RotRow’ AST.

Example 14.2.
’RotRow’ as AST type
The ’RotRow’ AST node is shown in figure 14.6. A part of the description of this AST is listed

in program 14.3.
�

Example 14.3.
AST type ’RotRow’

NT = [NodeType name: ’RotRow’];
A1 = [NT addPort: [PortType input: ’A1’ type: ’float’]];
A2 = [NT addPort: [PortType input: ’A2’ type: ’float’]];
th = [NT addPort: [PortType input: ’th’ type: ’float’]];
y1 = [NT addPort: [PortType output: ’y1’ type: ’float’]];
y2 = [NT addPort: [PortType output: ’y2’ type: ’float’]];

ast = [AstType name: ’rotrow’];
[NT setImplementation: ast];

init = [FunctionState name: ’init’];
[init setKind: 0];
[init setApplicationType: ’void’];
[init setControlType: ’Constant’];
[ast addFunctionState: init];
[init addNextState: [NextState name: ’nx’ toState: ’cos2’]];
cos2 = [FunctionState name: ’cos2’];
[cos2 setKind: 5];

Specifying Node Types 163

[cos2 setApplicationType: ’cos’];
[cos2 setControlType: ’Constant’];
[ast addFunctionState: cos2];
[ast addVariableState: [VariableState name: ’h1’ type: ’int’]];
[cos2 addBinding: [Binding formalOutput: ’O0’ actual: ’h1’ index: ’’]];
[ast addVariableState: [VariableState name: ’th’ type: ’int’]];
[cos2 addBinding: [Binding formalInput: ’I0’ actual: ’th’ index: ’’]];
[cos2 addNextState: [NextState name: ’nx’ toState: ’mul4’]];
mul4 = [FunctionState name: ’mul4’];
[mul4 setKind: 5];
[mul4 setApplicationType: ’mul’];
[mul4 setControlType: ’Constant’];
[ast addFunctionState: mul4];
[ast addVariableState: [VariableState name: ’h2’ type: ’int’]];
[mul4 addBinding: [Binding formalOutput: ’O0’ actual: ’h2’ index: ’’]];
[ast addVariableState: [VariableState name: ’A1’ type: ’int’]];
[mul4 addBinding: [Binding formalInput: ’I0’ actual: ’A1’ index: ’’]];
[mul4 addBinding: [Binding formalInput: ’I1’ actual: ’h1’ index: ’’]];
[mul4 addNextState: [NextState name: ’nx’ toState: ’sin6’]];
...
...
...

�

14.7 Structure

The body of a node can be a structure. We capture structures by objects of the structure class. A
structure consists of a set of nodes and a set of edges. We specify regular parts of the structure by
edge- and node-domains. Irregular parts are specified by enumeration.

Structure := <Name,{Node},{Edge},{NodeDomain},{EdgeDomain}>;

Nodes are instances of other node types. When we instantiate a node type, we have to set the values
of its parameters. Parameter values can be set to constants or can be defined by affine expressions in
the parameters declared by the structure’s node type. In this way, the values of parameters at higher
hierarchical levels can propagate down to lower levels.

Node := <ChildType, ParameterSetting> ;
ParameterSetting := <AffineMap>;

When the node type referred to by the child type is a structure itself, the node is a hierarchical node.
Edges refer by name to an input port and an output port of node instances or refer to ports of the

structure.

Edge := <Name , InputPort, OutputPort>;
InputPort := <<Port_ref, Node_ref > | <Port_ref>>;
OutputPort := <<Port_ref, Node_ref > | <Port_ref>>;

164 14.7 Structure

Node-domains are used to instantiate sets of nodes of the same node type. Here we also specify the
value of parameters of the instances by an expression. In this expression, variables of the index-vector
of the node-domain may appear, too.

The node-domain object has also the set of port-domains as attribute.

NodeDomain := <NodeType_ref, Domain, ParameterSetting, {PortDomain}>;

A port-domain groups a set of ports. It is specified by a reference to a port of the node type of the
node-domain and an index domain.

PortDomain := < Port_ref, Domain > ;

The port-domain may depend on the parameters of the structure. These port-domains can also be
used as types of ports.

Edge-domains are defined by an input port domain, an output port domain, and a dependence
relation which is an affine map.

The dependence function is defined on the polytope of the input port domain and specifies the
index of the output port, which must lie in the domain of the output port-domain.

EdgeDomain := <InputPortDomain, OutputPortDomain, DepenenceFunction>;
InputPortDomain := <<PortDomain_ref> | <Node_ref,Port_ref>> ;
OutputPortDomain := <<PortDomain_ref> | <Node_ref,Port_ref> > ;
DependenceFunction := <AffineMap>;

Observe that we may connect a port of a single node, provided that this port is a hierarchical port
with an appropriate index domain. This allows to interconnect the regular parts of the network to ports
of single nodes of the structure.

 <A1,float>

 <A2,float>

 <th,float>

<y1,float>

<y2,float>

cos

cos

sin

sin

add

add

mul

mul

mul

mul

Figure 14.7. ’RotRow’ specified as structure-type.

Example 14.4.
’RotRow’ as Structure-type
Figure 14.7 shows the structure modeling the dependence graph of ’RotRow’ defined in example

9.1. The structure consists of ��� nodes and 18 edges. The nodes are instances of the node types ’add’,
’mul’, ’cos’ and ’sin’. Ten edges are connected to the ports of the structure itself. A part of the HiFi
code for this structure is listed hereafter.

Specifying Node Types 165

NT = [NodeType name: ’RotRow’];
A1 = [NT addPort: [PortType input: ’A1’ type: ’float’]];
A2 = [NT addPort: [PortType input: ’A2’ type: ’float’]];
th = [NT addPort: [PortType input: ’th’ type: ’float’]];
y1 = [NT addPort: [PortType output: ’y1’ type: ’float’]];
y2 = [NT addPort: [PortType output: ’y2’ type: ’float’]];

S = [Structure name: ’S’];
cos1 = [Node name: ’cos1’ type: ’cos’];
[S addInstance: cos1];
id cos2 = [Node name: ’cos2’ type: ’cos’];
[S addInstance: cos2];
sin1 = [Node name: ’sin1’ type: ’sin’];
[S addInstance: sin1];
sin2 = [Node name: ’sin2’ type: ’sin’];
[S addInstance: sin2];
...
...
...
[S addEdge: [Edge name: ’e1’ fromInput: ’th’

toPort: ’in0’ ofNode: ’cos1’]];

[S addEdge:[Edge name: ’e2’ fromInput: ’th’
toPort: ’in0’ ofNode: ’cos2’]];

[S addEdge:[Edge name: ’e3’
fromInput: ’th’
toPort: ’in0’ ofNode: ’sin1’]];

[S addEdge:[Edge name: ’e4’ fromInput:’th’ toPort:’in0’ ofNode:’sin2’]];

[S addEdge:[Edge name: ’e5’ fromPort: ’out0’ ofNode: ’cos1’
toPort: ’in0’ ofNode: ’mul1’]];

[S addEdge:[Edge name: ’e6’
fromInput: ’A1’
toPort: ’in1’ ofNode: ’mul1’]];

[NT setBody: S];

�

14.8 The Tool ’HiEdit’

We have implemented the tool ’HiEdit’ for node editing. The tool allows us to enter a node via various
menus and displays a graphical view of the node inside a window. The symbols used to compose the
graph are listed in figure 14.9.

166 14.8 The Tool ’HiEdit’

Figure 14.8. Menu for editing AST nodes.

Node type

Node

Binding

Edge(link)

EdgeOutput port Input port

Input port Output port

State transitionFunction state State Variable

Figure 14.9. The symbols representing HiFi design objects.

The position and size of a symbol on the screen is determined by the attributes of the symbol
object. The symbols are stored inside the database in a symbol table. To maintain consistency, the
tool

��� � � � � (1) removes automatically a symbol from the symbol table when the real object does not
exist and (2) creates a symbol for a real object when it is missing.

Some features of
��� � � � � are:

� moving of symbols through mouse clicking.

� info about symbols through mouse clicking.

� automatic placement of symbols.

The current implementation of
��� � � � � generates a PostScript description of the node type object

[88] [29].
��� � � � � invokes a standard tool to display the generated PostScript descriptions. However,

the current implementation should be considered as a prototype and other user interface packages
should be taken into consideration, such as ’tk’ [53].

Specifying Node Types 167

14.9 Conclusion

We have presented the data structure representing the data-flow model. It supports important design
concepts such as parametrization and hierarchy by specifying a node as a tuple consisting of an inter-
face and a body. Moreover, the specification of the node types fits into the design hierarchy support
of the NELSIS CAD framework.

The node type forms the unifying object for the three types of bodies: function, AST, and structure.
The conversion tools operate only on the body of node types and keep the interface invariant. In
database parlance, the tools produce new versions that may be substituted in the design graph on the
basis of functional equivalence, so as to obtain several design alternatives.

Dependence graphs are represented as structures in which the regular parts are specified by lattice
and polytope objects. The fact that the data structure is a collection of objects is of particular impor-
tance for applying transformations on dependence graphs. It allows us to specify transformations on
pieces (segments) of the dependence graph. For instance, the projection tool can be applied on each
individual segment of the graph separately.

168 14.9 Conclusion

Chapter 15

The Design Graph

15.1 Introduction

In chapter 13, we captured the SVD specification by a design graph consisting of four design objects.
The root design object stores the program of the ’SVD’ algorithm. It has hierarchy relationships
with the other three design objects which store the functions ’Angle’, ’RotRow’, and ’RotColumn’,
respectively.

In earlier chapters, we presented conversion tools by which specifications of functions, ASTs,
and structures can be converted into each other. A conversion tool takes as input a design object and
returns another design object containing another type of specification.
In this chapter, we assume that all nodes have a functional input-output behavior. This means that
structure nodes and that AST nodes consume exactly one token from all their (active) input ports and
produce exactly one token at all their (active) output ports. Moreover, we assume that structures have
only dependence graph specifications. We restrict ourselves thus to nodes with single token rate. The
class of nodes that can be built with HiFi is larger, i.e. nodes may have multiple token rates. In the
next chapter, we consider the latter class of nodes.
We may substitute these design objects inside the design graph because they have the same functional
behavior (input-output behavior).

