
Modeling Task Level Parallelism
in Piece-wise Regular Programs

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit
Leiden, op gezag van de Rector Magnificus Dr. D.D. Breimer,
hoogleraar in de faculteit der Wiskunde en Natuurweten-
schappen en die der Geneeskunde, volgens besluit van het
College voor Promoties te verdedigen op dinsdag 17 septem-
ber 2002 klokke 14:15 uur

door

Edwin Rijpkema

geboren te Amstelveen

in 1970

samenstelling promotiecommissie:

promotor Prof.dr.ir. E.F. Deprettere
co-promotor Dr.ir. A.C.J. Kienhuis
referent Dr. Z. Chamski Philips Research, Eindhoven

overige leden: Prof.dr. L. Thiele KTH, Z̈urich, Zwitserland
Prof.dr. P. Quinton IRISA, Rennes, Frankrijk
Prof.dr.-ing J. Teich Paderborn Universiteit, Duitsland
Prof.dr. H.A.G. Wijshoff
Dr. V. Loechner ICPS, Straatsburg, Frankrijk
Dr. T. Risset ENS, Lyon, Frankrijk

Van dit proefschrift is ook
een handelseditie verschenen
onder ISBN 90-9016179-1

Copyright c© 2002 by E. Rijpkema.
All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without
permission from the author.

Printed in the Netherlands

Contents

Preface vii

1 Introduction 1

1.1 Problem statement .3

1.2 Approach .5

1.3 Related work .7

1.4 Contributions .9

1.5 Outline .10

2 Basics 13

2.1 Preliminaries .13

2.2 Polyhedra and polytopes .14

2.3 Parameterized polyhedra and polytopes .16

2.3.1 Parameterized polyhedra .16

2.3.2 Parameterized vertices of polytopes .17

2.4 Ehrhart polynomials .19

2.4.1 Pseudo-polynomials .19

2.4.2 The Ehrhart theorem .20

2.5 Images of integer polyhedra .23

2.5.1 Integer polyhedral images .24

2.5.2 Periodic lattice polyhedra .25

2.6 Ehrhart test .29

2.A Homogeneous representation of polyhedra .30

3 Modeling and analysis of piece-wise regular programs 33

3.1 Graphs .33

iv Contents

3.2 Polyhedral Reduced Dependence Graphs .35

3.2.1 Dependence graphs .35

3.2.2 Polyhedral Reduced Dependence Graphs .36

3.3 Parse tree representation of single-assignment programs38

3.3.1 Assignment statements .39

3.3.2 Control statements .40

3.3.3 Type of expressions in statements .41

3.3.4 Properties of single-assignment programs .42

3.3.5 Parse trees .42

3.4 From parse tree to polyhedral reduced dependence graph43

3.4.1 Domain construction .44

3.4.2 Creating the PRDG .47

4 Synthesis of KPNs from dependence graphs 49

4.1 Kahn process networks .49

4.2 Derivation of Kahn process networks from PRDGs .51

4.2.1 Introducing the structure of the Kahn processes .51

4.2.2 Parse tree representation of the Kahn processes .53

4.3 Domain scanning .56

4.3.1 Scanning polyhedra .57

4.3.2 Scanning dense index sets .58

4.3.3 Scanning non-dense index sets .60

4.4 Domain matching .62

4.4.1 Transforming the PRDG .62

4.4.2 Creating the parse nodes .64

4.5 Linearization .69

4.5.1 Counting in index sets .69

4.5.2 Ranking .70

4.5.3 Linearization of the communication .73

4.5.4 Address generation .73

4.5.5 Generating the OPD and IPD blocks .75

4.6 Network generation .78

5 Software organization 79

5.1 Design Flow .79

Contents v

5.2 DGPARSER .81

5.2.1 Parse tree .81

5.2.2 Polyhedral reduced dependence graphs .82

5.2.3 Internal operation of DGPARSER .83

5.2.4 Operation example of DGPARSER .85

5.3 PANDA .89

5.3.1 Internal operation of PANDA .89

5.3.2 Operation Example of PANDA .91

6 Conclusions 95

Bibliography 99

Index 105

Samenvatting 107

Curriculum Vitae 111

Preface

This dissertation is the result of the work that has been conducted partly at the Delft University of Technol-
ogy, partially at Leiden University, and partially at home. I am indebted to many people at these various
places.

I want to mention Ralph Otten to give me the opportunity to start my Ph.D. at the Circuits and Systems
(CaS) group at the department of Information Technology and Systems of the Delft University. This group
covers a broad spectrum of disciplines from which I learned a lot. I am grateful to all people involved in
the Jacobium project, Yijun Xu, Simone Fantini, Giuseppe Carcea, Daniel van Loenen, Alco Looye, Jun
Ma, and, in particular Gerben Hekstra, for their contributions and their ideas on the initial work in this
dissertation. I am also grateful to Peter Held and Paul Wielage for their assistance in understanding their
tools, which helped me to built a basis for my own work, and Paul Lieverse for the discussions we had and
experiments we did to proof the complementaryness of our research topics.

I want to mention Todor Stefanov, Vladimir Zivkovic, and Alexandru Turjan, at the Leiden Embedded
Research Center (LERC) at the Leiden Institute of Advanced Computer Science of the Leiden University,
for the technical discussions I had with them and valuable feedback I got from them at the later stage of my
research project.

I am grateful to Vincent Loechner from ICPS, Straatsburg, France, for his time and the discussions we had
on counting problems and various aspects of it, and for his assistance in using the PolyLib library.

I am grateful to Marion de Vlieger (CaS) and Eugenie Baken (LERC), for all kinds of non-technical support
that helped me to realize this dissertation.

Specially, I want to mention my supervisor and promotor Ed Deprettere, for providing a stimulating and
motivating research environment; first in the CaS group, later in the LERC. I am grateful for the many
fruitful and pleasant discussions we had on all aspects within and many aspects outside the scope of this
dissertation. I am also grateful for his continuous interest in this work and keeping me motivated all the
time.

I also want to mention my co-promotor Bart Kienhuis, for the many fruitful discussions and cooperation on
various aspects of this dissertation while he was a Ph.D. student in the CaS group. I am grateful to him for
gaining my interest in software engineering while he had a Post Doctoral fellowship at UC Berkely and for
his interest and feedback on this dissertation after he joined the LERC.

Finally and especially, I want to thank Marjolein for her love, her patience while I spent many “free” hours
on this dissertation, and her encouragement to get me to do so.

Edwin Rijpkema

viii Preface

July 22, 2002
Eindhoven

Chapter 1
Introduction

Audio, video, radar, and sonar are examples of application domains that fall in the class of digital signal pro-
cessing (DSP) applications. The increasing performance demands of these applications goes hand in hand
with the increasing potential performance capacity of chips. However, exploiting this potential capacity is
a main challenge.

Digital signals are sequences orstreamsof data samples ortokens. The processing of signals consists
of procedures that convert tokens to tokens and streams to streams by passing signals through operators.
Operators take data tokens from input streams as arguments and return values as data tokens in output
streams.

A compact way to specify signal processing procedures is by means ofnested loop programs. Nested loop
programs are compact because the operations are scheduled in an easily conditionally guarded lexicograph-
ical order. However, by ordering the operations in this manner, concurrency that may be present in the
procedure is completely undone orhidden. In fact, nested loop program specifications of signal processing
procedures are only appealing when the target implementation architecture is a shared memory instruction
set architecture (ISA). However, this architecture, though, is not the only one that could be envisaged. The
shared memory instruction set architecture, also known as the general purpose processor (GPP) is the most
flexible among all possible architectures. This is because the instructions are so chosen that almost all oper-
ations can be executed in the architecture, be it that only one or at most a few instructions can be executed
at a time, and instructions are encoding a given set of rather low level operations. Now, applications built on
stream-based signal processing procedures are typically requiring that a high throughput must be sustained.
That is, tokens in the streams must be processed at a high rate. The procedures themselves are usually such
that this requirement can in principle be satisfied. However, their common specifications together with the
matching architectures, the GPPs, including the digital signal processors, even when they are very long
instruction word (VLIW) architectures, cannot sustain that high throughput except maybe at the cost of a
very high power consumption. There are several ways to overcome this problem.

A first option is to add to the instruction set of the GPP a few powerful instructions, and to modify the GPPs
data path and micro instructions in such a way that the new instructions can be executed in one clock cycle,
see [1]. Without such modifications, the subset of instructions in the original ISA having the same overall
functionality would take several clock cycles.

A second option consists of adding to the GPP a dedicated co-processor, e.g. one or more systolic arrays,
and corresponding instructions, in such a way that the instructions can be executed in the co-processors,
again in one clock cycle, see [2, 3]. Instead of adding several co-processors, one can also include a single

2 Introduction

configurable co-processor, which can be configured before the corresponding instruction is to be executed.
This option is clearly an extension to the first option and can yield faster execution of (part of) the procedure.
This goes at the expense of more hardware, although the reduction of power dissipation that goes with it
may pay off handsomely.

The instructions and hardware added to a GPP are usually chosen to accelerate certain routines that are perti-
nent to a particular application domain, such as multimedia, image processing, and array signal processing.
In other words, the GPP is customized to that application domain.

A third option is to go (almost) fully dedicated. In contrast to the (modified) GPP and GPP plus co-
processor approach, the dedicated architecture solution is not flexible anymore and can execute at most a
few (similar) signal processing procedures. This solution is very costly, especially when a set of signal
processing procedures constitute the application, since it becomes necessary to provide an implementation
for each and every procedure in the application. As a result there is (almost) no reuse of hardware and
therefore this solution is far from efficient.

A fourth solution is to go away from a sequential execution of instructions or even from instruction level
parallelism (ILP), however powerful (some of) the instructions may be – as in the first two options – and opt
for task level parallelism (TLP) instead. As the name suggests, TLP is aiming at exploiting concurrency at
the level of tasks, that is, of large portions of (sub) procedures. This is in contrast to ILP, in which only the
independence between instructions in a small instruction window is exploited. Exploiting TLP also needs
an architecture that is different from the instruction set architecture (ISA) or VLIW architectures. The TLP
architecture is composed of a micro processor, some memory, and a number of processing units (PUs)
that are linked together via some kind of interconnection network. Examples of these new architectures
are theProphidarchitecture [4], TheJacobiumarchitecture [5], and thePleiadesarchitecture [6], intended
for video consumer appliances, adaptive array signal processing, and wireless mobile communications,
respectively. These architectures have in common that they exploit TLP over the PUs and ILP within the
micro processor and possibly the PUs. The problem is then how to map signal processing procedures of an
application from an application domain onto a TLP architecture instance.

As already mentioned before, the signal processing procedures are commonly specified in terms of nested
loop programs (NLP), because they form a compact description, and match the shared memory GPP ar-
chitectures on which algorithm developers usually develop the specifications. However, such specifications
do not match the TLP architectures: mapping NLPs onto TLP architectures is (almost) impossible. A pro-
cedure specification that better matches the TLP architecture is a ’process network’ specification, that is,
a network of communicating processes or tasks. However, converting ISA programs to process network
programs is also a complex task.

In this dissertation I show that for a subclass of NLPs – the so-calledpiece-wise affine nested loop pro-
grams– the conversion to process network programs can be automated. The resulting concurrent tasks
specification can then be more easily mapped onto a TLP architecture, e.g., as elaborated upon in [7–9].

This chapter is further organized as follows. First, Section 1.1 provides the motivation of this work by
stating what the actual problem is that we want to solve. Then, knowing what the problems is, Section 1.2
briefly sketches the approach I have taken to solve the problem. Section 1.3 gives a brief overview of related
work and Section 1.4 summarizes my contributions laid down in this dissertation. Finally, Section 1.5
describes the organization of this dissertation.

1.1 Problem statement 3

1.1 Problem statement

As I have noticed above, it is difficult – if at all possible – to map an application specified in an imperative
language into an architecture structure that does not resemble the classical shared-memory single-processor-
unit structure of the instruction set architecture. In an ISA, whether single threaded, multi threaded, or
even instruction level parallel, instructions are executed one at a time, at best in a pipelined fashion, and
generally no faster that one instruction per clock cycle. For example, the application specification given
in Figure 1.1(a) may at best execute in(1

2(N − 1)NnR + NnV)K clock cycles on an ISA, ifnR andnV

end

end
end

for k = 1 : 1 : K,
for j = 1 : 1 : N,

for i = j + 1 : 1 : N,
[r(j, i), x(k, i), t] = R(r(j, i), x(k, i), t);

[r(j, j), x(k, j), t] = V (r(j, j), x(k, j);

(a) Application specification

Memory

CPU

Interconnection Network

(b) Process Network

(c) Architecture

PUPPU1 PU2

Mapping

Figure 1.1: Mapping the given application specification onto a TLP architecture is difficult because the
specification does not match the organization of the architecture.

are the number of clock cycles needed to execute the – not specified – functionsR() andV (), respectively.
Thus, assuming thatnR = nV = 12 clock cycles, andN = 8, the ISA can sustain a throughput of
approximately onex-vector (onek iteration) per 432 clock cycles. Now, consider a task level parallel
architecture organization as shown in figure 1.1(c).

This architecture consists of a classical shared memory (ILP) ISA and a number of – not necessary identical
– processor units embedded in a communication network and having low-bandwidth interaction means with
the (ILP) ISA.

The PUs typically execute tasks, such as, for example (sets of) functions like the functionsV () andR().
Assuming, again, thatnR = nV = 12 clock cycles latency and one clock cycle throughput, andN = 8, this
architecture could sustain a throughput of threex-vectors per 36 clock cycles, with only three PUs,P = 3,
in the network [10]. Here I assumed that communication and (distributed) memory access is overlapped
with computation. Thus the processing of onex-vector on the TLP architecture shown in Figure 1.1(c)
takes only 3% of the time the ISA would take.

Given this enormous difference in throughput, it is natural that applications that require high throughput be
mapped on TLP architectures, not on ISAs. The problem, however, is that an application specification as
given in Figure 1.1(a) can be easily mapped on an ISA, not on a TLP architecture. This is so, because the
imperative model of computation (MoC) underlying the application specification does not match the TLP
architecture organization.

4 Introduction

The mapping onto the TLP architecture would be much easier when the underlying MoC would be a Process
Network (PN) model, a model where autonomous tasks communicate with each other via some kind of
channel. A (symbolic) Process Network model specification for the imperative program in Figure 1.1(a)
is shown in Figure 1.1 (b). It consists of two source processes, one sink process, and two processes that
execute functionsV () andR(), respectively. The arrows are communication channels, which in case the
Process Network is a Kahn Process Network [11] are unbounded FIFO channels with a blocking read
synchronization, see Chapter 4. Although the mapping of the Process Network onto the TLP architecture
is no a trivial task, it will be clear that it must be easier than mapping the imperative program onto that
architecture because there is now a clear separation between computation (processes) and communication
(channels) as is the case with the TLP architecture: PUs and communication network. The question of
how the processes themselves are specified will depend on the type of PU on which they are mapped. The
obvious conclusion of the above reasoning is this one: rely on the PN MoC to specify the application and
not on the imperative MoC. Correct this conclusion may be, there are two new obstacles that arise here.
Firstly, application developers do invariantly specify their applications in an imperative language. The have
been doing so in the past and they will continue to do so. Secondly, even if an application developer would
be willing to specify his or her application in a PN MoC, that specification would just be one of the many
possible Process Networks that have the same behavior, and would most likely not be constructed with a
mapping on a TLP architecture in mid as the application developer is only interested in behavior, not in
performance.

So it seems that we are stuck: we have to accept that applications are specified as imperative programs that
we cannot map onto TLP architectures. The only remaining route is to translate imperative programs to
process networks. Now, if mapping of imperative programs to TLP architectures is difficult, and if mapping
of Process Networks onto TLP architectures is easier, why would translating imperative programs to Process
Networks be doable to begin with? The answer is that it is not, in general (except in an ad hoc way that
may provide useless networks), but that it is possible in case the imperative program a so-called piece-wise
affine nested loop program [12] (see Chapter 3), as is the one given in Figure 1.1(a). The reason why a
translation is possible for these programs is that Process Networks are appropriately defined, then it turns
out that systolic arrays are special cases of Process Networks, and because the relation between piece-wise
affine nested loop programs and systolic arrays is well understood, it must be possible to translate these
NLPs directly to Process Networks.

Thus, the problem dealt with in this dissertation is the translation of application kernels specified as a piece-
wise affine nested loop programs into process networks, in particular Kahn Process Networks. This section
introduces the three step approach that is further worked out in the dissertation.

Section 1.2 sketches the approach that I have taken. Before doing so, I shall first give in more precise terms
the differences between the imperative model and the Process Network model. This will allow the reader
to appreciate the translation problem.

On the one hand there is the imperative specification of the application, and thus also of the kernel. On
the other hand there is the Kahn process network model to which the imperative specification of the kernel
must be translated. The problem of translating a specification in the imperative model to a specification
in the KPN model is rooted in two fundamental differences between these models, viz., the differences in
terms ofassignmentsandcommunication. In imperative languages,assignmentrefers to the assignment of a
value to a variable, while in KPNs it refers to the assignment of a value to a token. In imperative languages,
communicationrefers to the assignment of values to variables and the referencing to them, whereas in KPNs
it refers to the writing and reading of tokens to and from channels.

Imperative languages have so calleddestructive assignments. This means that the value assigned to a
variable may change during the execution of a program. Because of this, changing the execution order of

1.2 Approach 5

the statements might change the functional behavior of the program, and therefore, the programmer must
specify the execution order. For NLPs, this means that thefor loops and the nesting of statements within
these loops specify the intended execution order. A program written in an imperative language specifies
what is to be done by this program andhowthis is to be done.

This is in contrast with declarative languages which have so callednon-destructive assignments. This means
that during the execution of a program, to each variable a value is assigned only once. Because of this the
execution order of the statements doesn’t matter as long as the variables that are referenced to have a value
assigned to them. A program written in a declarative language specifieswhatis to be done by this program,
nothowthis is to be done.

In the terminology just defined, communication in both imperative and declarative languages is done via
shared memory: there is a shared space that contains the values (most recently) assigned to the variables.
The order in which one wants to refer to these values is independent of the order in which they were
assigned.

In Kahn process networks values are assigned to tokens. This assignment happens when a value that exists
inside a process is written onto a channel. As part of the write operation the token to which the value is
assigned is created and consequently, token assignments are non-destructive . There is no way to assign a
value to a token more than once. The token is written on the channel from which it can be read some other
time. Since channels are unbounded FIFO queues, the order in which tokens are written on the channel is
the same as the order in which the tokens are read from that channel.

The differences between the shared memory and KPN models is given in Table 1.1.

assignments communication
imperative language destructive via shared memory
declarative language non-destructive via shared memory
Kahn process network non-destructive via unbounded queues

Table 1.1: Differences and similarities between three programming models with respect to assignments and
communication.

1.2 Approach

The problem dealt with in this dissertation is the translation of piece-wise affine nested loop programs to
Kahn process networks. In order to do so this translation is carried out in three steps which are introduced
in this section and which are described in detail in the chapters that follow.

The arrow from the nested loop program in Figure 1.1(a) to the Kahn process network in Figure 1.1(b)
hides an intermediate model, called thepolyhedral reduced dependence graph(PRDG) model and shown
in Figure 1.2(b). The reason that the PRDG model has been introduced is twofold: 1) it partitions the
conversion from the NLP to the KPN into two tractable problems, as shall be seen soon, and 2) it is based
on models for which a rich set of transformations and methods have been developed in the past, notably
in the areas of array synthesis and automatic parallelization. However, this dissertation focuses on the first
point.

The conversion of a piece-wise affine NLP to a KPN is carried out in three steps represented by the tools
MATPARSER, DGPARSER, and PANDA , as shown in Figure 1.3. In this Figure, a box represents a result
and an ellipsoid represents a method or tool. The set of tools is called theCompaan tool setor Compaan
for short.

6 Introduction

for k = 1 : 1 : K,
for j = 1 : 1 : N,

[r(j, j), x(k, j), t] = V (r(j, j), x(k, j);
for i = j + 1 : 1 : N,

[r(j, i), x(k, i), t] = R(r(j, i), x(k, i), t);

end

end
end

DgParser
MatParser

(a) Application

Panda

(c) Process Network(b) Polyhedral Reduced Dependence Graph

Figure 1.2: Translation of NLPs to polyhedral reduced dependence graphs to KPNs.

Step 3 in more detail

Process Generation
in more detail

Panda

Process

Step 1.

Step 2.

Step 3.

DgParser

single assignment code

Matlab

process network

MatParser

dependence graph
polyhedral reduced

network
description

generation
Network

dependence graph
polyhedral reduced

generation

processes

dependence graph

linearization

processes

domain matching

domain scanning

polyhedral reduced

Figure 1.3: Compaan consists of three tools that translate a Matlab specification into a process network
specification.

The first step is the translation of an imperative nested loop program specification into asingle-assignment
program (SAP) specification. As specification language we selected Matlab and this translation is done
by the tool MATPARSER [13]. In a SAP, to every variable a value is assigned only once. This means
that this step translates a NLP program with destructive assignments in a program with non-destructive
assignments. Consequently this step results in a declarative version of the kernel, see Table 1.1. Although
the program is declarative, it uses exactly the same nested loop structure as the original program. This
allows the declarative program to be interpreted as an imperative program such that it can be executed, and
thus validated, in the same programming environment as the original specification, in my case Matlab.

The second step is to derive thepolyhedral reduced dependence graph(PRDG) specification from the SAP.
This step is performed by the tool DGPARSER. In the SAP some loops may depend on other loops. As
the name suggests, a PRDG is a graph. The nodes and edges a PRDG represent the computations and
communications (data dependencies) from the SAP the PRDG derived from. Rather that introducing a
node for each iteration in the SAP, a node is introduced for a regular set of iterations in the SAP. This
regular set of iterations is defined in terms of polyhedra. Apolyhedronis a convex set defined by a finite
set of inequalities and is a useful mathematical representation that is used in the rest of this dissertation.
Similarly, an edge in the PRDG represent a regular set of data dependencies. A PRDG thus represent an
application in terms of topology (it is a graph), behavior (it models the computations), and geometry (regular
sets of iterations are modeled in terms of polytopes. The PRDG model and constructing instances of the
model from SAPs is described in detail in Section 3. The explicit separation between communication and
computation and the geometrical characterization simplifies the translation from communication via shared
memory to communication via unbounded FIFO queues. In addition, the geometrical characterization
makes this model useful for transformations such as index (dependency) transformation, loop reordering,

1.3 Related work 7

and partitioning of computational domains.

The third step is to convert the PRDG into a Kahn network description and the individual Kahn processes.
This step is performed by the tool PANDA . The topological characterization of the PRDG is used to derive
the network description of the KPN. The generation of the individual processes is further decomposed in
three sub-steps:domain matching, domain scanning, andlinearization, shown in Figure 1.3 and described
in detail in Section 4. Two computational domains that communicate with each other not necessary commu-
nicate for all points in those domains. Domain matching takes care that data producers only write the tokens
onto the channels that are eventually consumed by a consumer. When a PRDG is translated to a KPN, the
domains in the PRDG are translated to sets of nested loops. This translation is called domain scanning.
When such a sequential execution of a domain is not desired, the domain should be first partitioned into
sets of domains. However, the sequential execution might be actually be a parallel execution in case the
processing unit the on which the operations are executed are are pipelined. Linearization of data references
is the main challenge in the translation, and addresses the FIFO behavior of the channel. This means that
the higher-dimensional data structures that appear in the original specification must be scheduled over the
one-dimensional communication channel such that the FIFO behavior of those channels is respected.

1.3 Related work

This dissertation directly relates to two main research areas. The first one is the synthesis of regular proces-
sor arrays. The second one is the automatic parallelization of regular nested loop programs. The latter area,
however, relies heavily on methods that were developed in the former area.

Array synthesis
A systolic array is a set of simple processors that are interconnected in a regular manner. This concept was
first introduced by H. Kung [14] where he showed how some typical matrix computation algorithms can
be executed efficiently onto such an architecture. In the context of systems of difference equations, Karp et
al. [15] studied uniform recurrence equations (URE) and systems of UREs (SURE). They also introduced
the reduced dependence graph (RDG), a formal graph based description of the (S)URE whose size only
depends on the structure of the computations, not the actual number of computations. Based on the RDG
their focus was on the computability of (S)UREs. It was recognized by Moldovan [16] and Quinton [17]
that specifying algorithms by means of (S)UREs opens the doors to the automatic mapping of applications
onto systolic arrays (or the automatic generation of systolic arrays from applications). In order to improve
the mapping/generation process, transformations on SURE models have been studied extensively by many
authors [18–21].

Since then, a lot of research has been conducted on this topic, leading to a number of generalizations to the
(S)URE model and the methods applied to it: The indexing of variables (multi-dimensional arrays) has been
generalized to (systems of) affine recurrence equations, and parameterized models have been introduced.
Recent work that relates to the work in this dissertation, was done in the context of the CATHEDRAL IV [22],
ALPHA [23], PHIDEO [24], and HIFI [25] projects.

Within the context of the CATHEDRAL IV project, Swaaij [22] has studied the synthesis of systolic arrays
from the applicative languageSilage. In [22], Silage programs are first translated into a model called
polyhedral dependence graph(PDG), i.e., a graph in which nodes are associated withconditional affine
recurrence equationsdefined on a polyhedral domain. The PDG model is more general that our PRDG
model in that there are less restrictions on specifying the computational domains which makes this model
difficult to deal with. However, the PRDG model is capable to capture more regularity of the application.
The main difference is that the work in [22] focuses on transformations to optimize the control flow of
the application, whereas this dissertation focuses on the transformation from the PRDG model to the KPN

8 Introduction

model.

In the ALPHA environment [23], a program is described as a system of affine recurrence equations (SARE).
Starting from such a specification both the synthesis of regular architectures and the compilation to sequen-
tial or parallel machines is considered. The rationale behind writing programs in ALPHA rather than in
some imperative language is that a functional/mathematical specification matches the way people think of
an algorithm and that all parallelism in the algorithm is naturally preserved. The domains associated with
the SARE areZ-polyhedra [26], see also Section 2.5. The PRDG model that this dissertation presents is
more general that the SARE in that the recursions in the PRDG model allows for multiple left hand side
variables in assignment statements and that the index sets are more general thanZ-polyhedra, see also
Section 2.5.

In [27] Thiele and in [28] Teich and Thiele describe the systematic design of processor arrays. In order to
do so they propose to map piece-wise regular (linear) algorithms onto processor arrays. Such an algorithm
is described by a set of recurrence equations in which the indexing functions are simple translations (affine
functions) of the points in a linearly bounded lattice (LBL) [29], see also Section 2.5. In [30] Thiele
introducespiece-wise regular dependence graphsand reduced piece-wise regular dependence graphsto
represent (what was later called)piece-wise regular programs. The sets of iterations of these programs are
defined by LBLs. These LBLs are associated with the nodes of the reduced piece-wise regular dependence
graphs [29]. Also in [29] the class of piece-wise regular programs is extended topiece-wise linear programs
that allows for affine indexing functions rather that constant. In this dissertation has I propose a model in
which the index sets are defined by a stricter means than LBLs.

The high-level synthesis methodology PHIDEO [24] starts with a specification in the single assignment
form, and converts this description into an instance of an target architecture template. An important part
of PHIDEO is the address generation for memories that are introduced by the synthesis tools. The address
generation method used in PHIDEO can be viewed as a special case of the address generation method
presented in this dissertation, see Section 4.5. This is due to somewhat more restricted geometry of the
iteration domains used in PHIDEO.

The HIFI project [25] focused on a methodological approach of designing regular processor arrays. In
particular, the work of Held [12] focuses on the functional design of dataflow networks. Starting with
a MATLAB program (piece-wise affine NLP), an exact dependence analysis, based on work by Feautrier
[31], is performed to yield a single-assignment program. Thepiece-wise regular dependence graphof this
program is modeled by a hierarchical graph. Every node represents a regular piece of the application and is
converted back into single-assignment code (MATLAB again). These programs are each converted into the
applicative state transition[32, 33] model. The main difference between the work in [12] and the work in
this dissertation is that in [12], the problem of communication via one dimensional communication channels
is not considered.

Although the above work relates more or less to the work presented in this dissertation, the main difference
is that the above work relates to (array) synthesis whereas the work in this dissertation relates to compilation
and does not have processor arrays as target architectures.

Automatic parallelization
Automatic parallelization mainly focuses on the generation of code for multi-computer and multi processor
systems.

Two programming paradigms are found in programming parallel machines:message passingand data
parallelism. In the message passing type of programming, the program explicitly contains the communi-
cation between the processors. The two most popular message passing libraries are the message passing
interface (MPI) [34] and the parallel virtual machine (PVM). For a comparison between the two see [35].

1.4 Contributions 9

Message-passing programs are very well suited for multiple-instruction, multiple-data architectures. Often,
the single-program multiple-data (SPMD) model is used (as in MPI and PVM), in which each and every
processor in the architecture runs the same program. In the data-parallel type of programming, low-level
communication details are left to the compiler, as, for example, in compilers for high performance Fortran
(HPF), see for example [36–38], and therefore this programming model eases the development and main-
tenance of parallel programs considerably compared to message passing programs. Data parallel programs
are usually compiled for single-instruction, multiple-data (SIMD) architectures.

Most work in automatic parallelization focuses on the derivation of programs in the data-parallel program-
ming model. Some approaches translate (mainly HPF) data parallel code into SPMD code. Within the
SUIF project [39], the focus is on parallelization and optimization of sequential programs for share- mem-
ory multi-processor architectures by means of loop transformation methods [40]. In the LOOPO project [41]
they develop a prototype implementation of parallelization methods, and produce data parallel code in HPF.
As a back-end to this generated HPF code the Adaptor compiler, developed in the ADAPTOR project [42],
can be used to produce a SPMD program, mainly for the use with MPI and PVM. In the PRISM/SCPDP
project [43] the focus is also on generating data parallel programs, but current research goes also in the
direction of code generation for heterogeneous systems in the SPMD model. In the PIPS Workbench
project [44], data parallel code is generated by automatic parallelization. On top of PIPS the HPF compiler,
HPFC, is implemented to generate SPMD code for use with PVM. In PIPS there is also a tool WP65, that
generates code for distributed memory architectures. In the BOUCLETTES project [45] perfectly nested
loops are transformed into data parallel HPF programs.

Wilde [46] describes an approach to compile Alpha programs [23] into imperative programs and data-
parallel imperative programs. The construction of efficient loop nests is, for example, dealt with in [47,48],
however, generation of the communication code between tasks is not dealt with. This thesis proposes to use
similar techniques, but my focus is the generation of communication code between concurrently operating
tasks.

In the PCO (program compilation & optimization) project [49], work is done is to improve locality in
regular nested loop programs to exploit computer systems’ memory hierarchy. Two methods to improve
locality, one for temporal locality and one for spatial locality are presented in [50] and [51], respectively.
The relation with the work in this dissertation is the use of counting methods in parameterized convex sets.

The work in this dissertation relates to the data-parallel and message-passing paradigms in the following
sense. The original program is specified as a nested loop program that is translated into a single-assignment
program. The SAP can be interpreted as a parallel program in which the functions communicate with each
other via shared memory. Then the SAP is converted into our PRDG model which is then converted into
a Kahn process network. The processes in this network communicate with each other by writing tokens
to and reading tokens from channels. The tokens may be seen as messages. However, the derived Kahn
process network makes no assumptions on how the communication is eventually implemented on a target
architecture. One may map the channel onto shared memory, by using C-HEAP [52] for example, or onto
dedicated buffers that are connected via a network-on-chip [53].

1.4 Contributions

The work presented in this dissertation focuses on the derivation of Kahn process networks from imperative
code; both methods as well as the implementation of these methods are presented. The main contributions
are

10 Introduction

• derivation of methods to translate parameterized piece-wise affine NLPs to KPNs
Literature reports many design flows that start from a KPN (or some other process or data flow model)
as the initial application specification for the purpose of high level synthesis or design space explo-
ration [9, 54–58]. This dissertation presents an approach to derive such an initial specification from a
parameterized piece-wise affine NLP. The case that such an NLP contains broadcasts is mentioned but
not solved.

• introduction of the intermediate PRDG model
Several models are presented in the context of regular array design and automatic parallelization.
These models have expressiveness that matches the restrictions imposed on the specification of the
nested loop program. For example, the URE model (defined on a polyhedral index set) is well suited
for modeling perfectly nested loop programs, whereas the SARE model is better suited for modeling
sets of non-perfectly nested loop programs. In this dissertation, the class of nested loop programs dealt
with is the class of piece-wise affine NLPs with pseudo-affine control statements, see Section 3.3.
These statements allow the specification of iteration domains that are defined by periodic patterns of
integer points, bounded by polytopes. Two well known models are theZ-polyhedron model [26] and
the linearly bounded lattice (LBL) model [28]. The nature of the pattern of integer points that I consider
is such that theZ-polyhedron model is not generic enough. However, the LBL model is more general
than required. Therefore, the PRDG model that is introduced in this dissertation is based on a restricted
form of the linearly bounded lattice (LBL) model. Moreover, as opposed to the systems of recurrence
equations that are found in literature, the PRDG model allows to model vector functions, i.e., functions
that have multiple return values. In addition, in order to capture as much regularity as possible, the
PRDG model is communication oriented rather that computation oriented; the iteration domains of the
input arguments and return values of a set of indexed functions are specified independently from each
other.

• partitioning of the translation from PRDG to KPN in three well-defined problems and deriving
solutions to these problems
The problem of converting the PRDG to a KPN is defined and is partitioned in three well defined sub-
problems shown in Figure 1.3; domain matching, domain scanning, and linearization. This dissertation
presents a solution to each of these sub-problems in sections 4.3–4.5. Many of the problems are
formulated in terms of a counting problem, which is addressed using Ehrhart polynomials.

• implementation of the presented methods in software versions
Many methods presented in the literature are not verified by an implementation of the method. All
methods presented in this dissertation have a corresponding software version. Moreover, to enable and
stimulate ongoing research, the algebra and methods in this dissertation are carefully formulated. This
formulation is such that the structure of theoretical concepts matches software implementation. As a
result there is a clear correspondence between the software versions on one hand and the algebra and
these methods on the other hand. Also modern software engineering techniques are applied to have
the software well organized.

1.5 Outline

This dissertation is organized as follows. Chapter 2 introduces the mathematical background that is used in
the rest of this dissertation. The chapter deals with combinatorial geometry and deals with parameterized
polytopes and how they can be used to define domains, special sets of integer vectors. Also, great atten-
tion is paid to the counting of the number of integral points inside these polytopes by means of Ehrhart
polynomials. Chapter 3 deals with the class of NLPs and defines the polyhedral reduced dependence graph

1.5 Outline 11

(PRDG). Then the conversion from NLPs to their single-assignment program (SAP) and the conversion
from SAPs to their PRDG is described. Chapter 4 deals with the conversion of the PRDG to Kahn pro-
cess networks. The decomposition of this problem into the three sub-problems and the solution to these
problems is presented. The methods in this chapter heavily rely on the counting methods that are presented
in Chapter 2. Chapter 5 deals with the organization of the software versions of these methods and data
structures in chapters 2–4. The chapter also serves as a “putting it all together” and gives a global overview
of the chapters 3 and 4.

