
Modeling Stream-Based Applications
using the SBF model of computation

Bart Kienhuis and Ed F. Deprettere
Leiden University, LIACS

September, 2001

Abstract. Modeling applications and architectures at various levels of abstraction is becoming
more and more an accepted approach in embedded system design. When looking at the model-
ing of applications in the domain of video, audio, and graphics applications, we notice that they
exhibit a high degree of task parallelism and operate on streams of data. Models that we can
use to specify such stream-based applications on a high level of abstraction are the dataflow
models and process network models. Each of these models has its own merits. Therefore,
an alternative approach is to introduce a model of computation that combines the semantics
of both models of computation. In this paper, we introduce such a model of computation,
which we call the Stream-Based Functions (SBF) model of computation and show an example.
Furthermore, we discuss the composition and decomposition of SBF objects and put the SBF
model of computation in the context of relevant dataflow models and process network models.

Keywords: Process Network Models, Dataflow Models, Stream-Based Functions (SBF), Com-
position, Decomposition

1. Introduction

Modeling applications and architectures at various levels of abstraction is
becoming more and more an accepted approach in embedded system de-
sign. This has led to design methodologies in which the design space of
embedded systems is narrowed down in an iterative manner. The Y-chart
approach (Kienhuis et al., 1997) is an example of such a design methodology.

Video, audio, and graphics applications have in common that they exhibit
a high degree of task parallelism and operate on streams of data. When mod-
eling these applications at a high level of abstraction one wants to make the
parallelism and the streaming of data explicit without imposing restrictions on
the scheduling of the parallel tasks. One also wants to have the possibility to
alter the degree of parallelism in the applications as it will very much impact
the implementation in an embedded system. Finally, a quick feedback on the
quality of potential lower level models and ultimate implementations is re-
quired. Obviously, candidate models that we can use to specify stream based
applications on a high level of abstraction are dataflow models and process
network models. Each of these models has its own merits. Dataflow models
are appealing in that they are functional and have firing rules which make
the reasoning on the models more tractable. Process networks, on the other
hand, is a more general model with which task level parallelism in stream

c� 2003 Kluwer Academic Publishers. Printed in the Netherlands.

jvsp2001.tex; 23/04/2003; 17:32; p.1



2 Kienhuis and Deprettere

based applications can be expressed without relying on specific actors and
firing rules as encountered in dataflow networks. Moreover, process network
models could in principle be refined into more restricted dataflow models at
lower levels of abstraction. An alternative approach is to introduce a model
of computation that combines the semantics of both models of computation.

In this paper, we introduce such a model of computation. We call this
model the Stream-Based Functions (SBF) model of computation. It is a model
that is more general than any one of the determinate dataflow models. It is as
general as the process network model but has process behavior that is more
structured as the dataflow models are. It is a natural model for specifying
stream based applications at a high level of abstraction and its structure sim-
plifies the transition from that level to the next level down the abstraction
levels found in embedded system design.

We start by introducing the SBF model of computation in section 2, which
is followed by an example in section 4. In section 5, we discuss the composi-
tion and decomposition of SBF objects. In section 6, we place the SBF model
of computation in the context of other relevant models of computation like
dataflow and process networks and we conclude this paper in section 7.

2. Stream-Based Functions

We propose a model of computation called Stream-Based Functions (SBF)
with which stream-based applications with a high degree of task parallelism
can be naturally specified, as discussed for the first time in (Kienhuis, 1999).
The essential components in this model are Stream-Based Function Objects
and Channels. Stream-based applications are described as a network of SBF
objects communicating concurrently with each other using channels. These
channels interconnect SBF objects and buffer possibly unbounded streams
of tokens communicated between a producing SBF object and a consum-
ing SBF object. A network of SBF objects is a specialized Kahn Process
Network (Kahn, 1974) in the sense that the SBF objects are structured and
operate in a particular way as we will explain shortly.