As a result, the design graph is, in general, a mixture of design objects of any of the three types
of specifications. Because both the parent and the child object can be any of the three types, there are
nine kinds of hierarchy relationships, each with a different semantics.

The design objects of a design graph store node-types. The data-flow network is obtained by
flattening the design graph and by instantiating its node-types. It is a structure of communicating AST
nodes that evaluate functions. Such a network is represented by a design graph, which is a directed
acyclic graph. The root of the graph is a design object containing a structure specification. This
specification has hierarchy relationships with design objects containing AST specifications, which in
turn have hierarchy relationships with design objects containing function specifications. By definition,
we call a design graph of this form realizable.

A design graph can be transformed into another by transformations. In this chapter, we consider
three kinds of transformations: (1) conversion of the type of the design objects by the conversion
tools, (2) flattening of hierarchy levels, and (3) introducing structure nodes. The main objective of
this chapter is to illustrate how we capture the complete design. The design graph is altered step-by-
step and forms, in a way, the state of the design process. Parts of the network are specified temporally,
other parts structurally. We illustrate this by a network that consists of the DG structure corresponding

169

170 15.2 Overview Hierarchy relationships

to the inner-loops of the SVD algorithm and an AST node that evaluates the outermost loop of the
SVD algorithm sequentially.

In section 15.2 we give an overview of the hierarchy relationships and classify them into realiz-
able, flattenable, and nonrealizable relationships. Then each relationship will be discussed in more
detail in separate sections.

15.2 Overview Hierarchy relationships

Depending on the type of the parent node and the child nodes there are nine types of hierarchy rela-
tionships between structures (S), ASTs (A) and functions (F):

� S-S relationship: parent and child are structures

� S-A relationship: parent is structure, and child is AST

� S-F relationship: parent is structure, and child is function

� A-F relationship: parent is AST, and child is function

� A-S relationship: parent is AST, and child is structure

� A-A relationship: parent and child are ASTs

� F-F relationship: parent and child are functions

� F-S relationship: parent is function, and child is structure

� F-A relationship: parent is function, and child is AST.

Each hierarchy relationship has a different semantics. In general, a data-flow network is mod-
eled by a structure of communicating AST nodes which evaluate functions. This is represented by
hierarchy relationships between structures and ASTs and between ASTs and functions. We call these
relationships, the S-A and A-F relationships, realizable.

The S-S, A-A, and F-F relationships are flattenable, which means that we remove hierarchy.
Often we do not flatten hierarchy relationships in order to keep the design specification structured, to
cope with the design complexity and to allow operations on individual nodes. Note that a node-node
relationship can only be flattened when both nodes are of the same type.

All other relationships are called nonrealizable. They allow us to capture the complete design
in the form of a design graph. These relationships can be given a meaningful semantics because all
nodes are assumed to have a functional input-output behavior. However, when there are nonrealizable
relationships, we have to transform the design graph to make it realizable.

We discuss three transformations: conversion between nodes by the conversion tools, such as���������
	
, flattening of nodes and introducing structures in a systematical way. The latter transforma-

tion replaces a parent node and its child nodes by a structure that becomes the parent of the parent
node and the child nodes. By doing so, the types of the relationships are changed.

The Design Graph 171

15.3 Parent is function

15.3.1 The F-F relationship

Often, the initial design graph consists only of design objects containing functions, i.e., design objects
containing MATLAB programs. The hierarchy relationships between the design objects are, then, of
the kind F-F and correspond with function calls.

The F-F relationship is flattenable. Flattening of this relationship means that each function call
statement of the parent calling the child is replaced by the child function, with its formal variables
substituted by the actual variables of the function call.

Example 15.1.
Flattening the F-F relationship
Program 15.1 consists of a loop and a function call. The called function Angle is listed in

program 15.2.
After flattening we obtain program 15.3, in which the actual variables are substituted.

�

Program 15.1. LOOP ANGLE

NT = [NodeType name: ’LoopAngle’];
[NT use: ’Angle’];
[Port input: ’a’ type: ’Array’];
[Port output: ’th1_1’ type: ’Array’];
[Port output: ’th2_2’ type: ’Array’];
Function = {

for i=1 : 2 : M-1,

[th1_1(i),th2_1(i)] = Angle(a(i,i),a(i,i+1),a(i+1,i),a(i+1,i+1));

end
}

Program 15.2. ANGLE

NT = [NodeType name: ’Angle’];
[Port input: ’A11’ type: ’float’]];
[Port input: ’A12’ type: ’float’]];
[Port input: ’A21’ type: ’float’]];
[Port input: ’A22’ type: ’float’]];
[Port output: ’th1’ type: ’float’]];
[Port output: ’th2’ type: ’float’]];
Function = {

[tmp1, tmp2] = computeTh(A21,A12,A22,A11);

if abs(tmp2) < (pi/4),
if sign(tmp1) == -1,

th1= add(tmp1, pi/2);
th2= add(tmp2, pi/2);

else
th1= sub(tmp1, pi/2);
th2= sub(tmp2, pi/2);

end;
end;
}

172 15.4 Parent is AST

Program 15.3. FLATTENED

NT = [NodeType name: ’StageAngle’];
[Port input: ’a’ type: ’Array’]];
[Port output: ’th1_1’ type: ’Array’]];
[Port output: ’th2_2’ type: ’Array’]];
Function = {

for i=1 : 2 : M-1,

[tmp1, tmp2] = computeTh(a(i+1,i),a(i,i+1)),a(i+1,i+1),a(i,i));

if abs(tmp2) < (pi/4),
if sign(tmp1) == -1,

[th1_1(i)] = add(tmp1, pi/2);
[th2_1(i)] = add(tmp2, pi/2);

else
[th1_1(i)] = sub(tmp1, pi/2);
[th2_1(i)] = sub(tmp2, pi/2);

end
end

end

15.3.2 The F-A and F-S relationships

The F-A and F-S relationships are nonrealizable. These relationships may occur inside the design
graph as an intermediate state of the design process. They are not realizable because, by definition,
no assertions are made about the way a function is refined either temporally or structurally. The fact
that the parent is specified as a function overrules the refinement of the child.
There are several options to remove such relationships, if desired. They are: (1) converting the parent
into a structure to obtain a realizable S-A or a flattenable S-S relation. (2) converting the parent into
an AST resulting in an A-A or A-S relationship. (3) converting the child to a function type.

15.4 Parent is AST

15.4.1 The A-F relationship

As defined in chapter 12, an AST evaluates in each of its function states a function, which is de-
composed into an application part

	
 and a control part
	 �

. These functions are captured in separate
node-types in the design graph. The A-F relationships are hierarchy relationships between the parent
AST node and the functions that are referred to in its function states. Thus the design objects captur-
ing the functions are children of the design object capturing the AST.
By definition, an A-F relationship is realizable.

15.4.2 The A-A relationship

When the function bound in a function state of an AST is not specified by a function but by another
AST, the hierarchical relationship between the parent AST and child AST is an A-A relationship.
This relationship is only valid when the child AST has a functional input-output behavior. The A-A
relationship is flattenable.

There are several transformations conceivable to remove this relationship, if desired. Apart from
conversions to function or structure, we can flatten the two ASTs into a single AST. Another option
is to introduce a structure in which both ASTs become instances. As a result, the A-A relationship is

The Design Graph 173

Ap’

Ap

Ac

(a) flattening

S

(b) structuring

Af

Ac

Figure 15.1. Two transformations to remove the A-A relationship. (a) flattening (b) intro-
ducing a parent structure.

transformed into two S-A relationships. In the following subsections, we describe these two transfor-
mations in more detail. They are illustrated in figure 15.1.

15.4.3 Flattening AST nodes

Let 7�� be the parent AST and 7 �
be the child AST. Flattening results in a new AST type in which the

child 7 � is integrated into the parent 7�� . We denote the new AST by 7 � . As a result the hierarchy
relationship disappears. See figure 15.1 (a). 7 � can be substituted for the two ASTs in the design
graph.

The AST 7 � is obtained as follows. The ports and the parameters of 7 � are the same as those of
7�� . The function states and variable states of 7 � are the unions of the states of 7�� and 7 � , with the
following exceptions. Firstly, the current state variable of the child is not represented in 7 � .
Secondly, a function state

�
 of which the
	
 part refers to 7 �

is replaced by a function state
�
 of

which the application part
	
 is void, since the application part is now carried out by the function

states corresponding to the child AST. The function state
�
 is only needed for the control. The

control function of
�
 is the same as the one of

�
. Thus

	 �
of
�
 is identical to

	 �
of
�

.
Thirdly, the interface of 7 �

, its formal ports and parameters, becomes redundant. Thus, the bindings
of function states of 7 �

to (formal) ports of 7 �
become bindings to the (actual) ports or variables of 7 �

according to the binding of
	
 in 7�� . Parameters of 7 �

are substituted by their parameter expressions
defined in 7 � .
Finally, state transitions in 7 � must be defined to and from the function states originating from the
child AST. The state transitions in 7 � to function state

�
become transitions to the function state in

7�� corresponding to the initial function state of 7 �
. The transitions going to the initial function state

of 7 � become transitions to
�
 in 7�� .

Example 15.2.
Flattening AST
Figure 15.2(a) shows the AST corresponding to the loop statements of program 15.1. Figure

15.2(b) shows the AST of modeling the function ’Angle’. After flattening of the child AST and the
parent AST figure 15.2(c) result.

�

174 15.4 Parent is AST

Angle step

test

For

Init

th_1

th_2

a

init

add sub

branch

compute

A22A21

A12

(c)

A11

tmp1 tmp2

th2

th1

add sub

branch

compute

tmp1 tmp2

th2

th1

step

test

For

Init

th_1

th_2

a
F’

step

(a) (b)

Figure 15.2. (a) the AST node modeling the loop statement, (b) the (simplified) AST node
modeling the function Angle, and (c) the result after flattening.

