
Design Space Exploration of
Stream-based Dataflow Architectures

Methods and Tools

Retargetable

Mapping

Architecture

Instance Descriptions

Application

Performance
Numbers

Simulator

A.C.J. Kienhuis

http://cas.et.tudelft.nl/research/hse.html

Design Space Exploration of
Stream-based Dataflow Architectures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.F. Wakker,
in het openbaar te verdedigen ten overstaan van een commissie,

door het College voor Promoties aangewezen,
op vrijdag 29 Januari 1999 te 10:30 uur

door

Albert Carl Jan KIENHUIS

elektrotechnisch ingenieur
geboren te Vleuten.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. P.M. Dewilde

Toegevoegd promotor: Dr.ir. E.F. Deprettere.

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. P.M. Dewilde, Technische Universiteit Delft, promotor
Dr.ir. E.F. Deprettere, Technische Universiteit Delft, toegevoegd promotor
Ir. K.A. Vissers, Philips Research Eindhoven
Prof.dr.ir. J.L. van Meerbergen, Technische Universiteit Eindhoven
Prof.Dr.-Ing. R. Ernst, Technische Universit¨at Braunschweig
Prof.dr. S. Vassiliadis, Technische Universiteit Delft
Prof.dr.ir. R.H.J.M. Otten, Technische Universiteit Delft

Ir. K.A. Vissers en Dr.ir. P. van der Wolf van Philips Research Eindhoven, hebben als begeleiders
in belangrijke mate aan de totstandkoming van het proefschrift bijgedragen.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Kienhuis, Albert Carl Jan

Design Space Exploration of Stream-based Dataflow Architectures : Methods and Tools
Albert Carl Jan Kienhuis. -
Delft: Delft University of Technology
Thesis Technische Universiteit Delft. - With index, ref. - With summary in Dutch
ISBN 90-5326-029-3
Subject headings: IC-design; Data flow Computing; Systems Analysis

Copyright c 1999 by A.C.J. Kienhuis, Amsterdam, The Netherlands.
All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval
system, without permission from the author.

Printed in the Netherlands

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Video Signal Processing in a TV-set . 3

1.2.1 TV-set . 3
1.2.2 Video Processing Architectures in the TV of the Future 5
1.2.3 Stream-Based Dataflow Architecture . 6

1.3 Design Space Exploration . 8
1.4 Main Contributions of Thesis . 9
1.5 Outline of the Thesis. 11

2 Basic Definitions and Problem Statement 15
2.1 Stream-based Dataflow Architectures . 16

2.1.1 Definitions . 16
2.1.2 Structure . 19
2.1.3 Behavior . 22

2.2 The Class of Stream-based Dataflow Architectures 31
2.2.1 Architecture Template . 32
2.2.2 Design Space . 32

2.3 The Designer’s Problem . 32
2.3.1 Exploring the Design Space of Architectures 33
2.3.2 Problems in Current Design Approaches . 33

2.4 Related Work on Dataflow Architectures . 34
2.4.1 Implementation Problems of Dataflow Architectures 35
2.4.2 Other Dataflow Architectures . 35
2.4.3 Implementing Stream-based Dataflow Architectures 36

2.5 Conclusions . 39

3 Solution Approach 43
3.1 The Evaluation of Alternative Architectures . 44

3.1.1 Quantitative Data. 44
3.1.2 The Y-chart Approach . 44

3.2 Design Space Exploration Using the Y-chart Approach 45
3.3 Requirements of the Y-chart Approach . 46

3.3.1 Performance Analysis . 47
3.3.2 Mapping . 52

3.4 Development of a Y-chart Environment . 55

i

ii CONTENTS

3.5 Related Work . 56
3.5.1 Design of General-Purpose Processors . 56
3.5.2 Design of Application-Specific Architectures 59

3.6 Conclusions . 60

4 Performance Analysis 63
4.1 Performance Analysis . 64

4.1.1 A System . 64
4.1.2 Performance Modeling . 65
4.1.3 Performance Evaluation . 65
4.1.4 Accuracy . 66
4.1.5 Trade-off . 66

4.2 The PAMELA Method . 66
4.2.1 A Simple System . 67
4.2.2 PAMELA Modeling Technique . 67
4.2.3 PAMELA Evaluation Technique . 73

4.3 Objectives in Using the PAMELA Method . 76
4.4 An Object Oriented Modeling Approach using PAMELA 77

4.4.1 The Object . 78
4.4.2 Modeling a System as a Network of Objects 79
4.4.3 Describing the Structure of an Object in C++ 80
4.4.4 Describing the Behavior of an Object Using PAMELA 81
4.4.5 Building Blocks . 84