Chapter 2
Basics

As far as required for the next chapters, this chapter contains basic material from the theory of integer
linear algebra. Aside an introduction of notations and a limited number of elementary notions this chapter
deals with polytopes and operations on them, especially counting the number of points in parameterized
polytopes. Also attention is paid to sets of regular spaced integral points.

This chapter is further organized as follows. Section 2.1 gives some preliminary definitions used in the
other sections of this chapter. Section 2.2 introduces polyhedra and polytopes in both implicit and dual
form. Since my goal is to deal with parameterized applications these definitions are then extended to
include parameterized versions. Parameterized polyhedra, polytopes, and their vertices are dealt with in
Section 2.3. Later I will be interested in counting the number of integer points contained by a polytope.
These numbers are expressed by Ehrhart polynomials which is the topic of Section 2.4. Finally special sets
of integral points are introduced in Section 2.5. Much of the material used in this section is from [59–61].

2.1 Preliminaries

This section gives some notations and definitions that are used throughout this chapter and the rest of this
dissertation. All vectors in this dissertation are column vectors. Avectorx of dimensiond is denoted as

x =

x1

x2
...
xd

or alternatively asx = (x1, x2, · · · , xd), wherexi, i = 1, 2, · · · , d are elements of some setS. A row
vector is indicated by putting a superscriptT to a column vector, that is, ifx is a column vector, then
xT =

[
x1 x2 · · · xd

]
is a row vector. Apoint is a column vector that has scalar entries from the setsZ,

Q, orR.

Definition 2.1 (combination)
Let x = (x1, x2, · · · , xd) be a vector and letλλλ = (λ1, λ2, · · · , λd) be a vector of coefficients. Four different

combinations of the form
∑d

i=1 λixi can be identified:

•
∑d

i=1 λixi is called a linear combination

14 Basics

•
∑d

i=1 λixi is called a positive combination when allλi ≥ 0

•
∑d

i=1 λixi is called an affine combination when
∑d

i=1 λi = 1

•
∑d

i=1 λixi is called a convex combination whenλi ≥ 0 and
∑d

i=1 λi = 1 �

Definition 2.2 (hyper-plane and closed half-space)
Let a non-zero vectora = (a1, a2, · · · , ad) and a scalarb be given. Two types of sets are defined in terms
of a andb.

• H = {x ∈ Qd |aTx = b} is called a hyper-plane

• H = {x ∈ Qd |aTx ≥ b} is called a closed half-space �

Note that a hyper plane itself is the intersection of two closed half-spaces, i.e.,{x |aTx = b}= {x |aTx ≥
b ∧ aTx ≤ b}.

Definition 2.3 (vertex)
Let a setS be given. Avertexof S is a point inS that cannot be expressed as a convex combination of any
other points inS. The set of vertices of a set is called itsvertex set. �

Definition 2.4 (line)
Let S be a set inQd. A line of S is a vector̀̀̀ that has the property that for anys ∈ S for all µ ∈ Q it is true
thats + µ`̀̀ ∈ S. �

Definition 2.5 (linear (affine) independence)
LetS be a set of points. The points inS are said to be linearly (affinely) independent if and only if no point
in S is a linear (affine) combination of other points inS. When a set of points are not linearly (affinely)
independent these points are said to be linearly (affinely)dependent. �

Definition 2.6 (linear (affine) basis)
Let S be a set of points. A basis ofS is a subset ofS that has the following two properties: 1) the points in
the subset are linearly (affinely) independent and 2) every point inS is a linear (affine) combination of the
points in the subset. Therank of a set is the cardinality of its linear basis. �

Definition 2.7 (affine subspace)
Let {b1,b2, · · · ,bn} be any set of affinely independent vectors inQd. An affine subspaceof Qd is the set
of all affine combinations of the vectorsbi, i = 1, 2, · · ·n. The dimension of an affine subspace is defined
as the rank of set of lines that spans the affine subspace. Thus with the set ofn vectors above, the dimension
of the affine subspace isn− 1. �

Definition 2.8 (affine span)
LetS be a set inQd. Theaffine span, also calledaffine hull, of S is the smallest dimensional affine subspace
that entirely containsS. �

2.2 Polyhedra and polytopes

This section introduces polyhedra and polytopes. A polyhedron is a convex subset of some space in some
dimension, sayn. In the literature, this space is eitherRn or Qn. To be compatible with the theory of
Ehrhart polynomials (see Section 2.4) I define polyhedra in the spaceQ

n.

2.2 Polyhedra and polytopes 15

Definition 2.9 (polyhedron)
A polyhedronP is the intersection of a set of finitely many closed half-spaces, i.e.,

P = {x ∈ Qn |Ax = b ∧ Cx ≥ d} (2.1)

whereA is an integralk × n matrix, b is an integral vector of sizek, C is an integral̀ × n matrix, d is
an integral vector of sizè, andk and` are the number of equalities and inequalities, respectively. The
dimension of a polyhedron is the dimension of its affine span. Ak-dimensional polyhedron is called a
k-polyhedron. Theinterior of a polyhedronP is the set of points inP for which no of the constraints are
satisfied with equality. Theboundaryof a polyhedronP is the set of points inP that are not in the interior
of P. �

Note that when a polyhedron lies in an affine subspace with a dimension lower than the dimension of the
space that contains the polyhedron then this polyhedron has an empty interior.

Definition 2.10 (supporting hyper-plane)
LetP be a polyhedron andH be a hyper-plane.H is called a supporting hyper-plane ofP when it intersects
the polyhedron ofP but not its interior. �

Definition 2.11 (face)
LetP be ann-polyhedron andH be a supporting hyper-plane ofP. The intersectionP∩H defines afaceof
P. Note that the faces of a polyhedron are polyhedra themselves. The dimension of a face is the dimension
of its affine span. A face of dimensiond is called ad-face. Faces of dimension0, 1, andn− 1 are a called
a vertices, edges, andfacetsrespectively. �

Definition 2.12 (polytope)
A bounded polyhedron is called apolytope. A k-dimensional polytope is called ak-polytope. �

Since polytopes are polyhedra, the definitions for supporting hyper-planes and faces also hold for polytopes.

In the above definition, a polytope is defined as the intersection of finitely many closed half spaces. There
is however an alternative representation in terms of a convex combination of vertices.

Definition 2.13 (geometric representation)
A polytopeP has a dual geometric representation as a convex combination of vertices:

P = {x ∈ Qn |x = V λλλ ∧ λi ≥ 0 ∧
∑̀
i=1

λi = 1} (2.2)

where the columns of matrixV are the elements of the vertex set ofP andλλλ is a vector with elements
λi, 1 ≤ i ≤ `.

There exist methods that convert polytopes from their implicit representation to their dual geometric repre-
sentation and vice versa [61–63].

Figure 2.1 shows the two representations of a polytope. On the left hand side is a polytope in its implicit
representation, on the right hand side is its dual geometric representation. �

The denominatorof a vertex is the least common multiple of the denominators of its coordinates. The
denominatorof a polytope is the least common multiple of the denominators of its vertices.

16 Basics

a3x ≥ b3

a2x ≥ b2

a1x ≥ b1
v1 v5

a5x ≥ b5

v4

v2

a4x ≥ b4
v3

Figure 2.1: Implicit and dual geometric representation of a polytope.

2.3 Parameterized polyhedra and polytopes

This section introduces parameterized polyhedra and parameterized polytopes. The vertices of a parame-
terized polytope are parameterized themselves and are described next.

2.3.1 Parameterized polyhedra

Often polyhedra depend on a vector of parameters. I shall use the symbolp for this parameter vector.

Definition 2.14 (parameterized polyhedron)
A parameterized polyhedronP(p) is a polyhedron whose defining closed half-spaces are affinely dependent
on a vectorp ∈ Qm of parameters, as follows:

P(p) = {x ∈ Qn |Ax = Bp + b ∧ Cx ≥ Dp + d} (2.3)

whereB andD are an integralk ×m and a` ×m matrices, respectively, and whereA, C, b, d, k, and`
are as in (2.1). �

Alternatively a parameterized polyhedronP(p) can be interpreted as a function from the parameter space
Q
m to the space of all subsets ofQn. The domain for which this function is defined is called thecontextof

the parameterized polyhedronP(p).

A parameterized polyhedron can be represented as a non-parameterized polyhedron by writing it in the
combined data-parameter space as follows

P ′ = {
[
x
y

]
∈ Qn+m |A′

[
x
y

]
= b ∧ C ′

[
x
y

]
≥ d} (2.4)

whereA′ =
[
A −B

]
, andC ′ =

[
C −D

]
, with A, B, C, andD as in (2.3). Note that the parameter

vectorp is replaced by the free variable vectory.

The parameterized polyhedronP(p) can be obtained from its non-parameterized representation by inter-
sectingP ′ with the hyper-planey = p and projecting the intersection onto the spaceQn, the space that

containsP(p). LetS(p) = {
[
x
p

]
∈ Qn+m}

P(p) = proj
Qn

(P ′ ∩ S(p))

= {x |
[
x
p

]
∈ P ′}

(2.5)

wherep is the parameter vector.

2.3 Parameterized polyhedra and polytopes 17

2.3.2 Parameterized vertices of polytopes

This section deals with the vertices of parameterized polytopes. The parameters in the parameter vector
p = (p1, p2, · · · , pm) of a parameterized polytope also parameterize the vertices of this polytope. Hence
these vertices are referred to asparameterized verticesand are denoted byvi(p) where the indexi identifies
the vertex. In line with the literature a parameterized vertex is confined to be an affine function of the
parameters.

In general, a parameterized vertexvi(p) of a parameterized polytope is not defined for all possible values
of the parameters but rather for a subset of all possible parameter values. The set of parameters for which a
parameterized vertex is defined is called thecontext of the vertex.

Let me illustrate the notion of context of a vertex with the following example. Figure 2.2 shows the param-
eterized polytopeP(p) ={(x1, x2) ∈ Q2 | 0 ≤ x2 ≤ 4 ∧ x2 ≤ x1 ≤ x2 + 9 ∧ x1 ≤ p ∧ p ≤ 40}, where
the last constraint is the context of the parameterized polytope. The figure shows the eight parameterized

x1

x2 v4

v5

P

v8v7

x1 ≤ p

1 2 3 13v1 v2 v3

5
4
3
2
1
0

v6

Figure 2.2: A parameterized polytope with its parameterized vertices.

verticesv1(p), v2(p), · · · , v8(p) of P(p). Clearly, for the particular value ofp shown in the figure, only
v1, v2, v7, andv8 are the actual valid vertices ofP(p). Thus, depending on the value ofp, eight possible
vertices may show-up.

The contexts of all the parameterized vertices ofP(p) in Figure 2.2 are given by (2.6).

v1(p) = (0, 0) when 0 ≤ p ≤ 40
v2(p) = (p, 0) when 0 ≤ p ≤ 9
v3(p) = (9, 0) when 9 ≤ p ≤ 40
v4(p) = (p, p− 9) when 9 ≤ p ≤ 13
v5(p) = (13, 4) when 13 ≤ p ≤ 40
v6(p) = (p, p) when 0 ≤ p ≤ 4
v7(p) = (4, 4) when 4 ≤ p ≤ 40
v8(p) = (p, 4) when 4 ≤ p ≤ 13

(2.6)

A method to find all parameterized vertices of a parameterized polytope and their corresponding con-
texts is presented in [64]. The method is based on the correspondence between the parameterized ver-
tices of a parameterized polytopeP(p) in m parameters andm-faces ofP ′. It is shown in [64] that
1) for every parameterized vertexvi(p) in P(p) there is a correspondingm-faceFmi in P ′ such that
vi(p) = proj

Qn
(Fmi ∩ S(p)), whereS(p) is defined as in (2.5) and 2) every vertexvi(p) is defined

only for the projection of its correspondingm-face onto the parameter space viaproj
Qm

(Fmi) which is,
thus, the context of the parameterized vertex. Methods to compute the parameterized verticesvi(p) and
their contexts is presented in [64] and implemented in the POLYL IB [65].

Section 2.4 deals with counting the number of integral points in parameterized polytopes. Since the theorem
presented there uses the notion of affine-vertex polytope, this notion is first defined here.

18 Basics

Definition 2.15 (affine-vertex polytope)
LetP(p) ⊂ Qn be a parameterized polytope withp = (p1, p2, · · · , pm) and with vertex set{vi(p)}i=1,2,··· ,k.
P(p) is said to be an affine-vertex polytope when every vertex in the vertex set has the form

vi(p) = Mip + mi , i = 1, 2, · · · k (2.7)

whereMi is a rationaln-by-m matrix andmi is a rationaln-vector and where all parameterized vertices
are valid for the whole parameter range. Thus each coordinate of each vertex is an affine function of the
parameters. �

The common context of the vertices of an affine-vertex polytope is the context of this polytope itself.

A parameterized polytopeP(p) can be described in terms of affine-vertex polytopes by partitioning1 the
context such that the restriction ofP(p) to any partition is an affine-vertex polytope. For example take the
polytope from Figure 2.2 with vertices given in (2.6). Four sets of the parameterized vertices are found,
each one with its own context, the context of the affine-vertex polytope. They are given in (2.8).

0 ≤ p ≤ 4 : V1(p) = {v1, v2, v6} = {(0, 0), (p, 0), (p, p)}
4 ≤ p ≤ 9 : V2(p) = {v1, v2, v7, v8} = {(0, 0), (p, 0), (4, 4), (p, 4)}
9 ≤ p ≤ 13 : V3(p) = {v1, v3, v4, v7, v8} = {(0, 0), (9, 0), (p, p− 9), (4, 4), (p, 4)}
13 ≤ p ≤ 40 : V4(p) = {v1, v3, v5, v7} = {(0, 0), (9, 0), (13, 4), (4, 4)}

(2.8)

A method to partition the context is presented in [66]. LetP(p1, p2, · · · , pm) be a parameterized poly-
tope. All m-faces ofP ′ that corresponds to the parameterized vertices ofP(p) are projected onto the
m-dimensional parameter spaceQm. These projections partition the parameter space, and consequently the
context ofP(p), and every such a partition is a context for whichP(p) is an affine-vertex polytope.

Figure 2.3 shows the polytope of 2.2 in the combined data-parameter space. Since the dimension of the

x1
x2

p

f1

f2

f4

f5

f6

f7

f3

f8

0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 2.3: The parameterized polytope of Figure 2.2 in the combined data-parameter space together with
its 1-faces that corresponds to the parameterized vertices ofP(p). The intersections of the projection of
these faces result in the contexts for whichP(p) is an affine-vertex polytope.

parameter space is one, the1-faces (which are the edges) ofP ′ are projected ontoQ1. Since projection
of the four1-faces at the top of the figure ontoQ1 are single points, and thus of dimension0, they do
not correspond to parameterized vertices ofP(p). The eight remaining1-facets labeledf1, f2, · · · , f8 are

1The partitioning of the context is not a strict partitioning. The intersection of the partitions, however, are the intersections of
the faces of the partitions.

2.4 Ehrhart polynomials 19

projected onto thep-axis. Indeed the parameterized vertices and their contexts are shown in (2.6) and the
intersections of the contexts of the vertices that form the contexts of the affine-vertex polytopes ofP(p) are
shown in (2.8). Note that the contexts of the affine-vertex polytopes partition the context ofP(p) but not
P(p) itself.

2.4 Ehrhart polynomials

In this section I consider a particular counting problem. It is the problem to count the number of integral
points contained in a parameterized polytope. Thus ifP(p) is a parameterized polytope inQn, then we are
interested in the number of points in the setP(p) ∩ Zn. This number is referred to as theenumeratorof
P(p)2.

Clearly the enumerator of a non-parameterized polytope is a constant. Ehrhart [68], and Clauss and Loech-
ner [69] have proved that the enumerator of a parameterized affine-vertex polytopeP(p) can be expressed
as a certainpseudo-polynomial.

I introduce pseudo-polynomials in Section 2.4.1. A pseudo-polynomial that is the enumerator of a param-
eterized affine-vertex polytope is called anEhrhart polynomial. In Section 2.4.2 I elaborate on Ehrhart
polynomials. Most of the material used in Section 2.4.1 and Section 2.4.2 is from [61,66,69,70].

2.4.1 Pseudo-polynomials

A pseudo-polynomialextends the notion of a polynomial in that its coefficients are periodic numbers. Hence
I first define periodic numbers and then I define pseudo-polynomials. The definitions I give here are in line
with the definitions in [71].

Definition 2.16 (one-dimensional periodic coefficient)
Let be given an integer̀, and` rational numbersci, i = 0, 1, · · · , `− 1. The functionc() : Z→ Q, c(p) =
cpmod ` is called aperiodic coefficientwith period`. �

The` possible values ofc(p) are usually made explicit by representingc(p) as an indexed array,

c(p) = [c0, c1, · · · , c`−1]p (2.9)

Definition 2.17 (multi-dimensional periodic coefficient)
Let be given anm-dimensional integral vector̀̀̀ = (`1, `2, · · · , `m), and

∏m
i=1 `i rational numbersci,

i = (i1, i2, · · · , im), ij ∈ {0, 1, · · · , `j − 1}, j = 1, 2, · · · ,m. The functionc() : Zm → Q, c(p) =
cp mod `̀̀, with p = (p1, p2, · · · , pm) and p mod `̀̀ = (p1 mod `1, p2 mod `2, · · · , pm mod `m), is called
anm-dimensional periodic coefficientwith multi-period`̀̀ andperiod lcm(`1, `2, · · · , `m). Again,c(p) is
represented as anm-dimensional array, shown here form = 2 (for notational convenience I use short-hands
`′1 and`′2 for `1 − 1 and`2 − 1, respectively):

c(p) = [[c00, c10, c`′10]p1 , [c01, c11, c`′11]p1 , · · · , [c0`′2 , c1`′2 , c`′1`′2]p1]p2 (2.10)

The interpretation of (2.10) is that ifp mod `̀̀ = i, thenc(p) = ci. �

Example 2.1 gives three example of periodic numbers.
2In general theenumeratorof any setS with respect to alatticeLn is |S ∩ Ln|, whereLn = G(Zn),G being an non-singular

rational matrix. Unless otherwise stated, I will assume – without loss of generality [67] – thatG is the identity matrix.

20 Basics

Example 2.1 (periodic number)

sin(pπ2) = [0, 1, 0,−1]p , p ∈ Z

dp3e − b
p
3c = [0, 1, 1]p , p ∈ Z−14 −27 −18

1 2 1
9 17 12

p =

[1,−14, 7]p [0,−27, 18]p [0,−18, 9]p
[0, 1,−3]p [1, 2,−6]p [0, 1,−4]p
[0, 9,−1]p [0, 17,−5]p [1, 12,−1]p

 , p ∈ Z

�

The last example says that the entries of thep-th power of the given matrix are periodic.

A generalization of a polynomial is apseudo-polynomial.

Definition 2.18 (pseudo-polynomial)
Let ci(p), i = 0, 1, · · · , k be scalar periodic coefficients. The function

f(p) = ck(p)pk + ck−1(p)pk−1 + · · ·+ c0(p) (2.11)

is a (one-dimensional)pseudo-polynomialof degreek. The generalization to higher dimensions is as fol-
lows.

Let p = (p1, p2, · · · , pm) be anm-dimensional integral vector and letci1,i2,··· ,im(p) be periodic numbers
whose representing multi-dimensional arrays have dimension of at mostm. The function

f(p) =
k∑

i1=0

k−i1∑
i2=0

· · ·
k−i1−i2−···−im−1∑

im=0

ci1,i2,··· ,im(p)pi11 p
i2
2 · · · p

im
m (2.12)

is an (m-dimensional) pseudo-polynomial of degreek. Thepseudo-periodof f(p) is defined as the least
common multiple of the periods of its periodic coefficientsci(p). �

2.4.2 The Ehrhart theorem

In [68], Ehrhart conjectured that the enumeratorE(p) of an affine-vertex polytopeP(p) parameterized in
a single positive integer parameterp is a certain pseudo-polynomial. The extension of this result to higher
dimensional integer parameter vectorsp has been established in [70] by Clauss and later in [69] by Clauss
and Loechner.

Theorem 2.1 below gives the combined results. The proof is based on the theory of enumerative combina-
torics [72] and is beyond the scope of this dissertation.

Theorem 2.1 (Ehrhart theorem)
The enumeratorE(p) of any affine-vertexk-polytopeP(p),p = (p1, p2, · · · , pm) is expressed by a multi-
variate pseudo-polynomial in the parameter vectorp of degreek whose pseudo-period̀is the denominator
of P(p)

E(p) =
k∑

i1=0

k−i1∑
i2=0

· · ·
k−i1−i2−···−im−1∑

im=0

ci1,i2,··· ,im(p)pi11 p
i2
2 · · · p

im
m (2.13)

The dimensionm of the periodic coefficients equals the dimension of the parameter vectorp. The periods
of the periodic coefficientsci are` in each dimension.

2.4 Ehrhart polynomials 21

Proof
The proof of this theorem can be found in [68], [72], and [69]. �

E(p) is called the Ehrhart polynomial associated withP(p).

Since parameterized polytopes can be described in terms of affine-vertex polytopes, Theorem 2.1 is used
to express the enumerator of any parameterized polytopeP(p) by a set of Ehrhart polynomials, each one
defined on the context of the affine-vertex polytopes ofP(p).

Equation (2.13) defines a template for the Ehrhart polynomial of an affine-vertex polytope. To find the
actual Ehrhart polynomial, the elements in all periodic coefficients of (2.13) must be determined. There are
(m+k

k
) such coefficients each counting`m elements. To find these elements,`m(m+k

k
) initial countings are

performed to construct a system of`m(m+k
k

) equations with̀m(m+k
k

) unknowns to be solved.

Example 2.2 (Ehrhart theorem I) LetP(p) = {(x1, x2) ∈ Q2 | 0 ≤ x2 ≤ 4 ∧ x2 ≤ x1 ≤ x2+9 ∧ x1 ≤
p ∧ p ≤ 40} be the parameterized polytope given in Figure 2.2.P(p) is expressed as a set of affine-vertex

22 Basics

polytopes each defined on its own context which are given in (2.8).

0 ≤ p ≤ 4
V1(p) = {(0, 0), (p, 0), (p, p)}
all v ∈ V1(p) ∈ Z⇒ all pseudo-periods are 1
P1(p) is a 2-polytope, henceE1(p) = c2p

2 + c1p+ c0

initial countings:E1(0) = 1, E1(1) = 3, E1(2) = 6

system to solve:

1 0 0
1 1 1
1 2 4

c0

c1

c2

 =

1
3
6

result:(c0, c1, c2) = (1, 11

2 ,
1
2)⇒ E1(p) = 1

2p
2 + 11

2p+ 1

4 ≤ p ≤ 9
V2(p) = {(0, 0), (p, 0), (4, 4), (p, 4)}
all v ∈ V2(p) ∈ Z⇒ all pseudo-periods are 1
P2(p) is a 2-polytope, henceE2(p) = c2p

2 + c1p+ c0

initial countings:E2(4) = 15, E2(5) = 20, E2(6) = 25

system to solve:

1 4 16
1 5 25
1 6 36

c0

c1

c2

 =

15
20
25

result:(c0, c1, c2) = (−5, 5, 0)⇒ E2(p) = 5p− 5

9 ≤ p ≤ 13
V3(p) = {(0, 0), (9, 0), (p, p− 9), (4, 4), (p, 4)}
all v ∈ V3(p) ∈ Z⇒ all pseudo-periods are 1
P3(p) is a 2-polytope, henceE3(p) = c2p

2 + c1p+ c0

initial countings:E3(9) = 40, E3(10) = 44, E3(11) = 47

system to solve:

1 9 81
1 10 100
1 11 121

c0

c1

c2

 =

40
44
47

result:(c0, c1, c2) = (−41, 131

2 ,−
1
2)⇒ E3(p) = −1

2p
2 + 131

2p− 41

13 ≤ p ≤ 40
V4(p) = {(0, 0), (9, 0), (13, 4), (4, 4)}
all v ∈ V4(p) ∈ Z⇒ all pseudo-periods are 1
P4(p) is a 2-polytope, henceE4(p) = c2p

2 + c1p+ c0

initial countings:E4(13) = 50, E4(14) = 50, E4(15) = 50

system to solve:

1 13 169
1 14 196
1 15 225

c0

c1

c2

 =

50
50
50

result:(c0, c1, c2) = (50, 0, 0)⇒ E4(p) = 50

(2.14)

�

In Example 2.2 all vertices are integral and, therefore, all periodic coefficients of the pseudo-polynomials
are ordinary scalars. The next example deals with the enumerator of a single affine-vertex polytope with
rational vertices.

Example 2.3 (Ehrhart theorem II) Let P(p, q) be given:P(p, q) ={(x1, x2) ∈ Q2 | 0 ≤ x2 ≤ 1
2q ∧

2x2 ≤ x1 ≤ 2x2 + 1
2p} with contextp, q ≥ 0. The parameterized vertices ofP(p, q) areV (p, q) =

{(0, 0), (1
2p, 0), (q, 1

2q), (q + 1
2p,

1
2q)}. Since the vertices are defined on wholeP(p, q)’s context,P(p, q)

2.5 Images of integer polyhedra 23

is an affine-vertex polytope. Observe that the dimension of bothP(p, q) and its denominator are 2. As a
consequence, the Ehrhart polynomial is a multi variate pseudo-polynomial in two variables of degree 2 and
pseudo-period 2:

E(p, q) = c20p
2 + c11pq + c02q

2 + c10p+ c01q + c00 (2.15)

where everycij(p, q) = [[c00
ij , c

01
ij]p, [c10

ij , c
11
ij]p]q. There are 24 unknowns and, as a consequence, a system

of 24 equalities in 24 unknowns is formulated.

Let me denote the elements of the periodic coefficientscij by c∆p∆q
ij , where∆p,∆q ∈ {0, 1}. Rather than

building one system of 24 equation with 24 unknowns, I construct four independent systems of 6 equations
with 6 unknowns each, and each system containing only thec∆p∆q

ij for particular values of∆p and∆q.
Since∆p = p mod 2 and∆q = q mod 2, one system corresponds to the elements with bothp andq even,
two systems with eitherp or q odd, and one system with bothp andq odd.

Four sets of initial countings3, one for each setting of∆p, ∆q:
E(0 + ∆p, 0 + ∆q) = 1
E(2 + ∆p, 0 + ∆q) = 2
E(4 + ∆p, 0 + ∆q) = 3
E(0 + ∆p, 2 + ∆q) = 2
E(0 + ∆p, 4 + ∆q) = 3
E(2 + ∆p, 2 + ∆q) = 4

Four systems to solve, one for each setting of∆p, ∆q:

1 0 + ∆q (0 + ∆q)2 0 + ∆p (0 + ∆p)(0 + ∆q) (0 + ∆p)2

1 0 + ∆q (0 + ∆q)2 2 + ∆p (2 + ∆p)(0 + ∆q) (2 + ∆p)2

1 0 + ∆q (0 + ∆q)2 4 + ∆p (4 + ∆p)(0 + ∆q) (4 + ∆p)2

1 2 + ∆q (2 + ∆q)2 0 + ∆p (0 + ∆p)(2 + ∆q) (0 + ∆p)2

1 4 + ∆q (4 + ∆q)2 0 + ∆p (0 + ∆p)(4 + ∆q) (0 + ∆p)2

1 2 + ∆q (2 + ∆q)2 2 + ∆p (2 + ∆p)(2 + ∆q) (2 + ∆p)2

c∆p∆q
00

c∆p∆q
01

c∆p∆q
02

c∆p∆q
10

c∆p∆q
11

c∆p∆q
20

=

1
2
3
2
3
4

Solving these systems for the four possible settings of(∆p,∆q) gives
c00(p, q) = [[1, 1

2]p, [1
2 ,

1
4]p]q = [[1, 1

2]p, [1
2 ,

1
4]p]q

c01(p, q) = [[1
2 ,

1
4]p, [1

2 ,
1
4]p]q = [1

2 ,
1
4]p

c02(p, q) = [[0, 0]p, [0, 0]p]q = 0
c10(p, q) = [[1

2 ,
1
2]p, [1

4 ,
1
4]p]q = [1

2 ,
1
4]q

c11(p, q) = [[1
4 ,

1
4]p, [1

4 ,
1
4]p]q = 1

4

c20(p, q) = [[0, 0]p, [0, 0]p]q = 0

As a result, the Ehrhart polynomial isE(p, q) = 1
4pq + [1

2 ,
1
4]qp+ [1

2 ,
1
4]pq + [[1, 1

2]p, [1
2 ,

1
4]p]q.

�

2.5 Images of integer polyhedra

This section deals with particular sets of regular spaced integral points. These sets are obtained by the
application of an affine function to all integral points contained in a polyhedron. Such set of points are ex-
tensively used in modeling the set of iterations that are specified by a specific class of nested loop programs,
as further discussed in Section 3.3 and Section 3.4.

3It just turned out that the results of the initial countings of the four sets are the same. This allowed me to write this example in
this compact way.

24 Basics

2.5.1 Integer polyhedral images

Previous sections dealt with polyhedra which are subset of a rational spaceQ
n. This section deals with

three types of images of integer polyhedra under affine mapping. In this dissertation I define an integer
polyhedron4 as the set of integer points contained in a polyhedron. That is, letP ∈ Qn be a polyhedron,
the integer polyhedron defined byP is P ∩ Zn. The tree types of integer polyhedral images discussed in
this section arelinearly bounded lattices, Z-polyhedra, andperiodic lattice polyhedra, and are discussed in
this and the following subsection.

Let be given two setsA ∈ Zn andB ∈ Zd. An integral affine functionM() : A → B is defined by
an integral matrixd × n matrixM and an integrald-vectorm by M(k) = Mk + m. Whenm is the
zero vector,M() is an integral linear function. Therank of M() is defined as the rank of the matrixM ,
rank(M). The functionM() is called non-singular when its matrix has an inverse. Let be given a set
S ⊆ A, the setI = M(S) = {i | i = M(s) ∧ s ∈ S} is called theimageof S underM().

All three kinds of integer polyhedral images are defined by the image of an integral polyhedronP ∩ Zn
under integral affine functionM().

Definition 2.19 (integer polyhedral image)
Let be given a polyhedronP ∈ Qn and an integral affine functionM() with d× n matrixM andd-vector
m. An integer polyhedral imageI ⊂ Zd is defined by

I = M(P ∩ Zn) = {i | i = Mk + m ∧ k ∈ P ∩ Zn} (2.16)

�

Without any constraints on the rank ofM() and the geometry ofP, (2.16) defines the first kind of integer
polyhedral image which is calledlinearly bounded lattice(LBL) [28].

Because in the LBL there are no additional constraints onM() andP, multiple points inP ∩ Zn are, in
general, mapped onto the same pointi ∈ Zd, and hence,M() has no inverse. The absence of an inverse
mapping in the LBL makes this model unsuitable in analyses that require such inverse. The other two kinds
of integer polyhedral images are theZ-polyhedron [73] andperiodic lattice polyhedronwhich are special
special cases the LBL model; they impose additional constraints onM() andP such that they have an
inverse of their mappings.

Definition 2.20 (Z-polyhedron)
Let be given an integral non-singulard × d matrix G and a polyhedronQ ∈ Qd. A (full-dimensional)
Z-polyhedron is defined byI = Q ∩ G(Zd) whereG() is the linear function with matrixG. The set
L = G(Zd) defines a so called full-dimensional integer lattice; the set of all integral linear combinations of
the columns ofG. �

Interestingly,Z-polyhedra have a canonical representation called theZ-polyhedron normal form [26]. Every
Z-polyhedronI = Q ∩ G(Zd) is represented by an integral polyhedral imageI = M(P ∩ Zd) with
M = BH, whereB is an linear unimodular basis ofZd such that the firstk columns ofB are a lowest
cardinality linear basis ofI,H is an integral matrix in Hermite normal form, andP is a rational polyhedron
that is derived fromQ andG() by a number of transformations [26].

From this it follows that aZ-polyhedron is an integer linear image withn = d andM() being defined by
a non-singular matrixM . So one can viewM() as a bijective functionM() : Zd → Z

d. The following
example illustrates aZ-polyhedron.

4Sometimes integer polyhedra are defined as rational polyhedra whose vertices are all integer. This definition is not used here.

2.5 Images of integer polyhedra 25

Example 2.4 (Z-polyhedron) Let I be theZ-polyhedron given byQ ∩ G(Z2) whereQ = {(x1, x2) ∈
Q

2 | 0 ≤ x2 ≤ 4 ∧ x2 ≤ x1 ≤ x2 + 9}, andG = [3 2
0 1]. I is shown in Figure 2.4 (a). Since the basis that

containsI is the identity matrix, matrixB is not shown.

0

1

2

3

4

5

0 1 3 4 5 7 8 9 10 11 12 132 6

x2

x1

Q

(a)I = Q∩G(Z2), G = [3 2
0 1], dots

showG(Z2), and black dots showI

0

−1

−2

−3

−4

−5

−6

−7

−8

0 1 2 3 4 5 6 7 8 9 10 11 12 13

x2

x1

P

(b) I = H(P ∩ Z2),H = [1 0
2 3],

and black dots showP ∩ Z2

Figure 2.4: A domain represented by (a) aZ-polyhedron and (b) its canonical representation.
�

Now consider the set of points in Figure 2.5. This set is constructed from subsets of three consecutive points
that is repeated along thex axis with apitch of four, and that is bounded by the polytope2 ≤ x ≤ 10,
indicated by the black colored dots. Note that there exists no full-dimensional integral latticeG(Z) that
intersected with a polytope results in the set of points in Figure 2.5, hence this set cannot be represented by
a (single)Z-polyhedron.

0
· · ·

10
· · ·

1 2 x

Figure 2.5: A set of points that cannot be presented by the intersection of a polytope and a full-dimensional
lattice.

2.5.2 Periodic lattice polyhedra

This section describes the third kind of integer polyhedral images. To my best knowledge this is a novel
model, which I callperiodic lattice polyhedra. They are less general than linearly bounded lattices but more
general thanZ-polyhedra.

Let me introduce periodic lattice polyhedra by the following example. The set of points in Figure 2.5 can
be represented by the image of the integer points contained by polytopeP = {(x, c) ∈ Q2 | 2 ≤ x ≤
10 ∧4c+ 1 ≤ x ≤ 4c+ 3} and the affine mappingL() represented by the matrixL =

[
1 0

]
. P andL(P)

are illustrated in Figure 2.6.

Definition 2.21 (lattice defining polyhedron)
Let be given two integersd andk, an integralk × d matrixA, an integral positive non-singular diagonal
k × k matrix Λ and two integralk-vectorsb = (b1, b2, · · · , bk) andc = (c1, c2, · · · , ck) with b ≤ c. A
d-lattice defining polyhedronPL is defined by

PL = {x ∈ Qn | b ≤
[
A Λ

]
x ≤ c} (2.17)

wheren = d+ k andΛ = diag(λ1, λ2, · · · , λk) with λj > cj − bj . �

Note that the region in between (and including) the two diagonal parallel lines in Figure 2.6 is a1-lattice
defining polyhedron withA = −1, Λ = 4, b = −3, andc = −1.

26 Basics

0
· · ·

10
· · ·

L =
[
1 0

]
1 2

P

x

x

c

0

1

3

2

Figure 2.6: The set of points in Figure 2.5 defined by the projectionL(P ∩ Z2) ontoZ.

Theorem 2.2
The projection of anyd-lattice defining polyhedron ontoQd isQd.