15.4.4 The Structuring transformation

Another transformation is to introduce a structure 5 that becomes the parent of the two AST nodes.
See figure 15.1(b).
Both the parent AST and the child AST are instantiated in structure 5 . In terms of the design graph,
this means that the original design graph with the A-A relationship is transformed into a design graph
with S-A relationships.

The interface of the structure type is identical to that of the parent AST. The child AST remains
unchanged.
The parent AST is modified as follows. Let

�
be the function state of 7 � of which the application

part
	
 refers to the child 7 �

. The function bindings of
�

are transformed to external ports. The input
bindings for

	
 become output ports, the output bindings become new input ports of the modified
AST. In the structure, edges connect these input and output ports with the appropriate port of the child
node.
The function state

�
is replaced by two function states:

� �
and

� � . The function state
� �

maps the
inputs of

	
 to the new output ports.
� � reads the tokens produced by the child AST and maps their

values to the original bound ports and variable states of
	
 .

The child AST communicates only with the parent AST node. We call it a co-AST. Note that
the function states

� �
and

� � synchronize on token passing between the co-AST. They fire only
when all input tokens and output tokens of the co-AST are available. This synchronization can cause

The Design Graph 175

considerable overhead. We can reduce the overhead by reordering the function states such that in
between the function state

� � and
� �

other function states are evaluated. These function states are
then evaluated in parallel with the function states being carried out by co-AST. However, this requires
detailed timing analysis of the function states as well.

th2

Ac

init

add sub

branch

compute

tmp1 tmp2

th2

th1A11

A12

A21

A22

test

For

Init

step

F_w

F_r

a

th1

Figure 15.3. The structure resulting after transforming an A-A relationship.

Example 15.3.
co-AST Figure 15.3 shows the structure in which the AST ’Angle’ appears as co-AST. The

original function state
�

has four input bindings, which become four ports. In function state
� �

tokens are placed on these ports. The ports are connected to the co-AST by four edges. The value of
the angle variables

� � � and
� � � computed by the co-AST are the values of the tokens send back via

two edges and are read by the function state
� � .

�

15.4.5 A-S relationship

The A-S relationship occurs when a function of a function state of the parent AST is specified by a
structure. We assume that the structure is a DG, which has been obtained, for instance, by

���������
	
.

This relationship is also nonrealizable.
Here, we can also alter the design graph by applying the structuring transformation. This transfor-

mation introduces a structure node that has as children the modified parent AST and the child structure
(DG). So a function of the AST is evaluated in parallel with a structure of nodes (co-processor array).

The parent AST node is modified in the same way as discussed in the previous section. Let
�

be
the function state of which the part

	
 is specified as a structure (DG). The bindings of
	
 become

ports which are connected to the ports of the structure by edges.
�

is split into two function states
� �

and
� � that writes the tokens to, and reads the tokens from the structure, respectively.
To illustrate the transformations on a design graph, consider figure 15.4 (a). It shows a design

graph consisting of two nodes representing the SVD algorithm. The node labeled ’SVD’ contains the
algorithm:

176 15.4 Parent is AST

innerloop
inner
loop

HiPars nlp2AST structuring

S

DG DGDGF

sap2dg

(a) (b) (c) (d)

(e)

SVD SVD

F AF

SVD
A

SVD

InnerLoop

For

AST

DGtest

Fr

Fw

step

A

Figure 15.4. (a)..(d) chain of the design graph transformations leading to the structure (e)
with the AST node modeling the stage loop and the DG-node representing the DG of the
inner-loops of the SVD algorithm.

for stage = 1 to N,
[A]= innerloop(A);

end

The node labeled ’innerloop’ contains the function innerloop, which is the body of the stage loop
of program 2.7.

Figure 15.4(b) is obtained by applying the tool
���������
	

on node ’innerloop’ and then the tool	��
� ����� to produce the dependence graph, as described in chapter 9.
Next, the function ’SVD’ is converted in an AST by the tool �
	 � � � 	�� . The result is shown in figure
15.4(c).
Finally, figure 15.4(d) is the design graph after applying the structuring transformation.
Figure 15.4(e) shows the structure 5 containing the AST node computing the stage loop, and the
(hierarchical) node containing the DG. The input and output port of the AST node are of type domain,
which size corresponds with the size of the matrix 7 . The ports of the structure are connected to
the AST node by hierarchical edges. They are hierarchical ports and their types are defined by port-
domains.

This realization has large synchronization effects, because all output tokens must be present at the
ports before the function state

� � fires. This means that the structure (DG) is free of tokens when
function state

� �
puts new tokens at its input ports. As a result, there is no pipelining in the structure.

This can be optimized by splitting the function states
� � and

� �
, which causes the synchronization,

into several function states of which each one partly reads or writes the ports of the structure.

The Design Graph 177

15.5 Parent is Structure

15.5.1 S-S relationship

Nodes of a structure (DG) may be structures (DG) themselves. This leads to an S-S relationship.
S-S relationships are flattenable.

Let 5 � and 5 � be the parent structure and the child structure, respectively.
By flattening, we obtain a new structure, say 5 � . The set of nodes of 5�� is the union of the sets of
nodes of 5 � and 5 � . The ports of 5 � disappear as a result of the flattening. Edges connected to these
ports are directly connected to the ports of the nodes of 5 � .

(b)

N1 N2

(a)

Figure 15.5. Flattening of structures. (a) a structure of two instances of another structure
type, (b) the structure obtained by flattening the structure nodes � � and �
 .

Example 15.4.
flattening
Figure 15.5 illustrates the flattening of structures. Figure 15.5(a) shows a structure consisting

of two structure nodes
�
� and

�
� . Figure 15.5(b) shows the structure resulting after flattening.

Observe that the ports of the structures disappear.
�

15.5.2 The S-A and S-F relationships

The structures that represent data-flow networks are structures of AST nodes. This is represented by
the the S-A relationship, which is a realizable relationship.

The S-F relationship is nonrealizable. By definition a function is not a node. We can convert the
function type into an AST type which results in the S-A relationship. A simple conversion is to create
an AST type that has a single function state of which the application part is specified by the function
type.

Another option is to convert the function type into a structure type resulting in an S-S relationship.

178 15.6 Conclusion

15.6 Conclusion

When design objects contain functional behaviors, we can capture a design as an acyclic graph. Its
vertices represent design objects and its edges represent hierarchy relationships. We have divided
the relationships into realizable, flattenable, and nonrealizable. A realizable design graph may only
contain flattenable and realizable relationships. The nonrealizable relationships can be removed by
node-type conversion or by other transformations. In this chapter, we have shown the structuring
transformation. There are other transformations possible. In the next chapter, we describe the AST
splitting transformation.

We transform step-by-step a design graph into a design graph that can be realized as a network of
AST nodes. In the next chapter, we present a set of tools with which we can design data-flow networks
from dependence graph descriptions. As we will show, these transformations can be expressed in
terms of design graph transformations too.

Chapter 16

Dependence Graph Transformations

16.1 Introduction

In this chapter we discuss several transformation tools that operate on dependence graphs. We do not
discuss the working of these tools, for which we refer to [23], but rather show how these tools can be
applied on a DG node at a certain level of hierarchy in the design graph. The transformation tools we
discuss are:

� linear projection

� regularization

� partitioning.

In our model, a DG is regarded as a special kind of network, in which each edge passes a single
token and each node fires only once. In order to reduce the number of network elements, we can
project the DG onto a data-flow network. The nodes of the data-flow network are reused and memory
buffers are specified to store data to be processed by the nodes in the flow graph.

Linear projection cannot be applied to all DGs directly. Nodes with different behavior cannot be
mapped onto a single node in the data flow network, without introducing additional control to select
between the different behaviors in time. Also, the resulting network must be free of port conflicts that
result when different kinds of edges become connected to the same port. We call a graph strictly regu-
lar when it can be described by a single node-domain of which all nodes have identical behavior, and
by a set of shift-invariant dependence vectors [23]. A strictly regular graph can be linearly projected.
In this chapter, we only project strictly regular graph segments although projection can also be applied
on graph segments as long as this does not result in node or port conflicts. The regularization tool is a
tool that can make a graph or segments of it strictly regular. The tool essentially hides irregularity by
introducing distributed control.

The regularization tool replaces nodes by AST nodes that conditionally evaluate them. Note that
the nodes that are controlled by these AST nodes may be AST nodes themselves. The control is thus
specified hierarchically in the sense that the nodes between which a selection is made are not affected.
The control for the AST nodes is generated by control generator nodes.

The partitioning tool is used to partition a dependence graph into subgraphs, called tiles. The size
of these tiles is independent of the size parameters of the algorithms. However, the size of the tile
does not have to be fixed. It may be parametrized.

179

180 16.2 Regularization

The transformation tools perform functional invariant transformations. This means that the trans-
formation tools preserve the input-output behavior of the nodes on which they operate. Each tool has
its own set of parameters. For instance, the parameters of the projection tool are a schedule vector
and a projection vector. Typically, the input design object on which a tool operates is part of a design
graph. The output of a transformation tool can be several design objects, which are organized in the
form of a sub design graph. By using functional equivalence, the subdesign graph output of a tool can
be substituted for the input design object in the original design graph.

To keep the functional behavior of a node type invariant, we have to introduce port-adaptors.
These port-adaptors are characterized by the tool parameters and perform a type conversion of the
input and output ports.

As a result, we can apply the transformations in any order at any level of hierarchy. However,
we have to distinguish between acyclic and cyclic graphs. By definition, non hierarchical DGs are
acyclic. Cyclic DGs may appear as a result of the partitioning tool at some settings of the partitioning
parameters.

When the graph is cyclic, more levels of hierarchy have to be taken into account when choosing the
parameters of the transformation tools. This means that the transformation must satisfy the constraints
imposed by the cycles in the graph at the higher levels. When the higher level graphs are acyclic, we
can disregard these levels and operate on the DG alone. In this chapter, we do not further consider the
problem of tool parameter setting and assume that a proper parameter setting has been chosen.