An example of a process network is shown in Figure 1. It consists of a
number of processes connected to each other via channels over which the
processes exchange streams of tokens. The Source process produces a stream
that is taken in by the filterA process. This process produces a stream that
is further processed by the filterB process. This second filter produces two
streams: one back to the filterA process and the other to the Sink process. All
processes in the network run in parallel. Synchronization between processes
is by means of blocking reads. An application specification that obeys Kahn’s
model is determinate (Kahn, 1974; Kahn and MacQueen, 1977), which means

jvsp2001.tex; 23/04/2003; 17:32; p.2



Modeling Stream-Based Applications 3

that its behavior is independent of the schedule of the processes in the net-
work.

Source Filter A Filter B Sink

Figure 1. An example of a process network.

The sequence of statements inside a process consists of a mix of con-
trol statements, read and write statements, and function-call statements. A
Kahn process does not structure these statements in any particular way. The
SBF objects, on the other hand, structure these statements in a way that
is reminiscent of the ’Applicative State Transition’ (AST) Model described
by Backus (Backus, 1978), and the related AST node in signal flow graphs
proposed by Annevelink (Annevelink, 1988).

An SBF object contains three components: a set of functions, a controller,
and a state. An enabled function consumes a number of tokens from input
channels and the state, evaluates, and writes tokens to output channels and the
state. By repeatedly enabling functions, an SBF object operates on streams.
The controller enables the function that is associated with the current function
state and determines which function it must enable next, possibly using data
from the state of the SBF object.

3. The SBF Object

An SBF object has an inside view and an outside view. Inside an SBF object
are present the set of functions, the controller, and the state. The set of func-
tions is also referred to as the function repertoire of an SBF object. At the
outside an SBF object exposes read and write ports. These ports connect to
channels, allowing SBF objects to communicate streams with each other.

An SBF object is shown in Figure 2. The function repertoire is � �
���� ���. The two read ports and the write port connect to the unbounded
FIFO buffers Buffer0, Buffer1, and Buffer2, respectively.

The set � of functions determines the functionality of an SBF object. �
contains at least an initialization function ����� and is finite:

� � ������� ��� ��� � � � � ���� (1)

These functions evaluate within an SBF object in a sequential order such as,

������ ��� ��� ��� ��� ��� � � � � (2)

jvsp2001.tex; 23/04/2003; 17:32; p.3



4 Kienhuis and Deprettere

f
b

f
a

Read Ports

Enable Signal

Output Buffer0

Write PortStateInput Buffer0

Input Buffer1
Controller

Figure 2. An SBF object.

The controller governs the order of function evaluations. It keeps track of
the evaluation order using the variable �, called the current function state.
Each time the current function state changes, a function transition takes place.
The current function state belongs to the function state space � of the SBF
object’s state space. The data variables belong to the data state space � of
the SBF object’s state space. The SBF object’s state space is defined as the
Cartesian product of � and �,

� � � ��� � �� � �� (3)

3.1. FUNCTIONS

For each function � from the set � , there is a function call

��	�� � � � � 	���� � �
�� � � � � 
����� (4)

The function is capable of changing the contents of the data state space �
and the input data 	�� � � � � 	� into the output data 
�� � � � � 
�. A function
call may have no input data or no output data, in which case it describes
a source or a sink function, respectively. A source function only produces
tokens and a sink function only consumes tokens. A function reads its input
data 	�� � � � � 	� from read ports and writes its output data 
�� � � � � 
� to write
ports. The binding of function arguments and results to read ports, write ports,
and data variables is statically determined.

When the controller enables a function, it reads data from its input ports
and the data state space, evaluates, and writes data to its output ports and the
data state space. The function reads all its input data using blocking reads.
State variables are immediately available. A function can read only one token
at a time from the input channel that is to provide the input argument. Once
a function has obtained all input data, it can not accept new data until it has
written its results. During the evaluation of a function, the state � cannot
change and does not change. Consequently, a function operates without any
side effects. When the enabled function has written all its results, we say the
function has fired. After firing, the current function informs the controller

jvsp2001.tex; 23/04/2003; 17:32; p.4



Modeling Stream-Based Applications 5

that the next function state can be computed, hence the next function can be
enabled.