Proof
The proof is to show that for everyy ∈ Qd there exists ax ∈ PL such thaty = proj

Qd
(x). Since the

projection ofx ontoQd is the vector composed of the firstd elements ofx, x must have the form(y, z).
Thus, it must be proved that for any vectory there exists a vectorz such that(y, z) ∈ PL. Existence is
proved by solving (2.17) for equality withb, that is,b = Ay + Λz. By definitionΛ is non-singular and
hencez = Λ−1(b−Ay). �

Lemma 2.1
For any integral vectorm, there is at most one integral vector`̀̀ such that0 ≤m + `̀̀ < 1.

Proof
The proof is by contradiction. Assume that there exist two different integral vectorsu andv that meet the
constraints in Lemma 2.1. Because these vectors are different, there must be at least one coordinatei such
thatvi = ui + k, k 6= 0. Clearly withui such that0 ≤ mi + ui ≤ 1 the only integral value ofk such that
0 ≤ mi + ui + k < 1 is k = 0. This is in contradiction with the assumption thatu andv are different and
hence the solution in Lemma 2.1, if exists, is unique. �

Theorem 2.3
Let ad-lattice defining polyhedronPL ⊂ Qn be given. For any pointi ∈ Zd, there exists at most one point
k ∈ PL ∩ Zn such thati = proj

Qd
(k).

Proof
Let i be given. Like in the proof of Theorem 2.2, the solutions toi = proj

Qd
(k) must have the form

k = (i, `̀̀). So, the proof is to show that if`̀̀ exists it is unique. Substitutingk = (i, `̀̀) in (2.17) results in
b ≤ Ai + Λ`̀̀ ≤ c. Subtractingb from each term results in0 ≤ Ai − b + Λ`̀̀ ≤ c − b. By definition
Λ is non-singular and positive and henceΛ−1 can be applied to each term without changing the “≤”s, this
results in0 ≤ Λ−1(Ai − b) + `̀̀ ≤ Λ(c − b). By usingλj > cj − bj we getΛ−1(c − b) < 1 and hence
0 ≤ Λ−1(Ai− b) + `̀̀ < 1. Callingm = Λ−1(Ai− b) results in0 ≤ m + `̀̀ < 1 and by Lemma 2.1, if̀̀̀
exists it is unique and hencek is unique. �

Definition 2.22 (periodic lattice polyhedron I)
Let be given ad-lattice defining polyhedronPL ⊂ Qn, thed × n projection matrixL =

[
I 0

]
, and a

polyhedronQ ⊂ Qd. A periodic lattice polyhedronI is defined byI = Q∩L(PL ∩Zn), whereL() is the
linear function that hasL as its matrix. �

The periodic lattice polyhedron has an alternative representation. This representation is more useful in next
sections and is derived in the following.

2.5 Images of integer polyhedra 27

Definition 2.23 (embedded polyhedron)
Let a polyhedronQ ⊂ Qd be given. Then-dimensionalembedded polyhedronQE of Q is defined by

QE = {(x1, x2, · · · , xn) ∈ Qn | (x1, x2, · · · , xd) ∈ Q, d ≤ n} (2.18)

wheren is the dimension of the spaceQ is embedded in. �

Note that ford = n, QE = Q. Moreover, the embedding ofQ into higher dimensional space corresponds
to adding rays for any additional dimension in the corresponding direction.

Theorem 2.4
Let I = Q ∩ L(PL ∩ Zn) be a periodic lattice polyhedron inZd. Let J be the setJ = L(P ∩ Zn)
whereP = QE ∩ PL with QE then-dimensional embedded polyhedron ofQ. The two setsI andJ are
equivalent.

Proof
The setsI andJ are equivalent wheni ∈ I if and only if i ∈ J . I first prove that a)i ∈ I ⇒ i ∈ J and
then that b)i ∈ J ⇒ i ∈ I.
a) i ∈ I implies thati ∈ Q∧i ∈ L(PL∩Zn). Sincei ∈ L(PL∩Zn) there exists, according to Theorem 2.3,
a unique integral vectork = (i, `̀̀) ∈ PL∩Zn such thati = L(k). Sincei ∈ Q the vector(i, z) ∈ QE for all
z ∈ Qn−d and thusk = (i, `̀̀) ∈ QE . Sincek ∈ QE andk ∈ PL ∩ Zn with i = L(k), k ∈ QE ∩ PL ∩ Zn
and thusi ∈ L(QE ∩ PL ∩ Zn) = J .
b) i ∈ J implies that there exists ak ∈ QE ∩ PL ∩ Zn such thati = L(k), moreover, thisk is unique.
Clearly for thisk it holds thatk ∈ QE ∧ k ∈ PL ∩ Zn. ApplyingL() two both sides of the “∧” results in
L(k) ∈ Q ∧ L(k) ∈ L(PL ∩ Zn) and hencei = L(k) ∈ Q ∩ L(PL ∩ Zn) = I. �

Theorem 2.4 allows me to define periodic lattice polyhedra alternatively as follows.

Definition 2.24 (periodic lattice polyhedron II)
Let be given a polyhedronP = QE ∩ PL ⊂ Qn and thed × n matrix L =

[
I 0

]
. A periodic lattice

polyhedronI is defined by
I = L(P ∩ Zn) (2.19)

whereL() is the linear function whose matrix isL, that is,L() = proj
Qd

(). �

From Theorem 2.3 it follows thatL() is injective fromPL to Zd and hence fromP to Zd. This means that
L() : P → I is bijective and hence invertible.

Theorem 2.5
Let polyhedronQ ∈ Qd andd-lattice defining polyhedronPL be given. Further letQE be then-dimensional
embedded polyhedron ofQ. Q is a polytope if and only ifP = QE ∩ PL is a polytope.

Proof
This proof first shows that a)Q being a polytope implies thatP is a polytope and then b)P being a polytope
implies thatQ is a polytope.
a) WhenQ is a polytope, the embedding inQn results in a polyhedron that has all its lines perpendicular to
Q
d and has no rays (lines in one direction). Moreover,PL has no rays or lines that are perpendicular toQ

d

because it would violate Lemma 2.1 (similar to the proof in Theorem 2.3). Therefore, sinceP = QE∩PL, it
contains no lines and no rays and is therefore bounded. Since the projection of a polyhedron is a polyhedron,
P is bounded polyhedron and therefore a polytope.
b) It is a well known that the projection of a polytope is a polytope and henceQ = proj

Qd
(P) is a polytope.

�

28 Basics

Figure 2.7 illustrates the relations between the polyhedra in the two representations of periodic lattice poly-
hedra. In all cases the polyhedronQ ⊂ Qd is the projection of its embedded polyhedronQE ⊂ Qn onto
Q
d. In figures (a) and (b),d = 1 andn = 2; in figures (c) and (d),d = 1 andn = 3; and in figures (e)

and (f), d = 2 andn = 3. In the figure, I used the notationc1 andc2 for xd+1 andxd+2, respectively.
The first column of the figure shows the special cases where the vectorsb andc of PL in 2.17 are equal,
i.e., the rows of matrixA describe hyper-planes. The second column shows the general cases. Solid lines
represent bounds of the polyhedra. For example,QE in figure (d) is unbounded in the directionsc1 andc2

but is bounded in thex1 direction. Note, in all casesQ is a polytope and henceP is a polytope.

x1

c1 c1

x1

PL PLP

(b)(a)

P

QQ

QE QE

x1

c1

c2

x1

c1

PL
PL

P

c2

(d)(c)

P

QQ

QE QE

x2

c1

x1(e) (f)
x1

c1

x2

PL PL
P

P

Q Q

QE QE

Figure 2.7: Illustration of periodic lattice polyhedraI = Q ∩ proj
Qd(PL ∩ Zn) = proj

Qd(P ∩ Zn). I
itself is not depicted. HereP = QE ∩ PL andQ = proj

Qd(P). In figures (a,b),n = 2, d = 1, in figures
(c,d),n = 3, d = 1, and in figures (e,f),n = 3, d = 2. In the first and second columnPL is defined by only
hyper-planes and only pairs of parallel hyper-planes, respectively.

2.6 Ehrhart test 29

2.6 Ehrhart test

This section describes a novel method which I call theEhrhart test. The Ehrhart test is used to test whether
or not a point does belong to a certain integer polyhedral image. In addition, the Ehrhart test computes how
many integral points in the polytope that defines the integer polyhedral image are mapped onto points in the
space that contains the integer polyhedral image.

Let be given a parameterized polytopeP(p) ∈ Qn and an integral affine functionM() from Z
n to Zd

defining the integer polyhedral imageM(P(p)∩Zn). Often we are interested how many points inP(p)∩Zn
map onto a certain pointj ∈ Zd. This number is called the multiplicity ofj with respect toM(P(p)∩Zn).

In other words, let be given

K(p, j) = {x ∈ P(p) | j = M(x)} (2.20)

the problem is to findM(p, j) = | K(p, j) ∩ Zn | , the number of integral points inK(p, j).

Theorem 2.6
Let be given the integer polyhedral imageM(P(p) ∩ Zn), P(p) ∈ Qn andM() : Zn → Z

d. Further let
P(j) be the parameterized polyhedron{x ∈ Qn |M(x) = j}. The multiplicityM(p, j) of j ∈ Zd is a set
of Ehrhart polynomials associated with the affine-vertex polytopes ofP(p) ∩ P(j).

Proof
Since the intersection of a polytope with a polyhedron is a polytope,P(p) ∩ P(j) is a polytope. Clearly
K(p, j) in 2.20 isP(p) ∩ P(j) and, thus, is a polytope. By Section 2.3.2 the parameter space ofK(p, j)
can be partitioned such thatK(p, j) is an affine-vertex polytope on each of the partitions and consequently
by theorem 2.1 the enumerator ofK(p, j) is an Ehrhart polynomial. �

Example 2.5 (Ehrhart test) Let be given the integer polyhedral imageI = M(P(N) ∩ Z2) , where
P(N) = {(x1, x2) ∈ Q2 | 0 ≤ x1 ≤ N ∧ x1 ≤ x2 ≤ N} andM(k) = 2k1 + k2 + 3, (k1, k2) ∈ Z2.
Figure 2.8 showsP(N)∩Z2, andI = M(P(N)∩Z2). To find the multiplicity of pointsj the parameterized

000000 1 2 2 2 2 2 1 2 1 1 1 1 111

N=5

0

1

2

0 1 2 3 N=5

3

k1

k2

1 3 5 7 9 11 13 15 17 19 20181614121086420

j

P(j)

P(N)
K(j)

M(k)) =
[
2 1

]
k + 3

I

Figure 2.8: Multiplicity of pointsj in the domainI = (M,P(N)).

polyhedronP(j) is constructed,P(j) = {(x1, x2) ∈ Q2 | j = 2x1 + x2 + 3}. As a resultK(N, j) =
P(N) ∩ P(j) = {(x1, x2) | 0 ≤ x1 ≤ N ∧ x1 ≤ x2 ≤ N ∧ j = 2x1 + x2 + 3}. By using the Ehrhart

30 Basics

theory from a previous subsection the multiplicityM(N, j) = | K(N, j) ∩ Z2 | is

M(N, j) =

1
3j + [0,−1

3 ,−
2
3]j if 3 ≤ j ≤ N + 3

1
2N + [− 1

6j + [1, 7
6 ,

1
3 ,

3
2 ,

2
3 ,

5
6]j ,

− 1
6j + [3

2 ,
2
3 ,

5
6 , 1,

7
6 ,

1
3]j]N

if N + 3 ≤ j ≤ 3N + 3

0 otherwise

(2.21)

�

Note that in the example the domainI is not a polytope (intersected withZ) since there is a “hole” at
j = 17.

Since we sometimes are not interested to know how many integral points in a polytope map onto a pointj
but rather whether there is such a point, the Ehrhart test can also map the integer-valued multiplicity onto a
Boolean value.

2.A Homogeneous representation of polyhedra

The non-parameterized polyhedra seen so far describe a system ofinhomogeneousequations and inequal-
ities. They can be, however, represented as a system ofhomogeneousequations and inequalities. This is
done by transforming the polytope

P = {x ∈ Qn|Ax = b ∧ Cx ≥ d} (2.22)

into the cone

C = {
[
x
t

]
∈ Qn+1|Ax− bt = 0 ∧ Cx− dt ≥ 0 ∧ t ≥ 0} (2.23)

In [74] it is shown that this transformation is bijective (one-to-one correspondence) and inclusion-preserving
5.

The inhomogeneous polyhedronP can be obtained from its homogeneous representation via the inverse
transformation. This is done by intersectingC with the hyper-planet = 1 and projecting this intersection
onto the data space

P = {x |
[
x
1

]
∈ C} (2.24)

LetP be as in (2.3). By combining (2.4) and (2.22),P is represented in the homogeneous non-parameterized
form by

C = {

x
y
t

 ∈ Qn+m+1 |
[
A −B −b

] x
y
t

 = 0 ∧
[
C −D −d
0T 0T 1

]x
y
t

 ≥ 0}

= {x̃ ∈ Qn+m+1 | Ãx̃ = 0 ∧ C̃x̃ ≥ 0}

(2.25)

wherex̃ =

x
y
t

, Ã =
[
A −B −b

]
, andC̃ =

[
C −D −d
0T 0T 1

]
.

5This means thatP1 ⊂ P2 impliesC1 ⊂ C2 and vice versa. From this property it follows that operations on polytopes, such as
intersection, can be performed on their cones.

2.A Homogeneous representation of polyhedra 31

Theorem 2.7
Let P be a parameterized polyhedron as defined in (2.3), and letC be the homogeneous system that corre-
sponds with the non-parameterized representationP ′ of P, thenP can be obtained fromC as

P = {x|

x
p
1

 ∈ C} (2.26)

Proof
LetP ′ be the non-parameterized polyhedron that representsP and letC be the homogeneous representation
of P ′. From (2.24) we find

P ′ = {
[
x
y

]
|

x
y
1

 ∈ C} (2.27)

Substituting (2.27) into (2.5) gives

P = {x |
[
x
p

]
∈ {
[
x
y

]
|

x
y
1

 ∈ C}}
= {x |

x
p
1

 ∈ C}
(2.28)

�

A parameterized polyhedronP is completely characterized by the triple(A,C,p) whereA andC are the
matricesÃ andB̃ in (2.25). We use the notationP = (A,C,p) as a shorthand.

Note that the part(x,p, 1) ∈ C in (2.26) is the intersection ofC with the hyper-planest = 1 andy = p.
Call this intersectionP+

P+ = {

x
p
1

 ∈ C} (2.29)

Now (2.26) can be rewritten in
P = {x = Lz | z ∈ P+}. (2.30)

whereL is a matrix of the form
[
L1 L2

]
, with L1 ann × n identity matrix andL2 ann × (m + 1) zero

matrix.n is the dimension of the space containingP andm is the number of parameters.

Example 2.6 (parameterized polytope represented by cone)Consider the parameterized polytopeP =
{i ∈ Q | 1 ≤ i ≤ N + 1}, depending on the parameterN . The homogeneous system, as in (2.25), becomes
C = {(i, y, t) ∈ Q3 | t ≤ i ≤ t+ y, t ≥ 0} wherey is the free variable version of parameterN . Figure 2.9
shows the cone together with the intersections with the hyper-planest = 1 andy = N . The result of the
intersections gives the polytope

{

 iN
1

 ∈ Q3 | 1 ≤ i ≤ 1 +N}.

Projecting this polytope ontoQ1 gives back the original polytope. �

t = 1 t

y

y = N

{

iy
1

 ∈ Q3 | y = N}

i

P

P+

 1
N
1

 N + 1
N
1

Figure 2.9: Parameterized polytope represented as non-parameterized polyhedron in the homogeneous form.
The light shaded region is the coneC. The dark shaded planes are the hyper-planest = 1 andy = N ; their
intersection is the set{[i y 1]T ∈ Q3 | y = N}. The short bold lines representP+ and its projectionP
onto thei-axis.

Chapter 3
Modeling and analysis of piece-wise regular
programs

In Section 1 I have argued that it is beneficial to have an intermediate application model. This application
model must enable us to derive Kahn process networks in order to perform design space exploration or
mapping onto a target architecture. This section defines the intermediate model that is used in this disserta-
tion, the Polyhedral Reduced Dependence Graph (PRDG), and how a special class of nested loop programs
is converted into the PRDG model.

As indicated in Figure 1.3 our flow starts with programs written in Matlab. The first tool in the tool chain
is MATPARSER. The approach in this dissertation is that all programs that MATPARSER accepts are con-
sidered valid programs for the other tools. The set of iterations traversed by these programs can always be
described by periodic lattice polyhedra, but not always byZ-polyhedra, see Section 2.5. In this dissertation
we take the general approach by defining these iteration sets as periodic lattice polyhedra, although it might
be more efficient from a computational point of view to useZ-polyhedra, whenever possible, instead. The
useZ-polyhedra is seen as an optimization which might be considered in the future.

Section 3.1 extends the usual definition of a graph to a graph that also contains ports. This extended graph
definition defines the topology of the PRDG model that is defined in Section 3.2. Section 3.3 defines the
class of piece-wise affine nested loop programs in terms of their statements and how they are represented
as parse trees. Section 3.4 describes the conversion from parse trees to PRDGs.

3.1 Graphs

In this section I summarize some definitions for directed graphs from [75]. The terms introduced in this sec-
tion may have some different meaning for undirected graphs, like trees, and I shall mention such differences
when needed.

A directed graph(or digraph) G is a pairG = (V,A), whereV is a finite set andA is a binary relation
on V . The setV is called thevertex setof G. The elements ofV are calledvertices. The setA is called
the arc setof G. The elements ofA are called thearcs. When we view a graph pictorially, vertices are
represented by circles and arcs are represented by arrows. Note thatself-loops – arcs from a vertex to itself
– are possible.

If (u, v) is an arc in a directed graphG = (V,A), we say that vertexv is adjacent to vertexu and that arc

34 Modeling and analysis of piece-wise regular programs

(u, v) is incident fromvertexu andincident tovertexv.

A path of length k from a vertexu to a vertexu′ in a directed graphG = (V,A) is an ordered set
(v0, v1, · · · , vk) of vertices such thatu = v0, u′ = vk, and (vi−1, vi) ∈ A for i = 1, 2, · · · , k. The
length of the path is the number of arcs in the path. A path issimpleif all vertices in the path are distinct.
The path is said tocontainthe verticesv0, v1, · · · , vk and the arcs(v0, v1), (v1, v2), · · · , (vk−1, vk). A path
(v0, v1, · · · , vk) forms acycle if v0 = vk and the path contains at least one arc. A self-loop is a cycle of
length one. A graph with no cycles is calledacyclic.

The standard definition of a graph does not allow the graphG = (V,A) to have a pair(u, v) to be present
in the arc set more than once. Moreover, even if this was allowed (as inmulti-graphs), the model provides
no handles to associate behavior with the vertices unambiguously. Therefore I extend the notion of (multi-
)graph and introduce theextended graphstructure. In an extended graph nodes have ports and edges connect
pairs of ports. In this way the internal behavior of each node can refer unambiguously to its ports.

Let S be a set. A collectionS∗ of nonempty subsets ofS is said to be apartition of the setS if every
element inS is contained in exactly one member ofS∗. An ordered partitionis a partition whose members
are ordered sets. LetS∗ be a set of pairwise disjoint (ordered) sets, we writeS to denote the set of which
S∗ is a (ordered) partition.

Definition 3.1 (node)
A nodeis a pair(I,O) consisting of two disjoint ordered sets of ports, input ports(I) and output ports(O),
respectively, withI ∩ O = ∅. Let n be a node, then we writen = (In, On) and callIn andOn the input
port setandoutput port setof n, respectively. The union ofIn andOn is called theport set, denoted byPn,
of noden. �

Definition 3.2 (edge)
Let I andO be sets of input ports and output ports, respectively, such thatI ∩O = ∅. A directededgeis a
pair (o, i) whereo ∈ O andi ∈ I. �

Definition 3.3 (extended graph)
An extended graph is a pairG = (N,E) whereN is a set of nodes andE is a binary relation from
O = ∪n∈NOn to I = ∪n∈NIn represented by a set of edges such that(O ∪ I, E) is a graph with the
property that for every porti ∈ I there is at most one porto ∈ O for which (o, i) ∈ E. N is called thenode
setof G andE is called theedge setof G. �

Pictorially we view an extended graph with circles for the nodes, arrows for the edges, and dots for the ports
which are placed on the circumferences of the nodes to which they belong.

The graphG′ of an extended graphG = (N,E) is the graphG′ = (V,A) whereV is the set of vertices
obtained by associating every noden ∈ N with a unique vertexv. We writenode(v) to denote the nodev
is associated with. The arc set ofG′ is the setA = {(u, v) ∈ V 2 | ∃(o, i) ∈ E, such thati ∈ Inode(u) ∧ o ∈
Onode(v)}.

Let G be an extended graph.G is said to beacyclic when itsG′ is acyclic. An ordered set ofk nodes
(n1, n2, · · · , nk) of G form ak-cyclein G if the ordered set of vertices(v1, v2, · · · , vk) associated with the
nodes form ak-cycle inG′. A 1-cycle inG is called aself-loop.

Example 3.1 LetG be the extended graph(N,E) ,N = {n1, n2} = {({p1, p4, p8}, {p2, p3}), ({p5, p6}, {p7, p9})},
andE = {e1, e2, e3, e4}= {(p2, p1), (p2, p5), (p3, p6), (p7, p4)}. Figure 3.1 gives a pictorial view ofG and
its graphG′.
In next section a computational model, known as the dependence graph, is defined. In order to do so,nodes
andedgesare redefined to take behavior into account. Moreover,portsare specialized toinput portsand
output portswhich also have behavior.

3.2 Polyhedral Reduced Dependence Graphs 35

e1

e3

e4
p7

p3

p2

p4

e2
p5

p6

p1

n1 n2p8 p9 v1 v2

a1
a2

a3

(a) extended graphG (b) graphG′

Figure 3.1: Example of an extended graph (a) and its graph (b). �

3.2 Polyhedral Reduced Dependence Graphs

Previous section introduced the notion of extended graph. By adding behavior to the nodes of the extended
graph and by adding semantics to the nodes, ports and edges, we obtain acomputational network. This
section describes two types of computational networks, viz.,dependence graphs (DGs) andpolyhedral
reduced dependence graphs (PRDGs).

3.2.1 Dependence graphs

In a dependence graph (DG), ports, nodes, and edges have attributes added to their topological counterparts
in extended graphs; ports are labeled, nodes encapsulate functionality and edges are dependence relations.

A DG is an acyclic extended graph in which nodes are associated with operations onto variables and edges
are associated with communications of variables. An operation is a function that is encapsulated in a node.
A function receives its input arguments viainput portsof the node, and releases its return values viaoutput
portsof the node. From now on I shall use the termoutput argumentsfor the return values of a function.
The input arguments together with the output arguments of a function are the arguments of the function.
Output ports and input ports of nodes are connected via edges. These edges specify the communication of
variables between the ports of the nodes.

Definition 3.4 (input port)
An input port is a triple(a, v, t) consisting of a namea, a variablev and atypet. The type represents the set
of values which can be assigned to the variablev. The name is used to bind the port to an input argument
of a function. �

Definition 3.5 (output port)
An output port is a triple (a, v, t) consisting of a namea, a unique variablev and atype t. The type
represents the set of values which can be assigned to the variablev. The name is used to bind the port to an
output argument of a function. �

ThedomainP× of an ordered set of portsP = (p0, p1, · · · , p|P |−1) is theproduct setof the types of the
ports inP . A port is either active or passive; it is active when to its variablev a value of typet is assigned,
and it is passive otherwise. Initially a port is always passive.

Definition 3.6 (node)
A node is a triplen = (In, On, fn), whereIn is an ordered set of input ports,On is an ordered set of
output ports, andfn : I×n → O×n is a function encapsulated in the node. The input arguments of the
input ports inIn are bound to the input arguments offn by name. Similarly, the output arguments of the
output ports inOn are bound to the output arguments offn by name. A node is either enabled or disabled
(blocking); it is enabled when all its input ports are active and all its output ports are passive and it is
blocking otherwise. When a node is enabled it fires, i.e., all values assigned to the variables of the node’s

36 Modeling and analysis of piece-wise regular programs

input ports are taken, making them passive, and are passed to the input arguments of the node’s function.
The function is evaluated and its return values are assigned to the variables of the node’s output ports, one
for every port, making them active. �

Definition 3.7 (edge)
An edge is a pair(o, i), whereo andi are an output port and input port, respectively. All edges incident
from some active output porto copy the value assigned too’s variable to the ports the edges are incident to.
�

The above definitions of node, edge, input port, and output port define a computational model whose un-
derlying structure is defined by an extended graph. A node fires when all its input ports are active. The
activation of input ports of some noden may depend on some other nodem, n is adjacent to. So, the
dependency between nodes is specified by the edges of the graph.

Definition 3.8 (dependence graph)
A dependence graph is an acyclic extended graphG = (N,E), specialized in the sense thatN is a set of
nodes{(In, On, fn)}n∈N whereIn andOn are sets of input and output ports, respectively, andE is a set of
edges defining a binary relation fromO = ∪n∈NOn to I = ∪n∈NIn. �

Note that a dependence graph is being acyclic by definition. If we would have allowed a cycle to be present
in such a graph, all nodes in the cycle would be be blocked initially and forever – because all ports are
passive initially, and would be blocked forever, since the ports in the cycle could only be activated when a
node in the cycle would fire.

Moreover, because a dependence graph is acyclic, every port is activated at most once, and consequently
a value is assigned to every variable at most once. This property is referred to as thesingle assignment
property. Computer programs having the single assignment property are calledsingle-assignment pro-
grams (SAPs). For single-assignment programs that have static control, it is well known that they may be
represented by a dependence graph [76]. This property will be further discussed in Chapter 4.

3.2.2 Polyhedral Reduced Dependence Graphs

A dependence graph describes the topology of the dependencies between the functions of its nodes, and
hides any additional regularity in the structure that may be present. However, often dependence graphs
of nested loop programs are of interest. The loops in nested loop programs represent repetitions of the
statements in the program in a compact manner. If loops are specified by a set of affine inequalities, then
there is an underlying regularity that can be exploited to reduce the polyhedral geometry in the DG which
is the result of the affine loop property.

Note: in previous chapter I used the worddomainto denote the set a function is defined upon, exclusively.
For example, the periodic lattice polytopeI = L(P∩Zd) describes a set of points defined by the projection
L() on the domainP ∩ Zd. Confusingly, literature often denotes the setI as a domain. To avoid this
confusion, I use the termindex setto describe the sets of integral points. These sets may be defined by
Z-polyhedra, LBLs, or periodic lattice polyhedra.

Definition 3.9 (input port domain)
Let Ip be an index set defined by a periodic lattice polyhedron and letp be an input port. An input port
domain is a set of indexed portspi given by

{pi | i ∈ Ip ∧ pi = (p, i)} (3.1)

3.2 Polyhedral Reduced Dependence Graphs 37

where(p, i) represents an instance of portp at the index pointi. As a shorthand for (3.1) we writeP =
(p, Ip). �

Definition 3.10 (output port domain)
Let Iq be an index set defined by a periodic lattice polyhedron and letq be an output port. An output port
domain is a set of indexed portsqj given by

{qj | j ∈ Iq ∧ qj = (p, j)} (3.2)

where(q, j) represents an instance of portq at the index pointj. Let d be the dimension of the space that
containsIq, then the set of variables associated with the ports in an output port domain are all contained in
a d-dimensional variable arrayv. The variable associated with the portqj is v(j). As a shorthand for (3.2)
we writeQ = (q, Iq). �

Definition 3.11 (node domain)
Let In be an index set defined by a periodic lattice polyhedron and letn be a node. Anode domainis a set
of indexed nodesni given by

{ni|i ∈ In ∧ ni = (n, i)}. (3.3)

where(n, i) represents an instance of noden at the iteration pointi. �

How attractive Definition 3.11 seems, it makes sense to come up with an alternative representation of a
node domain. This is so because the definition above may be interpreted as computation centric, that is, at
every pointi ∈ I the noden = (I,O, f) is present. In this dissertation the main concern is communication.
Therefore, the alternative representation that is given below is communication centric, that is, the node
domain in (3.3) is represented in terms of a set of input port domainsIN , a set of output port domainsON ,
a functionfn, and an index setIn.

Let the node in (3.3) haveK input ports andL output ports with input port setIn = (p1, p2, · · · , pK) and
output port setOn = (q1, q2, · · · , qK), respectively. Substitution of the port sets inton = (In, On, fn) into
(3.3) results in

N = {((p1, p2, · · · , pK), (q1, q2, · · · , qL), fn)i | i ∈ I} (3.4)

Rather then indexing the nested tuples in (3.4), the indexing can be moved within the nesting. This means
thatpk, k = 1, 2, · · · ,K is replaced by{pk, i | i ∈ I} and thatq`, ` = 1, 2, · · · , L is replaced by{q`, i | i ∈
I}. By using the shorthands(pk, I) and(q`, I) for these replacements we get

N =(((p1, I), (p2, I), · · · , (pK , I)), ((q1, I), (q2, I), · · · , (qL, I)), {fn,i|i ∈ I})
=((P1, P2, · · · , PK), (Q1, Q2, · · · , QL), fn, In)

(3.5)

wherePk = (pk, I), k = 1, 2, · · · ,K are input port domains andQ` = (q`, I), ` = 1, 2, · · · , L are output
port domains of the node domain.

Because (3.4) is a set of nested tuples and (3.5) is a nested tuple of sets, (3.4) and (3.5) are not equivalent.
However, one can derive the (3.5) from the (3.4), as is done above, and vice versa.

Now, any of thePk andQ` may be partitioned by partitioning their defining index setI. For every
k = 1, 2, · · · ,K there is a partitioningI∗k of I, I∗k = {Ik,1, Ik,2, · · · , Ik,uk}, whereuk is the number
of partitions inI∗k . For every` = 1, 2, · · · , L there is a collection (not necessary a partitioning)J ∗` of I,
J ∗` = {J`,1,J`,2, · · · ,J`,v`}, wherev` is the number of sets inJ ∗` . The input portpk and the partitions
Ik,i, i = 1, 2, · · ·uk define a partitioning of the input port domainsPk, Pk,i = (pk, Ik,i). The output port

38 Modeling and analysis of piece-wise regular programs

q` and the index setsJ`,j , j = 1, 2, · · · , v` define a set of (possibly overlapping) output port domainsQ`,
Q`,j = (q`,J`,j). The resulting node domain representation is

N = ((P1,1, P1,2, · · ·P1,u1 , · · · , PK,uK), (Q1,1, Q1,2, · · · , Q1,v1 , · · · , QL,vL), fn, In)

= (IN , ON , fn, In)
(3.6)

whereIN is the ordered set of input port domains(P1,1, P1,2, · · ·P1,u1 , · · · , PK,uK) andON is the ordered
set of output port domains(Q1,1, Q1,2, · · · , Q1,v1 , · · · , QL,vL). From now on a node domain is represented
by the tuple(IN , ON , fn, In). Note that this is an extension of the node in the extended graph with the pair
(fn, In).

Input port domains and output port domains are related by edge domains. A compact way of representing
a set of indexed edges is to specify a function from the index set of the input ports to the index set of the
output ports.

Definition 3.12 (edge domain)
Let P = (p, Ip), with Ip = (Lp,Pp), andQ = (q, Iq) be an input port domain and an output port domain,
respectively. An edge domain is an indexed set of edgeseij given by

{(eij = (qj, pi) | i = Lpk ∧ j = Dk ∧ k ∈ Pp} (3.7)

wherepi ∈ P and qj ∈ Q. As a shorthand for (3.7) we writeE = (e, Ie), wheree = (Q,P) and
Ie = (D,Pp). �

The definitions of input port domain, output port domain, node domain, and edge domain are used to reduce
the representation of a dependence graph. Rather than enumerating all nodes, edges, and ports in the DG,
the reduced representation contains a collection of node domains, edge domains and port domains.

I have shown that an input port domain, output port domain, node domain, and edge domain is obtained by
associating an index set with an input port, output port, node, and edge. Because these objects are attributed
versions of the objects in extended graphs, a set of input port domains, output port domains, node domains,
and edge domains construct an attributed version of an extended graph as well.

Definition 3.13 (polyhedral reduced dependence graph)
A polyhedral reduced dependence graph is a reduced representation of a dependence graph. It is an extended
graphG = (N , E), specialized in the following way

• every nodeN ∈ N has an extra pair(fn, IN) associated with it, that is, it is a node domainN =
(IN , ON , fn, In), whereIN andON are sets of input port domains and output port domains, respec-
tively, and

• every edgeE ∈ E has an extra index setIe associated with it, that is, it is an edge domainE = (e, Ie),
wheree = (Q,P), Q ∈ ON ∧ P ∈ IM , whereON andIM are the output port domain set and input
port domain set of node domainsN andM , respectively.

In addition, the collection of sets of nodes inN , the collection of sets of edges inE, and the collection of
sets of input ports inIN are pairwise disjoint over allN . �

3.3 Parse tree representation of single-assignment programs

This section describes the relation between a nested loop program, its single-assignment program, and its
parse tree representation. The next section describes how single-assignment programs are converted into
polyhedral reduced dependence graphs.

3.3 Parse tree representation of single-assignment programs 39

A single-assignment program is a computer program in which to every variable, a value is assigned only
once [77]. Such programs may be written by hand or may be the result of anarray dataflow analysisof
an imperative program. An array dataflow analysis is the analysis that finds all flow dependencies in a
program [78].

One such array dataflow analysis compiler is MATPARSER [13]. The input of MATPARSER is an im-
perative program expressed in a subset of the MATLAB language which is described in sections 3.3.1 –
3.3.3. The output of MATPARSER is either a single-assignment program, or a parse tree representing a
single-assignment program. In this dissertation I assume that a single-assignment program is generated
with MATPARSERand that it is represented by a parse tree with annotated nodes.

Nested loop programs are well represented by parse trees. In this dissertation I focus on a specific class of
nested loop programs, the so-calledparameterized piece-wise affine nested loop programs[12, 79] which
are precisely the programs accepted by the MATPARSER tool. An example of a parameterized piece-wise
affine nested loop program and its single-assignment program is given in Program 3.1 and Program 3.2,
respectively. The initialization of the arraya has been omitted for brevity purposes.

Parameterized piece-wise affine NLPs can be expressed as parameterized piece-wise affine SAPs1, using
statements specified in subsections 3.3.1–3.3.3. Single-assignment programs contain two types of state-
ments: Assignment statements and control statements.

Program 3.1: EXAMPLE NLP
%parameterN 10 20;
%parameterM 10 20;
for i = 1 : 1 : N,

for j = 1 : 1 : M,

[a(i+ j)] = f(a(i+ j));
end

end

Program 3.2: EXAMPLE SAP
%parameterN 10 20;
%parameterM 10 20;
for i = 1 : 1 : N,

for j = 1 : 1 : M,

if i− 2 ≥ 0,
if j ≤M − 1,

[in0] = ipd (a1(i− 1, j + 1));
else

[in0] = ipd (a(i+ j));
end

else
[in0] = ipd (a(i+ j));

end
[out0] = f(in0);
[a1(i, j)] = opd (out0);

end
end

3.3.1 Assignment statements

Assignment statements occur in of the functional part of the program (as opposed to the control part of
the program); they deal with the assignment of values to variables, the binding of variables to arguments
of functions, and function calls. There are three types of assignment statements, viz.,ipd statements,
opd statements, andnodestatements. They have the following semantics and syntax:

• ipd statement. This is a variable-to-argument binding. An example of anipd statement is “[in0] =

1That is, the property “piece-wise affine” is preserved. A SAP is piece-wise affine if a PRDG for it exists.