The outline of this chapter is as follows. In section 16.2, we discuss the regularization transfor-
mation and present its output in terms of node type objects. In section 16.4, we discuss the projection
of a DG onto a structure and consider the port-adaptors that go with it.
In section 16.5, we discuss the partitioning tool. In section 16.6, we consider some combinations of
transformations and describe how the design can be optimized.

S2S1

Figure 16.1. The DG node consisting of two segments of which the nodes are of type � ��+
and � � � , respectively. The input and output ports of the DG node are indicated by the
small arrows.

16.2 Regularization

One of the tools of the design system is the ’regularization’ tool [23]. To be able to project a depen-
dence graph, or segments of it, we have to make the graph or segments strictly regular. This means

Dependence Graph Transformations 181

CN

DG2

NT2

DG1

NT1

NT1 NT2

A

Figure 16.2. The design graph of the example before and after regularization.

that nodes in the graph or segments having different behavior and to be mapped on the same node
of the resulting or target data-flow network have to be replaced by AST nodes that select between
the behaviors by interpreting control signals on their control inputs. Also, we resolve potential port
conflicts, which may occur through projection, in the data-flow network by introducing AST nodes
that select ports by interpreting control signals on their control inputs.

The control is generated by control generating nodes and distributed into the regular network
through local edges carrying the control tokens. The number of control edges that is needed depends
on the number of inequalities defining the port and node-domains of the segment. We illustrate the
method by regularizing a graph consisting of two segments See figure 16.1. Observe that the two
segment nodes are graphs themselves. The DG node is thus an hierarchical node [45]. The method
can readily be extended to DG nodes consisting of more segments.

Let the node-domains
� � � and

� � � of the segments 5 � and 5 � instantiate nodes of type
� ���

and
� � � , respectively.
Figure 16.2 shows the design graph for the example, before (left) and after (right) regularization.

The node labeled ’A’ is an AST type selecting between the two functional behaviors of
� � � and

� � � .
The node

� �
generates the control. ’A’ and ’CN’ are instantiated in the root of the graph, a structure

type
� � � . Below we describe both node types in more detail.

First we specify the AST type ’A’. See also figure 16.3. The interface of ’A’ consists of the
union of the sets of input ports 6 � and 6 � and the union of the sets of output ports � � and � � of� � � and

� � � , respectively, augmented with additional control input and output ports. It has three
function states

� � , � � and
� �

. The application part of the function states
� � and

� � are specified by� � � and
� � � , respectively. The control is evaluated in

� �
, which selects either

� � or
� � as the next

function state.
� �

also assigns the value of the input control token to the output control port in order to
propagate the control.

� � and
� � always give control back to

� �
. Note that by specifying the control

in this way the functions referred to in the function states
� � and

� � are not affected. The control is
thus specified hierarchically.

After regularization, the DG node consists of a single segment which is defined by the AST node
’A’ and the union of the domains of

� � � and
� � � . The DG node is shown in figure 16.4.

The control is generated by a control generator node which is specified as an AST. In principle, a
control node is specified for each control variable propagated through the regularized graph segment.
The output port of the control node is of type port-domain and connected by an (hierarchical) edge
to the proper control input ports of the nodes of the graph segment. The functionality of the nodes
of the segment depend on their index position. By adding control. this index dependent behavior is
resolved by external control input to the nodes of the segment. Suppose that the index space is divided

182 16.3 AST splitting

O2

F1 F2

FcCin

I1

I2

Cout

O1

Figure 16.3. The AST node switching between the function states � � and �
 of which the
application parts are specified by the node types � ��+ and � � � .

CN

SN

Figure 16.4. The DG node after regularization consisting of a single segment-node ’SN’
and a control generator node ’CN’.

in two half-spaces defined by the inequality
� 6 ��� �

� . The control node generates control values
that depend on the evaluation of the index inequality. For instance, it generates zeros for the nodes
that lie in the half-space, and ones otherwise. The template of the algorithm forming the body of the
control AST is shown in program 16.1. The output port is represented in the algorithm by the variable�

. The algorithm consists of a nested loop program that assigns control values to the variable (port)� 	 6+
 of the control node. The value depends on the condition statement. The tool �
	 � � � 	�� can be
used to convert this control function into an AST type.

16.3 AST splitting

The AST produced by the regularization tool defines control to switch between functions (or ports).
However, when a controlled function is actually specified as a structure, as we have shown in

the previous chapter, this control does not allow pipelining. Each function state of the control AST
that refers to a structure type corresponds with an A-S relationship. By applying the structuring
transformation such a function state is split into an

� �
and an

� � function state, with
� � being the

next function state of
� �

. In
� �

tokens are supplied to the structure. In
� � the output tokens of the

Dependence Graph Transformations 183

Program 16.1. TEMPLATE CONTROL GENERATOR
Let � be the hierarchical output port of type � ����� ��� ! , with ��� a port-domain and ��� a port.
The type of ��� is the same as the type of the ports of the nodes of the segment to which it
is to be connected.
For each index

	 � ��� , the control program assigns each output port � �
	
! a control value

depending on the conditional statement.
[NodeType name: ’CN’];
[PortType output: ’C’ type: � ����� ��� !]
code = �

for
	 � ��� do
if
��

	 ��� � 8 ,
� �
	
! = 0;

else
� �
	
! = 1;

end
end�

structure are read. As a result, the control AST synchronizes on all tokens input to and output from
the structure before going to its next function state.

To introduce pipelining, the control AST is split into an AST that contains the
� �

function states,
and an AST type that contains the

� � function states.
Figure 16.5(a) shows a control AST that selects between two node types

� � and
� � . The nodes

are structure types. Figure 16.5(a) is obtained after applying the structuring transformation. After
splitting the control AST figure 16.5(b) is obtained.

Dup

A

input

Control

N1

(a)

output

Control

input
N1

N2

Ain Aout
Output

Control Buffer

Control
N2

(b)

Figure 16.5. (a) Input-output control disabling pipelining. (b) input and output control which
allows pipelining.

It is easy to verify that the sequencing constraint defined by the original state transition from
� �

to
� � is satisfied by the token passing between the control ASTs and the nodes

� � and
� � . Note that

an additional AST is needed to duplicate the control tokens. By inserting additional control buffers in
the structure, the pipelining capability of structures can be exploited.

16.4 Projection

The second transformation we describe is linear projection. Linear projection is applied on a depen-
dence graph captured by a node at a certain level of hierarchy inside the design graph.

184 16.4 Projection

Without loss of generality, we assume the DG to consist of a single strictly regular segment. Let
6 be the index vector on the segment.

Before projecting the segment, it has to have been space-time transformed. Let � be an �	� �
integer matrix. Space-time transformation is a partitioning of the index domain into an 	 � � �
 -
dimensional spatial domain and a 1-dimensional temporal domain.

� �
� � �

� � �
The 	 � � �
 � � matrix

� � is the subspace onto which the graph is to be projected. The � � � vector
�

is the schedule vector. The vector " satisfying
� � " � � is the projection vector. We assume that

�

and " satisfy the causality constraint.
Thus the index 6 on the domain is decomposed into:� �

� � � � 6

where
�

stands for the time index and
�

of size � � � is the index vector on the projected domain.
The projection tool produces a data-flow graph or structure consisting of AST nodes, with each

AST node computing the nodes of the DG that lie on a straight line parallel to the projection vector "
[23]. These AST nodes are thus reused.
Dependence graph nodes have by definition functional behavior. This means that nodes consume a
single token at all the input ports and produce a single token at all the output ports. The structure that
results after projection may consume and produce streams of tokens at its input and output ports.
To keep the input-output behavior invariant, port-adaptors are introduced for each incoming and out-
going edge-domain of the projected segment. These port-adaptors order the incoming and outgoing
token streams of the structure. The ordering of the tokens is characterized by the space-time transfor-
mation matrix � . The input port-adaptor is an AST node that inputs a single token at its input ports
and outputs streams of tokens at its output ports. The output port-adaptor inputs a stream of tokens at
its input ports and outputs a single token at its output ports.

A1 A2

S1

S2

projection
DG

(a) (b)

Figure 16.6. The design graph before (a) and after projection (b).

Figure 16.6 illustrates the projection transformation in terms of design graphs. The input to the
projection tool is a design object (node type) containing a DG consisting of a single segment-node as
shown in figure 16.7(a). The output is a structure type 5 � that instantiates the port-adapters 7 � and

Dependence Graph Transformations 185

ED
S2 T

(b)

(a)

T

DG

S1

ED

Figure 16.7. The graph segment before projection (a) and the structure encapsulated with
port-adaptors after projection (b).

7 � and the structure 5 � that result after projection of the segment. The structure corresponding to the
design graph output by the tool is shown in figure 16.7(b).

Port adaptors are specified for each incoming and outgoing edge-domain to the segment that
we project. Let � � be an incoming edge-domain of the graph segment with input port-domain� � � � � � � � � � � � � � .
The port-adaptor has two ports

� � � and
� ���

� . The input port
� � � is an hierarchical port of type� � � � ;the output port

� ���
� � 	 � � � � � ��� �
 is an hierarchical port of which the domain

� ���
� is de-

fined by the projection of the domain
� � � .

The input port of the port-adaptor is connected to � � . Its output port is connected to the ports of the
nodes of the structure.

Program 16.2. TEMPLATE INPUT PORT-ADAPTOR FOR PROJECTION
Let � � , � � , .. � � and

�

� ,
�

� , ...,
�
� be the expressions of loop bounds.

[NodeType name: ’IPA’];

[PortType input:
 � � type: � � � � � � � � !]