4.5 Simulating Performance Models with the RTL . 85
4.6 Related Work . 87
4.7 Conclusions . 88

5 Architectures 91
5.1 Architectures . 92

5.1.1 Pictorial Representation . 92
5.1.2 Architectures . 93
5.1.3 Cycle-accurate Model .. 94

5.2 Modeling Architectures . 95
5.3 Modeling Architectures using the PMB . 95

5.3.1 Machine-oriented Modeling Approach . 96
5.3.2 Building Blocks . 96
5.3.3 Architectural Element Types . 98

5.4 Modeling the Architectural Elements as Building Blocks 100
5.4.1 Packets . 101
5.4.2 Architecture . 103
5.4.3 Processing Element . 103
5.4.4 Communication Structure . 103
5.4.5 Global Controller . 104
5.4.6 Buffer . 105
5.4.7 Router . 107
5.4.8 Functional Unit . 109
5.4.9 Functional Element . 111

CONTENTS iii

5.4.10 Pipeline . 116
5.4.11 Ports . 120

5.5 Describing an Architecture Template . 121
5.5.1 Composition Rules 121
5.5.2 Architecture Description Language. 123

5.6 Programming an Architecture Instance . 127
5.6.1 Application Network . 127
5.6.2 Mapping . 128
5.6.3 Programming Model . 128
5.6.4 Example . 133

5.7 Conclusions . 135

6 Applications 137
6.1 Stream-Based Applications . 138
6.2 Imperative Programming Languages. 139
6.3 Stream-Based Functions . 142
6.4 The SBF Object . 143

6.4.1 Functions . 144
6.4.2 Controller . 144

6.5 Example of an SBF Object . 145
6.6 Networks of SBF Objects . 147

6.6.1 Composition of SBF Objects. 147
6.6.2 Decomposition of SBF Objects. 150

6.7 Related Work . 150
6.7.1 Dataflow Models . 150
6.7.2 Process Models . 151
6.7.3 Combined Dataflow/Process Models . 152

6.8 Implementation of the SBF model . 153
6.8.1 Host Language. 153
6.8.2 Coordination Language .. 156

6.9 Conclusions . 157

7 Construction of a Retargetable Simulator and Mapping 161
7.1 Retargetable Architecture Simulators . 162

7.1.1 Requirements . 163
7.2 The Object Oriented Retargetable Simulator (ORAS) 163
7.3 Development of ORAS . 165

7.3.1 Step 1: Structure . 165
7.3.2 Step 2: Execution Model . 166
7.3.3 Step 3: Metric Collectors . 166

7.4 Mapping Applications . 167
7.4.1 Mapping Approach . 168
7.4.2 Matching Models of Architecture and Computation 169
7.4.3 Control Hierarchy . 170

7.5 The Interface Between Application and Architecture 172
7.5.1 The Application – Architecture Interface 173
7.5.2 Restricting Resources . 175

iv CONTENTS

7.6 Construction Example . 175
7.7 Related Work . 176
7.8 Discussion on ORAS . 177

7.8.1 Building Blocks . 178
7.8.2 High-level Primitives . 178
7.8.3 Interpreted Model . 178
7.8.4 Limitations . 178

7.9 A Generic Approach for a Retargetable Simulator 179
7.9.1 Step 1: Structure . 179
7.9.2 Step 2: Execution Model . 179
7.9.3 Step 3: Metric Collectors . 180
7.9.4 Mapping . 180

7.10 Conclusions . 180

8 Design Space Exploration 183
8.1 The Acquisition of Insight 184
8.2 Design Space Exploration . 185
8.3 Design Space Exploration Environment . 186

8.3.1 Spanning the Design Space . 186
8.3.2 Construction of the Response Surface Model. 188
8.3.3 Data Management and Data Consistency 189
8.3.4 Parameterizing the Architecture Description 189

8.4 Integrating ORAS within the Generic DSE Environment 192
8.4.1 Selecting Parameter Values . 192
8.4.2 Running the Y-chart in the DSE Environment. 192
8.4.3 Creating Response Surface Model. 193

8.5 An Example of Design Space Exploration . 194
8.6 Related Work . 195
8.7 Conclusions . 197

9 Design Cases 201
9.1 Motivation . 202

9.1.1 Application Characteristics . 202
9.2 Case 1: The Prophid Architecture (Philips Research). 203

9.2.1 Prophid Architecture . .. 203
9.2.2 Prophid Benchmark . .. 203
9.2.3 The Use of the Y-chart in the Prophid Case 204
9.2.4 Issues in Modeling the Prophid Architecture 206
9.2.5 Results . 208
9.2.6 Conclusions . 210

9.3 Case 2: The Jacobium Processor (Delft University of Technology). 210
9.3.1 The Jacobium Processor Architecture . 211
9.3.2 Jacobium Applications . 213
9.3.3 The Use of the Y-chart Approach in the Jacobium Processor Case 214
9.3.4 Deriving a Network of SBF Objects from a Dependence Graph 216
9.3.5 Results . 219
9.3.6 Conclusions . 221