40 Modeling and analysis of piece-wise regular programs

ipd (a(i+ j));” in Program 3.2. The syntax of theipd statement is:

[arg] = ipd (var(index));

wherearg is a string representing the input argument of a function,var is the variable array name, and
indexis an integral affine function of index variables, control variables, and parameters (all three will
be defined later). This function is called theindexing functionor dependence function. For example,
the indexin [in0] = ipd (a1(i− 1, j + 1)) is the integer affine function[1 0

0 1]
[
i
j

]
+
[−1

1

]
.

• opd statement. This is an argument-to-variable binding. An example of anopd statement is “[a1(i, j)] =
opd (out0);” in Program 3.2. The syntax of theopd statement is:

[var(index)] = opd (arg);

wherearg is a string representing the output argument of a function,var is the variable array name,
andindexis an integral affine function, the indexing or dependence function.

• nodestatement. This is an assignment statement containing a function call. An example of anodestatement
is “[out0] = f(in0);” in Program 3.2. The syntax of thenodestatement is:

[arg,arg, · · · ,arg] = function(arg,arg, · · · ,arg);

where[arg,arg, · · · ,arg] is the list of output arguments of the function with namefunctionand where
(arg,arg, · · · ,arg) is the list of input arguments of the function.

3.3.2 Control statements

Control statements describe the structure of a SAP. There are four types of control statements: thefor
statement, theconditional statement, the indextransformation statement, and theparameter declaration
statement. The four control statements have the following semantics and syntax:

• for statement. This statement is used to specify repetitive execution of a set of statements, calledbody.
The syntax of thefor statement is:

for var = expression: integer: expression,
body

end

wherevar is a variable called theloop variableor index variable. The left hand sideexpressionand the
right hand sideexpressionare thelower boundand upper bound of the loop, respectively. Theinteger

is an integral value, called thestrideor step sizeof the loop. The first line of thefor statement is called
theheaderof the loop. Let the header of the loop befor i = ` : s : u, with s being an integer. The
loop indexi specifies a set of index pointsI = {` + ks}pk=0, wherep is the largest integer for which
`+ ps ≤ u. For everyi ∈ I, bodyis executed once.

• conditional statement. This statement is used to specify the conditional execution of one of two sets
of statements. The syntax of theconditional statement is:

if expression≥ 0,
if-body

else
else-body

end

3.3 Parse tree representation of single-assignment programs 41

where the expressionexpression≥ 0 is called thecondition. Expressions of the forme1 ≤ e2 or
e1 ≥ e2 can be written in the default form ase2−e1 ≥ 0 ande1−e2 ≥ 0, respectively. If the condition
is true, then theif-body is executed, else theelse-bodyis executed. Theelse keyword together with
theelse-bodyare optional.

• index transformation statement. This statement is used to definecontrol variables that can be used in
the expressions ofconditional andfor statements. The syntax of theindex transformation statement
is:

var = expression;

wherevar is the control variable defined and whereexpressionis a pseudo-affine expression, see
Subsection 3.3.3.

• parameter declaration statement. This statement is used to declare parameters. The syntax of the
parameter declaration statement is:

%parameter var integer integer;

wherevar is the parameter and the left and right hand sideinteger specify therangeof values the
parameter can be given. This range is thecontextof the parameter.

3.3.3 Type of expressions in statements

All statements except thenodestatement contain expressions. There are two types of expressions:affine
expressionsandpseudo-affine expressions. The type of expression allowed in the statements differs per
statement. An affine expression is a multivariate polynomial of degree one

a1k1 + a2k2 + · · ·+ an−1kn−1 + an (3.8)

where theais are rational coefficients and thekis are integer variables. When an affine expression evaluates
to an integer value for all integerkis we say that the expression isintegral.

A pseudo-affine expression extends the affine expression in the sense that at least one of its terms is pseudo-
linear:

a1c1 + a2c2 + · · ·+ an−1cn−1 + an (3.9)

where theais are rational coefficients and at least oneci an integer division function, the othercis being
integer variables. In caseci is an integer division function it takes the form of one of the equations 3.10-3.13.

ci = mod(ei, bi) (3.10)

ci = div(ei, bi) (3.11)

ci = floor(ei) (3.12)

ci = ceil(ei) (3.13)

whereei is an integral affine expression andbi is a strictly positive integer. Moreover, in (3.10) and (3.11)
ei must have integral coefficients. Pseudo-affine expressions are found in

• lower and upper bounds offor statements,

• conditions inconditional statements, and

• expressions inindex transformation statements.

42 Modeling and analysis of piece-wise regular programs

All other expressions are affine expressions.

One more remark about the expressions in statements of a SAP is in order. The statement must be in the
scope of all variables used in its expressions. For example, it is not allowed that the index variable of a
for statement is used in expressions outside the loop body.

3.3.4 Properties of single-assignment programs

The code produced by MATPARSERexhibits two important properties:

Property 1: The code has new variable arrays introduced for each variable array in the original program
to which values are potentially assigned during the execution of the program. Potentially, because it can
be the case that assignment statements appear in dead code or code that is dead depending on parameter
settings. The names of the newly introduced variable arrays have in addition to the original variable array
name a unique subscript.

Property 2: The code is in so calledoutput normal form, this means that the variables in the left hand
side of eachopd statement are fully indexed, that is, if(i1, i2, · · · , in) is the tuple of loop indices of the
loops enclosing theipd statement, in outer loop to inner loop order, then the left-hand side variable of
theopd statement is indexed by the same tuple. For example, the statement[a1(i, j)] = opd (out0); – in
Program 3.2 – is fully indexed.

Lemma 3.1
Programs produced by MATPARSERhave the single assignment property.

Proof
Because all variable names in the statements of the program are unique (property 1), multiple assignments
can only take place in a single statement, and because the program is in output normal form (property 2), the
repetition of the execution of that statement goes with a unique index set, such that no multiple assignment
can occur. �

As we will see, these two properties are important when interpreting the SAP.

3.3.5 Parse trees

In the parse tree representation of a SAP, the statements are associated with the nodes in the parse tree.
These statements must be seen as parse subtrees themselves, embedded in the parse tree and described by
the syntax of the statements. In this way the parse tree as described here corresponds to the parse tree
in [80]. For the complete grammar of the parse trees see [13]. The topology of the parse tree represents the
control structure of the program. The parse tree representation of Program 3.2 is given in Figure 3.2.

The node labeled with the “@” symbol is theroot of the tree. The parse tree is an ordered tree and must be
interpreted depth first, left to right. In an ordered tree the children of each node are ordered. That is, if a
node hask children, then there is a first child, a second child,· · · , and ak-th child [75]. When we draw a
parse tree, the children of each node are drawn in a left-to-right order.

The parse tree is constructed is such way that the scope of each control variable, loop variable, and pa-
rameter in the SAP corresponds to the set of subtrees rooted by the children of the statement defining the
variable. For this reason, theparameter declaration statements are the ancestors of all other statements.
As an example, consider the program in Figure 3.3 (a). The program contains aparameter declaration
statement and twoindex transformation statements. Figure 3.3 (b) shows the parse tree of the program
and illustrates that the scope of parameterN is the complete program. The parse tree also illustrates that

3.4 From parse tree to polyhedral reduced dependence graph 43

if i− 2 ≥ 0,

[ino] = ipd (a1(i− 1, j + 1));
[ino] = ipd (a(i+ 1));

[ino] = ipd (a(i+ 1));
if j ≤M − 1, else [out0] = f(in0);

[a1(i, j)] = opd (out0);
else

for j = 1 : 1 : M,

for i = 1 : 1 : N,

parameterM 10 20;

parameterN 10 20;

@

Figure 3.2: Parse tree of Program 3.2.

the index transformation statement “q = mod(i, 3);” is the parent of the twoif statements that follow it
in the program, rather than their left sibling.

%parameterN 8 16;
for i = 1 : 2 : N,
q = mod(i, 3);
if q ≤ 0,

[] = f();
end
if mod(i, 5) ≤ 0,

[] = g();
end

end

@

parameterN 8 16;

for i = 1 : 2 : N,

if mod(i, 5) ≤ 0,

[] = f(); [] = g();

q = mod(i, 3);

if q ≤ 0,

(a) SAP (b) parse tree

Figure 3.3: A SAP with two index transformation statements (a) and its parse tree (b).

From now, on the term NLP is used to denote parameterized piece-wise affine nested loop programs, and
the term “SAP” is used to denote the single-assignment program of an NLP generated with MATPARSER

as code or parse tree. The next step is to convert a SAP into a polyhedral reduced dependence graph. For
more information on the class of nested loop programs discussed in this dissertation, their single-assignment
programs, and their parse tree representations, see [12,13,79,81].

3.4 From parse tree to polyhedral reduced dependence graph

This section describes the procedure used to convert single assignment programs into the polyhedral reduced
dependence graph (PRDG) model. I assume the single-assignment program is generated with the tool
MATPARSER.

Section 3.2 defined the elements of a PRDG by attributing the elements of an extended graph with both
behavior and geometry. Because the extended graph describes topological properties only, the elements of
a PRDG are described by a triple (topology, behavior, geometry). Table 3.1 summarizes the definitions of

44 Modeling and analysis of piece-wise regular programs

the elements of the PRDG and explicitly shows how these elements are constituted from their behavioral,
topological, and geometrical part.

type notation behavior topology geometry
input port domain P p Ip
output port domain Q q Iq
node domain N fn (IN , ON) In
edge domain E (Q,P) Ie

Table 3.1: Elements of the PRDG and their behavioral, topological, and geometrical constituents.

The conversion of a SAP to a PRDG thus comprises the extraction of behavior, topology and geometry from
the SAP.

• The elements in the columngeometryin Table 3.1 are encoded in the SAP in its control statements and
the indexing functions of itsipd andopd statements.

• The elements in the columnbehavior in Table 3.1 are encoded in the leaf nodes of the parse tree.
Depending on the type of the statement, a primitive node, primitive input port, or primitive output port
has to be constructed.

• The elements in the columntopologyin Table 3.1 are also encoded in the leaf nodes of the parse tree.
Their relative position and the variable array name, in case ofipd or opd statement, are of importance.

Section 3.4.1 deals with the derivation of geometry. Section 3.4.2 deals with the derivation of behavior and
topology.

3.4.1 Domain construction

The index vectoror iteration vectorof a statement is defined as the vector composed of the index variables
of the for statements in the path from the root of the parse tree to the parent of the statement. Aniteration
of a statement is a specific value of its index. The set of all iterations for which a statement is executed is
called theindex setof that statement.

Besides the index vector of a statement, two more vectors are significant. Thecontrol vectorof a statement
is defined as the vector composed of all control variables of the statements in the path from the root of
the parse tree to the parent of that statement. Theparameter vectorof a statement is defined as the vector
composed of all parameters of the statements in the path from the root of the parse tree to the parent of that
statement.

When specifying the index set of a statement as a periodic lattice polyhedron as defined in (2.19), a set of
affine constraints is associated with every control statement. This is done in three steps: First a set of (possi-
bly pseudo-affine) constraints are associated with every statement, second all pseudo-affine constraints are
rewritten into sets of affine constraints, third the set of affine constraints from the root of the parse tree to
the statement are collected in a single system of constraints.

Extracting constraints from the parse tree

In the first step of domain construction, the syntax of the control statements leads straightforwardly to the
constraints:

3.4 From parse tree to polyhedral reduced dependence graph 45

• Let for i = ` : s : u be the header of afor statement. Three constraints are associated with this
statement, viz.,̀ ≤ i ≤ u for the loop bounds andi = `+ qs, q being a free variable. Whens = 1 the
constrainti = `+ qs is redundant and therefore dropped.

• Let if e ≥ 0 be the header of anif statement. The constraint associated with this statement is its
condition e ≥ 0. The constraint associated with theelsestatement is the integral complement of
e ≥ 0, that is,−e− 1 ≥ 0.

• Let q = e; – be anindex transformation statement. The constraint associated with this statement is
the statementq = e itself (without the semicolon).

• Let %parameter N ` u; – be aparameter declaration statement. Two constraints are associated with
this statement, viz.,̀≤ N ≤ u.

Conversion of pseudo-affine expressions into affine expressions

In the second step of domain construction, the pseudo-affine expressions are converted into affine expres-
sions. To do this, I use a technique similar to that used in [12,82]. For every pseudo-linear term that appears
in an expression, two additional constraints are introduced.

Recall that inmod(ei, bi) anddiv(ei, bi), ei has integral coefficients andbi is strictly positive. Moreover,ei
in floor(ei) andceil(ei) can be alternatively rewritten intoei = e′i

bi
wherebi is the least common multiplier

lcm() of the denominators of the coefficients. It is assumed that the coefficients ofei are co-prime. If not,
then the coefficients must be put in theirco-prime formfirst by dividing numerator and denominator by
their lcm(). Now e′i has integer coefficients such that it can converted into an affine expression with integer
coefficients easily.

Let ei be an affine expression and letbi be a positive integer. Further, let{· · ·+aici+· · · ≥ 0} be a constraint
with aici being a pseudo-linear term. Equations 3.14-3.17 show the conversion of the pseudo-linear term
for any of the four integer division functions.

· · ·+ ai mod(ei, bi) + · · · ≥ 0⇔

{
· · ·+ ai(ei − bid) + · · · ≥ 0

0 ≤ ei − bid ≤ bi − 1
(3.14)

· · ·+ ai div(ei, bi) + · · · ≥ 0⇔

{
· · ·+ aid+ · · · ≥ 0

0 ≤ ei − bid ≤ bi − 1
(3.15)

· · ·+ ai floor(ei) + · · · ≥ 0⇔

{
· · ·+ aid+ · · · ≥ 0

0 ≤ e′i − bid ≤ bi − 1
(3.16)

· · ·+ ai ceil(ei) + · · · ≥ 0⇔

{
· · ·+ aid+ · · · ≥ 0

1− bi ≤ e′i − bid ≤ 0
(3.17)

whered is the newly introduced control variable.

Collecting the constraints

In the third step of domain construction, the individual sets of constraints per statement are combined into
one system of constraints. For a given statement, the vector composed of its index vectori, its control
vectorc, the parameter vectorp, and the homogeneous constantt = 1 is called thedata-parameter vector

46 Modeling and analysis of piece-wise regular programs

k, defined as

k =

i
c
p
t

 . (3.18)

Let s be a statement. Let(@, s1, s2, · · · , sn) be the path from the root of the parse tree to the parent ofs.
Let k be the data-parameter vector ofs, and let{Aik = 0 ∧ Cik ≥ 0} be the sets of constraints associated
with si, i = 1, 2, · · ·n. By construction, the index set ofs is a periodic lattice polyhedron and is given by
I = (L,P), where the number of rows ofL equals the dimension of the index vector of the statements and
whereP is the polytope constructed as

P = {x ∈ Qd |

A1

A2
...
An

x = 0 ∧

C1

C2
...
Cn

x ≥ 0} (3.19)

whered is the dimension of the data-parameter vector.

Figure 3.4 illustrates the sets of affine constraints associated with the statements in the parse tree in the
program in Figure 3.3.

[] = f(); [] = g();

@

8 ≤ N ≤ 16

i = 1 + 2s1

i− 3d1 ≤ 0

0 ≤ i− 3d1 ≤ 2

0 ≤ i− 5d2 ≤ 4
i− 5d2 ≤ 0

1 ≤ i ≤ N

Figure 3.4: New parse tree of program in Figure 3.3.

In this figure the additional control variablesd1 and d2 are introduced. The method of this section is
implemented by Algorithm GET-DOMAIN ().

GET-DOMAIN(l)

1 s← parent[l]

2 D ← NIL

3 while s 6= NIL

4 doC ← GET-CONSTRAINTS(s)

5 D ← ADD-CONSTRAINTS(D,C)

6 s← parent[s]

7 return D

where GET-CONSTRAINTS() converts the statement into a set of constraints and ADD-CONSTRAINTS()
constrainsD with the just derived set of constraintsC.

The construction of the SAP is such that theopd statements are direct siblings at the right-hand side of the
nodestatements, and consequently, they have the same index set.

3.4 From parse tree to polyhedral reduced dependence graph 47

3.4.2 Creating the PRDG

This section deals with the extraction of behavior and topology from the parse tree. The PRDG is con-
structed by using the derived behavior and topology together with the domain construction presented in
previous section.

The conversion of the parse tree to a PRDGG = (N , E) encompasses the conversion of thenode, ipd, and
opd statements to node domains, input port domains, output port domains, and edge domains. Lets be a
leaf node of the parse tree and let its index setI be given by(L,P). Depending on the type of statements

one of the following must be done for each leaf nodes.

• if s is anopd statement
LetQ be the corresponding output port domainQ = (q, Iq). ThenIq = I andq is the primitive output
port q = (arg, var, double2) with arg andvar parsed froms.

• if s is anipd statement
Let P be the corresponding input port domainP = (p, Ip). ThenIp = I andp is the primitive input
portp = (arg, var, double) with arg andvar parsed froms.

• if s is anipd statement
LetE be the corresponding edge domainE = ((Q,P), Ie). ThenP is the input port domain associated
with s andQ is the output port domain that has the same variable in its primitive port asP has. Further,
Ie is the index set(D,Pe) wherePe = P andD is the mapping matrix, defined at the end of Section
3.3.1, ofs.

• if s is annodestatement
LetN be the corresponding node domainN = (IN , ON , fn, In). ThenIn = I andfn is thefunction
parsed froms. Further,IN andON are the set of input port domains and output port domains con-
structed from theipd andopd statements directly preceding and following thenodestatement in the
parse tree, respectively. The parsing of the functionfn from the statements is implemented by the
method PARSE-FUNCTION(s).

This conversion is implemented in the tool DGPARSER and is described in Section 5.2. Its input is a SAP
converted into a parse tree using the parser from the MATPARSER tool. The parse tree is then transformed
into a PRDG.

2I use the typedouble here to represent the 54 bit floating point precision standard in MATLAB .

48 Modeling and analysis of piece-wise regular programs

Chapter 4
Synthesis of KPNs from dependence graphs

Chapter 3 dealt with the polyhedral reduced dependence graph (PRDG) model and with the techniques to
convert a single assignment program into this model. This section focuses on the conversion of a PRDG
into a Kahn process network (KPN).

Again, parse trees are used as an intermediate representation. First the PRDG is converted into aset ofparse
trees, then from the parse trees the final code of the processes are generated. However, the network that
connects the process is directly generated from the PRDG. Note that I use parse trees as output representa-
tion, but these trees will now represent a significantly different computation model; KPN instead of nested
loop programs (NLP).

Roughly stated, the conversion works as follows: For every node domain in the PRDG, a Kahn process in
parse tree representation is constructed. Apart from the statements found in NLPs, these parse trees contain
communication primitives that allow to the processes to communicate with each other over channels. These
channels connects the processes and are constructed from the edge domains in the PRDG.

The remainder of this chapter is organized as follows. Section 4.1 motivates the use of Kahn process
networks and relates this model to other process network models and data flow networks found in literature.
Section 4.2 describes a structuring of the parse tree representation of the Kahn processes. This structuring
is such that it naturally fits the model of the node domain. The conversion of a node domain into a parse
tree is divided in three steps, shown in Figure 1.3:domain scanning, domain matching, andlinearization.
Section 2.6 describes a method that is used in any of the three steps that is dealt with in sections 4.3 – 4.5.
Section 4.6 finally deals with the construction of the process network itself.

4.1 Kahn process networks

Chapter 1 motivated that in order to map an application specified by an NLP onto a task level parallel (TLP)
architecture, that this application is first translated into a process network. This section motivates the use of
a specific model; theKahn process networkmodel.

To map applications onto such a TLP architecture it is beneficial to specify the applications in terms of a
model that maps naturally onto the architecture. It is desired that for such a model the following require-
ments are met:

• The model should enable the designer to understand the specification and enable him to reason about
it.

50 Synthesis of KPNs from dependence graphs

• The model should be general enough to model a reasonable variety of applications in a specific appli-
cation domain.

• The model should be implementation-independent, as far as possible.

• The model should naturally expose the parallelism inherent in the application.

• The model should enable the use of both coarse-grain as well as fine-grain parallelism.

• The model should make the communication and synchronization explicit.

Basically there are two types of models that roughly fulfill these requirements, viz.,dataflow networksand
process networks. Both dataflow networks and process networks are graphs where the nodes represent
computation and the edges represent communication and synchronization. I distinguish the two types of
networks as follows.

In dataflow networks, a node represents an atomic unit of computation (a mathematical function) and is
called an actor. An edge in a dataflow graph represents a channel that can carry a (possibly infinite) number
of tokens. A token is a container of information. Actors communicate with each other by producing tokens
on their output channels and consuming tokens from their input channels.

An actor is said to be enabled when all tokens on its input channels are available. An enabled actor can fire
(start its execution). A firing goes as follows: first, the actor consumes all required tokens from its input
channels and passes them as arguments to the function. Second, the function is executed. Third, the results
of the execution are produced as tokens on the actor’s output channels. These three steps form semantically
one atomic action.

Dataflow actors have firing rules. These rules specify what tokens must be available at the inputs for the
actor to fire. When an actor fires, it consumes some finite number of input tokens and produces some finite
number of output tokens. A process may be formed by repeated firings of the same dataflow actor so that
infinite streams of data may be operated upon.

There is a large variety of dataflow actors and associated firing rules. Some well known examples are
homogeneous dataflow(HDF) [83], synchronous dataflow(SDF) [54],cyclo-static dataflow(CSDF) [56],
boolean dataflow(BDF) [84], anddynamic dataflow(DDF) [85–87].

HDF has a single token passing firing rule and is a special case of SDF in which the number of tokens
read or written may be more than one, but must be invariant. In CSDF, the number of tokens consumed
and produced may be different for different firings but must have a cyclic behavior. BDF introduces de-
terministic conditional behavior (if-then-else; while loops) with the actors SWITCH and SELECT. Finally,
DDF introduces non-determinism (non-deterministic MERGE). Restricting the type of dataflow actors to
those that have predictable token production and consumption patterns makes it possible to perform static
scheduling and to bound the memory required to implement the communication channel buffers [88].

In a process network, the nodes represents processes. Unlike a dataflow actor, a process is not an atomic
unit of computation. A process represents a set of operations that are executed sequentially. In contrast with
dataflow actors, processes in process networks can have state. Two well known process network models are
theKahn process networks[11] and thecommunicating sequential processes(CSP) [89].

In CSP, the channels are not buffered and synchronization is by means of rendez-vous. In KPN, processes
communicate over unbounded FIFO channels as dataflow actors in dataflow networks do. However, the
KPN model does not rely on firing rules, and uses a blocking-read mechanism for synchronization instead.

The CSP model is non-deterministic and not well suited for modeling streaming applications. As the appli-
cations we are interested in are both stream-based and deterministic, we exclude CSP as candidate model.

4.2 Derivation of Kahn process networks from PRDGs 51

The KPN model, on the other hand, is a natural model for stream-based applications. Moreover, a KPN
is deterministic, that is, its functionality is independent of the execution order of the processes. This is so,
because processes block when attempting to get data from an empty channel. A process is either executing,
or it is blocked waiting for data on one of its input channels [88]. Although dataflow network models are
very powerful, the KPN model is more general and is close to the PRDG, as I shall show.

4.2 Derivation of Kahn process networks from PRDGs

Although several KPNs could be derived from a given PRDG, one can convert that PRDG into a unique ini-
tial KPN by defining a process for each node domain and a communication channel for each interconnecting
output port domain and input port domain. Since a process in a KPN is fully sequential, the node domains
which are mapped into Kahn processes have to be sequentialized. This may seem counter-productive as
the PRDG was constructed to expose all parallelism in the first place. However, by sequentializing the
node domains, the inherent parallelism is not lost because the information is still available in the PRDG
and parallel implementations of Kahn processes can be easily created by inspecting the underlying node
domains in the PRDG. Since a node domain in a PRDG is defined by a single polytope, its conversion to a
Kahn process can be easily done by imposing a lexicographic ordering on the operations in the domain and
generating a corresponding nested-loop program for the Kahn process.

In Section 4.2.1 I illustrate the basic concept by means of an example. In Section 4.2.2, the process is
formalized by introducing the parse tree representation of the Kahn process that is derived from the PRDG
node domain. This section further identifies the three sub-problems in the generation of the Kahn processes
from PRDG node domains which are dealt with in detail in next sections.

4.2.1 Introducing the structure of the Kahn processes

Figure 4.1 shows a part of a PRDG, consisting of node domainsNP andNC , the output port domain (OPD)
of Np (shaded triangle), the input port domain (IPD) ofNc (shaded triangle), and the affine mappingM
from IPD to OPD. Also shown is the process network that is to be derived from the PRDG. It consists of
two processes, called the producer (P ()) and the consumer (C()) and an unbounded FIFO channel (ch1)
for the communication between the two.

0 1 2 3 4 N=5

0

1

2

3

4

0

N=5

4

3

2

1

0 1 2 3 4 N=5

N=5

Producer Consumer

Fifo buffer
P C

NP NCi1j1

i2j2

ch1

M()

Iopd

Iipd

Figure 4.1: Mapping of a PRDG onto a Process Network, running example.

The goal is to map the the PRDG shown in the top-part of the figure onto the KPN shown in the bottom-part.

52 Synthesis of KPNs from dependence graphs

Figure 4.2 shows the internal structure of the two Kahn processes.

for j2 = 0 to N
for j1 = j2 to N

process P (double out wp1)

end

[out] = f(· · ·);

end

end

if (j2 + 1 ≤ j1)

end

write (wp1, out);

for i1 = 0 to N
for i2 = 0 to i1

if (1 ≤ i2)

end

in = x(r(i1, i2));

x(`++) = read (rp1);

while (` < r(i1, i2))

process C(double in rp1)

end

end

· · · = g(in);

end

end

Network N

double channel ch1;

P (ch1) par C(ch1);

Figure 4.2: Internal structure of the two Kahn processes from Figure 4.1.

The processesP () andC() correspond to the node domainsNP andNC , respectively. It is assumed
that the primitive nodes inNP andNC , represented by the black dots, contain the functionsf() andg(),
respectively. ProcessP () starts with a declaration of the process1 immediately followed by a set of nested
loops. These loops iterate over all the points inNP . Similarly, the loops in processC() iterate over all
the points inNC . Since all primitive nodes inNP invoke the same functionf(), f() appears exactly once
in the body of the loop nest inP (). Similarly, there is exactly one invocation ofg() in the body ofC().
The shaded regions in Figure 4.1 are the port domains that communicate with each other. Therefore, only
the results of the functions at the iteration points in the shaded index set ofNP are to be written onto the
channel. In processP () this is specified by theif statement surrounding thewrite statement. The block of
code that contains thewrite statement in Figure 4.2 is surrounded by a rectangle. There is one such block
for every output port domain of the node domain from which the process is derived. Notice that process
P () writes tokens to the channel in the order specified by the loop nest.

Similarly, reading from the channel should only take place at the iteration points in the shaded index set of
NC . The read statement inC() is not only surrounded by anif statement but also by awhile statement.
Since Kahn channels are FIFO queues, tokens are read from channel in the the same order as they were
written to it. ProcessC() will in general process tokens in a different order. To reorder these tokens an
arrayx is introduced for channelwp1. The arrayx is written to as if it were a queue, this is shown by the
counter̀ that is the logical address written to, and is read from as if it were a random access memory. The
random access allows the reordering of incoming tokens and is specified by the read functionr(i1, i2). This

1The original Kahn paper [11] uses the keywordsin andout to specify whether there will be read from or written to the
channel, respectively. Since our tools currently generate Kahn Process Networks in the target language C++ we textually distinguish
between input ports and output ports by using port namesrp andwp, standing forread portandwrite port, respectively.

4.2 Derivation of Kahn process networks from PRDGs 53

function is derived from the order in which the iteration points inNP are visited and the mapping function
M(), as will be explained in Section 4.5. For every iteration point(i1, i2) in the input port domain, process
C() binds an element fromx to input argumentin of functiong(). Thewhile loop models the blocking-read
semantics of the KPN model. Thewhile loop iterates as long as the data that is to be read fromx, that is
x(r(i1, i2)), is not yet inx. In thewhile loop, tokens are read from the channel and are stored in arrayx.
The index inx at which the data is written is determined by the local counter` that is incremented every
time a token has been read from the channel. The while loop terminates in case` ≥ r(i1, i2), in this case it
is guaranteed thatx(r(i1, i2)) contains valid data that can be passed to functiong(). When` < r(i1, i2) and
the channel is empty, the process blocks. In this way, thewhile loop implements an out-of-order blocking
read without sacrificing the KPN semantics. The block of code that contains theread statement in Figure
4.2 is surrounded by a rectangle delimiting the actions associated with the corresponding input port. There
is one such block for every input port domain of the node domain from which the process is derived.

The next section formalizes the structure of the Kahn process by means of a parse tree.

4.2.2 Parse tree representation of the Kahn processes

The previous section introduced the structure of a Kahn process by means of the code example in Figure 4.2.
This figure is neither formal nor complete. This section formally describes the complete structure of a Kahn
process by means of a parse tree and introduces the problems that arise when deriving the Kahn process
from the PRDG. Parse trees have already been described in Section 3.3. The structure of the parse tree
of a Kahn process in shown in Figure 4.3. All nodes in the tree, except for the root and the leave nodes

1a

1b

1c

2a

2b

2c 3

4a

4b

4c

if (Ehrhart)

· · ·if (constraints)

@

parameter

for

if (Ehrhart)

if (Ehrhart)

ipd

· · · if (constraints)

assignment opd

Figure 4.3: The structure of the parse tree generated from the PRDG.

represent a nesting of nodes of the same type. For example, theif (Ehrhart) node represents a set of nested
if (Ehrhart) statements. The dots “· · · ” on the left and right hand side of the figure represent repetitions
of the leftmost branch and rightmost branch, respectively.

Among the statements in the parse tree, there are two types ofif statements, i.e.,if (constraints)) and
if (Ehrhart). An if (constraints) statement uses a constraint (equality or inequality) as its condition.
This statement narrows a polytope to a smaller one. Anif (Ehrhart) statement has a condition of the form
E ≥ 1 whereE is an Ehrhart polynomial. This statement filters out points to create holes in an index set.

To explain the structure of the parse tree, I distinguish four partitions in it. The partition a node belongs
to is indicated by the number depicted inside the node. Partition 1 has the three nodes 1a, 1b, and 1c, and
define to the loop structure of the program. Partition 2 has the tree nodes 2a, 2b, and 2c, and defines the
reading of tokens from the channels and their assignment to variables. Partition 3 has the single node 3 and
defines the function call statement. Partition 4 has the three nodes 4a, 4b, and 4c, and defines the code for

54 Synthesis of KPNs from dependence graphs

writing the return values of the function to the channels.

partition 1
The nodes in the first partition define the parameters and the index set of the node domain.

a) The set ofparameter statements defines the parameters that are used in the rest of the program. Every
parameter statement defines one parameter together with its lower and upper bound.

b) The set offor statements defines a set of index variables and an index set. The index set is a dense
integral set that contains the index set of the node domain.

c) The set ofif (Ehrhart) statements filters out all points that do not belong to the node domain. Thus,
whereas the set offor statements defines a dense index set, only points that do actually belong to
the node domain pass theif statement. Since the domains of both node domains in the example in
Figure 4.1 are dense themselves, noif (Ehrhart) statements are found in the code in the example in
Figure 4.2.

partition 2
The nodes in the second partition define the points of the index set at which aread operation from a
specific channel must be executed. The nodes in this partition correspond to the blocks of code containing
theread statement in processC() in Figure 4.2.

a) The set ofif (constraint) statements bounds the polytope that encloses the index set of the node
domain to a polytope that encloses the index set of an input port domain. The resulting region corre-
sponds to the shaded part inNC in Figure 4.1. The constraint corresponds to the constraint1 ≤ i2 in
processC() in Figure 4.2.

b) The set ofif (Ehrhart) statements filters out points from the index set for which no input is to be read
from a specific channel. This must be done when, for example, the lattice of the input port domain is
coarser than the lattice of the node domain.

c) Theipd statement represents the block of code, excluding theif statement, that contains theread operation
like in the consumer process in Figure 4.2.

partition 3
Theassignmentstatement represents the function call in the body of the Kahn process. Its input arguments
get values assigned in partition 2. The results are written to the channels in partition 4.

partition 4
The nodes in the fourth partition define the points of the index set at which awrite operation to a specific
channel must be executed. The nodes in this partition correspond to the block of code containing the
write statement in processP () in Figure 4.2.

a) The set ofif (constraint) statements bounds the polytope that encloses the index set of the node
domain to a polytope that encloses the index set of an output port domain. The resulting region
corresponds to the shaded part inNP in Figure 4.1. The constraint corresponds to the constraint
j2 + 1 ≤ j1 in processP () in Figure 4.2.

b) The set ofif (Ehrhart) statements filters out points from the index set for which no output is to be
written to a specific channel.

c) Theopd statement represents thewrite operation like in the producer process in Figure 4.2.

4.2 Derivation of Kahn process networks from PRDGs 55

Now that the structure of the parse tree representing a Kahn process is defined, the problem is how to convert
a node domain of an PRDG into such a parse tree. This can be split into three sub-tasks. Each sub-task
will generate a set of nodes of the parse tree in Figure 4.3, except the creation of the assignment statement
(node 3). The creation of node 3 is just the conversion of a function in the PRDG model to an assignment
statement and is given in Algorithm NODE2ASSIGNMENTbelow.

NODE2ASSIGNMENT(N)

1 A← NIL B the vector of statements to be returned
2 f ← function[N]

3 A← newAssignStatement

4 function[A] = functionName[f]

5 for all argumentsa in inputArguments[f]

6 do var ← newVariableStatement(name[a])

7 ADD-CHILD(rhs[A], var)

8 for all argumentsa in outputArguments[f]

9 do var ← newVariableStatement(name[a])

10 ADD-CHILD(lhs[A], var)

11 INSERT-ELEMENT(A, A)

12 return A

The first sub-task is referred to asdomain scanningand covers nodes 1a (shorthand for the first node in
partition 1), 1b, and 1c of the parse tree. Domain scanning deals with finding and specifying a schedule
for theassignmentstatement, but not with the derivation of theassignmentstatement itself. Given a scan
order, domain scanning is in charge of finding the lower and upper bound expressions of thefor statements
in node 1b, and of excluding the points that are not iterations in the index set with theif (Ehrhart) state-
ments in node 1c. The bounds of the loops of thefor statements may be parameterized. The bounds of
these parameters are derived in a similar way as the bounds of thefor statements.