[PortType output:
 ��� " type: � � � � � � ��� " !]

code = �
for t = � � to

�

� ,
for � � = � � to

�

� ,
...

for � ��� � = � � to
�
� ,

 ��� " � � � ��� � � � ��� ��! �
 � � � � � � � ��� � � � � ��� ��!
end

...

end

end
�

186 16.5 Partitioning

Program 16.2 shows the template of the algorithm of an input port-adaptor. The algorithm scans
the space-time transformed domain of its input port. The loop iterator of the outer loop of this program
corresponds with the time or sequencing index. So the tokens are read from the input port and put at
the output ports in the order defined by the schedule vector

�
.

The scan program can be obtained by the tool ’dg2sap’. We obtain the desired timing behavior by
converting this algorithm into an AST, which we can derive with the tool ’nlp2ast’.

16.5 Partitioning

To obtain a structure with a fixed-size and to make the size of the structure independent of the size of
the algorithm, we partition the dependence graph into subgraphs of fixed-size [90][50][91] [73].

The input for partitioning is a segment of the DG. The tool produces two node types: (1) the
tile graph � �

and (2) the tile node � � . The tile nodes are instances of the tile graph. Partitioning
introduces thus hierarchy.

Let 6 be the index on the segment to be partitioned.
Let 6 � be the index of the tile graph and let 6 � be the index of the tile node.

We consider only a special kind of partition called tiling and consider only tiles whose shapes are
parallellepipeds.
Let 5 be an � � � matrix and

� � � Z
�
.

Partitioning (tiling) is an affine index transformation:

6 � 526 � � � �
From this it follows that the indices 6 � and 6 � are given by:

6 � �&% 5
�� 	 6 � � �
 (
6 � � 6 � 526 �

In addition, the partitioning transformation produces

� an input port-adaptor, to distribute data to the tiles

� an output port-adaptor, to collect the output data of the tiles.

The adaptors perform a port type conversion. The type of the ports are converted to ports of types
that match with the types of the ports of the tiles.

Port-adaptors for partitioning are introduced for each incoming and outgoing edge of the segment
that is to partitioned.

Let the incoming (hierarchical) edge be � � � � � � � � � � � ��� � �
� � , with

� � � � an input port-
domain,

� � ���
� an output port-domain, and

�
an indexing function.� � � � becomes the type of the input port of the port-adaptor and is connected to � � . The edge

is thus not affected. Let
�
�
� be the hierarchical port of the tile node. Then the type of the output port� ���

� is defined by the port-domain
� �

�
� � � �

� � , with
�
�
� the domain resulting from partitioning of� � � � .

The output port is an hierarchical port of which the types of the subports match with the types of
the ports of the tiles. The edges of the tile graph are hierarchical edges and stand thus for a set of

Dependence Graph Transformations 187

Figure 16.8. The tile graph consisting of nine tile nodes, an input and an output port-
adaptor.

edges. They carry thus a set of individual tokens. It is convenient to regard sets of individual tokens
as hierarchical tokens at the tile graph level.

The input port-adaptor reads the tokens from the (hierarchical) input port and places the tokens
onto the output port. Program 16.3 shows the template for the input port-adaptor of which the body
is defined by an algorithm. The algorithm scans the domain

� � � � and reads at each iteration 6 the
input port

� � � 	 6+
 and assigns the value of the tokens to the output port whose index is obtained by the
partitioning transformation.

We have specified the port-adaptors as an AST node consisting of a single function state. This
causes all tokens to become synchronized. This can be avoided by refining the AST to a structure of
AST nodes controlling the individual tokens of the hierarchical token.

Program 16.3. TEMPLATE INPUT PORT-ADAPTOR FOR PARTITIONING

[NodeType name: ’IPA’];

[PortType input: � � � type:
� � � �]

[PortType output: � ��� " type: � � " � � � " � !]

code = �
for

	 � � � � � do	 � ��� � � � 	��	
�� 	
�� 	 �
� ��� " �

	 � ! �
	
 ! = � � � � 	 ! ;

end
�

16.6 Combinations of Transformations and Optimizations

In this section, we combine the three transformations discussed in the previous sections. Without loss
of generality, we illustrate this for a particular combination of transformations.

We start with the partitioned DG shown in figure 16.8.
Secondly, we project the tile. The projected tile result is shown in figure 16.9. It is a structure

with input and output port-adaptors that order the incoming and outgoing tokens.

188 16.6 Combinations of Transformations and Optimizations

S3 T1T1

Figure 16.9. The structure resulting after projection of the tile with input and output port-
adaptor introduced by the projection tool.

T1T1 S3 T1T1 S3 T1T1 S3

T1T1 S3 T1T1 S3 T1T1 S3

T1T1 S3 T1T1 S3 T1T1 S3

Figure 16.10. The structure resulting after partitioning of the DG and projection of the tiles.

Thirdly, we project the tile graph shown in figure 16.8 without bothering about the refinement
of the tile nodes. In order to project it, we specify control by the regularization tool. This control
is needed to select between the local edges and the external edges connected to the port-adaptors
introduced by the partitioning transformation. Projection of the regularized tile graph results in the
structure shown in figure 16.11(a).

The ports of the AST switches, introduced by the regularization, are of type domain. Let
�

be the
domain of one of the ports. At this level of hierarchy the edges are in fact sets of edges. Each control
token corresponds to an hierarchical data token. The function states of the switch AST fires only when
all
 �
 subtokens of the hierarchical token are present at its input (sub-) ports. After firing, a new
control token is read. It has thus a function node behavior.

In this structure there is thus considerable synchronization overhead because the switch ASTs are
introduced at the tile graph level. To reduce this overhead, we can split the switch AST up into a
structure of AST nodes, on a node-domain defined by

�
, switching between the individual tokens of

the hierarchical token.
Another, more attractive, option is to replace the switch ASTs by ASTs before the output port-

adaptor and after the input port-adaptor. See figure 16.11(b). These AST nodes thus switch on the
individual tokens in the token streams. Control tokens are generated for each individual data token by
a token counter node. The body of the token counter node is specified by an algorithm that scans the
domain

�
and outputs a control token for each point of

�
. It counts a sequence of
 �
 tokens.

The input and output adaptors in the self-loop of the structure (figure 16.11 (b)) can be combined.

Dependence Graph Transformations 189

Token Counter

switchswitch

P T2 T1 T1 T2 P

(b)

Token Counter

Control

PT2T1P

S2

S2

Buffer

T1 T1

switch switch

(a)

C

C

Control

T1 T1

Figure 16.11. (a) The DG after partitioning and projection with control specified on (hierar-
chical) tokens at the tile graph level. (b) the optimized structure with control on tokens at
the DG level.

In general, an input port-adaptor connected to an output port-adaptor can be combined into a single
AST node with a state variable. The size of this local variable can be optimized by life-time analysis
[49]. When the parameters of the input and output adaptor are the same, the AST can be replaced by
FIFOs.
Figure 16.11(b) shows a concatenation of port-adaptors between the original input and output port
and the structure. They perform the input and output data stream processing. These operations are
typically carried out by a host.

16.7 Conclusion

We have shown how transformation tools can be applied at a certain level of hierarchy. The regular-
ization tool defines control at a certain level of hierarchy without effecting the nodes at lower levels
of hierarchy. However, in general, the higher the level at which control is introduced, the larger is the
size of the set of tokens represented by a hierarchical token and the larger the synchronization over-
head. This overhead can be reduced by transforming the control for an hierarchical token to control
of the individual tokens represented by the hierarchical token; in other words to specify to control at a
lower level of hierarchy. Or in other words, the use of distributed control is a good solution for these
problems.

The projection and partitioning tools provide also the port-adaptors by which the interface is kept
invariant. This allows to combine the transformations. Finally, this chapter has shown that the HiFi’s

190 16.7 Conclusion

set of conversion tools are in a way complementary to the set of transformation tools operating on the
dependence graphs.

Chapter 17

Conclusion

In this dissertation, we have addressed the problem of mapping algorithms on architectures, in particu-
lar parallel processing architectures. These architectures are needed in digital processing applications
where huge computational power is required. We have presented a number of design tools that are
part of the HiFi design system. The tools can be used to model algorithms and architectures. The
HiFi model is based on the AST model. Architectures are represented by data-flow networks and are
modeled by structures of AST nodes. Algorithms are represented by the dependence graph model,
which has been superimposed on the AST model.

The first problem that a designer has to solve is to find a suitable algorithm and to express it in
the DG model. In other words, the algorithm has to be expressed in an applicative specification which
makes the parallelism in the algorithm explicit.

We chose to start from a procedural specification of the algorithm instead of an applicative spec-
ification. This means that the algorithm is written in a procedural programming language such as C
or MATLAB. This offers several advantages for the designer: (1) the imperative programming style
is well-known (2) many algorithms are available in this form (3) he does not have to learn a new
programming language (4) he avoids direct writing in an applicative language, which is often a te-
dious and error-prone process. However, it has to be noted that not each sequential program is suited.
The sequential program must implicitly possess the parallelism. To obtain a suitable program for
parallelization, a lot of algorithmic engineering may be required.

We have implemented the tool
���������
	

by which the designer can derive automatically an ap-
plicative specification from a procedural specification of an algorithm. We call the class of programs
that

���������
	
accepts nested loop programs, as control is typically specified by one or more nested

loop stages. The nested loop programs may be parameterized, but they must have static control and
their expressions must be affine ones.

The tool HiPars uses the PIP routine for the data dependence analysis. This routine finds closed
index expressions for the data dependencies that result from the read and write accesses to variables
in an algorithm, by solving a parameterized linear programming problem.

There are other techniques for solving the data dependency problem, but these techniques have
more or less the same restrictions as PIP, and they can also not deal with data dependent dependencies
and dependencies resulting from nonlinear index expressions. As we have shown, PIP can be used to
handle quasi-linear index expressions and step sizes greater than one in loop statements.

The data dependence analysis is detailed down to the level of iterations of the algorithm. Thus,
the analysis goes further than dependence tests which are often used in parallel compilers.