The current function reads its arguments one at a time and in a prescribed
order using a blocking read. This prohibits the testing of a read port on the
availability of tokens. As a consequence, a function cannot have another
behavior based on the results of testing a condition; thus it evaluates un-
conditionally, which gives the SBF object its deterministic behavior. A func-
tion writes the output data 
�� � � � � 
� to the appropriate write port using a
non-blocking write, also in a prescribed linear order.

3.2. CONTROLLER

The controller keeps track of the function invocations using the function state
variable �. It moves from the current function state � to the next function state
�� whenever the current function has fired. The controller has a transition
function �, and a binding function �. The transition function is a map from
� �� to � ,

� � � �� � �� ���� 
� � ��� (5)

To determine the next function state ��, the transition function observes the
function state space � and the data state space �. The controller cannot
change the content of �; it can only observe it. Although the controller is
not connected to any read or write ports, the transition function describes
dynamic behavior. If both � and � are observed to determine the next func-
tion state, the function state can traverse an infinite number of trajectories.
In a more restricted case, when the transition function observes only � to
determine the next function state, it always describes a single path in � .
Furthermore, if this path is finite, the transition function determines a cycle,
corresponding to a cyclo-static schedule (Bilsen et al., 1995).

At each state, a specific function needs to be evaluated as determined by
the binding function �. This binding function associates a function � from the
set � with a particular function state �. Only one function can be associated
with a particular function state.

� � � � �� ���� � � (6)

Using the transition function � and the binding function �, the controller
repeatedly invokes and enables a function from the set � of functions, thereby
generating a stream of functions as follows:

�����
��	�
��
�� ��

��	�
��
�� ��

��	�
��
�� � � � ��

��	�
��
�� � � � (7)

The evaluation of the � and � functions takes place instantaneously. Thus an
SBF object operates on streams by successively enabling a function from the

jvsp2001.tex; 23/04/2003; 17:32; p.5



6 Kienhuis and Deprettere

set of functions � that reads from input ports and writes to output ports. This
behavior is often referred to as a Fire-and-Exit behavior.

When an SBF object is created, the controller needs to start at a particular
function state �. A special initialization function ����� is available in the func-
tion repertoire � that initializes the function state �. To that end, this function
evaluates first and only once. To determine the initialization value of �, the
initialization function may read tokens from one or more input ports.

4. Example of an SBF Object operation

We illustrate the operation of an SBF object using the object shown in Fig-
ure 3. Its function repertoire is �fa� fb� fc�. For the sake of brevity, we have left
out the initialization function �����. There are two state variables, the function
state variable �, an element of � , and the data state variable d, an element of
�.

f
c

f
b

a
f

Controller

State

Buffer1

Buffer0

Buffer2

(c,d)

Figure 3. An SBF object with function repertoire �fa� fb� fc�, and state variables c and d.

Function fa reads input data from the two read ports and writes output data
to the write port. It also writes to �. Function fb reads only input data from
the read port connected to Buffer0. Function �� reads from �, and writes
output data to the write port.

If function fa is enabled, it reads first one token from Buffer0 and then one
token from Buffer1. If Buffer0 does not contain any tokens, the complete
SBF object blocks until a token becomes available in Buffer0 even though
data might already be available on Buffer1. When both tokens have been
read, the function fa evaluates. The resulting token is written to Buffer2.
The function also writes d to �. This terminates the firing of fa and the
controller enables the next function, which is fb. This function reads a token
from Buffer0 and evaluates. A transition takes place and the next function
enabled is again function fa. After this function has fired, the controller en-
ables function ��. This function reads d from � and immediately evaluates
because it requires no input from the buffers. It writes the resulting token
to Buffer2. Again a transition takes place and the next function enabled is

jvsp2001.tex; 23/04/2003; 17:32; p.6



Modeling Stream-Based Applications 7

function fa, followed by ��, ��, and ��. Because the controller describes a
cyclic sequence, the SBF object’s behavior is cyclic.