The second sub-task is referred to asdomain matchingand covers nodes 2a, 2b, 4a, and 4b of the parse tree.
Edge domains of the PRDG are converted into channels of the KPN. An input port domain of a node domain
specifies for which points in the node domain data is to be read by the correspondingread operation in the
corresponding process. An edge domain maps points from an input port domain onto a corresponding output
port domain and, thus, specifies for what points in the node domain data is to be written by the corresponding
write operation of the corresponding process. An output port domain (OPD) is said tomatchan input port
domain (IPD) when for every point in the OPD there is a corresponding non-empty set of points in the
IPD and when for every point in the IPD there is a corresponding single point in the OPD. The matching
of an output port domain to an input port domain ensures that output values of producing node domain
functions are only written to channels if they will be consumed by the consumer at the end of the channel.
This domain matching corresponds to the relating of nodes 4a and 4b of a parse tree to nodes 2a and 2b of
another (possibly the same) parse tree.

The third sub-task is referred to aslinearizationand covers node 2c of the parse tree. Recall that a con-
suming process may process data that arrive at an incoming channel in a different order. This reordering is
performed in a queue-like data structure into which incoming data is written in order. Linearization is about
the address generation to access this data structure such that the proper reordering is performed.

The remainder of this chapter is organized as follows. Section 4.3, Section 4.4, and Section 4.5 deal with
the sub problems domain scanning, domain matching, and linearization, respectively.

56 Synthesis of KPNs from dependence graphs

4.3 Domain scanning

This section deals with the conversion of the index set of a node domain to a nested loop structure. The
generation of the nested loop structure is calleddomain scanningand the resulting nested loop structure
defines a lexicographic ordering of the nodes in the node domain.

The index set of a node domain is a periodic lattice polytope (cf. Definition 3.11 and Definition 2.24). The
index setI ⊂ Zd is defined by the projection of the integral points contained in a parameterized polytope
P(p) ⊂ Zn ontoZd. In this section I consider three cases of (2.19) of increasing complexity.

1. d = n, hence the projection matrixL = I and hence the index set is dense becauseP(p) ∈ Zn is.

2. d < n, hence the projection matrixL =
[
I 0

]
, and the index set is dense

3. d < n, hence the projection matrixL =
[
I 0

]
, and the index set is non-dense.

Before moving on, I first introduce the three cases to be considered informally using the examples shown
in Figure 4.4

(c)

(b)

(a)

0 101 2
L = 1

L =
[
1 0

]
0 101 2

L =
[
1 0

]
0 101 2

I3

I2

0 101 2
I1

P1

P2

P3

x

i

i

x

i

x

c

c

Figure 4.4: Three index sets for which the scanning problem has increasing complexity.

The first case is illustrated by Figure 4.4 (a). Here, polytopeP1 ⊂ Q and index setI1 is defined by the
mappingi = Lk, k ∈ P1∩Z ontoZ. In this case, the index set consists of just the integral points contained
by the polytope. So, by scanning the integral points inP1, we have a scanning of the points inI1. The
scanning of polytopes is dealt with in Section 4.3.1.

4.3 Domain scanning 57

The second case is illustrated by Figure 4.4 (b). Here polytopeP2 ⊂ Q2 and index setI2 is defined by the
mappingi = L(x, c), (x, c) ∈ P2 ∩Z2 ontoZ. In this case the index set is still dense and contains the same
points asI1. The main difference with the first case is that its defining polytope is inQ

2 rather than inQ.
The scanning of the points inI2 is performed by scanning the integral points inP2 with x in the outer loop
andc in the inner loop. The loop forx alone specifies the required scanning. So, the scanning of index sets
of the second case is based on the scanning of polytopes and is dealt with in Section 4.3.2.

The third case is illustrated by Figure 4.4 (c). Here polytopeP3 ⊂ Q2 and index setI3 is defined by the
mappingi = L(x, c), (x, c) ∈ P3 ∩ Z2 ontoZ. Note that this is the same index set as in Figure 2.6. In this
case the index set differs from the index setsI1 andI2 in that there are additional holes in it.

Like in the second case, polytopeP3 is scanned, but unlike the second case the inner loop for the variable
c is not ignored, and is used to identify the holes. The scanning of non-dense index sets is dealt with in
Section 4.3.3.

4.3.1 Scanning polyhedra

Given a polytopeP(p), the polyhedral scanning problem is to construct a set of nestedfor loops that orders
the integral points contained by the polytope lexicographical. The lexicographic order is specified by an
iteration vector(i1, i2, · · · , id), whered is the dimension of the space that contains the polytope,i1 is the
iterator of the outer most loop, andid is the iterator of the inner most loop. The structure of the resulting
loop nest is given in Program 4.1.

Program 4.1: STRUCTURE-OF-LOOP-NEST

for i1 = `1(p) : 1 : u1(p),
for i2 = `2(i1,p) : 1 : u2(i1,p),

...
for id = `d(i1, i2, · · · , id−1,p) : 1 : ud(i1, i2, · · · , id−1,p),

In this program,̀ j() anduj() are affine functions that specify the lower bound and upper bound of iterator
ij , respectively. Thelevel of an iterator is defined as its position in the iteration vector. The iterator
bounds̀ j() anduj() are piece-wise affine functions of the parameter vectorp and the lower level iterators
i1, i2, · · · , ij−1. Piece-wise affine means that themax() and themin() functions might be applied to a set
of affine functions in the lower and upper bound functions respectively.

For the polyhedral scanning, I use the function POLYHEDRAL-SCAN(P, C) that is implemented in the
PolyLib2 and described in [90]. The strategy that is used in this algorithm is the same as in [73] but differs
in that it does not use the Fourier-Motzkin pairwise projection algorithm [59].

Basically the algorithm recursively projects the polytope in the direction that corresponds to highest level
loop iterator not yet projected along. LetP ∈ Qd be the polytope to be scanned in the lexicographic order
(x1, x2, · · · , xd). Initialize the recursion withPd = P. Then, at every level̀ = d, d − 1, · · · , 1 of the
recursion the projectionP`−1 = projx`(P`) is obtained.P0 is the contextC of P. Note that the projection
projx`(P`) makesP`−1 independent ofx`, and hence, due to the recursion, independent of allxi, i ≥ `. All
P` are polyhedra inQd 3. Constraints that occur the polyhedronP` may be redundant with the constraints in
P`−1. At every level̀ in the recursion, a new polyhedronQ` is derived that has such redundant constraints.
The removal of redundant constraints is done with the function DOMAIN SIMPLIFY () from the PolyLib;

2The PolyLib I am referring to is the one from the Université Louis Pasteur, Strasbourg,http://icps.u-
strasbg.fr/ loechner/polylib/ .

3To be precise, actually the algorithm works on the double description of polyhedra that is, it uses the representation in (2.3)
and the dual representation. In the dual representation a polyhedron is specified in terms of vertices, rays, and lines [59].

58 Synthesis of KPNs from dependence graphs

Q` = DOMAIN SIMPLIFY(P`,P`−1). As a result we haveP` = Q` ∩ P`−1. The result of the polyhedral
scanning algorithm is the set of polyhedra{Q1,Q2, · · · ,Qd}.

As a result of the projections onto lower-dimensional spaces everyQ` has the formQ` = {x ∈ Qd |A`x =
B`p + b` ∧ C`x ≥ D`p + d`}, whereA` =

[
A′` 0

]
andC` =

[
C ′` 0

]
with 0 being the zero matrix with

d− ` columns.

Every constraint inQ` is of the forma1x1 +a2x2 +· · ·+a`x` ≥ b1p1 +b2p2 +· · · bmpm+c (here I assumed
that constraints with equality are rewritten into two constraints with inequality of different signs). When
a` ≥ 1 the constraint is rewritten tox` ≥ (−a1x1−a2x2−· · ·−a`−1x`−1 +b1p1 +b2p2 + · · · bmpm+c)/a`
where the right hand side is a lower bound of the loop that is constructed forQ`. Similarly, whena` ≤ −1
the constraint is rewritten tox` ≤ (−a1x1 − a2x2 − · · · − a`−1x`−1 + b1p1 + b2p2 + · · · bmpm + c)/a`
where the right hand side is an upper bound of the loop that is constructed forQ`. When a lower bound
and/or upper bound is non-integral then the ceiling and/or floor of the bounds must be taken, respectively.
When there are multiple lower bounds and/or upper bounds, the maximum and/or minimum among these
multiple bounds must be taken, respectively. To indicate that the loop nests scan over the integral points in
the polytope the variablesx1, x2, · · · , xd are replaced byi1, i2, · · · , id.

Example 4.1 (Polyhedral Scanning) The example is to scanP(p) ={(x1, x2) ∈ Q2 | 0 ≤ x2 ≤ 4 ∧ x2 ≤
x1 ≤ x2 + 9 ∧ x1 ≤ p ∧ p ≤ 40} from Figure 2.2. Suppose we want to scan the polytope in the(x1, x2)
order. The polyhedral scanning algorithm returns the following two polyhedraQ1 = {(x1, x2) ∈ Q2 | 0 ≤
x1 ∧ x1 ≤ 13 ∧ x1 ≤ p} andQ2 = {(x1, x2) ∈ Q2 | 0 ≤ x2 ∧ x1 − 9 ≤ x2 ∧ x2 ≤ 4 ∧ x2 ≤ x1}.

Q1 is converted into the outer loop with index variablei1. The constraint0 ≤ x1 represents the lower bound
0. The two constraintsx1 ≤ 13 andx1 ≤ p represent the upper bounds13 andp. Since there are multiple
upper bounds, the minimum of13 andp is taken.

Q2 in converted into the inner loop with index variablei2. The two constraints0 ≤ x2 andx1 − 9 ≤ x2

represent the lower bounds0 andi1 − 9. Since there are multiple lower bounds, the maximum of0 and
i1 − 9 is taken. The two constraintsx2 ≤ 4 andx2 ≤ x1 represent the upper bounds4 andi1. Since there
are multiple upper bounds, the minimum of4 andi1 is taken.

Program 4.2 shows the loop nest constructed from the loop bounds derived above.

Program 4.2: SCANNING THE INDEX SET IN FIGURE 2.2
for i1 = 0 : 1 : min(13, p),

�for i2 = max(0, i1 − 9) : 1 : min(4, i1),

4.3.2 Scanning dense index sets

The method described in the previous subsection is applicable when the index set of a node domain coin-
cides with the set of integral points contained in its defining polytope, as in Figure 4.4(a). Recall that the
index sets to be scanned are periodic lattice polyhedra, see Definition 2.24 and Definition 3.11. The case
when the index set is not contained in its defining polytope, yet is dense, as in Figure 4.4(b), is treated in
this section.

According to Definition 3.11, the index set of a node domain is a periodic lattice polyhedron, that is, it is of
the form(L,P) where the mapping functionL() specifies the orthogonal projection of the integral points
in P onto the space that contains the index set. One of the properties of a periodic lattice polyhedron is
that the points in the index set are in one-to-one correspondence with the points inP ∩ Zn wheren is the
dimension of the space that contains the polytope.

Let be given an index setI = L(P), I ⊂ Zd,P ⊂ Qn. When the index set is dense, the projection of the

4.3 Domain scanning 59

integral points inP ontoZd result in the same set of points as the set of integral points in the projection
of P ontoQd. Thus for dense index set we have thatL(P ∩ Zn) = L(P) ∩ Zd. Denote the points inQn

by x = (x1, x2, · · · , xn). Note thatL(P) projectsP in the directions of the variablesxd+1, xd+2, · · · , xn.
Thus, by using the polyhedral scanning of the previous section, the firstn− d recursions projectP ontoQd

and the otherd recursions construct the polyhedra required for construction of the loops.

The polyhedral scanning applied toP returns the set of polyhedra{Q`}n`=1 and must be interpreted as
follows.

1. All polyhedraQ`, ` > d should be ignored.

2. All polyhedraQ`, ` ≤ d are to be interpreted as polyhedra inQd rather thanQn.

Example 4.2 (scanning a dense index set)The index setI2 in Figure 4.4(b) is defined by the polytope
P2 = {(x, c) ∈ Q2 | 2 ≤ x ≤ 10 ∧4c+1 ≤ x ≤ 4c+4}. Since thei-direction of the index set corresponds
with thex-direction ofP2, P2 is scanned in the lexicographic order(x, c). The scanning algorithm returns
two polyhedraQ1 andQ2; onlyQ1 is used. The polyhedron found isQ1 = {x ∈ Q | 2 ≤ x ≤ 10}, and the
resulting loop is given in Program 4.3.

Program 4.3: SCANNING I2 IN FIGURE 4.4(B)
�for i = 2 : 1 : 10,

For every iteratori`, ` = 1, 2, · · · , d, the corresponding polyhedronQ` is converted in afor statement to
form the set offor statements in node 1b of the parse tree in Figure 4.3.

The domain scanning procedure is given in Algorithm DOMAIN 2FORSTATEMENTS(). It takes as the input
an index set specified by a single system of constraintsM and returns a vector offor statements. MatrixM
combines all constraints in (2.3) and has the form

M =
[
1 A −B b
0 C −D d

]
(4.1)

where a1 in the first column indicates that the constraint is an equality, and a0 indicates that the constraint
is an inequality.

DOMAIN 2FORSTATEMENTS(M)

1 I ← CONSTRAINTS2POLYHEDRON(constraints[M])

2 U ← UNIVERSE-POLYHEDRON(dim[parameterV ector[M]])

3 S ← POLYHEDRAL-SCAN(I,U) B S is linked list of polyhedra
4 x← dataParameterV ector[M]

5 d← dim[M] B d is dimension of space that contains the index set
6 for ` = 1 to d
7 do F ← newForStatement

8 (iterator[F], lowerBound[F], upperBound[F])← POLYHEDRON2BOUNDS(S`, `,x)

9 stride[F]← 1

10 INSERT-ELEMENT(F, F)

11 return F

Here the Algorithm POLYHEDRON2BOUNDS() is used to convert a polyhedron into two sets of constraints.
One set of constraints for constraints of the formx` ≤ ... and one set of the formx` ≥
POLYHEDRON2BOUNDS(Q, `,x)

1 M ← POLYHEDRON2CONSTRAINTS(Q) B again,M is as in (4.1)
2 a←m` B a is the(`+ 1)th column ofM
3 m` = 0 B set the(`+ 1)th column ofM to 0

4 v = M ·

0

x

1

 B v is vector of polynomials

60 Synthesis of KPNs from dependence graphs

5 for i = 0 to number of rows inM minus one
6 do if ai > 0 orMi,0

7 then INSERT-ELEMENT(lb,− viai)
8 if ai < 0 orMi,0

9 then INSERT-ELEMENT(ub,− viai)
10 return (x`−1, lb,ub)

4.3.3 Scanning non-dense index sets

The way I deal with a non-dense index set is to first handle it as if it were dense, that is, as if it were the set
of integral points in the projection ofP. So, the scanning of dense index sets is performed and the related
for statements are constructed. However, since thefor loops now iterate also over points that do not belong
to the index set, additional statements to filter them out have to be introduced in the nested loop program.

LetQ`, ` = 1, 2, · · · , n be the set of all polyhedra found by the polyhedral scanning algorithm of an index
setI. Note thatP = P0 ∩ Q1 ∩ Q2 ∩ · · · ∩ Qn. Since points inI are in one-to-one correspondence with
integral points inP, an integral point that is inPd = P0 ∩Q1 ∩Q2 ∩ · · · ∩ Qd but that is not inI is not in
Qd+1 ∩ Qd+2 ∩ · · · ∩ Qn. Conversely, an integral point that is not inQd+1 ∩ Qd+2 ∩ · · · ∩ Qn is not inP
and, thus, is not inI. Consequently, for all pointsi iterated over by thefor loops it must be tested ifi is in
Qd+1 ∩Qd+2 ∩ · · · ∩ Qn.

Now callQlat = Qd+1 ∩ Qd+2 ∩ · · · ∩ Qn. ClearlyP = Pd ∩ Qlat. Since the constraints inQlat are
irredundant in the constraints inPd is must be the case thatQlat is ad-lattice defining polyhedron.

Section 2.6 shows that whether a pointi is in Qlat is indicated by the multiplicityM(i) of point i with
respect toQlat and mappingL(). SinceQlat is ad-lattice defining polyhedron by Theorem 2.3,M(i) ∈
{0, 1}. Moreover, there is only one Ehrhart polynomial associated withM(i) which is valid for alli ∈ Zd;
this is seen as follows. Let me denote the points inQ

n space by(x, c) wherex andc are a rationald-vector
and(n− d)-vector, respectively. SinceQlat is ad-lattice defining polyhedron, see (2.17), it has the form

Qlat = {(x, c) ∈ Qn | s ≤
[
A Λ

] [x
c

]
≤ t} (4.2)

The multiplicityM(i) is the number of integral points in the intersection ofQlat with the linei = L(x, c) =
x,Qlat(i) = Qlat | x=i. ThusM(i) is the number of points in

Qlat(i) = {(i, c) ∈ Qn | s ≤
[
A Λ

] [i
c

]
≤ t} (4.3)

Now call s(i) = s−Ai andt(i) = t−Ai and substitute this in (4.3).

Qlat(i) = {(i, c) ∈ Qn | s(i) ≤ Λc ≤ t(i)} (4.4)

SinceΛ is a diagonal matrix the constraints ofQlat(i) aresj(i) ≤ λjcj ≤ tj(i), j = 1, 2, · · · , n− d, where
sj(i) andtj(i) is thejth element froms(i) andt(i), respectively. Clearly allcj are independent of each

other, and the parameterized vertices ofQlat(i) can be derived easily. The extreme values ofcj are sj(i)
λj

and tj(i)
λj

. In this way there are2n−d possible extreme values ofc which define the parameterized vertices
of Qlat(i). Let α = α1, α2, · · · , αn−d be a binary word, then for everyα there is a parameterized vertex
vα(i) = (vα1(i), vα1(i), · · · , vαn−d(i)) wherevαj (i) = sj(i) if αj = 0 andvαj (i) = tj(i) if αj = 1.
Clearly, all parameterized vertices are an affine function ofi on the complete spaceZd.

Example 4.3 (scanning a non-dense index set)The index setI3 in Figure 4.4(c) is defined by the poly-
topeP3 = {(x, c) ∈ Q2 | 2 ≤ x ≤ 10 ∧ 4c + 1 ≤ x ≤ 4c + 3}. Since thei direction of the index

4.3 Domain scanning 61

set corresponds with thex direction ofP3, P3 is scanned in the lexicographic order(x, c). The scanning
algorithm returns two polyhedraQ1 andQ2. PolyhedronQ1 = {x ∈ Q | 2 ≤ x ≤ 10} and defines the
outer loop bounds. PolyhedronQ2 = {(x, c) ∈ Q2 | 4c + 1 ≤ x ≤ 4c + 3}. The multiplicity of points
M(i), i ∈ Z with respect toQ2 and mappingL() is found by the Ehrhart test;M(i) = [0, 1, 1, 1]i. The
result of the scanning of Figure 4.4(c) is given in Program 4.4.

Program 4.4: SCANNING I3 IN FIGURE 4.4(C)
for i = 2 : 1 : 10,

�if [0, 1, 1, 1]i = 1,
The result of the domain scanning of a non-dense index set is anif (Ehrhart) statement that has the pseudo
polynomialM(i) as its condition. A node 1c in the parse tree in Figure 4.3 is constructed and is annotated
with this statement. Moreover, the polyhedronPd on its own defines a dense index set and is scanned as
described in previous section to construct parse nodes 1b.

The filtering out of points that do not belong to the index set of the node domain is implemented by Algo-
rithm NODEDOMAIN 2GENERICIFSTATEMENT().

NODEDOMAIN 2GENERICIFSTATEMENT(D)

1 if dim[controlV ector[D]] > 0

2 thenE ← MULTIPLICITY (D)

3 e← ENUMERATIONTOPOLYNOMIAL (E, indexV ector[D])

4 SIMPLIFY(e)

5 lcm← MAKE INTEGRAL(e)

6 G← EHRHARTPOLYNOMIAL 2SUBTREE(ehrhartPol, ”n”)

7 G← newGenericIfStatement

8 condition[G]← ”(”TOINTEGRALSTRING(e, ”n”)”)/”lcm” >= 0”

9 INSERT-ELEMENT(G, G)

10 return G

Here the Algorithm EHRHARTPOLYNOMIAL 2SUBTREE() is used to convert the Ehrhart polynomial into a
vector of which each element defines a periodic coefficient of the polynomial.

EHRHARTPOLYNOMIAL 2SUBTREE(e, name)

1 j ← 0

2 for all termst of e
3 do if denom[coeff [t]] = 0

4 then decl← TOCDECLARATION(coeff [t])

5 decl← name+ ”” + j + decl

6 S ← newSimpleStatement

7 declaration[simple]← decl

8 INSERT-ELEMENT(G, S)

9 j ← j + 1

10 return G

The creation of theparameter -statements in node 1a is quite similar to the domain scanning problem.
Only the scanning procedure for dense index sets is used since the original Matlab specification does not
allows to specify non-dense parameter index sets. Algorithm DOMAIN 2PARSTATEMENT() shows the im-
plementation of method to create theparameter statements.

DOMAIN 2PARSTATEMENT(D)

1 D ← CONSTRAINTS2POLYHEDRON(context[D])

2 U ← UNIVERSE-POLYHEDRON(0)

3 S ← POLYHEDRAL-SCAN(D,U) B S is linked list of polyhedra
4 p← parameterV ector[D]

5 L← dim[p]

6 for ` = 1 toL
7 do P ← newParameterStatement

62 Synthesis of KPNs from dependence graphs

8 (iterator[P], lowerBound[P], upperBound[P])← POLYHEDRON2BOUNDS(S`, `,p)

9 INSERT-ELEMENT(P, P)

10 return P

The main difference between DOMAIN 2FORSTATEMENTS and DOMAIN 2PARSTATEMENTS is that for the
latter the context of the index set is used instead of the constraints.

4.4 Domain matching

This section deals with the conversion of the input and output port domains of the PRDG to parse tree nodes
2a, 2b, 4a, and 4b in Figure 4.3.

In a Kahn process network (KPN) every channel connects a unique output port to a unique input port. Since
the topology of the PRDG is described by an extended graph, an output port domain may be connected
to multiple input port domains. Since the KPN under construction has the same topology as the PRDG,
the PRDG is first brought into a form where each output port domain connects to a single input port do-
main. This transformation changes the topology of the PRDG by introducing new output port domains and
updating the edge domains. I call this transformation POINT-TO-POINT().

After the topology has been adapted to the point-to-point communication the geometry of the output port
domains is refined by restricting each domain to the region for which there is actual communication. I call
this transformation RECONSTRUCT-OUTPUT-PORT-DOMAINS().

When the transformations POINT-TO-POINT() and RECONSTRUCT-OUTPUT-PORT-DOMAINS() are ap-
plied to the PRDG, every output port domain is converted into the parse nodes 4a and 4b, and every input
port domain is converted into the parse nodes 2a and 2b of the parse tree in Figure 4.3.

4.4.1 Transforming the PRDG

When the PRDG is created from the SAP, there is exactly one output port domain for every output argument
of a function. Moreover, the index set of each output port domain is the index set of the node domain it
belong to. Note that this modeling corresponds to the output normal form of the SAP.

To explain the transformations POINT-TO-POINT() and RECONSTRUCT-OUTPUT-PORT-DOMAINS() con-
sider Figure 4.5. The figure shows the extended graph of a PRDG composed of its nodes, ports, and edges.
The output port of nodeP is connected to two input ports, one ofC1 and one ofC2. The figure also shows
a number of boxes and diamond-shaped arrows which have their semantics defined in the Unified Modeling
Language (UML). A diamond-shaped head is known as anaggregationand specifies that the object that has
the arrowhead connected to it, has the other object associated with it.

an index set is associated with every node, input port, output port, and edge. Thus nodeP has the index set
IND associated with it. When the PRDG is constructed, every output port domain has the index set of the
node domain associated with it.

The function POINT-TO-POINT() transforms the PRDG such that every output port domain is associated
with at most one edge domain. The function RECONSTRUCT-OUTPUT-PORT-DOMAIN () changes the index
set of the output port domain from the index set of the node domain to the index set of the edge domain.
The result of applying these transformations to the PRDG of Figure 4.5 is shown in Figure 4.6. This figure
differs from Figure 4.5 in that the output port domain is duplicated for both edge domains, and that the
index sets associated with the duplicates are the index sets of their associated edge domains (only showed
for the top output port domain and top edge domain).

4.4 Domain matching 63

IED IIPD

M PIPD LIPDLND PND

IND

P

C1

C2

Figure 4.5: An PRDG viewed as an annotated extended graph before POINT-TO-POINT() is applied to it.

IED IIPD

M PIPD LIPDLND PND

IND

P

C1

C2

Figure 4.6: The transformed PRDG of Figure 4.5 viewed as an annotated extended graph after POINT-TO-
POINT() is applied to it.

The POINT-TO-POINT() procedure is as follows. Let be given the PRDGG = (N , E). For each edge
domainEi = ((Q,Pi), Ie) ∈ E duplicateQ, call the duplicated version ofQ, Qi, and replace theQ in
Ei by Qi. This results inEi = ((Qi, Pi), Ie) ∈ E . In addition, determine the node domainN for which
Q ∈ ON and insertQi in the setON . Finally, clean up all node domainsN ∈ N by removing the original
Qs fromON . The pseudo-code for this procedure is given in Algorithm POINT-TO-POINT.

POINT-TO-POINT(G)

1 B G = (N , E)

2 for all Ei ∈ E , Ei = ((Q,Pi), Ie)
3 doQi ← Q B duplicate the output port domain
4 Ei ← ((Qi, Pi), Ie)
5 ADD-DOMAIN(ON , Qi) B whereON is the node domain that containsQ
6 CLEAN-UP() B remove all original output port domains from allON of all N ∈ N

The RECONSTRUCT-OUTPUT-PORT-DOMAIN () procedure is as follows. Let be given the PRDGG =
(N , E). For each edge domainE = ((Q,P), Ie) ∈ E set the index set ofQ to Ie. The pseudo code for this
procedure is given in Algorithm RECONSTRUCT-OUTPUT-PORT-DOMAINS.

RECONSTRUCT-OUTPUT-PORT-DOMAINS(G)

1 B G = (N , E)

2 for all Ei ∈ E , Ei = ((Qi, Pi), Ie)
3 do SET-DOMAIN(Qi, Ie)

64 Synthesis of KPNs from dependence graphs

After these two transformations are applied, the communicating input/output port domain pair is said to
match. This means that for everyj ∈ IOPD there is at least onei ∈ IIPD at which the data produced at
j is to be consumed, and, for everyi ∈ IIPD there is exactly onej ∈ IOPD that produces that data to be
consumed at iterationi. This is expressed by the the following two series of implications.

j ∈ IOPD ⇒ j ∈ IED ⇒ ∃ k ∈ PIPD s.t. j = M(k)⇒ i = LIPD(k) ∈ IIPD
i ∈ IIPD ⇒ ∃ k ∈ PIPD s.t. i = LIPD(k)⇒ j = M(k) ∈ IED = IOPD

4.4.2 Creating the parse nodes

This section deals with the actual generation of the nodes 2a, 2b, 4a, and 4b of Figure 4.3. These nodes
represent a set of nestedif statements that filter out iterations for which there is no communication between
an output and input port domain.

When the transformations that are described in the previous section have been performed, output port do-
mains match with input port domains. Let be given node domainN = (IN , ON , fn, In), and letIPD ∈ IN
andOPD ∈ ON be an input port domain and an output port domain, with index setsIIPD andIOPD, re-
spectively. Every input port domain inIN is converted to an input port of the Kahn process and, similarly,
every output port domain inON is converted to an output port of the Kahn process. The domain scanning
procedure described in the previous section scans index setIn. So, for every iterationi ∈ In data must be
read from the port that is derived fromIPD wheni ∈ IIPD. Similarly, data must be written to the port
derived fromOPD wheni ∈ IOPD. Because of the domain scanning, it is already known thati ∈ In. So,
it remains to test whetheri ∈ IIPD and/ori ∈ IOPD. (4.5) shows what the test is for everyIPD ∈ IN .

i ∈ IIPD whenMIIPD(i) = 1 (4.5)

whereMIIPD(i) is the multiplicity of i with respect toPIPD andLIPD(), wherePIPD andLIPD() are
the polytope and projection that defineIIPD. (4.6) shows what the test is for everyOPD ∈ ON .

i ∈ IOPD whenMIOPD(i) ≥ 1 (4.6)

whereMIOPD(i) is the multiplicity of i with respect toPOPD andMOPD(), wherePOPD andMOPD()
are the polytope and mapping that defineIOPD.

Constructing the parse nodes for input port domains
Rather than directly derivingMIIPD(i) in (4.5), it makes sense to use the fact thatIIPD is a periodic lattice
polyhedron and thatIIPD ⊆ IND, whereIND is the index set of the node domain to whichIPD belongs.
Let, according to Definition 2.24,IIPD = L(PIPD ∩ Zn), IIPD ∈ Zd. Like in the polyhedral scanning of
non-dense index sets, the function POLYHEDRAL-SCAN is used to decomposePIPD intoPEIPD ∩ PLIPD ,
wherePEIPD is an embedded polyhedron andPLIPD is ad-lattice defining polyhedron. By Theorem 2.4,
IIPD = QIPD ∩ L(PLIPD ∩ Zn), whereQIPD is the projection ofPEIPD ontoQd. Call IL = L(PLIPD).
Sincei ∈ IIPD wheni ∈ QIPD ∧ i ∈ IL, the multiplicityMIIPD(i) can be rewritten as follows:

MIIPD(i) =

{
MIL(i) if i ∈ QIPD
0 otherwise

(4.7)

Note that, as with the domain scanning, the validity domain ofMIL(i) = Z
d.

The testi ∈ QIPD is simplified by using the fact thati ∈ IND. Similar to the alternative representation
of IIPD, POLYHEDRAL-SCAN is used to derive the alternative representation ofIND, IND = QND ∩
L(PLND ∩ Zm). The fact thati ∈ IND implies i ∈ QND. Let Pif be the polytopePIPD with all

4.4 Domain matching 65

redundant constraints inQND removed from it;Pif = DOMAIN SIMPLIFY(PIPD,PND). Therefore, the
test if i ∈ QIPD is simplified to the test ifi ∈ Pif .

With both simplifications (4.5) becomes (4.8).

i ∈ IIPD wheni ∈ Pif ∧MIL(i) = 1 (4.8)

The nodes 2a are constructed from the constraints inPif . Every constraint inPif is the condition of
an if -statement. Like in DOMAIN SCANNING, the Ehrhart polynomialMIL(i) is converted to a single
if -statement.

Example 4.4 (input port domain code generation) Let be given a node domain with index setIND =
LND(PND ∩ Z2). LetPND = {(x1, x2) ∈ Q2 | 0 ≤ x1 ≤ 100 ∧ x1 = 2x2}, and letLn =

[
1 0

]
.

Further, let be given an input port domain with index setIIPD = LIPD(PIPD ∩ Z3) with PIPD =
{(x1, x2, x3) ∈ Q3 | 10 ≤ x1 ≤ 100 ∧ x1 = 2x2 ∧ x1 = 3x3}, andLIPD =

[
1 0 0

]
.

The index setsIND andIIPD are rewritten by using the polyhedral scanning method intoIND = QND ∩
L(PLND ∩ Z2) andIIPD = QIPD ∩ L(PLIPD ∩ Z3). HereQND = {x1 ∈ Q | 0 ≤ x1 ≤ 100}, QIPD =
{x1 ∈ Q | 10 ≤ x1 ≤ 100}. The non redundant constraints inQND with respect toQIPD arePif = {x1 ∈
Q |x1 ≥ 10}.

The1-lattice defining polyhedron for the input port domain isPLIPD = {(x1, x2, x3) ∈ Q3 |x1 = 2x2 ∧
x1 = 2x3}. Let i be the index variable of the index set. By using the Ehrhart test for this index set we
getMILIPD (i) =

[
1 0 0 0 0 0

]
i
, i ∈ Q. Figure 4.7 shows the parse tree that is constructed and

the corresponding piece of code; where the outer loop is the result of domain scanning as described in
the previous section. The annotations at the left hand side of the nodes correspond to the annotations in
Figure 4.3.

for i = 1 : 1 : 100,

if i ≥ 10,

if
[
1 0 0 0 0 0

]
i
≥ 1

1b

2a

2b

2c body (see next section)

Program 4.5: PROGRAM OFEXAMPLE 4.4
for i = 1 : 1 : 100,

if i ≥ 10,
if
[
1 0 0 0 0 0

]
i
≥ 1,

body (see next section)
end

end
end

(a) parse tree (b) corresponding piece of code

Figure 4.7: The parse tree that is generated (a) and the code it represents (b). �

The creation of the parse nodes 2a and 2b is implemented by Algorithms INPUTPORT2IFSTATEMENT()
and INPUTPORT2GENERICIFSTATEMENT(), respectively. The former algorithm createsif -statements that
tightens the index set of the node domain. The latter algorithm filters out point that do belong to the index
set of the node domain but not to the index set of the input port domain.

INPUTPORT2IFSTATEMENT(P)

1 Ind ← domain[node[P]]

2 Iipd ← domain[P]

3 And ← indexConstraints[Ind]

4 Aipd ← indexConstraints[Iipd]

5 A = CONSTRAINTSSIMPLIFY(Aipd, And)

6 return DOMAIN 2IFSTATEMENT(A, indexParameterV ector[Iipd])

66 Synthesis of KPNs from dependence graphs

Here DOMAIN 2IFSTATEMENT is used to convert a constraint matrix into an vector ofif -statements.

DOMAIN 2IFSTATEMENT(A,x)

1 v← TOL INEAREXPRESSION(A,x)

2 for j = 0 to dim[v]− 1

3 do if vj 6= ′′1 ≥ 0′′

4 then I ← newIfStatement

5 expression[I]← vj
6 INSERT-ELEMENT(I, I)

7 return I

INPUTPORT2GENERICIFSTATEMENT(P)

1 N ← node[P]

2 Ind ← domain[N]

3 Iipd ← domain[P]

4 if (nbRows[mapping[Iipd]] < dim[dpV ec[Iipd]]− dim[pV ec[Iipd]] ||
5 dim[dpV ec[Iipd]] > dim[dpV ec[Ind]])

6 thenE ← MULTIPLICITY (Iipd) B E is an enumeration
7 if E 6= NIL

8 then e← ENUMERATIONTOPOLYNOMIAL (E, ipV ecInd)

9 SIMPLIFY(e)

10 lcm← MAKE INTEGRAL(e)

11 G← EHRHARTPOLYNOMIAL 2SUBTREE(e, ”m” + count)

12 G← newGenericIfStatement

13 condition[G]← ”(”TOINTEGRALSTRING(e, name)”)/”lcm” >= 0”

14 INSERT-ELEMENT(G, G)

15 count← count+ 1

16 return G

Constructing the parse nodes for output port domains
Equation (4.6) states thati ∈ IOPD whenMIOPD(i) ≥ 1. IOPD is a linearly bounded lattice defined by
an integral affine functionM() and a polytopePIPD. SincePIPD is not defined in the space of the node
domain to whichIOPD belongs, we cannot simplify as with input port domains. So, the Ehrhart test is
directly applied to the index setIOPD = (M,PIPD). The result is a list of Ehrhart polynomials, each
having its own parameter validity domain.