The output of
���������
	

is a single assignment program (SAP), which is functionally equivalent to

191

192 Conclusion

the input nested loop program. The SAP program is an executable program, which can be tested by
running it in the MATLAB environment. In the dissertation, we have derived the SAP program for
the SVD program. It shows that a SAP program can have a complicated control structure consisting
of nested conditional statements and possibly additional integer division expressions. The control
structure is often difficult to interpret. We have shown how this control structure can be simplified by
rewriting the integer divisions as modulo operations.���������
	

can be used as a stand-alone tool without the HiFi system. The tool is available via
Internet (http://dutentb.et.tudelft.nl/research/hifi.html).

The SAP forms an intermediate format from which it is a small step to the DG model.
The DG is piecewise regular and consists of a number of segments which are composed of port-,
node- and edge-domains. The domains are characterized by linearly bounded lattices. The DG forms
a memory and control-free algorithm specification. The edges between the ports of the nodes of the
DG are specified by affine index functions. The index function produces the index of the output port
given the index of the input port. It is possible to use relations instead of functions to specify the
edges. The advantage of using functions is that their mathematical properties are well understood,
and can be exploited to define and implement the transformation tools.

Apart from historical reasons, the network or dependence graph approach has several advantages.

� It gives a complete, transparent description of the data dependencies.

� It lends itself easily to geometrical interpretation. For instance, irregularities are easily to detect
by visualizing a structure as a graph.

� It introduces hierarchy in a natural way.

The model has thus been developed from an architectural point of view and the DG is regarded as
special kind of network (structure). The model is closed, which means that also the architecture
that results after a series of transformations is expressed in the model. The alternative for the DG
model is to use an applicative language such as SILAGE and ALPHA. One might argue that the use
of a language is a more formal approach than the DG model, which is a more pragmatic approach.
Perhaps it is desirable to propose a common language/format. This is possible because the languages
have much in common, such as, for instance, the fact that they all use linearly bounded lattices to
describe regularity. However, due to the different backgrounds, it is not easy to enforce the use of a
common language among different research groups.

The fact that the DG model is based on the AST model means that an explicit timing specification
is part of it. We made some refinements in the specifications of AST nodes. Firstly, the possible
next function states are specified for each function state explicitly, which makes it possible to draw
state transition graphs. A second refinement we made was to split the state variables into control
and data variables. We have shown how the sequential behavior of nested loop programs can be
modeled by AST nodes. Note that the class of programs that can be modeled by an AST is larger than
the restricted class of programs that HiPars accepts. Further the AST plays an important role in the
control specification. The regularization tool, for instance, combines several functions into a single
AST node that is controlled by external control tokens. We have also shown that the control token
generators are modeled by AST nodes.

The design methodology can be summarized as follows. First, a completely parallel specification
is derived in the form of a dependence graph. Then, the DG is folded back so that parts of the DG are
expressed again as functions or ASTs. In a way, the tools applied in the transformation trajectory do
the inverse operation of

���������
	
. The clustering and projection tools clearly illustrates this. The result

Conclusion 193

of the transformations is an irregular network of concurrently operating nodes (processors) which are
connected to each other by edges. It shows the importance of an integrated model that allows both
regular and irregular networks to be described.

The network model lends itself also in a natural way to hierarchical design. There are two ways
to refine functions (1) temporally and (2) structurally. The structures and AST nodes are special
as they may be replaced by the functions from which they are derived. Based on the functional
behavior of the nodes, we defined the design graph as consisting of nodes (objects) and hierarchy
relationships between them. Based on functional equivalence, nodes in the design graph may be
substituted. Typically, a design is entered as a design graph consisting of function nodes. In this
form also the SVD algorithm has been entered into the system. As an example, we have transformed
the design graph of the SVD algorithm into a design graph in which the outermost loop is modeled
by an AST node and the inner loop stages by a structure node, which is, in this case, a very logical
decomposition because the inner loops contain most of the available parallelism.

We have also built the tool
��������� ����	��

that composes an abstract or hierarchical graph of a DG.
This graph can be interpreted as a network consisting of hierarchical nodes. This representation shows
resemblance to drawings of reduced dependence graphs as can be found in the literature.

Hierarchy also affected the way the transformation tools were set up. The objective is to apply
transformations on one level of hierarchy. For this reason, the transformation tools should be function-
ally invariant transformations. The transformed graph should have the same functional input-output
behavior. We have realized this by introducing input and output port adapters so that nodes at a higher
hierarchical level in the design graph are not affected. The use of hierarchy may lead to inefficient de-
signs, as it may introduce unnecessary synchronization. However, the power of hierarchy as a design
concept is that it gives overview and helps to build prototypes. Many questions remain to be solved
on the efficient hierarchical partitioning of the design.

We have built the HiFi system on top of the NELSIS CAD Frame. The use of this CAD frame
offers several advantages. In the first place, it offers a design repository consisting of design objects in
which the design is stored. Secondly, it offers data management such as versioning and concurrency
control, which are certainly needed when several designers are working on the same project. Further,
the CAD frame features a graphical user interface. The tools are arranged in flow graphs via which
the design tools can be invoked by mouse clicking. We have made separate flow graphs for the set
of conversion tools, transformation tools and design support tools. The NELSIS CAD Frame is also
used to capture the hierarchy relationships in a design graph.

The usage of the HiFi design system is as follows. The HiFi system has been set up as an open
and interactive system where the designer has to make the design decisions. For instance, he has to
decide which part of the algorithm is to be realized as structure and which part as AST. To make
these decisions, the designer has to have measures of the quality of the resulting architecture. The
DG model can be analyzed to obtain these cost and performance measures. The measures of cost can
be divided into those of time and space. Measures of space are the number of processors (AST) and
edges. Measures of time are computation and communication time. For this purpose, the designer is
supported by a set of tools such as monitor and query tools by which the measures can be determined.
These tools have not been described in the dissertation. An important performance measure that can
be determined by these tools is the theoretical speed up, which is defined as the ratio between the
maximum and minimum computation time. The maximum computation time is the time to evaluate
the algorithm sequentially. The minimum time corresponds with an ’as soon as possible’ schedule and
is determined by a longest path analysis of the DG. The actual speed up depends on the scheduling of
the operations and lies somewhere in between the minimum and maximum computation time.

Another reason why the actual speed up is lower than expected is because of overhead, for in-

194 Conclusion

stance, because of the port-adaptors that are needed to input and output data to a processor array. To a
major extent, this overhead is caused by the time wasted due to communication and synchronization.
Here lies one of the main topics for future research. How do we find an optimal design strategy to
obtain an architecture with minimal overhead? Or more generally, how can a designer easily explore
the design space and come up with an effective or optimal design. With an optimal solution we mean
a solution that just meets the design constraints defined when specifying the problem. This is a very
complicated optimization problem as there are many design parameters involved. In addition, the
design constraints typically vary per design problem. Sometimes we need to find an optimal design
in terms of processing power, another time, we need a design that has maximal throughput. As the
problem is so complicated, the solution should be based on highly automated optimization techniques.
The question whether the complete design trajectory can be fully automated remains open. We have
chosen the HiFi system to be a semi-automatic system. Future extensions to the HiFi system, will
be needed to support the designer in the iterative design process. Thus tools should provide the de-
signer with the necessary design information on which he can base his decisions, and which keep him
on track through the design space leading to the optimal design, in terms of some predefined design
constraints. However, this will still require a lot of research in the future.

Bibliography

[1] Nana2 - novel parallel algorithms and new real-time vlsi architerural methodologies part ii. Tech-
nical report, October 1991.

[2] R. Roy A. Paulraj and T. Kailath. A subspace rotation approach to signal parameter estimation.
In Proc. IEEE, volume 74, pages 1044–1045, 1986.

[3] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Proc. ACM SIGPLAN ’91,
pages 39–50, 1991.

[4] J. Annevelink. A hierarchical design system for vlsi implementation of signal processing algo-
rithms. In Proceedings of IEEE/ProRISC Workshop on Circuits, Systems and Signal Processing,
1985.

[5] J. Annevelink. HIFI: A Design Method for Implementing Signal Processing Algorithms on VLSI
Processor Arrays. PhD thesis, Delft University of Technology, The Netherlands, 1988.

[6] J. Backus. Can programming be liberated from the von neumann style? a functional style and
its algebra of programs. Comm. ACM, 21:613–641, 1978.

[7] D.G. Baltus and J. Allen. Efficient exploration of nonuniform space-time transformations for
optimal systolic array synthesis. pages 428–441, 1993.

[8] Donald G. Baltus. Efficient Exploration Of Affine Space-Time Transformations For Optimal
Systolic Array Synthesis. PhD thesis, Massachusetts Institute of Technology, February 1994.

[9] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.

[10] W. Barnier and J.B. Chan. Discrete Mathematics with Applications. West Publising Compagny,
1989.

[11] R.P. Brent, F.T. Luk, and C. van Loan. Computation of the singular value decomposition using
mesh-connected processors. J. VLSI Computer Systems, 1:242–270, 1984.

[12] L. Brickman. Mathematical Introduction to Linear Programming and Game Theory. Springer-
Verlag, 1989.

[13] J. Bu. Systematic Design of Regular VLSI Processor Arrays. PhD thesis, Delft University of
Technology, Delft, The Netherlands, May 1990.

[14] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating
and prototyping heterogeneous systems. Int. Journal of Computer Simulation, pages 155–182,
April 1994.

195

196 BIBLIOGRAPHY

[15] INC CAD FRAMEWORK INITIATIVE. Tool encapsulation specification, version 1.0.0-
112592. Technical report, CAD FRAMEWORK INITIATIVE INC, 1992.

[16] Z. Chamski. Environment logicel de programmation d’un accélérateur de calcul parallèle. PhD
thesis, L’Université de Rennes, France, 1994.

[17] Z. Chamski. Fast and efficient generation of loop bounds. In Parallel Computing: Trends and
Apllications, pages 265–272. North-Holland, 1994.

[18] Z. Chamski. Mathpip: A mathematica interface for pip. user’s guide and reference manual.
Technical Report 94-6-1, Univerisity of Manchester, 1994.