In the example, the controller enables the functions in the sequence ��� ��� ��� ��.
This sequence is obtained with the binding function

���� �

������
�����

��� if � � �

��� if � � �

��� if � � �

��� if � � ��

(8)

and the transition function

���� � �	 � �
�� ��� (9)

The sequence of functions results in a particular consumption/production
pattern of tokens. These patterns are shown in Table I for the SBF object in
our example. It shows the four function states, the functions executed at these
states, the data state variable d and the three buffers from which the functions
read tokens (R) or to which they write tokens (W).

Table I. Token consumption/production pattern of the SBF object shown in Figure
3.

Current Function Data state Buffer0 Buffer1 Buffer2

Function State variable d

�� �� W R R W

�� �� R

�� �� W R R W

�� �� R W

The SBF object shown in Figure 3 could, for example, implement the
filterA process given in Figure 1. In that case, Buffer0 implements the channel
between the processes Sink and filterA. Buffer1 implements the feedback
channel between the processes filterB and filterA. Finally, Buffer2 implements
the channel between the processes filterA and filterB.

4.1. DEADLOCK

The SBF objects in a network run autonomously and schedule themselves
on the availability of data on the channels. On the other hand, the functions
inside an SBF object are scheduled by means of the transition function. When
scheduling these functions inside an SBF object, we should make sure that

jvsp2001.tex; 23/04/2003; 17:32; p.7



8 Kienhuis and Deprettere

we do not introduce deadlock. In Figure 4 we show two SBF objects, SBF0
and SBF1, connected to each other via three buffers, Buffer0, Buffer1, and
Buffer2. SBF0 is scheduled in such a way that it first produces a token on
Buffer0 and then reads a token from Buffer1 and, finally, produces a token
on Buffer2. The numbers 1 to 3 from top to bottom indicates this sequence.
The other SBF object, SBF1, tries to read a token from Buffer2 first, then
produces a token on Buffer1 and, finally, reads a token from Buffer0. This
sequence is indicated by the numbers 1 to 3 from bottom to top.

3

2

1

1

2

3
Buffer2

Buffer1

Buffer0

SBF_1SBF_0

Figure 4. Scheduling functions inside an SBF object may lead to deadlock.

The situation presented in Figure 4 will deadlock. SBF0 is able to produce
a token on Buffer0, but blocks when trying to read a token from Buffer1. On
the other side, SBF1 tries to read a token from Buffer2, but blocks because
no token is ever produced on this buffer because SBF0 blocks while reading
from Buffer2. Thus, if two autonomous SBF objects are communicating, care
should be taken in scheduling the functions inside the SBF objects to prevent
deadlock from occurring.

5. Networks of SBF Objects

We specify stream-based applications as networks of SBF objects. The SBF
objects in the network run in parallel whereas inside each SBF object a se-
quential invocation of functions takes place. We can decrease the amount of
parallelism in an application by combining SBF objects. Similarly, we can
increase the amount of parallelism in an application by decomposing an SBF
object. To do so, we have to consider composition and decomposition of SBF
objects. In general, composition/decomposition of process networks is not
trivial as the functions and control are intertwined. We believe that composing
and decomposing SBF objects is less cumbersome due to the structure of SBF
objects.

To explain composition and decomposition of SBF objects, we have to
introduce the notion of function variants; A function in an SBF object is
bound statically to input ports, output ports and data state variables. A func-
tion variant � � of function � has the same functional behavior as � but is
bound to different ports and data state variables. The repertoire of an SBF
object can contain both functions and function variants.

jvsp2001.tex; 23/04/2003; 17:32; p.8



Modeling Stream-Based Applications 9

5.1. COMPOSITION OF SBF OBJECTS

The construction of an SBF object that is a composition of two SBF objects,
takes the following steps:

1. Combine the two sets of functions � and � of both SBF objects to obtain
the new set � � � � �. The set � will contain variants of functions, if
necessary.

2. Combine the states � and �� of both SBF objects to get the new state
� � � 	 ��.

3. If one or more channels between the original two SBF objects are include
by the new SBF object, make the channels self-loops of the new SBF
object.