Let the Ehrhart test result in the Ehrhart polynomialsp0(i), p1(i), · · · , pn−1(i) with corresponding param-
eter validity domainsP0, P1, · · · , Pn, respectively. Since the iteration vectori ∈ Zd is used to specify
the counting problem, the result is parameterized parameterized ini and the parameter validity domains
are inZd as well. So, a pointi is in IOPD when it is any of thePj , j = 0, 1, · · · , n − 1 and when for
the corresponding polynomialpj(i) it is true thatpj(i) ≥ 0. Moreover, letIND = L(PND ∩ Zn) be the
index set of the node domain that containsIOPD. Since by the domain scanningi ∈ IND, it is also true
that i ∈ PIND , wherePIND = projQQd(PND). This fact is used to simplify the test whetheri is in any of
the polytopesPj , j = 0, 1, · · · , n − 1 by removing the redundant constraints inPND from each of them;
P ′j = DOMAIN SIMPLIFY(Pj ,PND), j = 0, 1, · · · , n− 1. Figure 4.8 shows the structure of the part of the
parse tree that corresponds to the filtering process for output port domains. A boolean variablew is used
to indicate whether pointi is in someP ′j , j = 0, 1, · · · , n− 1 and whether the multiplicity for this point is
greater than zero. The nodes in the figure of the formif i ∈ P ′j , j = 0, 1, · · · , n − 1 are converted to a set
of if -statements, one for each constraint inP ′j .

Example 4.5 (output port domain code generation) Let be given a node domain with index setIn =
(I,Pn), whereI is the identity matrix andPn = {x1 ∈ Q | 0 ≤ x1 ≤ 3N + 3}.

4.4 Domain matching 67

w = true if p1(i) ≥ 1

if p0(i) ≥ 1

w = true

w = true

if pn−1(i) ≥ 1

w = false

if w = false

if w = false

if i ∈ P ′0

if i ∈ P ′1

if i ∈ P ′n−1

Figure 4.8: Structure of the sub tree for the output port domains.

Further, let be given the output port domain of Example 2.5, that is,P(N) = {(x1, x2) ∈ Q2 | 0 ≤ x1 ≤
N ∧ x1 ≤ x2 ≤ N} andM(k) =

[
2 1

]
k + 3,k ∈ P(N) ∩ Z2.

The multiplicity is expressed by the Ehrhart polynomials with their parameter validity domains as in (2.21).
The parameter validity domains are simplified by removing their redundant constraints inIn. In this exam-
ple the only redundant constraint isj ≤ 3N + 3.

The parse tree that is generated has the form as depicted in Figure 4.8, and the corresponding piece of code
is given in Program 4.6.

68 Synthesis of KPNs from dependence graphs

Program 4.6: PROGRAM OFEXAMPLE 4.5
1 parameterN 8 16;
2 for j = 1 : 1 : 3N + 3,
3 w = false;
4 if − j +N + 3 ≥ 0,
5 if j − 3 ≥ 0,
6 if 1

3j + [0,−1
3 ,−

2
3]j ≥ 1,

7 w = true;
8 end
9 end

10 end
11 if w == false,

12 if j −N − 3 ≥ 0,
13 if 1

2N + [−1
6j + [1, 7

6 ,
1
3 ,

3
2 ,

2
3 ,

5
6]j ,−1

6j + [3
2 ,

2
3 ,

5
6 , 1,

7
6 ,

1
3]j]N ≥ 1,

14 w = true;
15 end
16 end
17 end
18 if w == true,

19 body (see next section)
20 end
21 end

Lines 1 and 2 are the result of the domain scanning procedure and is shown for the context here. Lines 3
– 17 show the actual code that is produced by the method in this subsection. Lines 18–20 ensure that the
proper value is written to the output port of the process. This is the topic of the next section. �

The creation of the parse nodes 4a and 4b are implemented by Algorithm OUTPUTPORT2- GENERICIFS-
TATEMENTS. The algorithm is called with the output portQ for which the code is to be generated.

OUTPUTPORT2GENERICIFSTATEMENTS(Q)

1 G← NIL

2 I← NIL

3 Ind ← domain[node[Q]]

4 And ← indexConstraints[Ind]

5 Iopd ← domain[Q]

6 S ← newSimpleAssignStatement

7 lhs[S]← ”doWrite”

8 rhs[S]← ”false”

9 INSERT-ELEMENT(G, S)

10 s← S B s is a stitch node
11 E ← MULTIPLICITY (Iopd, Ind)

12 for all enumerationse in E
13 do ENUMERATIONDOMAIN SIMPLIFY(e, Ind)

14 Aopd ← POLYHEDRON2CONSTRAINTS(validityDomain[e])

15 I← DOMAIN 2IFSTATEMENT(Aopd)

16 s← STITCH(I, s)

17 p← ENUMERATIONTOPOLYNOMIAL (e, ipV ec[Ind])

18 SIMPLIFY(p)

19 lcm← MAKE INTEGRAL(e)

20 G← EHRHARTPOLYNOMIAL 2SUBTREE(p, ”d” + count)

21 G← newGenericIfStatement

4.5 Linearization 69

22 condition[G]← ”(”TOINTEGRALSTRING(e, name)”)/”lcm” >= 0”

23 INSERT-ELEMENT(G, G)

24 count← count+ 1

25 s← STITCH(s,G)

26 S ← newSimpleAssignStatement

27 lhs[S]← ”doWrite”

28 rhs[S]← ”true”

29 INSERT-ELEMENT(s, S)

30 if e is not the last enumeration inE
31 thenG← newGenericIfStatement

32 condition[G]← ”doWrite == false”)

33 INSERT-ELEMENT(G, G)

34 s← G

35 return G

The pseudo code for the STITCH() function and the role of the stitch node is dealt with in Chapter 5.3.

4.5 Linearization

This section deals with the conversion of the indexing functions that access the higher dimensional arrays
to parse tree nodes 2c and 4c in Figure 4.3.

The linearization procedure has already been introduced at the beginning of this Chapter. LetE = (Q,P,J)
be an edge domain that is mapped onto the Kahn channel that connects the two processes onto whichQ

andP are mapped. The scanning of the node domain that containsQ also imposes a scanning ofQ itself.
The rank is determined for every point in the index set ofQ. LetJ be the index setJ = M(P ∩ Zn). The
rank of point j ∈ J is the number of points inJ that are lexicographic smaller thanj. The expression that
ranks all pointsj ∈ J is called theranking functionand is denoted byrank(j). The procedure to derive the
ranking function is calledranking.

I follow the approach that tokens to be sent are written on the channel in the same order as they are produced.
The consuming process reads the tokens from the channel and stores the tokens in private memory in the
same order as they are read from the channel. The function that specifies the write addresses of the tokens
is called thewrite function. Because the complete process from production to storage is in order, the write
function equals the ranking function.

4.5.1 Counting in index sets

Chapter 2 describes a method to count the number of integral points contained in a polytope. In this section
I give a method to count the number of integral points contained by an index set.

Let an index setI = M(P ∩ ZZn) be given. WhenM is a bijection fromP to I, the points inI are in
one-to-one correspondence with the integral points inP. So, for this case the number of points contained
in I is equal to the number of points inP ∩ Zn and, thus,|I| = EP (P).

Now consider the case thatM is not a bijection fromP to I. An example of such an index set is already
given in Example 2.5. Since the multiplicity of some of the pointsi ∈ I is greater than one, counting the
number of integral points inP would count some iterationsi more than once. In the following I describe
a method to count the number of points in an index set in which all points in the polytope that map onto
the same point lie on the same line in the polytope. This case corresponds to a integral affine functionM()
whose matrixM has row rankn− 1, n being the dimension of the space that contains the polytope.

70 Synthesis of KPNs from dependence graphs

Lemma 4.1
Let I ∈ Zd be the index setM(P ∩ Zn). The number of point inI is given by:

|I| = |P − Pbr| (4.9)

where ”-” is the polyhedral difference andPbr is any polyhedral subset ofP that meets the following two
requirements:

1. I = M((P − Pbr) ∩ Zn)

2. for everyi ∈ I,MPu(i) ∈ {0, 1}, wherePu = P − Pbr andMPu(i) is the multiplicity with respect
to the polytopePu.

Proof
Requirement 1 states that every point inI is mapped onto fromPu byM and requirement 2 states that at
most one point fromPu maps onto the points inI. These two requirements thus state thatM is a bijection
fromPu to I and thus (4.9) holds. �

I will call Pbr andPu the broadcast and unicast polytopes ofP respectively.

Let n be the dimension of the space that containsP. To findPu the problem then is to derive aPbr that
meets the two requirements in Lemma 4.1. When the matrixM1, the matrix composed of the firstn columns
of M , has a row rank equal ton− 1, there is a procedure to findPbr [91].

4.5.2 Ranking

Definition 4.1 (pre-image of a polyhedron)
Let be given a polyhedronQ = {y ∈ Qd |Ay = Bp + b∧Cy ≥ Dp + d}, and an integral affine function
M() : Qn → Q

d,y = M(x) = Mx + m. The pre-imageQ′ of Q underM() is defined by

Q′ = {x ∈ Qn |AM(x) = Bp + b ∧ CM(x) ≥ Dp + d} (4.10)

Note that there are no constraints onM(), that is,M is allowed to be any integral matrix of proper dimen-
sions. Also note that in the case when there is nox that satisfies (4.10) thenQ′ = ∅. As a short hand for
pre-image under integral affine functionM(), I writeQ′ = M−1(Q). �

It is clear that for every pointx ∈ Q′ in (4.10) it is true thatM(x) ∈ Q. This is seen by substituting
y = M(x) into (4.10). This results inAy = Bp + b ∧ Cy ≥ Dp + d and, thus,y ∈ Q.

Lemma 4.2
Let the pre-imageQ′ = M−1(Q),Q′ ⊂ Qn as in (4.10).Q′ is the largest subset ofQn for whichM(Q′) ⊆
Q. In other words, there are no pointsx outsideQ′ for whichM(x) ∈ Q.

Proof
The proof is by contradiction. Assume there is anx outsideQ′ for whichM(x) ∈ P. Call y this point
in P, y = M(x). SubstitutionM(x) of y into Ay = Bp + b ∧ Cy ≥ Dp + d results inAM(x) =
Bp + b∧CM(x) ≥ Dp + d. Thereforex ∈ Q′ with contradicts the assumption thatx is outsideQ. �

Theorem 4.1
Let be given an index setI ⊂ Zd, I = M(P ∩ Zn), and a polyhedronQ ⊂ Qd. The intersection ofI with
Q is given by

I ∩ Q = M(P ∩Q′ ∩ Zn) (4.11)

whereQ′ = M−1(Q) is the pre-image ofQ underM().

4.5 Linearization 71

Proof
The theorem states thatI ∩ Q = {i | i = M(k),k ∈ P ∩ Q′ ∩ Zn}. The proof is given in two parts.
Part a) proves thati ∈ I ∩ Q implies that∃k ∈ P ∩ Q′ ∩ Zn such thati = M(k). Part b) proves that
k ∈ P ∩ Q′ ∩ Zn implies thati = M(k) ∈ I ∩ Q. Note that for the case thatI ∩ Q = ∅ that part b) also
proves thatP ∩Q′ ∩ Zn = ∅ since elseI ∩ Q would not be empty.

a) Leti ∈ I ∩ Q. Becausei ∈ I, there exists at least onek ∈ P ∩ Zn such thati = M(k); let k be such a
point. Becausei ∈ Q andk is such thati = M(k) it follows thatM(k) ∈ Q and by Lemma 4.2k ∈ Q′.
Becausek ∈ Q′ andk ∈ P ∩ Zn, k ∈ P ∩Q′ ∩ Zn.

b) Letk ∈ P ∩Q′∩Zn. Becausek ∈ P ∩Zn it follows thati = M(k) ∈ I, by definition. Becausek ∈ Q′
it follows thatM(k) ∈ Q. Becausei = M(k), i ∈ Q as well. Becausei is in bothI andQ it follows that
i ∈ I ∩ Q. �

Example 4.6 (intersection of LBL with polytope) Let be givenI = M(P ∩ Z2), whereP = {x ∈
Q

2 | 11 ≤ x1 ≤ 15∧ 16−x1 ≤ x2 ≤ 5)} andM = [1 − 2], and polytopeQ = {y ∈ Q | 9 ≤ y ≤ 15}. The
derivation ofI ∩Q is illustrated in Figure 4.9. The bottom of Figure 4.9 shows the index setI indicated by
the set of all dots. The intersection ofI with Q is indicated by the black dots. The setI ∩Q is obtained as
follows. FirstQ′ = M−1(Q) is derived. Second the polytopeP ∩ Q is derived, indicated by the dark gray
shaded region. By applyingM() to the integral points in this regionI ∩ Q is obtained.

P

2

3

4

5

6

1

0

x2

x1

y

Q′

Q

I ∩Q

I

0

0 1

1 9 13

Figure 4.9: Intersection of index setI = M(P ∩ Z2), M = [1 − 2] with Q. I is indicated by all the dots
on thej-axis.I ∩ Q is indicated by the black dots. �

Definition 4.2 (lexicographic order)
LetQ`(j) define a family of parameterized polyhedra

Q`(j) = {y ∈ Qd | y` ≤ j` − 1 ∧ yi = ji, i = 1, 2, · · · , `− 1} (4.12)

for ` = 1, 2, · · · , d andj ∈ Zd. Further letR be the relation defined onZd given by

R = {(i, j) ∈ Zd×d | ∃ ` ∈ {1, 2, · · · , d} s.t. i ∈ Q`(j)} (4.13)

R is called thelexicographic order. When a pair(i, j) ∈ R we write i ≺ j and say thati lexicographical
precedesj. �

Definition 4.3 (lexicographic expansion)
Let be given a setS ⊂ Zd. The lexicographic expansionSlex(j) of S with respect to a pointj ∈ Zd is the
following collection ofd mutually disjoint subsets ofS:

Slex(j) = {S1(j),S2(j), · · · ,Sd(j)} (4.14)

72 Synthesis of KPNs from dependence graphs

where
S`(j) = {i ∈ S | i ∈ Q`(j)} = S ∩ Q`(j) (4.15)

andQ`(j) as defined in (4.12). �

Theorem 4.2
Let index setI ⊂ Z

d be given. Further letIlex(j) = {I1(j), I2(j), · · · , Id(j)} be the lexicographic
expansion ofI with respect toj. For anyi ∈ I and j ∈ Zd, i lexicographical precedesj if and only if
i ∈ I`(j) for somè ∈ {1, 2, · · · , d}.

Proof
The proof is given in two parts, part a) and part b). Part a) proves thati ∈ I`(j) impliesi ≺ j. Part b) proves
that fori ∈ I, i ≺ j implies thati ∈ I`(j) for somè .

a) Leti ∈ I`(j) = I ∩ Q`(j). Sincei ∈ Q`(j), it follows thati ≺ j, by Definition 4.2.

b) Let i ≺ j, i ∈ I. By Definition 4.2,i ∈ Q`(j) for some` ∈ 1, 2, · · · , d. Becausei is both inI and some
Q`(j), it follows thati ∈ I ∩ Q`(j) = I`(j). �

Definition 4.4 (rank)
Let be given the index setI ⊂ Zd. TherankR(j) of anyj ∈ Zd with respect toI is the number of points
in I that lexicographical precedesj.

R(j) = | {i ∈ I | i ≺ j} | (4.16)

where | S | denotes the cardinality of the setS. �

Theorem 4.3
Let index setI ⊂ Zd be given. Further let{I1(j), I2(j), · · · , Id(j)} be the lexicographic expansion ofI.
The rank ofj ∈ Zd with respect toI is given by

R(j) =
d∑
`=1

| I`(j) | (4.17)

Proof
By Theorem 4.2 we have thati ≺ j is contained in someI`(j), ` ∈ 1, 2, · · · , d, and that everyI`(j), ` =
1, 2, · · · , d contains only points that lexicographical precedesj. By construction everyi is in at most one
I`(j). Therefore counting the number of pointsi ≺ j is equivalent with counting the number of points in
theI`(j). �

In order to use the ranking function in (4.17) the number of points in any of theI`(j) must be counted. For
a given index setI these sets are defined in (4.15);I`(j) = I ∩ Q`(j). Let I = M(P ∩ Zn), by Theorem
4.1,I`(j) is written as follows:

I`(j) = M(P ∩Q′`(j) ∩ Zn) (4.18)

whereQ′`(j) is the pre-image ofQ`(j) under mappingM(). By substituting (4.18) into (4.17) we get

R(j) =
d∑
`=1

|M(P ∩Q′`(j) ∩ Zn) | (4.19)

This method is implemented in PANDA by the function RANK () for the index sets with unicasts only. The
function RANK () can be extended to one-dimensional broadcasts as described in Section 4.5.1. At the time
of writing, no solution is known to the author for multi-dimensional broadcasts.

4.5 Linearization 73

4.5.3 Linearization of the communication

The preceding section describes a method to perform ranking in an index set. In this section, the ranking
procedure is used to derive the parse nodes 2c and 4c in Figure 4.3.

Logical memory model

The unidirectional unbounded queues in Kahn Process networks are responsible for the fact that the tokens
are written onto a channel and read from that channel in the same order. In order to allow a token-consuming
process to process the data out of order, additional memory is required. In order to allow efficient hardware
implementation all tokens that arrive at an input port are stored in a so calledrandom access queue(RAQ).
Like a queue, in an RAQ data is added to the back and is removed from the front. Unlike a (FIFO) queue,
an RAQ allows random access for reading data. Every element in an RAQ has an associated semaphore
with it. When data is written into the RAQ the value of the semaphore is set to the number of times the
data is to be read. Every read access to a specific address inside the RAQ first tries to decrease the value
of the semaphore by one and then reads the data from that address. When the value of the semaphore is
zero, the read operation is blocking. All consecutive addresses that have a zero valued semaphore at the
front of the RAQ are removed. An efficient implementation of an RAQ in shared memory that has a binary
valued semaphore is thelogical storage structure[92]. Since the elements in an RAQ are addressable, two
(internal) values are associated with it, a write address and a front address. The write address is initially set
to zero and is incremented by one at the end of every write into the RAQ. The front address is initially set
so zero and is incremented by the number elements removed from the RAQ.

Example 4.7 (random access queue)Let a, b, c, andd be values to be written into and read from an
RAQ. Now consider the following evolution of an RAQ that is reset initially. At time1, a is written; at time
2, b is written; at time3, c is written and the value from address1 is read; and at time4, d is written and the
value from address0 is read. It is assumed that the semaphore of every value written to the RAQ is set to
one. The filling of the RAQ for timeT = 0, 1, · · · , 4 is shown in Figure 4.10

T = 0

T = 1

T = 2

T = 3

T = 4

a

ab

ac

a

b

c

d b

ad

w = 3, f = 0

w = 2, f = 0

w = 1, f = 0

w = 0, f = 0

w = 4, f = 2c

Figure 4.10: The evolution of an RAQ for reads and writes into and from it.

Clearly, when this RAQ is implemented, its size should be at leastmax(w − f) = 3. �

4.5.4 Address generation

Now, given that the RAQ memory model of previous subsection is used, this subsection deals with deriving
the addresses to read from.

Let IOPD andIIPD be a matching input-output port domain pair as described in Section 4.4, that is, the
data produced at pointsj ∈ IOPD is consumed at pointsi ∈ IIPD. Let IND be the index set of the node
domain of whichIOPD is a subset. Now, becauseIOPD ⊂ IND, the scanning ofIND also determines the

74 Synthesis of KPNs from dependence graphs

scanning of points inIOPD. Since consecutive tokens are written in the RAQ at consecutive addresses, the
rankR(j) of j ∈ IOPD is the address at which the data produced at pointj is stored in the RAQ. In this
context I refer toR(j) as thewrite polynomialand denote it byw(j).

Let i ∈ IIPD be a point the input port domain. The question is from what address in the RAQ the data
for this point must be read. By Definition 3.9, the index set of an input port domain is a periodic lattice
polyhedron. From Definition 2.24, this means that for everyi ∈ IIPD there is a uniquek ∈ PIPD such
that i = Lk, whereL =

[
Id 0

]
with Id thed × d identity matrix whered is the dimension of the space

that containsIIPD. This means that the firstd elements ofk for which i = Lk is precisely the vectori.

Now it is straightforward to derive the addresses to be read from fori ∈ IIPD. The data that must be read
at pointi is the data produced at pointj = Mk wherek is such thati = Lk. Since the data produced at
point j is stored at pointw(j), the address to be read from isw(M(k)).

Sincej = M(k) = M1(k) + M2(p) + m, andM1 = [M ′1 0] whereM ′1 is a matrix havingd columns, it
follows that

j = M(k) = M ′1i +M2(p) + m (4.20)

noting that the firstd elements ofk is the vectori. So, the procedure is first to derivew(j) and then to
substitutej = M(k) = M ′1i + M2(p) + m. The resulting polynomial is called theread polynomial
and is denoted byr(i). In general,w(j) is not a single polynomial, but a set of polynomialswi(j), i =
0, 1, · · ·n − 1, each defined on a corresponding parameter validity domainwi(j), i = 0, 1, · · ·n − 1. Just
like theri(i) are derived by substitution ofj = M(k) into thewi(j), the parameter validity domainsPi(i)
are derived by substitution ofj = M(k) into thePi(j). The definition of the read polynomialr(i) is given
in (4.21).

r(i) =

r0(i), i ∈ P0(i)

r1(i), i ∈ P1(i)
...

...

rn−1(i), i ∈ Pn−1(i)

(4.21)

Example 4.8 Let two node domainsNDp andNDc be given, as in Figure 4.11. Further letIOPD and
IIPD be an output port domain and input port domain ofNDp andNDc, respectively. These port domains
corresponds with the shaded regions in the figure. Now assume that the producing node domainNDp is
scanned withj2 in the outer loop and withj1 in the inner loop. By using the ranking procedure from a
previous subsection the write polynomialw(j1, j2) is derived. The ranking is showed in the figure by the
numbers placed at the points inIOPD.

w(j1, j2) = −1
2
j2
2 + (N − 1

2
)j2 + j1 − 1

The mapping functionM() in the figure is given by

j =
[
j1
j2

]
= M(i) =

[
1 0
0 1

] [
ii
i2

]
−
[
0
1

]
The corresponding read polynomialr(ii, i2) is found after substitution ofj1 = i1 andj2 = i2 − 1 into
w(j1, j2).

4.5 Linearization 75

0 1 2 3 4 N=5

N=5

0

4

3

2

1

0 1 2 3 4

0

1

2

3

4

N=5

N=5

P c
i1

ij

j

2

1

2

ND ND

0 1 2 3 4

5 6 7 8

9 10 11

12 13

14

M

Figure 4.11: Ranking of output port domain domain used to derive write polynomial for the input port
domain.

r(i1, i2) = −1
2
i22 + (N +

1
2

)i2 + i1 − (N + 1)

Take for example the point(i1, i2) = (3, 2) in IIPD. The ranking polynomial evaluates for this point to
r(3, 2) = −1

2 · 2
2 + (5 + 1

2) · 2 + 3 − (5 + 1) = 6. This is precisely the rank of the point onto which
i = (3, 2) is mapped. �

4.5.5 Generating the OPD and IPD blocks

Each node domain of the PRDG is converted into a process of the Kahn process network. Every input port
domainIPDj of a node domain specifies when to read from channelchj , the channel that is written onto
in OPDj . Since by convention data is written onto the channels in order, thebodystatement in line 19 in
Program 4.6 (page 68) is just the write operation in Program 4.7.

Program 4.7: PROTOTYPEOPD BLOCK

1 write(wpj , out);

whereout is a return value of the function that is bound to the output port domain. That is all to be done to
generate thebodystatement in line 19 in Program 4.6.

The generation of this line is implemented by Algorithm OUTPUTPORT2ASSIGNMENTSTATEMENT().

OUTPUTPORT2ASSIGNMENTSTATEMENT(Q)

1 V ← newVariableStatement(variable[Q], domain[Q])

2 G← newGenericIfStatement(”doWrite == true”)

3 INSERT-ELEMENT(A, G)

4 O ← newOpdStatement(name[Q], argument[Q], name[edge[Q]], V)

5 INSERT-ELEMENT(A, O)

6 return A

In order to generate the code for thebodystatement in Figure 4.4, Program 4.8 shows a template of the code
that is to be generated for an input port domainIPDj that corresponds to a variable arrayx. Line 1 in the
program is only shown for the context; its actual derivation is described in Section 4.4.

Program 4.8: PROTOTYPEIPD BLOCK

76 Synthesis of KPNs from dependence graphs

1 if i ∈ IIPDj ,
2 rj = rj(i);
3 while wj ≤ rj ,
4 x(wj) = read(rpj);
5 wj = wj + 1;
6 end
7 in = x(rj);
8 end

In line 2,rj specifies from which address in arrayx a value must be read.rj is set to be equal to the value
of theread polynomialrj(i), evaluated for the current iterationi.

Similarly wj is the value of thewrite polynomialbut by construction its value is its previous value plus
one. wj indicates the write address for arrayx, i.e. the position in the arrayx where the next token read
from the channel is to be written. The write addresswj is initialized withwj = 0. In line 3 there are two
possibilities:wj ≤ rj , orwj > rj .

In the former case, the value to be read from the array has not yet been written into the array. Lines 4 and
5 are executed and new values are read from channelchj and are stored at incremental addresses in array
x until the value of the write address equals the value of the read polynomial plus one. Then in line 7 this
value is assigned toin which is an argument of the function that is executed for every point in the node
domain (not shown in the program).

In the latter case, the read polynomial is smaller than the current value of the write address. This means that
the value has previously been written to the array and control jumps to line 7 in the program.

The blocking semantics that was described in the previous section is implemented by theread() operation
from channelchj in line 4. The parse tree representation of Program 4.8 is given in Figure4.12.

if i ∈ IIPDj

rj = rj(i) while wj ≤ rj in = x(rj)

wj = wj + 1x(wj) = read(rpi)

Figure 4.12: Structure of the sub-tree for a single input port domain.

The variablex is the variable of the primitive input port of the input port domain, cf. Definition 3.4 and
Definition 3.9. The argument of the function to which the value read from memory must be passed is the
argument of the primitive port of the input port domain.

The node labeledrj = rj(i) in Figure 4.12 is a sub-tree itself, reflecting the multiple read polynomials with
their parameter validity domains, see (4.21). The structure of the sub-tree to be derived is quite similar to
the structure in Figure 4.8, and is given in Figure 4.13.

In Figure 4.13,Pj,k is thekth parameter validity domain ofrj andrj,k() is its corresponding pseudo polyno-
mial. Since the parameter validity domains the result of a counting problem in the context ofIIPDi , there
will be anPj,k such thati ∈ Pj,k. The Boolean flagb ensures an assignment torj is made only once to
avoid redundant computations.

Example 4.9 Let IPD1 be the input port domain ofNDc in Example 4.8. The generated code is given in
Program 4.9.

4.5 Linearization 77

b = false

if b = false

if b = false

b = true

b = true

b = true

rj = rj,0(i)

if i ∈ Pj,0

if i ∈ Pj,1

rj = rj,1(i)
if i ∈ Pj,n−1

rj = rj,n−1(i)

Figure 4.13: Structure of the sub tree for deriving the read polynomial.

Program 4.9: EXAMPLE IPD BLOCK

1 if i2 ≥ 1, B check if(i1, i2) ∈ IND
2 r1 = −1

2 i
2
2 + (N + 1

2)i2 + i1 − (N + 1);
3 while w1 ≤ r1,

4 x(w1) = read(rp1); B use arrayx to store data read
5 w1 = w1 + 1;
6 end
7 in = x(r1);
8 end �

The method to convert an input port domain into the parse tree node 2c that is presented in this chapter is
implemented by the Algorithm INPUTPORT2ASSIGNMENTSTATEMENT.

INPUTPORT2ASSIGNMENTSTATEMENT(P)

1 R← newRootStatement

2 Iopd← domain[fromPort[edge[P]]]

3 p← RANK(Iopd); B Actually only first element of rank vector is used.
4 var ← variable[P]

5 arg ← argument[P]

6 name← ”c”count

7 count← count+ 1

8 lcm← MAKE INTEGRAL(p)

9 R← EhrhartPolynomial2SubTree(p, name)

10 S1 ← newSimpleAssignStatement

11 lhs[S1]← ”readAddress”var

12 rhs[S1]← ”(”TOINTEGRALSTRING(p, name)”)/”lcm

13 ADD-CHILD(R, S1)

14 W ← newWhileStatement(var”.getWriteAddress() <= readAddress”var)

15 ADD-CHILD(R,W)

16 S2 ← newSimpleAssignStatement(arg, var”.getElement(readAddress”var”)”)

17 ADD-CHILD(R, S2)

18 S3 ← newSimpleStatement(”read(RP”name[edge[P]].substring(3)”, value)”)

19 ADD-CHILD(R, S3)

20 S4 ← newSimpleStatement(var”.put(value)”)

78 Synthesis of KPNs from dependence graphs

21 ADD-CHILD(W,S4)

22 return R

4.6 Network generation

The generation of the Kahn process network basically consists of two steps: the generation of the processes
and the generation of the network that allows these processes to communicate. The previous sections dealt
with the generation of the processes. This section deals with the generation of network.

The channels in the Kahn process network are derived from the edge domains in the PRDG. LetEDi be
an edge domain. After the POINT-TO-POINT() procedure has been applied to the PRDG, the indexi also
identifies the output port domainOPDi and input port domainIPDi for which a communication channel
must be set up.

LetNDk be a node domain and letPk be the process derived fromNDk. For every input port domainIPDi

in NDk, a single read operationread(rpi) in Pk is generated during the IPD block generation. Similarly,
for every output port domainOPDj in NDk, a single write operationwrite(wpj) is generated during the
OPD block generation. Since the indexi in rpi originates from the edge domainEDi and the indexj in
wpj originates from the edge domainEDj , there is only onerpi and only onerwj in the complete Kahn
process network for a particular value ofi andj. So the following procedure is followed to construct the
network:

• Every process declares the list of channels from which it reads data and to which is writes data, thereby
using the local namesrpi andwpj to avoid name clashes. The order in which the ports appear in the
list is not important at this point.

• For every edge domainEDi a channelchi is declared and is bound to the local channel namesrpi and
wpi of the processes. This binding is done by taking the channel lists of the process declaration and
replacing allrpi by chi and replacing allwpj by chj .

An example of the network generation is the network at the bottom of Figure 4.2. A more complete example
will be given in next chapter.

Chapter 5
Software organization

This chapter puts together the methods that are described in previous chapters. This is done by focusing on
the design flow that is implemented by the Compaan tool set.

One of the objectives of this dissertation is to work out the idea ofconcept matches software. This means
that the theoretical concepts presented in chapters 2, 3, and 4 are organized and formulated in such way
that it is straightforward to implement them in software. The reverse is also true; to understand each
functionality of the software one can read the corresponding section in the previous chapters. The “concept
matches software” approach reveals itself in the strong relationship between the algebraic constructs and
their structural counterparts in software.

The software versions of the methods described in this dissertation are written in the object oriented lan-
guage Java. Modern software engineering techniques, includingdesign patternsandUML, have been used
to have this software well organized.

This chapter is organized as follows. Section 5.1 deals with the design flow that is implemented by the
Compaan tool set, and describes the top-level organization of these tools. Sections 5.2 and 5.3 deal with
the internal operation of the tools and relates them to the methods and data structures that are described in
previous sections. The operation of the tools are illustrated by an application that transposes a triangular
matrix.

5.1 Design Flow

For the methods presented in this dissertation, corresponding software versions have been implemented as
part of Compaan tool set to allow the user to convert a nested loop program written in the Matlab language
into a Kahn process network. An overview of the flow through these tools is given in Figure 5.1.

The first tool in the tool chain is MATPARSER. MATPARSER takes as input a nested loop program from the
file prog.m and converts it into the single assignment programprog.sac . For details about the exact
class of nested loop programs MATPARSER can handle and what these single assignment programs are,
see Chapter 3. MATPARSER is not part of the research described in this dissertation. Detailed information
about this tool can be found in [13].

The second tool in the tool chain is DGPARSER. DGPARSER takes as input the single assignment program
from the fileprog.sac and converts it into the fileprog.xml that is a textual description of a polyhedral
reduced dependence graph in XML format. DGPARSERcan accept any single assignment program that can

80 Software organization

MatParser

DgParser

Panda

application specification in the Matlab langualge

single assignment program in the Matlab language

polyhedral reduced dependence graph in the XML

Kahn process network in C++
Kahn processes in C++

prog.xml

prog.cc ND1.h

prog.m

prog.sac

Figure 5.1: Design flow.

be generated by MATPARSER.

The third tool in the tool chain is PANDA . PANDA takes as input the fileprog.xml and produces a number
of files that define a Kahn process network. The single fileprog.cc is the description of the network. The
processes are defined in the individual filesND1.h , ND2.h , etc., one for each node domain of the PRDG.
The processes in the files are represented by C++ classes and use the YAPI library [58].

Each of the three tools in Figure 5.1 operates in three phases, viz.,parse, convert, generate. The first phase
is to parse the textual input file into an internal data structure. The second phase is to convert the data
structure into a new data structure, possibly in the same representation. The third phase is to generate the
output file by visiting the second data structure. The three phases are illustrated in the top-level architecture
of DGPARSER and PANDA in the UML diagrams in Figure 5.2(a) and (b), respectively. UML stands for
unified modeling language[93]. In Figure 5.2(a) the phases parse, convert, and generate are performed by

Main

YapiProcessVisitor

Prdg2ParseTree

Prdg

Parser

YapiNetworkVisitor

Statement
0..*

Main

Parser

Prdg

XMLVisitor

Statement

ParseTree2Prdg

(a) DgParser (b) Panda

Figure 5.2: Structure of DGPARSERand PANDA tools.

thesingletonclassesParser , ParseTree2Prdg , andXMLVisitor , respectively. TheParser class
produces a parse tree rooted by the root statementStatement of this tree. TheParseTree2Prdg class
converts the parse tree into a PRDG represented by thePrdg class. Finally, theXMLVisitor class visits

5.2DGPARSER 81

a PRDG and produces an description of the PRDG in XML format. The logical flow inside PANDA , see
Figure 5.2(b), is slightly less obvious. The single instance of theParser singleton class parses an input
file in XML into an instance of thePrdg class. Then the instance ofPrdg2ParseTree converts the
PRDG into a set of statements, each being an instance of theStatement class and each being the root
statement of a parse tree. For every node domain in the PRDG, a parse tree is derived and every such parse
tree describes a Kahn process. Moreover,Prdg2ParseTree also has side effects on the PRDG. The two
visitor classesYapiNetWorkVisitor andYapiProcessVisitor visit this new PRDG and the set
of parse trees, respectively. The former generates a description of the Kahn process network, while the
latter generates a class definition for each Kahn process. The classes in the diagram that haveVisitor in
their name are structured according to thevisitor design pattern, see [94].

The real work in DGPARSERand PANDA is done in the classesParseTree2Prdg andPrdg2ParseTree
classes, respectively. These classes are dealt with in Section 5.2 and Section 5.3, respectively.

5.2 DGPARSER

Each data structure that is described in this section is defined by a set of classes. Such a set of classes is
grouped into apackage. I use UML class diagrams to explain the data structure defined in each package.