[19] Z. Chamski. Enumeration of dense non-convex iteration sets. In Proc. IEEE of the 3rd Euromicro
Workshop on Parallel and Distributed Processing, 1995.

[20] Mentor Graphics Corporation. Dsp architect dfl user’s and reference manual. software version
8.5 4. Technical report, 1993.

[21] L. Dekker. Structured parallel computation. In Pro. of Twenty-Fourth Annual Hawaii Int. Con-
ference on System Sciences, volume 1, Januari, 1991.

[22] E.F. Deprettere, editor. SVD and Signal Processing: Algorithms, Applications and Architectures.
North-Holland, 1988.

[23] E.F Deprettere, P. Held, and P. Wielage. Model and methods for regular array design. Int. J. of
High Speed Electronics and systems, 4(2):Special issue on Massively Parallel Computing–Part
II, 1993.

[24] P. Le Guernic et al. Signal-a data flow oriented language for signal processing. IEEE Trans.
Acoust., Speech, Signal Processing, ASSP-34(2):362–374, 1986.

[25] P. Feautrier. Parametric integer programming. Recherche Opérationelle; Operations Research,
22(3):243–268, 1988.

[26] P. Feautrier. Dataflow analysis of array and scalar references. Int. J. Parallel Programming,
20(1):23–51, 1991.

[27] F. Fernandez and P. Quinton. Extension of chernikova’s algorithm for solving general mixed
linear programming problems. Internal Report 437, IRISA, Campus Universitaire de Beaulieu,
35042-Rennes Cédex, France, October 1988.

[28] K. Vince Fernando. Linear convergence of the row cyclic jacobi and kogbetliantz methods.
Numerische Mathematik, 56:73–91, 1989.

[29] C. Geschke. Postscript language, tutorial and cookbook. Technical report, Adobe Systems,
1990.

[30] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM
Journal on Numerical Analysis, 2, 1965.

[31] G.H. Golub and C.F. Van Loan. Matrix Computations, (2nd ed.). John Hopkins University Press,
1989.

BIBLIOGRAPHY 197

[32] P.R. Halmos. Naive set theory. Springer, New York, 1970.

[33] G. Hekstra and R. de Zwart. Token based circuits. Technical report, Dept. Electrical Engineering,
Delft University of Technology, 1993.

[34] G.J. Hekstra. vlsi cordic redesign : phase i. Technical report, Dept. Electrical Engineering, Delft
University of Technology/STW DEL00.2331, 1991.

[35] P.C. Held. Hipars’ reference guide. Technical report, Dept. Electrical Engineering, Delft Uni-
versity of Technology, 1993.

[36] P.C. Held. HiPars: a tool for automatic conversion of nested loop programs into single assign-
ment programs. Technical report, Dept. Electrical Engineering, Delft University of Technology,
1994.

[37] P.C. Held and E.F. Deprettere. Hifi: From parallel algorithm to fixed-size vlsi processor array. In
Francky Catthoor and Lars Svensson, editors, Application-Driven Architecture Synthesis, pages
71–92. Kluwer Academic Publishers, Dordrecht, 1993.

[38] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[39] K. Jainandunsing. Parallel Algorithms for Solving Systems of Linear Equations and Their Map-
ping on Systolic Arrays. PhD thesis, Delft University of Technology, Delft, The Netherlands,
January 1989.

[40] G. Kahn. The semantics of a simple language for parallel processing. In Proc. of the IFIP
Congress 74. North-Holland, 1974.

[41] A.C.J. Kienhuis. Parallelizing nested loop programs containing div, floor, ceil, mod and step
functions. Master’s thesis, Delft University of Technology, Department of Electrical Engineer-
ing, 1994.

[42] H.T. Kung. The structure of parallel algorithms. Adv. Comput., 19:65–111, 1980.

[43] H.T. Kung. Why systolic architectures? Computer, pages 37–45, Jan. 1982.

[44] H.T. Kung and C.E. Leiserson. Systolic arrays for vlsi. In Sparse Matrix Proceedings, pages
245–282. Philadelphia:Society of Industrial and Applied Mathematicians, 1980.

[45] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE, 83(5):773–799,
1995.

[46] F. Lorenzelli and K. Yao. An integral matrix-based technique for systematic systolic design.
Technical report, University of California at Los Angeles, 1995.

[47] F.T. Luk. A triangular processsor array for computing singular values. Linear Algebra and its
Applications, 77:259–273, 1986.

[48] F.T. Luk. On the equivalence and convergence of parallel jacobi svd algorithms. Proc. SPIE
Int.Soc.Opt.Eng, 862:152–159, 1987.

198 BIBLIOGRAPHY

[49] F.Balasa F.Franssen F.Catthoor H.De Man. Transformation of nested loops with modulo index-
ing to affine recurrences. In C.Lengauer P.Quinton Y.Robert L.Thiele, editor, Special issue of
Parallel Processing Letters on Parallelization techniques for uniform algorithms. World Scien-
tific Pub., 1994.

[50] J.A. Martens. Partitioning of parametrized dataflow graphs, concepts and implementation. Mas-
ter’s thesis, Delft University of Technology, Department of Electrical Engineering, 1993.

[51] V. Maslov. Lazy array data-flow dependence analysis. In Proceedings of the 21st annual ACM
SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pages 311–325, January
1994.

[52] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988.

[53] J.K. Ousterhout. An Introduction to Tcl and Tk. Addison-Wesley Publishing, Redwood City,
CA, 1994.

[54] A. Farina P. Kapteijn, E.F. Deprettere. Implementation of the recursive qr algorithm on a � �
� cordic testboard: a case study for radar applications. In Proc. 25th European Microwave
Conference, pages 500–505, 1995.

[55] C. C. Paige. Computing the generalized singular value decomposition. SIAM J. Sci. Stat. Com-
put., 7:1126–1146, 1986.

[56] C. C. Paige. On the quadratic convergence of kogbetliantz’s algorithm for computing the singular
value decomposition. Linear Algebra and its Applications, 77:301–313, 1986.

[57] W. Pugh. The omega test: A fast and practical integer programming algorithm for dependence
analysis. Communications of the ACM, 35(8):102–114, 1992.

[58] P. Quinton. The systematic design of systolic arrays. Tech. Rep. 193, 1983.

[59] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proc.
11th Annual Int. Symp. on Comput. Arch., pages 208–214, June 1984.

[60] C. Ussery R. Lipsett, C. Schaefer. VHDL: Hardware Description and Design. Kluwer Academic
Publishers, 1989.

[61] S. Rajopadhye, L. Mui, and S. Kiaei. Piecewise linear schedules for recurrence equations. In
VLSI Signal Processing V, pages 375–384, Napa Valley, 1992.

[62] J.F. Collard P. Feautrier T. Risset. Construction of do loops from systems of afffine constraints.
Internal Report 93-15, ENS Lyon, May 1993.

[63] T. Risset. Parallélisation automatique du modèle systolique à la compilation des nids de boucles.
PhD thesis, L’Ecole Normale Superieure de Lyon, France, 1994.

[64] R. Roy. ESPRIT. PhD thesis, Stanford University, CA, 1987.

[65] H. Samson. Formal Verification and Transformation of video and image specifications. PhD
thesis, Katholieke Universiteit Leuven, Belgium, 1995.

BIBLIOGRAPHY 199

[66] Alexander Schrijver. Theory of linear and integer programming. John Wiley, 1986.

[67] D.S. Scott. Parallel block jacobi eigenvalue algorithms using systolic arrays. Linear Algebra
and its Applications, 77:345–355, 1986.

[68] D.N. Smith. Concepts of Object-Oriented programming. Mc Graw-Hill,Inc, 1991.

[69] The Stepstone Corporation, 75 Glen Road; Sandy Hook, CT 06482. Objective-C Compiler v4.0.
User Reference Manual, 1989.

[70] L. Stok. Architectural Synthesis and Optimization of Digital Systems. PhD thesis, Technical
University of Eindhoven, The Netherlands, July 1991.

[71] G. Strang. Linear Algebra and its Applications. Academic Press, 1980.

[72] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986.

[73] J. Teich. A Compiler for Application-Specific Processor Arrays. PhD thesis, University Saar-
bruecken, 1993.

[74] Inc. The MathWorks. PC MATLAB User’s Guide. 1987.

[75] Adaptive Filter Theory. S. Haykin. Prentice-Hall International Editions, 1991.

[76] L. Thiele. On the design of piecewise regular processor arrays. In Proc. IEEE Symp. on Circuits
and Systems, pages 2239–2242, Portland, 1989.

[77] L. Thiele. On the design of piecewise regular processor arrays. In Proc. IEEE ISCAS, 1989.

[78] L. Thiele and U. Arzt. On the synthesis of massively parallel architectures. Int. J. of High Speed
Electronics and Systems, 4(2):99–131, 1993.

[79] T.H. Tzen and L.M. Ni. Dependence uniformization: A loop parallelization technique. IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 4(5):547–558, 1993.

[80] A.J. van der Hoeven. Concepts and Implementation of a Design System for Digital Signal Pro-
cessing. PhD thesis, Delft University of Technology, Delft, The Netherlands, October 1992.

[81] A.J. van der Hoeven, A.A.J. de Lange, E.F. Deprettere, and P. Dewilde. A new model for the
high level description and simulation of vlsi networks. In Proc. 26th DAC Conf., June 1989.

[82] A.J. van der Veen and E. F. Deprettere. Parallel vlsi matrix pencil algorithm for high resolution
direction finding. IEEE Trans. Signal Processing, 39(2):383–394, 1991.

[83] P. van der Wolf. CAD Frameworks: Principles and Architecture. Kluwer Academic Publishers,
Boston/Dordrecht/London, September 1994. ISBN 0-7923-9501-8.

[84] H.W. van Dijk and Ed. F. Deprettere. Transformational reasoning on time-adaptive jacobi type
algorithms. In Proceeding of the 3rd International Workshop on SVD and Signal processing,
pages 277–286, 1994.