4. Construct a new schedule that sequentially interleaves the functions of set
� to determine a new transition function � and a new binding function �
for the new SBF object.

As an example, consider Figure 5 in which two cases are shown, i.e.,
(1) and (2). Two SBF objects A and B are combined, as indicated by the
enclosing box, to form a single SBF object. SBF object A contains the set of
functions � � ���� ��� and the state variable x. SBF object B contains the
set of functions � � ���� ��� and state variable y. Function state variables
are not shown. Both SBF objects have only one read port and one write port.

Case 1, communicating SBF objects

Case 2, non−communicating
SBF objects

Case 1, communicating SBF objects

Case 1 combined Case 2 combined

(x,y)

fa

fc

fb

fa’

Controller

State

(x) (y)

ControllerController

State State
A B

fa

(x,y)

Controller

State

fa’

fb

fc

fb

fa fa

fc

B

A

fa

fb

(x)

Controller

State

(y)

Controller

State

fa

fc

Figure 5. Two cases of composition of SBF objects.

jvsp2001.tex; 23/04/2003; 17:32; p.9



10 Kienhuis and Deprettere

In case 1, we combine two SBF objects that communicate with each other
over a channel. As a consequence, the channel is enclosed by the new com-
bined SBF object. According to the four steps given above, we first combine
the functions of sets � and � to form the new set � � ���� �

�

�� ��� ���, in
which the function ��

� is a variant of the function ��. Secondly, we combine
the state of both SBF objects to obtain the new state � containing variables
x and y. Thirdly, because the new SBF object encloses the communication
channel, we make the channel a self-loop of the new SBF object. As a con-
sequence, the functions �� and �� write to the self-loop channel, and the
functions � �

� and �� read from the self-loop channel. Fourthly, and finally,
we schedule the functions in function repertoire � .

In case 2, we combine two non-communicating SBF objects into one new
SBF object. According to the four composition steps, we first combine the
functions of sets � and � to form the new set � � ���� �

�

�� ��� ���. Secondly,
we combine the state of both SBF objects to obtain the new state � con-
taining the variables x and y. We can omit the third step because no channel
is enclosed by the final SBF object. Fourthly, and finally, we schedule the
functions in the function set � . Where the SBF objects A and B operate in
parallel, the new SBF object executes the functions sequentially. Therefore,
in the fourth step, we have to interleave the functions such that they execute,
for example, one after the other leading to a reduction in parallelism.

In Figure 5(1), we combine two SBF objects that enclose a channel into a
new SBF object. According to step 3, we make the enclosed channel a self-
loop of the new SBF object, a behavior preserving step. Yet, this self-loop has
become part of the SBF object in which the functions are scheduled and will
only be accessed by functions in the repertoire; not by some other SBF object.
As a consequence, if we are able to find a static, possibly cyclic, schedule for
the functions in the SBF object, we can find an upperbound on the buffer size
and install a buffer of this size in the data space � of the new SBF object.
This way, we can absorb unbounded FIFOs representing self-loops into SBF
objects.

We have to construct a new schedule of the repertoire functions for the new
combined SBF object, as described by the fourth step. In general, finding such
schedule is hard as it can easily lead to deadlock as discussed in Section 4.1
and requires global knowledge about the network. Nonetheless, for some re-
strictive cases, it is possible to obtain a sequential schedule of the repertoire
functions at compile time. We use the SBF model in the Compaan compiler
project (Kienhuis et al., 2000), which automatically transforms nested loop
programs described in Matlab into networks of SBF objects. A Matlab pro-
gram is evaluated correctly in a sequential way and we exploit this schedule
to construct at compile time a valid schedule for the repertoire functions of
the combined SBF object.

jvsp2001.tex; 23/04/2003; 17:32; p.10



Modeling Stream-Based Applications 11

5.2. DECOMPOSITION OF SBF OBJECTS

Decomposing an SBF object is a more difficult process than SBF compo-
sition. When decomposing an SBF object, we need to determine the avail-
able parallelism in the object, which means finding parallelism between the
functions of the repertoire. This leads to a data-dependence analysis, and in
general, a data-dependence analysis is known to be a hard problem, espe-
cially when dynamic behavior is involved (Banerjee, 1988). However, in case
the schedule of invocation of the repertoire functions can be described as
a nested-loop program, a complete static analysis is possible (Held, 1996).
Based on this analysis, and within the context of Compaan, we have found a
set of transformations like unfolding, skewing, and plane cutting, to automat-
ically decompose SBF objects (Stefanov et al., 2002).