5.2.1 Parse tree

Figure 5.3 shows the class diagram of the parse tree data structure that is used in DGPARSER. The fig-

<<Interface>>

ParserNodeImp

ParserNode

Statement

ParameterStatement

RootStatement

ForStatement

IfStatement

ElseStatement

IndexStatement

IpdStatement

OpdStatement

NodeStatement

Figure 5.3: Overview of the structure of DGPARSER.

ure shows the classes representing the statements the parse tree is composed of. Instances of the classes
IpdStatement , OpdStatement , andNodeStatement are theipd , opd , andnodestatements in
Section 3.3.1, respectively. Instances of the classesParameterStatement , ForStatement , If-
Statement , andElseStatement are theparameter , for , if , andelsestatements in Section 3.3.2,
respectively. An example of an original Matlab program and the single assignment program that MAT-
PARSER generates from it are shown Program 3.1 and Program 3.2, respectively. The parse tree that is
constructed inside DGPARSER is shown in Figure 3.2. Figure 3.3 shows an example that contains an index
transformation statement. Part (a) shows the SAP and part (b) shows the parse tree that is constructed from
it. Figure 3.4 shows an intermediate from of the parse tree in which every node has associated constraints
with it. This is starting point of the conversion to the polyhedral reduced dependence graph (PRDG) model.

82 Software organization

Interface inheritance is a mechanism where an interface is realized by multiple classes. In this way these
classes have a common interface and by using this interface an objects can be used in place of another
[94]. In DGPARSER interface inheritance is used to implement a parse tree. All leaf statement classes are
specializations of the abstract classStatement . This means that all behavior that classStatement
has is inherited by these leaf statements. The classStatement itself is a specialization of the the class
ParserNodeImp that realizes the interfaceParserNode . So, interface inheritance is achieved because
the leaf statements inherited the realization of the interface viaParserNodeImp andStatement , see
Figure 5.3. Moreover, tree-specific behavior is implemented inParserNodeImp and statement-specific
behavior is implemented inStatement . This way of structuring allows the use of the visitor design
pattern.

5.2.2 Polyhedral reduced dependence graphs

The polyhedral reduced dependence graph (PRDG) is formally defined in Section 3. The PRDG data
structure defines an application in terms of three characteristics, viz., topology, geometry, and behavior.
Figure 5.4 gives a class diagram illustrating the geometrical and behavior part of the PRDG data structure.
The figure illustrates the four classesNode, Edge, InputPort , andOutputPort representing the node

PandaObject

InputPort OutputPort

ArgumentArgument

Domain

<<Interface>>
ParserNode

Node Edge Port

argument : String
variable : String

function

Function

name

addInputArgument()

addOutputArgument()

0..* 0..*

name : Stringname : String
type : String = "in" type : String = "out"

Figure 5.4: Geometrical and behavioral part of the PRDG data structure.

domain, edge domain, input port domain, and output port domain data structures in definitions 3.11, 3.12,
3.9, and 3.10, respectively. They are all derived from the basis classPandaObject that contains an index
setDomain and aParserNode and, therefore, contain an index set and a parse tree themselves. The use
of the ParserNode class in the PRDG is explained in Chapter 5.3. SinceNode, Edge, InputPort ,
andOutputPort have an index set associated with it, they are geometrically conform definitions 3.11,
3.12, 3.9, and 3.10. As shown in Table 3.1 (page 44), only the node domain (N) and the port domains
(P ,Q) have behavior, i.e., associations with them required for proper functional behavior. This behavior is
shown in Figure 5.4 as well.

Figure 5.5 gives a class diagram illustrating the topological part of the PRDG data structure. The figure
shows how the objects of the PRDG link together and directly implements the extended graph definition.
The diagram clearly shows the container-contents relations. The PRDG contains one or more node domains
and zero or more edge domains. A node domain contains zero or more input port domains and zero or more
output port domains. An edge domain is associated with one input port domain and one output port domain.

5.2DGPARSER 83

Prdg

Node Edge

InputPort OutputPort

addInputPort()
addOutputPort()

fromPort
toPort

addNode()
addEdge()

1..* 0..*

0..* 0..*

see Definition 3.12

see Definition 3.13

see Definition 3.11

see Definition 3.9 see Definition 3.10

Figure 5.5: Topological part of the PRDG data structure.

5.2.3 Internal operation of DGPARSER

The actual conversion is done by theParseTree2Prdg singleton class. This class converts a parse
tree into a PRDG. The conversion is illustrated in Algorithm PARSETREE2PRDG. This algorithm is given
in pseudo-code. The pseudo-code uses the graphical syntax presented [75]. Although the real software
implementation is based on classes that can contain state, for the sake of clarity, the pseudo-code used in
this section is pure functional.

PARSETREE2PRDG(T)

1 G← newPrdg B recall thatG = (N , E), see Definition 3.13
2 H ← newHashtable B will contain all edge domains, see lines 19 and 26
3 IN ← NIL B will contain all input port domains of a node domain, see lines 8, 12, and 14
4 for all statementss ∈ T in DFS order
5 do switch
6 casetype[s] = ipd :

7 P ← CREATE-INPUTPORT(s) B domain[P] is edge domain see lines 29 and 30
8 LIST-INSERT(IN , P)

9 return
10 casetype[s] = node :

11 N ← CREATE-NODE(s)

12 for all input port domainsP ∈ IN
13 do ADD-INPUTPORT(N,P)

14 IN ← NIL

15 ADD-NODE(G,N)

16 return
17 casetype[s] = opd :

18 Q← CREATE-OUTPUTPORT(s)

19 HASH-TABLE-PUT(H, (variable[Q], Q))

20 ADD-OUTPUTPORT(N,Q) B also sets index set ofN to index set ofQ
21 return
22 for all node domainsN ∈ N [G]

23 do for all input port domainsP ∈ N
24 doE ← newEdge

25 toPort[E]← P

26 Q← HASH-TABLE-GET(H, variable[P])

27 if Q 6= NIL

28 then fromPort[E]← Q

29 B domain[P] is still the edge domaindomain[E] = domain[P]

30 B domain[P] is an integer polyhedral latticedomain[P] = identity mapping
31 ADD-EDGE(G,E)

84 Software organization

32 return G

The argumentT passed to the PARSETREE2PRDG algorithm is a parse tree, corresponding to Figure 5.3,
that is to be converted into a PRDG, corresponding to figures 5.4 and 5.5.

The algorithm consists of two parts. Lines 4–21 are the first part of the algorithm and convert theIpdState-
ment , OpdStatement , andNodeStatement statements into input port domains (InputPort s), out-
put port domains (OutputPort s), and node domains (Nodes), respectively. Lines 22–31 are the second
part of the algorithm and create the edge domains (Edges). Lines 1–3 contain three declarations.G is
PRDG that is to be returned eventually (see line 32).H is a hash table data structure that is created in the
first part of the algorithm and is used in the second part of the algorithm.IN is a list that temporary stores
input port domains.

In the first part, all statements of parse tree are visited in depth-first-search (DFS) order. As a consequence,
all leaf nodes are visited in a left-to-right order. The leaf node is either anipd, anode, or anopd statement.
For each of these three cases, the corresponding element from the PRDG is created. This is illustrated
by the CREATE-INPUTPORT, CREATE-NODE, and CREATE-OUTPUTPORT functions shown below. Since
the leaf nodes are visited in a left-to-right order, each input port domain that is created belongs to the first
following node domain that is created. Therefore the input port domainsP that are created are stored in the
temporary listIN . When a node domainN is created, the elements ofIN are then added to the list of input
port domains ofN . Each output port domainQ that is created is added to the most recently created node
domainN but is also put in the hash tableH with keyvariable[Q]. The key in the hash table is used in the
second part of the algorithm to find for every input port domainP the output port domainQ with the same
variable name. When suchQ exists, the edge domainE = (Q,P) is created by settingE’s fromPort to
Q andE’s toPort to P .

The CREATE-INPUTPORT function is shown below. Theipd statements has two child nodes, they are
indicated byleft[s] andright[s]. Take for example the firstipd statement in Program 3.2,s : [in0] =
ipd(a1(i− 1, j + 1)), hereleft[s] = in0 andright[s] = a1(i− 1, j + 1). In line 1 the input port domain
P is created. In the lines that follow, the statements is parsed. The index set ofP is determined with the
GET-DOMAIN algorithm in Section 3.4.1. Note that this function is applied to the right-hand side ofs. This
takes the indexing function of the variable into account and constructs the index set of the edge domain, see
line 29 in PARSETREE2PRDG.

CREATE-INPUTPORT(s)

1 P ← newInputPort

2 B name of argument of function insargument[P]← name[right[s]]

3 B name of variablevariable[P]← name[left[s]]

4 B see GET-DOMAIN in Section 3.4.1domain[P]← GET-DOMAIN(right[s])

5 return P

The CREATE-OUTPUTPORT function is shown below. It is quite similar to the CREATE-INPUTPORT func-
tion. Take for example theopd statement in Program 3.2,s : [a1(i, j)] = opd(out0), hereleft[s] =
a1(i, j) andright[s] = out0.

CREATE-OUTPUTPORT(s)

1 B create a new ouput port domainQ← newOutputPort

2 B name of argument of function insargument[Q]← name[right[s]]

3 B name of variablevariable[Q]← name[left[s]]

4 B domain is set in line 20 of PARSETREE2PRDGdomain[Q]← NIL

5 return Q

The CREATE-NODE function is shown below. To enable the reading from and writing to a text file, the class
Node is extended to the classesSourceNode andSinkNode respectively. In lines 1–10, based on the
name of the function invoked in statements the proper node domain is created. In lines 11–13 theNode

5.2DGPARSER 85

data structure is built as shown in Figure 5.5.

CREATE-NODE(s)

1 switch
2 case B test if s is a sourcefunctionName[s] begins with” ReadMatrix ” :

3 N ← newSourceNode

4 return
5 case B test if s is a sinkfunctionName[s] begins with” WriteMatrix ” :

6 N ← newSinkNode

7 return
8 case B if s is not a source or sink,

then it is an internal node
default :

9 N ← newNode

10 return
11 B create a new function for this nodeF ← CREATE-FUNCTION(s)

12 B let the function ofN be the function just createdfunction[N]← F

13 B see GET-DOMAIN in Section 3.4.1domain[N]← GET-DOMAIN(s)

14 return N

The CREATE-FUNCTION function is shown below. First a newFunction object is created. Then its name
is set to the name of statements. The left-hand side child ofs contains the list of return arguments of the
function. The right-hand side child ofs contains the list of input arguments of the function.

CREATE-FUNCTION(s)

1 F ← newFunction

2 name[F]← functionName[s]

3 for all argumentsv ∈ left[s]
4 do B creates new argument with type ”out”ADD-OUTPUT-ARGUMENT(F, name[v])

5 for all argumentsv ∈ right[s]
6 do B creates new argument with type ”in”ADD-INPUT-ARGUMENT(F, name[v])

7 return F

5.2.4 Operation example ofDGPARSER

This section describes a simple case that illustrates the operation of DGPARSER. In the example an upper
triangularN ×N matrix is read from a file. For the sake of completeness the original Matlab file is shown
in Program 5.1.

Program 5.1: TRANSPOSE(MATLAB)
1 %parameter N 10 100;

2 for j = 1 : 1 : N,
3 for i = 1 : 1 : N,
4 [u(j,i)] = _ReadMatrix_U();
5 end
6 end

7 for i = 1 : 1 : N,
8 for j = 1 : 1 : i,
9 [] = _WriteMatrix_L(u(j,i));

10 end
11 end

Line 1 declaresN as an integral parameter with a value in the range from 10 to 100. Lines 2 – 6 read
the squareN × N matrix from a file. The loops iterate over allN2 entries row by row. The prefix
ReadMatrix is used to indicate that matrixU is to be read from a file. Lines 7 – 11 write all upper

triangular elements from the matrixu in a column by column order. The prefixWriteMatrix is used
to indicate that the values of the matrixL are to be written to a file.

86 Software organization

The single-assignment program generated from Program 5.1 is shown in Program 5.2. It is not very dif-
ferent from Program 5.2, because the original Matlab program already is in single-assignment form. The
difference is the additional structure added.

Program 5.2: TRANSPOSE(SAP)

1 %parameter N 10 100;

2 for j = 1 : 1 : N,
3 for i = 1 : 1 : N,
4 [out_0] = _ReadMatrix_U();
5 [u_1(j, i)] = opd(out_0);
6 end
7 end

8 for i = 1 : 1 : N,
9 for j = 1 : 1 : i,

10 [in_0] = ipd(u_1(j, i));
11 [] = _WriteMatrix_L(in_0);
12 end
13 end

All arguments of the functions are of the formin x wherex is an integer, and all return values are of the
form out y wherey is an integer. Theopd statement in line 5 is used to assign the return values of the
functions to the two dimensional arrayu. The ipd statement in line 10 is used to assign the elements from
the multi dimensional arrayu to the input argument of the functionWriteMatrix L(in 0) .

In DGPARSER, the single assignment program TRANSPOSE(SAP) is parsed and represented as a parse
tree. Figure 5.6 shows the UML object diagram of this parse tree. The object diagram shows a number of
instances of the statement classes from Figure 5.3 and how they relate with each other.

parameterName = "N"
lowerBound = 10
upperBound = 100

: ParameterStatement

: RootStatement

: ForStatement

iterator = "j"
lowerBound = 1
upperBound = i

: ForStatement

iterator = "i"
lowerBound = 1
upperBound = N

: ForStatement

iterator = "i"
lowerBound = 1
upperBound = N

: ForStatement

iterator = "j"
lowerBound = 1
upperBound = N

: NodeStatement

name = "_WriteMatrix_"

: IpdStatement

lhs = "in_0"

: VariableStatement

variableName = "u_1"
indexList = (j,i)

: VariableStatement

variableName = "u_1"
indexList = (j,i)

: NodeStatement

name = "_ReadMatrix_"

: OpdStatement

rhs = "out_0"

Figure 5.6: Object diagram of the parse tree.

Procedure PARSETREE2PRDG is now used to convert the parse tree of Figure 5.6 into a PRDG. Figure 5.7
shows the resulting PRDG.

Finally, the PRDG data structure is written to a file in XML format. In XML,elementsare used to represent
the classes from the PRDG. An element is defined by the<elementName attributes> elements
</elementName> tags. Theattributes are the attributes of the element and theelements are

5.2DGPARSER 87

ND_1 : SourceNode

name = "ND_1"

name = "OP_1"
argument = "out_0"
variable = "u_1"

: OutputPort : Domain

index = "j,i"
control = ""
parameter = "N"

: Function

name = "_ReadMatrix_U"

name = "out_0"

: OutputArgument

ND_2 : SinkNode

name = "ND_2"

: Domain

index = "j,i"
control = ""
parameter = "N"

name = "IP_1"
argument = "in_0"
variable = "u_1"

: InputPort

: Domain

index = "j,i"
control = ""
parameter = "N"

: Function

name = "_WriteMatrix_L"

: InputArgument

name = "in_0"

ED_1 : EdgeDomain

name = "ED_1"

: Domain

index = "j,i"
control = ""
parameter = "N"

ND_1 : SourceNode

name = "ND_1"

ND_2 : SinkNode

name = "ND_2"

ED_1 : EdgeDomain

name = "ED_1"

: Parameter

name = "N"
lowerBound = 10
upperBound = 100

: Prdg

name = "triangleTranspose"

Figure 5.7: Object diagram of the PRDG.

the elements associated with the element. The complete desciption of the PRDG in XML is shown in
Program 5.3.

Program 5.3: TRANSPOSE(XML)
1 <?xml version="1.0" standalone="no"?>
2 <!DOCTYPE model PUBLIC "-//UC Berkeley//DTD Panda 1//EN"
3 "http://ptolemy.eecs.berkeley.edu/˜kienhuis/dtd/panda.dtd">

4 <model name="triangleTranspose">
5 <parameter name="N" ub="100" lb="10" />

6 <node name="ND_1" type="SourceNode">
7 <function name="_ReadMatrix_U">
8 <argument name="out_0" type="out" />
9 </function>

10 <domain index="j, i" control="" parameter="N">
11 <constraint matrix="[1, 1, 0, 0, -1;
12 1, -1, 0, 1, 0;
13 1, 0, 1, 0, -1;
14 1, 0, -1, 1, 0]" />
15 <context matrix="[1, -1, 100;
16 1, 1, -10]" />
17 <mapping matrix="[1, 0, 0, 0;
18 0, 1, 0, 0]" />
19 </domain>
20 <port name="OP_1" argument="out_0" variable="u_1">
21 </port>
22 </node>

23 <node name="ND_2" type="SinkNode">
24 <function name="_WriteMatrix_L">
25 <argument name="in_0" type="in" />

88 Software organization

26 </function>
27 <domain index="i, j" control="" parameter="N">
28 <constraint matrix="[1, 1, 0, 0, -1;
29 1, -1, 0, 1, 0;
30 1, 0, 1, 0, -1;
31 1, 1, -1, 0, 0]" />
32 <context matrix="[1, -1, 100;
33 1, 1, -10]" />
34 <mapping matrix="[1, 0, 0, 0;
35 0, 1, 0, 0]" />
36 </domain>
37 <port name="IP_1" argument="in_0" variable="u_1">
38 <domain index="i, j" control="" parameter="N">
39 <constraint matrix="[1, 1, 0, 0, -1;
40 1, -1, 0, 1, 0;
41 1, 0, 1, 0, -1;
42 1, 1, -1, 0, 0]" />
43 <context matrix="[1, -1, 100;
44 1, 1, -10]" />
45 <mapping matrix="[1, 0, 0, 0;
46 0, 1, 0, 0]" />
47 </domain>
48 </port>
49 </node>
50 <edge name="ED_1">
51 <to name="ND_2" port="IP_1" />
52 <from name="ND_1" port="OP_1" />
53 <domain index="i, j" control="" parameter="N">
54 <constraint matrix="[1, 1, 0, 0, -1;
55 1, -1, 0, 1, 0;
56 1, 0, 1, 0, -1;
57 1, 1, -1, 0, 0]" />
58 <context matrix="[1, -1, 100;
59 1, 1, -10]" />
60 <mapping matrix="[0, 1, 0, 0;
61 1, 0, 0, 0]" />
62 </domain>
63 <doc>u_1(j,i)</doc>
64 </edge>
65 </model>

Lines 1–3 are the header of the document. Line 1 states the version of the XML document and that it is not
a stand alone document which means that the grammar of the document is not included in the document
itself. Lines 2–3 specify where this grammar is. The grammar is specified in thepanda.dtd file. The
extension DTD stands for Document Type Definition and describes what elements have what constitutes a
valid XML file.

Lines 4–53 describe the actual PRDG. The<model name="triangleTranspose"> (line 4) and
</model> (line 65) mark the begin and end of the PRDG model definition with the nametriangle-
Transpose . TheParameter , SourceNode , SinkNode , andEdge objects shown in the top part of
Figure 5.7 are defined in XML by the elements<parameter> (line 5), <node> (lines 6 and 23), and
<edge> (line 50) elements. Now take node domainND2 shown at the bottom of Figure 5.7 as an ex-
ample. The element<node name="ND 2" type="SinkNode"> (line 23) starts the definition of the
node domain with nameND2 which is of typeSinkNode . ND2 has a single input port domainIP 1.
The definition of this input port domain starts at the<port> element (line 37) and its index set definition
start at the<domain> element (line 38). The index set is described by three vectors and three matrices.
The three vectors are the attributes of the<domain> element (line 38). The three matrices are described
by the elements<constraint> (line 39),<context> (line 43), and,<mapping> (line 45) which are
all elements of the<domain> element.

5.3PANDA 89

The matricesconstraint and context each represent a polyhedron in the conic representation of
parameterized polyhedra. The first column of each of these matrices encode the type of constraint. A zero
or a one in the first column means that the constraint is an equality or an inequality, respectively. This first
column allows the matrices̃A andC̃ in (2.25) to be combined into a single matrix.

5.3 PANDA

In PANDA , the XML description that is produced by DGPARSER is first parsed to reconstruct the internal
form of a PRDG. The PRDG data structure has been presented in Chapter 5.2.2. Inside PANDA , the PRDG
is converted to a set of parse trees, one for each node domain in the PRDG. The parse tree used within
PANDA is quite similar to the parse tree used within DGPARSER. Chapter 5.3.1 deals with the internal
operation of PANDA immediately. Chapter 5.3.2 continues the operation example from Chapter 5.2.4.

5.3.1 Internal operation of PANDA

The conversion of the PRDG into the parse trees is done in two parts.

The first part is done by the singleton classPrdg-Prepare which transforms the PRDG into another
PRDG. Algorithm PRDG-PREPAREshows the functionality of this class.

PRDG-PREPARE(G)

1 POINT-TO-POINT(G)

2 RECONSTRUCT-OUTPUT-PORT-DOMAINS(G)

3 return G

The POINT-TO-POINT method introduces new output port domains in the PRDG such that every output
port domain connects to at most one input port domain. The RECONSTRUCT-OUTPUT-PORT-DOMAINS

method reconstructs the index set of each output port domain such that each point in the index set of the
output port domain has a consuming point in the index set of the input port domain. POINT-TO-POINT and
RECONSTRUCT-OUTPUT-PORT-DOMAINS, together performingdomain matching, are described in more
detail in Chapter 4.4.

The second part is the conversion of the prepared PRDG to the set of parse trees. This is done by the single-
ton classPrdg2ParseTree . The structure of these parse trees is different from the structure of the parse
tree that is used in DGPARSER, and is outlined in Figure 4.3. The function of thePrdg2ParseTree class
is shown in Algorithm PRDG2PARSETREE. In the algorithm, every node of the PRDG is converted into a
parse tree. Line 1 iterates over all node domainsN of the PRDG. Figure 5.4 shows that the abstract class
PandaObject has a classParserNode associated with it. This means that every class that implements
this interface, like all statements in Figure 5.3, can be associated with the Panda Objects. Here I use this
property to associate a parse tree with every node domain (Node) of the PRDG. In the algorithms (and
s′) is used to represent anything that implements theParserNode interface. The statements (ands′) is
a stitch node. A stitch node represents the node node in the parse tree currently operating on. Initially the
stitch nodes is the root of the parse tree. Then in line 4, a set ofparameter statements are stitched under
s. In the function STITCH every newly stitched statement becomes the new stitch node. As a result, the last
addedparameter statement becomes the stitch node at the end of line 4.

PRDG2PARSETREE(G)

1 for all nodesN ∈ N [G]

2 do s← newRootStatement

3 B parseTree[N] is the root of the parse treeparseTree[N]← s

4 B see Chapter 4.3.2s← STITCH(DOMAIN 2PARSTATEMENT(domain[N]), s)

90 Software organization

5 B see Chapter 4.3.2s← STITCH(DOMAIN 2FORSTATEMENT(domain[N]), s)

6 B see Chapter 4.3.2s← STITCH(NODEDOMAIN 2GENERICIFSTATEMENT(N), s)

7 for all input portsP of N
8 do s′ ← s

9 B see Chapter 4.4.2s′ ← STITCH(INPUTPORT2IFSTATEMENT(P), s′)

10 B see Chapter 4.4.2s′ ← STITCH(INPUTPORT2GENERICIFSTATEMENT(P), s′)

11 B see Chapter 4.5.5s′ ← STITCH(INPUTPORT2ASSIGNMENTSTATEMENT(P), s′)

12 B see Chapter 4.2.2s← STITCH(NODE2ASSIGNMENT(N), s)

13 for all output portsQ of N
14 do s′ ← s

15 B see Chapter 4.4.2s′ ← STITCH(OUTPUTPORT2GENERICIFSTATEMENT(Q), s′)

16 B see Chapter 4.5.5s′ ← STITCH(OUTPUTPORT2ASSIGNMENT(Q), s′)

In lines 4–16, the node domainN is converted into the corresponding parse tree in four parts. Every part
corresponds to a set of nodes with the same label in Figure 4.3. Lines 4–6, 7–11, 12, and 13–16, convert
the nodes labeled with a 1, 2, 3, and 4 respectively.

The statements (or s′) determines where in the parse tree the statements are to bestitched. When the stitch
s is not allowed to be overwritten, a copys′ is made of it.

Every node in Figure 4.3 (recall that these nodes are actually a path of nodes of the same type) is obtained
by converting a piece of the PRDG into a vector of statements. This conversion is done by the functions
with the names DOMAIN 2..., PORT2... , and NODE2.... The function STITCH is used to stitch the vector
of statements in the proper way into the parse tree. This function is shown below.

STITCH(S, s)

1 for all statementsp in S

2 do ADD-CHILD(p, s)

3 s← p

4 return s

The methods called in Algorithm PRDG2PARSETREE, together performingdomain scanningandlineariza-
tion, are explained in previous chapter. The methods rely on several external software implementations.
For the basic operations on polyhedra, the PolyLib [61] is used. This library is extended by Loechner
and Clauss [64, 66, 69–71] to count the number of integral points in parameterized polytopes. To have the
PolyLib functionality available in Java, a Java Native Interface (JNI) [95] to the PolyLib is implemented as
part of in PANDA .

In addition PANDA contains a library to perform some basic operations on symbolic pseudo-polynomials.
These operations include creation, conversion from and to strings, and operations like addition, multiplica-
tion, and substitution (for the non-periodic coefficients).

For the polynomials I use a canonical, distributive, sparse, and zero-represented representation [96], [97].
Canonicalmeans that polynomials which are mathematically the same are represented in a unique way,
distributivemeans that the polynomials are represented in a sum of products form,sparsemeans that only
terms with non-zero coefficient are stored, andzero-representedmeans that if the exponent of a variable
is zero then the zero is explicitly stored. The polynomialZ[x, y] = 2xy + x2 + 3 is internally stored as
1 · x2y0 + 2 · x1y1 + 3 · x0y0. I chose for this representation because of its simplicity. Since the number of
variables and the degree of the polynomials is small, computation time and storage is not much of a issue is
selecting the representation.

5.3PANDA 91

5.3.2 Operation Example ofPANDA

This chapter continues with the case from Chapter 5.2.4. The XML code shown in Program 5.1 is first
parsed into a PRDG representation. The Object diagram of this PRDG is the same as in Chapter 5.2.4 and
is shown in Figure 5.7.

Onto the PRDG algorithm PRDG-PREPARE is applied. The implicit output port domain in Figure 5.7 is
now made explicit by making it equal to the index set of the edge domain. The parse trees of the processes
are derived by applying PRDGTOPARSETREE to the prepared PRDG. Since there are two node domains
the conversion results in two parse tree. The generate phase in PANDA converts the parse trees into C++
class files defining the processes and converts the PRDG into into a C++ class file defining the network.
The complete generated files of the processes are shown in programs 5.4 and 5.5, although they have been
slightly beautified manually.

Most of the code declares and defines the variables, ports, data structure, and so on used in the program.
The real work is done inmain() methods at line 23–39 and 25–39 of programs 5.4 and 5.5, respectively.

In Program 5.4 thefor loops in lines 25 and 26 are generated from node 1b, constructed by Algorithm
DOMAIN 2FORSTATEMENT, of Figure 4.3. In line 19, the matrixU is initialized by reading all elements
from the fileU.sif . In line 27, the elements are read from the matrixU . This line is generated from a
parse node 3 in Figure 4.3 that was constructed by Algorithm NODE2ASSIGNMENT. SinceND1 is a source
process, only the piece of code generated from the output port domains is present. The condition in line 29
is generated from node 4a in Figure 4.3. The condition in line 30 is generated from node 4b in Figure 4.3.
This condition is always true since the output port domain is dense. These two nodes are constructed
by Algorithm OUTPUTPORT2GENERICIFSTATEMENT. Finally lines 34–36 are generated from node 4c,
constructed by Algorithm OUTPUTPORT2ASSIGNMENT, in Figure 4.3. Clearly, only data is written to
output portWP1 wheni ≥ j. This are exactly the elements on and above the diagonal ofU . Thus only the
data that is really used by the consuming processND2 is communicated.

In Program 5.5 the loop structure is similar to that in Program 5.4. SinceND2 is a sink process only
the piece of code generated from the input port domains is present. In this program the index set of the
input port domain is the same as the index set of the node domain, therefore no statements are generated
from the parse nodes 2a and 2b in Figure 4.3. Lines 29–34 are generated from parse node 2c, constructed
by Algorithm INPUTPORT2ASSIGNMENTSTATEMENT. The structure is similar to lines 3–7 in Program
4.8. Line 29 is the read polynomial and specifies from what element in the RAQu 1 is to be read. The
read polynomial is expressed by a polynomial divided by an integer. In this way it is guaranteed that the
expression evaluates to an integer. Lines 30–33 simulate the blocking semantics of the Kahn process, read
operations from inputRP 1 are performed until there is valid data in the RAQ at the element pointed to by
the read polynomial. Then, at line 34 the data is read from the RAQ and assigned to the input argument
of the function. The function call at line 35 then passes this argument to the function. Like the function in
processND1 this function is special in that it communicates to a file. Here, when the process iterated over
all points in the index set, the matrixL is written to fileL.sif .

Program 5.4: ND1
1 #ifndef ND_1_H
2 #define ND_1_H

3 #include "math.h"
4 #include "process.h"
5 #include "port.h"

6 #include "jac_func.h"
7 #include "JMatrix.h"
8 #include "Vector.h"

92 Software organization

9 class ND_1 : public Process {
10 private:
11 double value; // input ports
12 OutPort<double> WP_1; // output ports
13 int N; // parameters
14 double out_0; // function arguments
15 JMatrix U; // input matrix

16 public:
17 bool doWrite;
18 ND_1(Id n, Out<double>& wp_1, int parm_N) :
19 Process(n), WP_1(id("WP_1"), wp_1), N(parm_N), U("U") {
20 // System.out.println(" --- Process ND_1 Created -- ");
21 };
22 const char* type() const {return "ND_1";};

23 void ND_1::main() {
24 //parameter N = [10] : [100];
25 for (int j = 1 ; j <= N ; j += 1) {
26 for (int i = 1 ; i <= N ; i += 1) {
27 out_0 = U.getElement(j, i);
28 doWrite = false;
29 if (-j+i >= 0) {
30 if ((1) / 1 >= 1) {
31 doWrite = true;
32 }
33 }
34 if (doWrite==true) {
35 write(WP_1, out_0);
36 }
37 } // for i
38 } // for j
39 }

40 };
41 #endif

Program 5.5: ND2
1 #ifndef ND_2_H
2 #define ND_2_H

3 #include "math.h"
4 #include "process.h"
5 #include "port.h"

6 #include "jac_func.h"
7 #include "JMatrix.h"
8 #include "Vector.h"

9 class ND_2 : public Process {
10 private:
11 double value; // input ports
12 InPort<double> RP_1;
13 int N; // parameters
14 double in_0; // function arguments
15 double out_0;
16 JMatrix L; // output matrix
17 Vector u_1; // RACs
18 int readAddress_u_1; // write addresses for RACs

19 public:

5.3PANDA 93

20 ND_2(Id n, In<double>& rp_1, int parm_N) : Process(n), RP_1(id("RP_1"),
21 rp_1), N(parm_N), L(parm_N, parm_N), u_1(1000), readAddress_u_1(0){
22 // System.out.println(" --- Process ND_2 Created -- ");
23 };

24 const char* type() const {return "ND_2";};

25 void ND_2::main() {
26 //parameter N = [10] : [100];
27 for (int i = 1 ; i <= N ; i += 1) {
28 for (int j = 1 ; j <= i ; j += 1) {
29 readAddress_u_1 = (2*N*j - 2*N + 2*i - pow(j,2) + j - 2) / 2;
30 while (u_1.getWriteAddress() <= readAddress_u_1) {
31 read(RP_1, value);
32 u_1.put(value);
33 }
34 in_0 = u_1.getElement(readAddress_u_1);
35 L.setElement(i, j, in_0);
36 } // for j
37 } // for i
38 L.toFile("L");
39 }

40 };
41 #endif

The procedure that constructs the network itself is a visitor of the PRDG and is described in Chapter 4.6
and is implemented by theYapiNetworkVisitor class, see Figure 5.2. The result is the C++ code in
Program 5.6. In line 11 the single edgeED 1 is declared. The processesnd 1 andnd 2 are declared as
instances of the classesND1 andND2 just described in lines 13 and 14, respectively. The real construction
of the network is done in lines 18–20. Line 18 constructs the edge domain and lines 19 and 20 construct
the processesnd 1 andnd 2. In the construction the channelED 1 is connected to the output port ofnd 1
and to the input portnd 2.

Program 5.6: TRIANGLETRANSPOSE
1 #ifndef triangleTranspose_H
2 #define triangleTranspose_H

3 #include "fifo.h"
4 #include "process.h"
5 #include "network.h"

6 #include "ND_1.h"
7 #include "ND_2.h"

8 class triangleTranspose : public ProcessNetwork {
9 private:

10 // fifos
11 Fifo<double> ED_1;

12 // processes
13 ND_1 nd_1;
14 ND_2 nd_2;

15 public:
16 triangleTranspose(Id n, int parm_N) :
17 ProcessNetwork(n),
18 ED_1(id("ED_1")),
19 nd_1(id("ND_1"), ED_1, parm_N),
20 nd_2(id("ND_2"), ED_1, parm_N)

94 Software organization

21 {
22 };

23 };

24 #endif /* triangleTranspose_H */

Chapter 6
Conclusions

This dissertation focused on the compilation of imperative nested loop programs into Kahn process net-
works (KPNs). This approach is chosen for two reasons: on the one hand, applications developers are used
to write the application specification in an imperative language (such as Matlab or C), while on the other
hand, there is a tendency that the mapping of applications onto embedded systems starts with an inherently
parallel model of computation. KPNs have been recognized to be one of such parallel models, specifying
applications in an implementation-independent way, yet still allowing these specifications to be tuned to a
particular architecture if desired.

To enable the conversion of an imperative program into the KPN model, the set of imperative programs is
confined to the class ofpiece-wiseaffine nested loop programs. This restriction still allows to study the
kernels of the applications that belong to the domain of digital signal processing.

A piece-wise affine NLP is first subjected to an exact data dependence analysis implemented by the tool
MatParser (outside the scope of this dissertation). The result of this analysis is a functionally equivalent
single-assignment program (SAP). In the SAP, there is only one type of data dependency, namely direct
flow dependency.

I introduced thepolyhedral reduced dependence graph(PRDG) model that describes the application in
terms ofbehavior, topology, andgeometry. Starting the conversion of the application to the KPN from
this model has two advantages: (1) it enables us to decompose the conversion problem into a number of
well defined sub-problems, and (2) this model is very useful for program transformations as shown by the
systolic array and automatic parallelization communities. For this reason, it was decided to first convert the
SAP into the PRDG model and derive the KPN from there.

The PRDG is a graph whose nodes represent sets of operations, and whose edges represent sets of data
dependencies. The set of operations of each node is characterized by a single function and an index set that
identify the set of integral points that describe the iterations where the function must be computed. Usually
functions on the boundary of such an index set depend on the results of functions in some other index set,
while functions internal to the index set depend on other functions inside the index set. For this reason, a
set of input ports and a set of output ports is associated with a node. Similarly, an index set is associated
with each port and an edge in the PRDG connects an output port of one node to an input port of another
node. An affine function is associated with each edge that tells which iterations inside the index set of the
input port depend on which iterations inside the index set of the output port. In this way, the behavior of the
application is captured by the functions inside the nodes, the regular parts of the application are captured
by the index sets associated with the nodes, input ports, and output ports, and the irregularity is captured by

96 Conclusions

the topology of the graph that is described by the PRDG.