[85] H.W. van Dijk and E.F. Deprettere. Transformational reasoning on time-adaptive jacobi type
algorithms. In M. Moonen and B. De Moor, editors, SVD and Signal Processing III, pages
277–286. North-Holland, 1995.

200 BIBLIOGRAPHY

[86] M.F.X.B. van Swaaij. Data Flow Geometry: Exploiting Regularity in System-level Synthesis.
PhD thesis, Katholieke Univeriteit Leuven, Belgium, December 1992.

[87] H. Le Verge. Un environment de transformations de programmes pour la synthèse
d’architectures régulières. PhD thesis, l’Université de Rennes, 1993.

[88] J. Warnock. Postscript language, reference manual. Technical report, Adobe Systems, 1990.

[89] P. Wielage. PhD thesis, Delft University of Technology, to appear.

[90] P. Wielage, P.C. Held, and E.F. Deprettere. On the design of fixed-size processor arrays for
piecewise regular algorithms. In Proceedings of IEEE/ProRISC Workshop on Circuits, Systems
and Signal Processing, pages 267–273, march 1994.

[91] M.E. Wolf and M.S. Lam. A loop transformation theory and an algorithm to maximize paral-
lelism. Int. J. of High Speed Electronics and Systems, 2(4):452–471, 1991.

[92] Kung S. Y. VLSI Array Processors. Prentice Hall, 1988.

Samenvatting

Functioneel ontwerp van data-flow netwerken

Digitale signaalbewerking wordt steeds vaker gebruikt in allerlei toepassingsgebieden zoals mobiele
telefonie, radar, video, audio etc. In de meeste gevallen betekent het gebruik van een signaalbew-
erkingsalgoritme dat zeer veel operaties moeten plaatsvinden in een korte tijd. Een veel belovende
techniek om de benodigde rekenkracht te verkrijgen, is het laten uitvoeren van de signaalbewerk-
ingsalgoritmen op speciaal daarvoor ontwikkelde computer architecturen, waarin de bewerkingen in
serie en parallel worden uitgevoerd. Het afbeelden van een algoritme op zo’n architectuur is in het
algemeen een complexe zaak. Voor een bepaalde klasse van algoritmen zijn formele ontwerp meth-
oden en technieken ontwikkeld. Kenmerkend voor de methode die in dit proefschrift gevolgd wordt,
is de afhankelijkheidsgraaf. Via deze graaf kan precies bepaald worden welke operaties van een
algoritme in serie, dan wel parallel kunnen worden uitgevoerd. In dit proefschrift zullen een aan-
tal programma’s (tools) worden beschreven die deze ontwerpmethode ondersteunen. Deze ‘tools’ zijn
geı̈ntegreerd in het ontwerpsysteem ’HiFi’. De resulterende architecturen kunnen worden omschreven
als data flow netwerken. Deze netwerken bestaan uit een aantal gelijktijdig opererende processen die
elk een bepaald programma uitvoeren en onderling kunnen communiceren. De communicatie tussen
de processen is asynchroon.

De gevolgde methode vereist dat het algoritme in het model wordt uitgedrukt. Dit houdt in dat
het algoritme moet worden beschreven in een applicatieve specificatie, die het parallellisme in het
algoritme expliciet maakt.

We hebben ervoor gekozen om van een procedurele specificatie van het algoritme uit te gaan in
plaats van een applicatieve specificatie. Het algoritme wordt dus geschreven in een procedurele pro-
grammeertaal. Dit biedt een aantal voordelen aan de ontwerper: (1) de procedurele programmeerstijl
is algemeen bekend, (2) veel algoritmen zijn in deze vorm beschikbaar, (3) het schrijven in een ap-
plicatieve programmeertaal wordt vermeden, omdat het vaak een moeizame en foutgevoelige taak is.
Natuurlijk moet het sequentiële programma geschikt zijn, d.w.z. het sequentiële programma moet
impliciet parallellisme bezitten. Het verkrijgen van een programma dat geschikt is voor parallellisatie
kan veel algoritmisch ontwerp en onderzoek vergen.

In hoofdstuk 2 geven we als voorbeeld een sequentieel programma voor het vinden van de sin-
guliere waarde van een matrix (SVD).

Voor het converteren van een procedurele specificatie naar een applicatieve specificatie is het pro-
gramma

���������
	
ontwikkeld. In de hoofdstukken 3-7, beschrijven we achtereenvolgens de klasse

van algoritmen die
���������
	

kan analyseren, de methode waarmee het onderhavige data afhankeli-
jkheids probleem wordt opgelost en tenslotte de uitvoer. De uitvoer is een ’single assignment’ pro-
gram’ (SAP), dat precies de data afhankelijkheden tussen de individuele operaties van het programma
beschrijft. Een kenmerkende eigenschap van een SAP programma is dat elke variable precies één
enkele keer een waarde krijgt.

201

In hoofdstuk 8 wordt de relatie beschreven tussen index domeinen en de besturingsstructuur van
het SAP programma.
In hoofdstuk 9 wordt het afhankelijkheidsgraaf model gepresenteerd. De graaf kan bestaan uit
een aantal regelmatige delen. Deze delen van de graaf worden beschreven door middel van in-
dex domeinen. De afhankelijkheidsgraaf beschrijft het maximaal beschikbare parallellisme van het
gekozen algoritme. De graaf vormt tevens het algebraı̈sche object waarop transformaties kunnen wor-
den toegepast. Als voorbeeld worden enkele transformaties uitgevoerd op de afhankelijkheidsgraaf
die is afgeleid van het SVD algoritme.

In hoofdstuk 10, wordt een programma beschreven waarmee we zogenaamde hiërarchische graven
kunnen afleiden van afhankelijkheidsgraven. Door toepassing van het concept hiërarchie wordt een
overzicht verkregen van doorgaans complexe afhankelijkheidsgraven. Het aantal componenten waaruit
de hiërarchische graaf bestaat, is direct gerelateerd aan het aantal regelmatige delen waaruit de on-
derliggende graaf is opgebouwd. Elke component kan op zich weer bestaan uit een graaf.

Het is vaak niet realistisch om de afhankelijkheidsgraaf direct op hardware af te beelden vanwege
het grote aantal processoren en verbindingen die daardoor zouden ontstaan. Om een architectuur te
verkrijgen van realistische afmetingen is het veelal noodzakelijk meerdere operaties samen te voegen,
te clusteren, in een enkele processor. Het gedrag van deze processor wordt gespecificeerd door middel
van een procedureel programma. Voor dit doel hebben we het programma ��� � 	��
� geschreven dat
wordt beschreven in hoofdstuk 11.

Elk proces in het uiteindelijke netwerk is in principe onafhankelijk en heeft een bepaald dynamisch
gedrag.
In hoofdstuk 12 wordt het dynamisch gedrag van processen gemodelleerd.

Ten slotte wordt in de hoofdstukken 13 - 16 ingegaan op de systeem aspecten van het ontwerp
systeem. Aan de orde komt de wijze waarop de ontwerpen in een data base worden opgeslagen en
hoe de ontwerper stap voor stap en interactief een architectuur kan afleiden door het aanroepen van
de tools. Ook wordt aandacht besteed aan de implementatie van het systeem, dat gebaseerd is op
moderne object-georiënteerde methoden en technieken.

Peter Held

202

Acknowledgements

I would like to thank all the people who helped, supported, and encouraged me during the last five
years. I have found the help and support of colleagues, friends, and family indispensable. But first of
all, I would like to thank my promotor Prof. dr. P.M. Dewilde who gave me the unique opportunity
to work as a researcher at the Network Theory section. I have always been proud to be part of his
section. He kept me on track at a number of occasions. Then I have to thank Dr. E.F Deprettere, my
project leader. I remember the many fruitful brainstorming sessions I had with him. When there was
a problem, he always managed to find a good solution, and he was at his best when there was a great
time pressure.

Then I would like to thank my direct colleagues in the project. My thoughts go to my friend and
colleague Mark Bloemendaal, who did a great job in managing the HiFi group in the first years of the
project. Also I have to thank my colleague Paul Wielage, who was on the project whole the time, and
with whom I had many useful discussions.
I was also very fortunate to have several students around who contributed to the project: Arnoud
Martens, who worked on the user interface, and Bart Kienhuis, who did a great job in further devel-
oping the tool HiPars.
Further, I would like to thank the colleagues of the NELSIS CAD Frame work, Pieter van der Wolf,
Alfred van der Hoeven, and Olav ten Bosch.
Finally, I would like to thank all the people of the Network Theory section of whom I want to mention
explicitly Patrick Groeneveld, Gerben Hekstra, Alle-Jan van der Veen and secretary Corrie Boers. At
this place, I also want to thank all the colleagues of the NANA partners; it was a great pleasure to
cooperate with them.

Also I have to thank Andries, Koos and my parents for the support I have received during the
years, and above all, I’m grateful for the love I received from Ilse.

203

204

Curriculum Vitae

Peter Held was born in 1964 in ’s-Gravenhage, The Netherlands. He attended the Groen van Prin-
sterercollege in that city, and received the VWO diploma. In 1982, he became a student at Delft
University of Technology in the Faculty of Electrical Engineering.
He joined the Network Theory Section in 1985, where he wrote a Master’s thesis on data-flow sim-
ulation for parallel computer networks. He received the Master’s degree in Electrical Engineering in
1987. During the next three years he worked for Philips Consumer Electronics in Eindhoven. There
he was involved as a software engineer in the development of an electronic still picture camera, and
later in the development of a semi-professional camcorder. In 1991, he joined again the Network
Theory Section as a researcher, and became a member of the HiFi research group, which developed a
design system for massively parallel systems. The HiFi project was headed by Prof. dr. P.M. Dewilde
and Dr. E.F. Deprettere and was part of two European Basic Research Action programs (BRA 3280 -
NANA, and BRA 6632 - NANA2). The main part of this dissertation is about the HiFi system. During
the years, he extended the design methodology and concepts on which the system has been built and
worked on the implementation of the HiFi system by adding several design tools. His current interests
lie in the field of software engineering and he is currently working for ICT, a software company in
The Netherlands.

205