Each function in the repertoire can be described by itself in a sequential
formalism (e.g., the C language). Again, using the data-dependence analysis
technique discussed in (Held, 1996), the function can be decomposed in a
new set of repertoire functions that are more primitive. Using this new set
of repertoire functions, new decompositions of the SBF object can result.
In principle, the creation of new repertoire functions and decomposition can
continue until the set of functions consists of only a single atomic function.
SBF objects in this case have a function state space equal to � � ��� and
the transition function uniquely gives � � �. The binding function binds the
single function to this single state.

6. Related Work

Many models of computation have been proposed over the years to describe
stream-based applications. The models that are relevant to the proposed SBF
model are the dataflow, process, and mixed models.

6.1. DATAFLOW MODELS

The dataflow model of computation describes stream-based applications in
a natural way and makes function parallelism explicit. It describes applica-
tions as a network of dataflow actors that perform a particular computation.
Actors connect with each other via buffers, allowing them to communicate
tokens with each other. When an actor fires, it consumes tokens, evaluates,
and produces new tokens. The condition under which an actor is able to fire, is
determined by a one or more firing rules. These rules are checked by a global
scheduler. Therefore, the scheduler determines the ordering of the actors
at either compile time or at run-time. The most well-known dataflow mod-
els are homogeneous dataflow (HDF) (Veen, 1986), synchronous dataflow

jvsp2001.tex; 23/04/2003; 17:32; p.11



12 Kienhuis and Deprettere

(SDF) (Lee and Messerschmitt, 1987), cyclo-static dataflow (CSDF) (Bilsen
et al., 1995) and dynamic dataflow (DDF) (Jagannathan, 1995).

The SBF model can act as dataflow models HDF, SDF, and CSDF. In the
case of HDF and SDF, the set of functions contains only one function. The
transition function is equal to � � �, to which the binding function binds
the only function present. In case of SDF, multi-rate behavior is captured as
an uninterrupted sequence of reads and writes of single tokens. In case of
CSDF, the set � contains more than one function and the transition function
traverses a cycle by observing only the function state space � to determine
the next state, leading to the mapping � � � .

The SBF model cannot act as DDF since this model is non-deterministic.
However, it can act as deterministic DDF as described, for example, in (Buck,
1993). As a consequence, the SBF model cannot describe the classic example
of the non-deterministic merge (Lee and Parks, 1995). But it is capable of
describing data-dependent behavior, for example, a variable length decoder.
In case of deterministic DDF, the set � contains one or more functions and
the transition function determines the next state using the general mapping
� �� � � .

6.2. PROCESS MODELS

Process models can also be used to describe stream-based applications. Pro-
cess models describe an application as a network of processes communicating
with each other via buffers. Different from dataflow models, a process pro-
ceeds autonomously, i.e., it is not controlled by a global scheduler. A process
interacts according to a particular protocol with other processes in a network.
Two well-known process models are Kahn Process Networks (Kahn, 1974;
Kahn and MacQueen, 1977) and Communicating Sequential Processes (Hoare,
1978; Hoare, 1985).

Kahn processes run forever and use unbounded FIFOs as buffers. To syn-
chronize onto these buffers, processes use a blocking read protocol. As a
consequence, a Kahn process cannot poll the read ports and hence describes
deterministic behavior. In contrast, CSP processes typically terminate and use
single place buffers. The exchange of data between two processes happens
using a rendezvous protocol. In CSP, a process can choose from which port
to read first and hence is able to describes non-deterministic behavior.