Chapter 3 formally defines the PRDG model and deals with the conversion from SAP to to this model. The
parse tree representation of the SAP is scanned and the nodes of the parse tree are converted into either
nodes of the PRDG or annotations of these nodes. Nodes representing functions are converted into nodes,
sets of nested loops are converted in index sets of the nodes, conditional statements (together with the nested
loops) are converted into ports together with their index sets, and variable index references are converted
into the edges of the PRDG.

Chapter 4 deals with the conversion of the PRDG into the KPN model. A Kahn process network is a network
composed of processes which communicate with each other by writing tokens on or reading tokens from
unbounded queues that connect them. A token is an abstract container of information. A write operation
onto a channel is always non-blocking; a read operation from a channel blocks when no token is available.
A Kahn process itself executes a sequential program, or at least, behaves like one. The generation of the
KPN from the PRDG is performed in two stages, viz., the generation of the processes and their code, and
the generation of the network itself.

The generation of the network is straightforward. A process is generated for every node in the PRDG and a
port in the corresponding process is generated for every port in the PRDG. The edges in the PRDG, connect-
ing the ports of the nodes in the PRDG, are mapped onto channels the connect the ports of the corresponding
processes in the KPN. This means that the topological views of the KPN and PRDG are in one-to-one cor-
respondence. However, the philosophy taken in this dissertation is that every token written onto a channel is
also read from that channel and is useful for the receiver. This means that the straightforward construction
of the KPN is to be preceded by a transformation that we calleddomain matching. Domain matching yields
a new PRDG with the property that every output port in the new PRDG matches the input port in the PRDG
that depends on it. We say that an input matches an output port when the dependence function is a bijection
between the points inside their index sets. This mapping allows the mapping of the edges of the new PRDG
onto channels of the KPN such that every token written onto a channel is also read and used.

The generation of the processes requires that code must be generated in such way that functions are called
in the proper order, and that they operate on the proper data. The generation of the functions in the proper
order requires that the index set of each node in the PRDG be scanned and that the proper loops together
with guard code be synthesized. This this task is performed bydomain scanning. The domain scanning
procedure described in this dissertation relies on methods found in literature and extends these to deal with
the index sets found in the PRDG model.

Letting the functions operate in the proper order is required the semantics of the channels in the KPN. Since
a channel represents a queue, the order in which data is written onto a channel is the same as the order in
which data is read from that queue. However, the order in which the consuming process reads the tokens
from the channel may be different that the order in which the values contained in these tokens are passed to
the functions. This requires that reordering of data must be performed. The reordering method described
in this dissertation models the reordering problem by supporting random access to a linear (1-dimensional)
arrays that can be seen as extensions to the queues of the channels. The problem of mapping the higher-
dimensional indexing functions onto indexing functions of the linear array is what we calllinearization. The
linearization problem is formulated in terms of counting problems in polytopes. Such a counting problem
consists in determining the number of integral points contained by a parameterized polytope. The literature
describes a solution to this problem by so calledEhrhart polynomials, whose derivation is implemented by
a software library called POLYL IB. The problem of linearization when broadcasts inside an index set are
present is not yet dealt with, and left as future work. For now, we require that a procedure called localization
is performed on the source program to resolve these broadcasts.

For all methods that are described in this dissertation, software versions have been written and are part of

97

the COMPAAN tool-set. The dependence analysis (which is not part of this dissertation) is implemented by
the tool MATPARSER, the conversion of the SAP to the PRDG by the tool DGPARSER, and the conversion
of the PRDG to the KPN by the tool PANDA . These tools are written in the object-oriented language Java
which allows for a well structured design of compiler-like software. Throughout this dissertation special
attention is paid to have the formulation of methods and algebra in close resemblance to their software
versions. In this way this dissertation can be used to understand the internal structure and the operation of
the implementation. Modern techniques, including design pattern, UML, and XML, have been used to keep
the software well organized. The tools are tested for a small set of sample programs, each testing a different
aspect of the flow, to proof the feasibility of the approach.

Bibliography

[1] A. Peleg and U. Weiser. MMX technology extension to the intel architecture.IEEE Micro, 16(4):42–
50, 1996.

[2] Stephan Wong, Sorin Cotofana, and Stamatis Vassiliadis. Coarse reconfigurable multimedia unit
extension. InProceedings of the 9th Euromicro Workshop on Parallel and Distributed Processing
(PDP 2001), Mantova, Italy, 2001.

[3] Robert Schreiber, Shail Aditya (Gupta), Scott Mahlke, Vinod Kathail, Bob Ramakrishna Rau, Darren
Cronquist, and Mukund Sivaraman. Pico-npa: High-level synthesis of nonprogrammable hardware
accelerators.Journal of VLSI Signal Processing., 2001.

[4] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prohid, a
data-driven multi-processor architecture for high-performance dsp. InProc. ED&TC, March 17-20
1997.

[5] Edwin Rijpkema, Ed F. Deprettere, and Gerben Hekstra. A strategy for determining a Jacobi specific
dataflow processor. InProceedings ASAP’97 conference, July 1997.

[6] Arthur Abnous and Jan Rabaey. Ultra-low-power domain-specific multimedia processors. InVLSI
Signal Processing, IX, pages 461–470, 1996.

[7] J-Y. Brunel, H.J.H.N. Kruijtzer, F. Ṕetrot, L. Pasquier, E.A. de Kock, and W.J.M. Smits. Cosy com-
munication IPs. InProceedings of the 37th Design Automation Conference DAC 2000, 2000.

[8] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. The construction of a re-
targetable simulator for an architecture template. InProceedings of 6th Int. Workshop on Hard-
ware/Software Codesign, Seattle, Washington, March 15–18 1998.

[9] Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers. A methodology for architecture
exploration of heterogeneous signal processing systems. InProceedings of the 1999 IEEE Workshop
in Signal Processing Systems, Taipei, Taiwan, 1999.

[10] Edwin Rijpkema and Ed F. Deprettere. A parallel processor for fast execution of time-adaptive Jacobi
algorithms. In J.P. Veen, editor,Proceedings of the ProRISC/IEEE Workshop on Circuits, Systems
and Signal Processing, pages 261–266, November 1996.

[11] Gilles Kahn. The semantics of a simple language for parallel programming. InProc. of the IFIP
Congress 74. North-Holland Publishing Co., 1974.

100 Bibliography

[12] Peter Held.Functional Design of Data-Flow Networks. PhD thesis, Dept. EE, Delft University of
Technology, May 1996.

[13] Bart Kienhuis. Matparser: An array dataflow analysis compiler. Technical report, University of
California at Berkeley, February 2000.

[14] H. T. Kung and C. C. Leiserson.Algorithms for VLSI Processor Arrays, chapter 8.3, pages 271–292.
Addison-Wesley, Reading, Mass., 1980 (1978).

[15] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform recurrence
equations.Journal of the ACM, 14(3):563–590, July 1967.

[16] D. Moldovan. On the analysis and synthesis of vlsi algorithms.IEEE Transactions on Computers,
C-31(11):1121–1126, November 1982.

[17] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. InCon-
ference Proceedings of the 11th Annual International Symposium on Computer Architecture, pages
208–214, Ann Arbor, Michigan, June 1984.

[18] Jean-Marc Delosme and Ilse C.F. Ipsen. Systolic array synthesis: Computability and time cones. In
In M. Cosnard, P. Quinton, Y. Robert, and M. Tchuente, editors, Int. Workshop on Parallel Algorithms
and Architectures, pages 295–312. Elsevier Science, North Holland, April 1986, 1996.

[19] Alain Darte. Mathematical tools for loop transformations: From systems of uniform recurrence
equations to the polytope model.

[20] Sailesh K. Rao and Thomas Kailath. Regular iterative algorithms and their implementation on pro-
cessor arrays.Proceedings of the IEEE., 76(3), March 1988.

[21] Vwani P. Roychowdhury.Derivation, Extension and Parallel Implementation of Regular Iterative Al-
gorithms. PhD thesis, Stanford University, Dept. of Electrical Engineering, Stanford, CA, December
1988.

[22] M. van Swaaij.Data Flow Geometry: Exploiting Regularity in System-level Synthesis. PhD thesis,
Interuniversitair Mikro-Elektronica Centrum, Leuven, Belgium, 1992.

[23] C. Mauras, P. Quinton, Sanjay Rajopadhye, and Yannick Saouter. Scheduling affine parameterized
recurrences by means of variable dependent timing functions. In S.Y. Kung and E. Swartzlander,
editors,Proceedings of the International Conference on Application Specific Array Processing 1990,
ASAP’90, IEEE Computer Society, pages 100–110, Princeton, New Jersey, Sept 1990. IEEE Com-
puter Society.

[24] J. L. van Meerbergen, P. E. R. Lippens, W. F. J. Verhaegh, and A. van der Werf. PHIDEO: High-level
synthesis for high throughput applications.Journal of VLSI Signal Processing, 9:89–104, 1995.

[25] J. Annevelink. HIFI: A Design Method for Implementing Signal Processing Algorithms on VLSI
Processor Arrays. PhD thesis, Delft University of Technology, The Netherlands, 1988.

[26] Patrice Quinton, Sanjay Rajopadhye, and Tanguy Risset. On ManipulatingZ-polyhedra using a
Canonical Representation.Parallel Processing Letters, 1997.

[27] Lothar Thiele. Compiler Techniques for Massive Parallel Architectures, pages 101–150. Kluwer
Academic Publishers, P.O. Box 17, 3300 AA, Dordrecht, the Netherlands, 1992.

Bibliography 101

[28] J. Teich and Lothar Thiele. Partitioning of processor arrays: A piecewise regular approach.Integra-
tion, the VLSI journal, 14:297–332, February 1993.

[29] Lothar Thiele. From linear recursions to computing arrays. InIEEE Conf. on Circuits and Systems,
Nanjing, China, pages 115–118. IEEE, January 1989.

[30] Lothar Thiele. On the hierarchical design of VLSI processor arrays. InIEEE International Symposium
on Circuits and Systems, Helsinki, pages 2517–2520. IEEE, January 1988.

[31] P. Feautrier. Parametric integer programming.Operationnelle/Operations Research, 22(3):243–268,
1988.

[32] John Backus. Can programming be liberated from the von neumann style? A functional style and its
algebra of programs.Communications of the ACM, 21(8):613–641, August 1978.

[33] Alfred van der Hoeven.Concepts and Implementation of a Design System for Digital Signal Process-
ing. PhD thesis, Delft University of Technology, Delft, The Netherlands, October 1992.

[34] Peter S. Pacheco. A user’s guide to mpi.

[35] G. A. Geist, J. A. Kohla, and P.M. Papadopoulos. PVM and MPI: A Comparison of Features.Calcu-
lateurs Paralleles, 8(2):137–150, 1996.

[36] J. Merlin and B. Chapman. High performance fortran 2.0. InProceedings of Sommerschule uber Mod-
erne Programmiersprachen und Programmiermodelle, pages 15–19, Technical University of Ham-
burg, Harburg, September 1997.

[37] Thomas Brandes. Adaptor programmers guide, version 7.0, 1999.

[38] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G. Holm, A. Lain, D. J. Palermo, S. Ra-
maswamy, and E. Su. The PARADIGM compiler for distributed-memory multicomputers.IEEE
Computer, 28(10):37–47, October 1995.

[39] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao,
Edouard Bugnion, and Monica S. Lam. Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer, 29(12):84–89, December 1996.

[40] M. Wolf and Monica S. Lam. A loop transformation theory and an algorithm to maximize parallelism.
IEEE Transactions on Parallel and Distributed Systems, 4(2):542–471, October 1991.

[41] Christian Lengauer. Loop parallelization in the polytope model. InInternational Conference on
Concurrency Theory, pages 398–416, 1993.

[42] Thomas Brandes. Adaptor: A compilation system for data parallel fortran programs. In Christoph W.
Kessler, editor,Automatic Parallelization — New Approaches to Code Generation, Data Distribution,
and Performance Prediction. Vieweg, Wiesbaden, 1994.

[43] PRiSM/SCPDP. Systematic construction of parallel and distributed programs, project home page,
http://www.prism.uvsq.fr/english/parallel/paf/axesus.html.

[44] The PIPS Workbench Project. Centre de recherche en informatique/École des mines de paris, home
page, http://www.cri.ensmp.fr/pips.

[45] P Boulet and Mich̀ele DION. Code generation in bouclettes. InProceedings of the Fifth Euromicro
Workshop on Parallel and Distributed Processing, pages 273–280, London, UK, January 1997. IEEE
Computer Society Press.

102 Bibliography

[46] Doran K. Wilde.FromALPHA to Imperative Code: A Transformational Compiler for an Array Based
Functional Language. PhD thesis, Oregon State University, July 1995.

[47] Zbigniew Chamski.Environnement logiciel de programmation d’un accélérateur de calcul parall̀ele.
PhD thesis, Université de Rennes 1, Rennes, France, February 1993.

[48] Zbigniew Chamski. Nested loop sequences: Towards efficient loop structures in automatic paralleli-
sation. In27th Hawaii International Conference on System Sciences. IEEE, January 1994.

[49] Philippe Clauss, Vincent Loechner, and Fréd́eric Vivien. Program compiliation and optimization,
http://icps.u-strasbg.fr/pco/.

[50] Vincent Loechner, Benoı̂t Meister, and Philippe Clauss. Data sequence locality: a generalization of
temporal locality. InProceedings of the Europar’2001, Manchester, UK, aug 2001.

[51] Philippe Clauss and Benoı̂ Meister. Automatic memory layout transformation to optimize spatial
locality in parameterized loop nests.ACM SIGARCH Computer Architecture News, 28(1), mar 2000.

[52] Om Prakash Gangwal, Andre Nieuwland, and Paul Lippens. A scalable and flexible data synchro-
nization scheme for embedded HW-SW shared-memory systems. InISSS, pages 1–6, 2001.

[53] Kees Goossens, Jef van Meerbergen, Ad Peeters, and Paul Wielage. Networks on silicon: Combining
best-effort and guaranteed services. InProceedings of the design automation and test conference,
March 2002.

[54] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. InProceedings of the IEEE,
75(9), September 1987.

[55] Edward A. Lee and Thomas M. Parks. Dataflow process networks.Proceedings of the IEEE,
83(5):773–799, May 1995.

[56] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static data flow. InIEEE Int.
Conf. ASSP, pages 3255–3258, Detroit, Mitchigan, May 1995.

[57] Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prophid, a
data-driven multi-processor architecture for high-performance DSP. InProc. ED&TC, March 17-20
1997.

[58] E.A. de Kock, G. Essink, W.J.M. Smits, P. van der Wolf, J.Y. Brunel, W.M. Kruijtzer, P. Lieverse, and
K.A. Vissers. Yapi: application modeling for signal processing systems. InProc. Design Automation
Conference, ACM 2000, pages 402–405, 2000.

[59] Alexander Schrijver.Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[60] George L. Nemhauser and Laurence A. Wolsey.Integer and Combinatorial Optimization. John Wiley
& Sons, 1988.

[61] Doran K. Wilde. A library for doing polyhedral operations. Master’s thesis, Oregon State University,
Corvallis, Oregon, Dec 1993. Also published in IRISA technical report PI 785, Rennes, France; Dec,
1993.

[62] T. Mattheiss and D. Rubin. A survey and comparison of methods for finding all vertices of convex
polyhedral sets.Math. of Op. Research, 5(2):167–185, 1980.

[63] Hervé Le Verge. A note of chernikova’s algorithm. Technical report, Irisa, 1992.

Bibliography 103

[64] Vincent Loechner and Doran K. Wilde. Parameterized polyhedra and their vertices.International
Journal of Parallel Programming, 25(6), December 1997.

[65] The Polylib Team. Polylib user’s manual, http://www.irisa.fr/polylib/.

[66] Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces.Journal of VLSI
Signal Processing, 19:179–194, July 1998.

[67] P.M. Gruber and C.G. Lekkerkerker.Geometry of Numbers. North-Holland, Amsterdam, 1987.

[68] E. Ehrhart. Sur les polỳedres rationnels homothétiquesà n dimensions. C.R. Acad. Sci. Paris,
254:616–618, 1962.

[69] Ph. Clauss and V. Loechner. Parametric analysis of polyhedral iteration spaces. InIEEE Int. Conf.
on Application Specific Array Processors, ASAP’96, Chicago, Illinois, pages 415–424. 1996, August
1996.

[70] Ph. Clauss. Counting solutions to linear and nonlinear constraints through ehrhart polynomials: Ap-
plications to analyse and transform scientific programs. In10th ACM International Conference on
Supercomputing, ICS’96, Philadelphia, May 1996.

[71] Vincent Loechner.Contributionà l’ Étude des Polỳedres Paraḿetrés et Applications en Parallélisation
Automatique. PhD thesis, Université Louis Pasteur, Strasbourg, December 1997.

[72] Richard P. Stanley.Enumerative Combinatorics: Volume 1. Wadsworth Inc., Belmot, California
94002, 1986.

[73] C Ancourt.Géńeration Automatique de Code de Transfert pour Multiprocesseursà Mémoires locales.
PhD thesis, Université de Paris VI, 1991.

[74] A.J. Goldman. Resolution and separation theorems for polyhedral convex sets. In H.W. Kuhn and
A.W. Tucker, editors,Linear inequalities and related systems, Princeton, NJ, 1956, 1956. Princeton
University.

[75] Thomas H. Cormen, Charles E. Leisserson, and Ronald L. Rivest.Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, 1993.

[76] Utpal Banerjee.Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 101 Philip
Drive, Assinippi Park, Norwell, Massachusetts 02061 USA, 1988.

[77] S.Y. Kung.VLSI Array Processors. Prentice-Hall International Editions, 1988.

[78] P. Feautrier. Compiling for massively parallel architectures: A perspective.Algorithms and Parallel
VLSI Architectures III, pages 259–270, 1995.

[79] Ed F. Deprettere, Peter Held, and Paul Wielage. Model and methods for regular array design.Int.
J. of High Speed Electronics, Special issue on Massively Parallel Computing-Part II, 4(2):133–201,
1993.

[80] William Barnier and Jean B. Chan.Discrete Mathematics with Applications. West Publishing Com-
pany, 1989.

[81] Bart Kienhuis. Parallelizing nested loop programs containing div, floor, ceil, mod and step functions.
Master’s thesis, Delft University of Technology, Delft, the Netherlands, 1994.

104 Bibliography

[82] W. Pugh. Counting solutions to presburger formulas: How and why. InProc. of the 1994 ACM
SIGPLAN Conf. on Programming Language Design and Implementation, Princeton, NJ, 1956, 1994.

[83] Arthur H. Veen. Dataflow machine architecture.ACM Computing Surveys, 18(4):365–396, December
1986.

[84] Joseph T. Buck and Edward A. Lee. Scheduling dynamic dataflow graphs with bounded memory
using the token flow model. InProc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing,
Minneapolis, MN, volume I, pages 429–432, April 1993.

[85] K. Arvind and K. P. Gostelow.Formal Description of Programming Languages, chapter Some Re-
lationships Between Asynchronous Interpreters of a Dataflow Language. (E. J. Neuhold, Editor,
North-Holland Publ. Co., New York, 1977.

[86] Arvind and Gostelow. The u-interpreter.Computer, 15(2), Februari 1982.

[87] R. Jagannathan.Parallel and Distributed Computing Handbook, chapter Dataflow Models. (E.Y.
Zomaya, Editor), McGraw-Hill, 1995.

[88] Thomas M. Parks.Bounded Scheduling of Process Networks. PhD thesis, Dept. EECS, University of
California, Berkeley, December 1995.

[89] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666–677,
August 1978.

[90] Fabien Quilleŕe, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient nested loops from
polyhedra.Int. J. of Parallel Programming, 28(5), October 2000.

[91] Philippe Clauss. The volume of a lattice polyhedron to enumerate processors and parallelism, research
report ICPS 95-11. Technical report, Université Louis Pasteur, dept. ICPS, Strasbourg, 1995.

[92] Alco O. Looye. Multiport memory and floating point cordic pipeline on Jacobium processing el-
ements. InProceedings of the ProRISC/IEEE on Circuits, Systems, and Signal Processing 1997,
November 1997.

[93] Grady Booch, James RumBaugh, and Ivar Jacobson.The Unified Modeling Language User Guide.
Addison Wesley, 1999.

[94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series, 1994.

[95] S. Liang.The Java Native Interface. Addison-Wesley Java Series, 1999.

[96] K.O. Geddes, S.R. Czapor, and G. Labahn.Algorithms For Computer Algebra. Kluwer Academic
Publishers, Kluwer Adademic Pulishers Group, Distribution Centre, Post Office Box 322, 3300 AH
Dordrecht, the Netherlands, 1992.

[97] J.H. Davenport, Y. Siret, and E. Tournier.Computer Algebra, Systems and algorithms for algebraic
computation. Academic Press, Academic Press inc., San Diego, CA 92101, second edition, 1993.

Index

Z-polyhedron, 32
m-dimensional periodic coefficient, 26
@ symbol,seeroot

active, 49
acyclic, 46, 47
affine expression, 57
affine hull, 19
affine span, 19
affine subspace, 19
affine-vertex polytope, 24
aggregation, 87
arc set, 46
arcs, 46

blocking, 49
body, 56
boolean dataflow, 69
boundary, 20

communicating sequential processes, 69
Compaan, 8
Compaan tool set, 8
computational network, 48
condition, 56
conditional, 55
contain, 46
context, 22, 57
context of the vertex, 22
control variable, 56
control vector, 61
cycle, 46, 47
cyclo-static dataflow, 69

data-parameter vector, 63
dataflow networks, 68
denominator, 21
dependence function, 55
dependence graph, 48

dependent, 19
destructive assignments, 6
DG, seedependence graph
DGPARSER, 65
digraph, 46
dimension, 20
directed graph, 46
disabled, 49
domain, 49
domain matching, 76
domain scanning, 76, 77
dynamic dataflow, 69

edge, 47
edge set, 47
Ehrhart polynomial, 26
Ehrhart test, 38
embedded polyhedron, 36
enabled, 49
enumerator, 25
extended graph, 46

face, 20
facets, 20
fire, 49
for, 55

header, 56
homogeneous, 41
homogeneous dataflow, 69

image, 32
incident from, 46
incident to, 46
index set, 61
index variable, 56
index vector, 61
indexing function, 55
inhomogeneous, 41

106 Index

input port, 48
input port domain, 50
input port set, 46
integral, 57
interior, 20
iteration, 61
iteration vector, 61

Kahn process networks, 69

lattice defining polyhedron, 34
length, 46
level, 79
lexicographic order, 100
line, 19
linearization, 77
linearly bounded lattice, 32
logical storage structure, 102
loop variable, 56
lower bound, 56

match, 76, 89
MATPARSER, 53
multi-graphs, 46
multi-period, 26

nested loop programs, 1
node, 46, 49
node domain, 51
node set, 47
non-destructive assignments, 7

ordered partition, 46
output normal form, 58
output port, 48
output port domain, 50
output port set, 46

package, 114
PANDA , 113
parameter, 55
parameter vector, 61
parameterized piece-wise affine nested loop pro-

grams, 54
parameterized polyhedron, 21
parameterized vertices, 22
partition, 46
passive, 49
path, 46
period, 26
periodic coefficient, 26

periodic lattice polyhedra, 33
periodic lattice polyhedron, 32, 36
piece-wise affine nested loop programs, 3
pitch, 33
point, 18
polyhedral reduced dependence graph, 8, 48
polyhedron, 9, 19
polytope, 20
port set, 47
PRDG,seepolyhedral reduced dependence graph
process networks, 68
product set, 49
pseudo-affine expression, 57
pseudo-period, 27
pseudo-polynomial, 25–27

random access queue, 102
range, 57
rank, 19, 32, 97, 101
ranking, 97
ranking function, 97
read polynomial, 104, 106
root, 59

self-loop, 46, 47
simple, 46
single assignment, 50
single-assignment program, 50
step size, 56
stitch node, 126
streams, 1
stride, 56
synchronous dataflow, 69

tokens, 1
transformation, 55
type, 48

vector, 18
vertex, 18
vertex set, 18, 46
vertices, 46

write function, 97
write polynomial, 103, 106

Samenvatting

Modelleren van taak niveau parallellisme in stuksgewijs regelmatige programma’s.

Digitale signalen zijn stromen van informatie eenheden dietokensgenoemd worden. Het vakgebied van de
digitale signaalbewerking (of verwerking) houdt zich bezig met het bewerken en verwerken van stromen
van tokens. Voorbeelden hiervan zijn het verwerken en bewerken van video, audio, multimedia, radar
en sonar signalen. Dit gebeurt met behulp van procedures die stromen van tokens converteren in nieuwe
stromen van tokens. Dit converteren gebeurt door middel van operatoren. Een operator opereert op tokens
van binnenkomende stromen en produceert op basis hiervan nieuwe tokens die uitgaande stromen vormen.

De procedures op de stromen van tokens in signaalbewerking procedures zijn vaak operatief in een cyclische
regelmaat. Door deze regelmaat kunnen deze procedures op een compacte manier beschreven worden
door middel vannested loop programs(geneste lus programma’s, afgekort NLP). Daarom worden veel
toepassingen, of delen daarvan, binnen het domein van de digitale signaal bewerking vaak uitgedrukt in
termen van NLP’s.

NLP’s zijn compact, omdat ze sequentiële ordening van operaties compact kunnen specificeren. Echter,
deze specificatie is alleen passend als de computer architectuur die dit programma moet uitvoeren ook
sequentieel van aard is, wat het geval is bij instructieset architecturen. Voorbeelden hiervan zijn micropro-
cessors die in PC’s gebruikt worden en DSP’s (digitale signaal processors).

In toenemende mate ontstaat de vraag om stromen te bewerken waarvan de tokens steeds korter op elkaar
volgen. De bovenstaande architecturen kunnen niet langer aan deze vraag voldoen en er zal moeten worden
overgestapt naar een ander type architectuur. In dit proefschrift beschouwen we architecturen die meerdere
seqientïele programma’s, ofweltaken, gelijktijdig kan uitvoeren. Dit gelijktijdig uitvoeren wordt parallelle
executie genoemd.

Door de sequentiële aard van de NLP’s ontstaat het probleem dat programma’s in dit model niet passend
zijn voor architecturen die ontworpen zijn voor een parallelle executie van taken. Daarom dienen NLP’s
eerst vertaald te worden naar een model dat wel passend is voor dit soort architecturen.

Het model waar in dit proefschrift voor gekozen is, is hetKahn proces netwerk(KPN) model. Het KPN
model bestaat uit processen en kanalen tussen de processen. Een proces executeert een taak, gespecificeerd
als een sequentieel programma, en kan tijdens deze executie tokens lezen van binnenkomende kanalen
en tokens schrijven op uitgaande kanalen. Een kanaal kan een onbegrensd aantal tokens bevatten. Een
proces kan altijd tokens op een uitgaand kanaal schrijven maar zal blokkeren wanneer er gelezen wordt
van een kanaal dat leeg is. Dit model is gekozen omdat het onafhankelijk is van de architectuur waarop
deze afgebeeld dient te worden, maar ook omdat het een aantal handige eigenschappen heeft waaronder
compositieoneerbaarheid en executie volgorde onafhankelijkheid. Deze laatste eigenschap wil zeggen dat

108 Samenvatting

de uitkomst van de toepassing altijd dezelfde is, ongeacht de volgorde waarin de processen op de tokens in
de stromen opereren.

Dit proefschrift beschrijft een verzameling van methoden om NLP’s te vertalen naar KPN’s. Deze vertaling
gebeurt in drie stappen.

De eerste stap is een afhankelijkheidsanalyse die het originele NLP vertaalt naar eensingle assignment pro-
gram (enkelvoudig-toekenningsprogramma, afgekort SAP). Een SAP is zelf weer een NLP maar dan met
de eigenschap dat aan iedere variabele in het programma slechtséén maal een waarde toegekend wordt.
Het gevolg hiervan is dat de operaties in een SAP in elke willekeurige volgorde geëxecuteerd mogen wor-
den zolang iedere variabele maar een waarde toegekend heeft gekregen voordat deze wordt gebruikt. De
afhankelijkheidsanalyse is geı̈mplementeerd in de tool MATPARSERen is geen deel van dit proefschrift.

De tweede stap is de vertaling van de SAP naar eenpolyhedral reduced dependence graph(polyhedraal
gereduceerde afhankelijkheidsgraaf, afgekort PRDG). Er zijn twee redenen voor de introductie van dit
model. Ten eerste maakt dit model het mogelijk om de vertaling vanuit dit model naar het KPN model op te
splitsen in een aantal goed gedefinieerde deelproblemen. Ten tweede is dit model bij uitstek geschikt voor
het toepassen van transformaties zoals die worden toegepast bij het afleiden van en afbeelden op regelmatige
rij-architecturen en binnen de parallelliserende compilers.

Een PRDG is een gerichte graaf bestaande uit knopen (eng., nodes) en kanten (eng. edges). Een knoop
heeft een aantal ingangspoorten en uitgangspoorten. Iedere knoop beschrijft een verzameling van operaties
en dus ook verzamelingen van ingangsargumenten en resultaten. Verzamelingen van ingangsargumenten en
resultaten worden respectievelijk gebonden aan de in -en uitgangspoorten van de knoop. Een kant verbindt
een uitgangspoort aan een ingangspoort en beschrijft daarmee een verzameling van afhankelijkheden tussen
de operaties in de knopen.

De lussen in een SAP beschrijven de verzameling vaniteratieswaarop de functies geëvalueerd moeten
worden. Zo’n verzameling van iteraties wordt eenindex verzamelinggenoemd en wordt in het PRDG model
op compacte wijze beschreven door eenpolytopeen een afbeelding. De verzameling van afhankelijkheden
beschreven in een kant en de verzamelingen van argumenten en resultaten van de verzameling van functies
worden op eenzelfde manier beschreven.

Op deze manier beschrijft iedere knoop in de PRDG een regelmatig deel van het SAP en komt de niet-
regelmaat in het SAP tot uiting in het aantal knopen in de PRDG en de kanten ertussen. De vertalingmethode
die SAP’s vertaalt naar PRDG’s is geı̈mplementeerd in de tool DGPARSER.

De derde stap is het vertalen van de PRDG naar een KPN en bestaat uit twee delen; het genereren van de
processen en het genereren van het netwerk dat de processen met elkaar verbindt.

De generatie van het netwerk is eenvoudig. Voor iedere knoop in de PRDG wordt een proces gegenereerd.
Daarbij krijgt het proces een poort voor elke poort van de knoop. De kanten in de PRDG verbinden paren
van poorten en worden afgebeeld op kanalen in het KPN die de corresponderende poorten van de pro-
cessen met elkaar verbinden. Dit betekent dat de topologie van de PRDG gelijk is aan de topologie van het
gegenereerde KPN.

De generatie van de processen zelf gebeurt in drie stappen, namelijk,domain matching, domain scanning,
en linearization.

Om geen overbodige communicatie in de gegenereerde KPN’s te hebben is er voor gekozen alleen die
tokens op een kanaal te schrijven die daadwerkelijk nodig zijn voor het proces dat van dit kanaal leest. Om
dit te bewerkstelligen wordt dedomain matchingtransformatie op de PRDG uitgevoerd die er voor zorgt
dat iedere uitgangspoort in de PRDG verbonden is met ten hoogsteéén ingangspoort en dat ieder paar van
poorten dat door een kant verbonden is een passend aantal resultaat-argument paren heeft. Het resultaat is

Samenvatting 109

een PRDG zonder overbodige communicatie.

De generatie van de processen behelst de code generatie van het sequentiële programma dat in het Kahn
proces gëexecuteerd wordt. Om deze code enigsinds compact te houden willen we dat deze programma’s
NLP’s zijn. De index verzameling van de functie in iedere knoop in de PRDG moet dus vertaald worden
naar een NLP. Deze vertaling wordtdomain scanninggenoemd. De methode die in dit proefschrift gebruikt
wordt voor domain scanning berust op methoden die in de literatuur bekend zijn en breidt deze uit voor het
gebruik ervan op de index verzamelingen zoals deze in het PRDG model voorkomen.

Wanneer eenmaal door de domain scanning procedure de volgorde waarin de functies in een proces exe-
cuteren bepaald is, dient er voor gezorgd te worden dat deze functies op de juiste tokens opereren. Drie
zaken dienen hier in beschouwing genomen worden. Ten eerste, om het communicatie model eenvoudig
te houden is er voor gekozen dat de token producerende processen de tokens in dezelfde volgorde op de
kanalen schrijven als waarin deze tokens geproduceerd worden. Ten tweede, de kanalen in het KPN model
zijn queues (wachtrijen). Hierdoor zal de volgorde waarin de tokens die van de kanalen gelezen worden
dezelfde zijn als waarin deze erop geschreven zijn. Ten derde, de token consumerende processen zullen
in het algemeen de tokens in eenanderevolgorde willen bewerken als waarin deze van het kanaal gelezen
zijn. Hierdoor zal in het algemeen herordening van de tokens nodig zijn. In dit proefschrift wordt een heror-
dening methode beschreven die welinearizationnoemen. Het linearisatie probleem wordt geformuleerd in
termen van telproblemen in polytopen. Zo’n telprobleem bestaat uit het bepalen van het aantal integer
punten dat een geparameteriseerde polytope bevat. De literatuur beschrijft een methode voor het oplossen
van dit probleem met behulp van zogenoemdeEhrhart polynomen. De methode is geı̈mplementeerd in de
bibliotheek POLYL IB. Het linearisatie probleem is (nog) niet opgelost ingeval er sprake is vanbroadcasts
binnen een index verzameling. Dit is het geval wanneer een resultaat van een functie gecommuniceerd
dient te worden naar meerdere ingangsargumenten in een enkele ingangspoort. De vertaling van het PRDG
model naar het KPN model is geı̈mplementeerd in de tool PANDA .

Alle methoden die in het proefschrift beschreven zijn zijn geı̈mplementeerd in de tools MATPARSER, DG-
PARSERen PANDA die tezamen de COMPAAN vertaler vormen.

Deze tools zijn gëımplementeerd in de object-georiënteerde taal Java die een goed gestructureerd ontwerp
van compilerachtige software toestaat. Door het hele proefschrift heen is aandacht besteed aan de relatie
tussen de algebraı̈sche concepten en de software implementatie. Op deze manier kan het proefschrift ook
gebruikt worden om de interne structuur en werking van de implementatie te begrijpen.

Curriculum Vitae

Edwin Rijpkema was born on October 27, 1970 in Amstelveen, the Netherlands. In 1987 he received his
MAVO diploma at the Hermann Wesselink College in Amstelveen after which he did the first three years
of the MTS, electronics at the Christelijke MTS Patrimonium in Amsterdam. Then in 1990 he went to the
HTS to do the first year of a B.Sc. program at the HTS-A in Amsterdam. In 1991 he started his study in
electrical engineering at the Delft University of Technology. He joined the Information and Communication
Theory group, where he received in 1995 his M.Sc. after his graduation project on fractal image coding
for video sequences. In 1996 he joined the Circuits and Systems group at the same university on a Ph.D.
position and conducted research in the context of mapping of digital signal processing applications onto
parallel architectures. In particular, the research entailed the derivation of process networks from imperative
nested loop programs. In 2000 he joined the Leiden Embedded Research Center at the Leiden Institute of
Advanced Computer Science of the Leiden University, to continue his Ph.D. research. Also in 2000 he got
employed at the Philips Research Laboratories (NatLab) at the embedded system architectures group. As
a member of the Æthereal project, he carries out research on networks-on-chip with emphasis on router
architectures.