6.3. COMBINED DATAFLOW/PROCESS MODELS

A combination of dataflow models and process models already exist and
examples are the Dataflow Process Network model and the Application State
Transition model. The former model combines the Kahn semantics with dataflow,
whereas the latter model combines a CSP kind of semantics with dataflow.

jvsp2001.tex; 23/04/2003; 17:32; p.12



Modeling Stream-Based Applications 13

In the dataflow process network model (DPN) (Lee and Parks, 1995), a
single process describes a dataflow actor and a set of sequential firing rules.
The process itself, instead of a global scheduler, checks which firing rule
applies. It does this in a sequential order using blocking reads, referred to as
sequential firing rules. If a valid firing rule is found, the process enables the
actor. At that moment, all input arguments of the function must be present
and the actor evaluates instantaneously. Tokens are written to the output ports
using a non-blocking write. After evaluating, the process checks again the
firing rules until a valid firing of the actor is found.

In the Application State Transition Model (AST) (Annevelink, 1988), a
single process contains a set of functions and state, whereby each function
reads input data from specific read ports and/or state variables and writes
data to specific write ports and/or state variables. The functions communicate
with each other using single token passing in a rendezvous kind of style, very
similar to CSP. When one function from the set is active, other functions are
idle until it has evaluated. Within the AST mode, an AST node has a special
control port, from which the special control function reads tokens to deter-
mine the function to evaluate next. An AST process is more restrictive than
a CSP process, since the use of non-deterministic process constructs is not
possible. Because this model was inspired by the concept of the applicative
state transition model presented by (Backus, 1978), it is named accordingly.

The SBF model differs from the DPN model in that the functions them-
selves check for the availability of data whereas in the DPN model, data is
available when a function is enabled. As a consequence, an SBF object is
closer to a possible hardware implementation. The SBF and DPN model both
describe deterministic DDF.

The SBF model differs from the AST model in that the communication is
based on Kahn semantics whereas in the AST model it is based on CSP kind
of semantics. For stream-based applications, the Kahn semantics is more ap-
propriated. In the AST model there is not controller present. Instead a control
port is used on which a sequence of tokens is present that will invocate the
functions in the AST node in a particular order. Because of the single token
communication model, the AST model describes the class of HDF and is
therefore less general than the SBF model.

7. Conclusions

In this paper we have presented the SBF model of computation that is a
combination of dataflow models and process network models. It combines
the strong characteristic of dataflow, i.e., being functional and structured,
with the strong characteristics of process networks, i.e., schedule freedom

jvsp2001.tex; 23/04/2003; 17:32; p.13



14 Kienhuis and Deprettere

and deterministic behavior. As a result, the SBF model of computation is
well suited to describe stream-based applications.

Applications specified as process networks or as a network of SBF objects,
are equivalent, e.g., they can both model the same class of applications. One
can transform a Kahn process network into an SBF object and vice versa. The
big difference between the two kinds of specifications is that the SBF objects
have structure in terms of the controller, the state, and the set of functions.

The structure of an SBF object has a close resemblance with models of
architectures at lower abstraction levels. However, the structure of an SBF
object does only hint at hardware implementations. It can also be used for
implementations in software. The structure can also be exploited to compose
and decompose SBF objects to change the degree of parallelism in an appli-
cation description. In case of a composition, an algorithm can be given on
how to combine two or more SBF objects. A decomposition is however less
trivial. Being able to compose and decompose SBF objects is important as
the degree of parallelism has a large impact on the implementation of the
application.

We use the SBF model in the Compaan compiler project (Kienhuis et al.,
2000). This compiler automatically transforms nested loop programs described
in Matlab into networks of SBF objects. Composition and decomposition is
currently being research for inclusion in the Compaan compiler.

Finally, we remark that to simulate a network of SBF objects, we have
developed the fast simulator SBFsim in C++, based on a simple multithread-
ing package (Kienhuis, 1999). Alternatively, we use the process network
(PN) domain in the Ptolemy II environment to simulate a network of SBF
objects (Kienhuis et al., 2000). In these simulators, bounded FIFOs are used
and the procedure described in (Parks, 1995) is applied to dynamically resize
FIFOs to avoid deadlock.

Acknowledgements

This research has been performed at both Philips Research and Delft Univer-
sity of Technology, as part of their “cluster program”. Philips Research, Min-
istry of Economic affairs, and Delft University of Technology have supported
this research and are hereby acknowledged.

References

Annevelink, J.: 1988, ‘HiFi, A Design Method for Implementing Signal Processing Algo-
rithms on VLSI Processor Arrays’. Ph.D. thesis, Delft University of Technology.

Backus, J.: 1978, ‘Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs’. Communications of the ACM 21(8), 613 – 641.

jvsp2001.tex; 23/04/2003; 17:32; p.14



Modeling Stream-Based Applications 15

Banerjee, U.: 1988, Dependence Analysis for Supercomputing. Kluwer Academic Publishers.
Bilsen, G., M. Engels, R. Lauwereins, and J. Peperstraete: 1995, ‘Cyclo-Static Data Flow’. In:

IEEE International Conference ASSP. pp. 3255 – 3258.
Buck, J.: 1993, ‘Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the

Token Flow Model’. Ph.D. thesis, Dept. of EECS, University of California at Berkeley.
Tech. Report UCB/ERL 93/69.

Held, P.: 1996, ‘Functional Design of Dataflow Networks’. Ph.D. thesis, Delft University of
Technology.

Hoare, C.: 1978, ‘Communicating Sequential Processes’. Communications of the ACM 21(8),
666 – 677.

Hoare, C.: 1985, Communicating Sequential Processes. Prentice-Hall.
Jagannathan, R.: 1995, ‘Dataflow Models’. In: E. Zomaya (ed.): Parallel and Distributed

Computing Handbook. McGraw-Hill.
Kahn, G.: 1974, ‘The Semantics of a Simple Language For Parallel Programming’. In: Proc.

of the IFIP Congress 74. North-Holland Publishing Co.
Kahn, G. and D. B. MacQueen: 1977, ‘Coroutines and Networks of Parallel Processes’. In:

Proc. of the IFIP Congress 77. pp. 993 – 998, North-Holland Publishing Company Co.
Kienhuis, A.: 1999, ‘Design Space Exploration of Stream-based Dataflow Architectures:

Method and Tools’. Ph.D. thesis, Delft University of Technology.
Kienhuis, B., E. Deprettere, K. Vissers, and P. van der Wolf: 1997, ‘An Approach for Quantita-

tive Analysis of Application-Specific Dataflow Architectures’. In: Proceedings of 11th Int.
Conference of Applications-specific Systems, Architectures and Processors (ASAP’97).
Zurich, Switzerland, pp. 338 – 349.

Kienhuis, B., E. Rijpkema, and E. F. Deprettere: 2000, ‘Compaan: Deriving Process Net-
works from Matlab for Embedded Signal Processing Architectures’. In: 8th International
Workshop on Hardware/Software Codesign (CODES’2000). San Diego, USA.

Lee, E. A. and D. G. Messerschmitt: 1987, ‘Synchronous Data flow’. Proc. IEEE 75(9), 1235
– 1245.

Lee, E. A. and T. M. Parks: 1995, ‘Dataflow Process Networks’. Proceedings of the IEEE
83(5), 773–799.

Parks, T.: 1995, ‘Bounded Scheduling of Process Networks’. Ph.D. thesis, University of
California at Berkeley.

Stefanov, T., B. Kienhuis, and E. Deprettere: 2002, ‘Algorithmic Transformation Techniques
for Efficient Exploration of Alternative Application Instances’. In: Proceedings of 10th
International Symposium on Hardware/Software Codesign. Colorado, USA.

Veen, A. H.: 1986, ‘Dataflow Machine Architecture’. ACM Computing Surveys 18(4), 366–
396.

jvsp2001.tex; 23/04/2003; 17:32; p.15



jvsp2001.tex; 23/04/2003; 17:32; p.16