CONTENTS v

10 Summary & Conclusions 225
10.1 Discussion of the Y-chart Approach . 226

10.1.1 Significant Effort . 226
10.1.2 Characteristics of the Y-chart Approach . 227
10.1.3 Structuring the Design Process . 227
10.1.4 Multi-Disciplinary Teams . 228

10.2 Further Research . 228
10.3 Availability of Software. 229

A Architecture Template in BNF 231

B Picture in Picture Example 235
B.1 One-to-one Architecture Instance . 235

B.1.1 Architecture Description . 236
B.1.2 Mapping . 238

B.2 Many-to-one Architecture Instance . 239
B.2.1 Architecture Description . 239
B.2.2 Mapping . 241

C Limitations of the RTL 243
C.1 State of the System . 243

C.1.1 Polling . 243
C.1.2 Priority Scheduling . 244

C.2 Implementing Polling in the RTL. 244
C.3 Modeling the TDM global controller . 245

C.3.1 TDM Controlled Routers . 246
C.4 How VHDL differs from the RTL . 246

Acknowledgments 253

Samenvatting 255

Curriculum Vitae 257

Chapter 1

Introduction

Contents

1.1 Motivation . 3

1.2 Video Signal Processing in a TV-set . 3

1.2.1 TV-set . 3

1.2.2 Video Processing Architectures in the TV of the Future 5

1.2.3 Stream-Based Dataflow Architecture . 6

1.3 Design Space Exploration . 8

1.4 Main Contributions of Thesis . 9

1.5 Outline of the Thesis . 11

T
HE increasing digitalizationof information in text, speech, video, audio and graphics has resulted
in a whole new variety of digital signal processing (DSP) applications like compression and

decompression, encryption, and all kinds of quality improvements [Negroponte, 1995]. A prerequisite
for making these signal processing applications available to the consumer market is their cost-effective
realization into silicon. This leads to a demand for new application-specific architectures that are
increasinglyprogrammablei.e., architectures that can execute a set of applications instead of only
one specific application. By reprogramming these architectures, they can execute other applications
with the same resources, which makes these programmable architectures cost-effective. In the near
future, these architectures should find their way into consumer products like TV-sets, set-top boxes,
multi-media terminals, and other multi-media products, as well as in wireless communication and low
cost radar systems.

The trend toward architectures that are more and more programmable represents, as argued by Lee
and Messerschmitt [1998], the first major shift in electrical engineering since the transitions from
analog to digital electronics and from vacuum tubes to semiconductors. However, general and struc-
tured approaches are lacking for designing application-specific architectures that are sufficiently pro-
grammable.

The current practice is to design application-specific architectures at a detailed level using hard-
ware description languages like VHDL [1993] (Very high speed IC hardware description Language)
or Verilog. A consequence of this approach is that designers work with very detailed descriptions of
architectures. The level of detail involved limits the design space of the architectures that they can
explore, which gives them little freedom to make trade-offs between programmability, utilization of

1

2 Introduction

resources, and silicon area. Because designers cannot make these trade-offs, designs end up underuti-
lizing their resources and silicon area and are thus unnecessarily expensive, or they cannot satisfy the
imposed design objectives.

The development of programmable architectures that execute widely different applications has
already been being worked on for decades in the domain of general-purpose processors. These pro-
cessors can execute a word-processing application or a spreadsheet application or can even simulate
some complex physical phenomenon, all on the same piece of silicon. Currently, these processors are
designed by constructing performance models of processors at different levels of abstraction ranging
from instruction level models to Register Transfer Level (RTL) models [Bose and Conte, 1998; Hen-
nessy and Heinrich, 1996]. Theseperformance modelscan be evaluated to provide data for various
performance metricsof a processor, like resource utilization and compute power while processing a
workload. A workload is typically a suite ofbenchmarks, i.e., a set of typical applications a proces-
sor should execute. Measuring the performance of a processor deliversquantitativedata. This data
allows designers to explore the design space of processors at various levels of detail and to make
trade-offs at the different levels between, for example, the utilization of resources and performance of
processors. Moreover, quantitative data gives designers insight, at various levels of detail, into how to
further improve architectures and serves as an objective basis for discussion of possible architecture
improvements.

The benchmark approach practiced in general-purpose processor architecture design leads to
finely tuned architectures targeted at particular markets. When the benchmark approach was initially
introduced at the beginning of the 1980s, it revolutionized general-purpose processor design, which
resulted in the development of RISC-style processors [Patterson, 1985]. These processor architectures
were smaller, faster, less expensive and easier to program than any conventional processor architecture
of that time [Hennessy and Patterson, 1996].

General-purpose processors, although programmable, are not powerful enough to execute the dig-
ital signal processing applications we are aiming at, as we will explain soon. Special application-
specific architectures are therefore required that are nonetheless programmable to some extent. The
benchmark approach used in the design of general-purpose processors is also useful in the design of
the programmable application-specific architectures emerging now, as we show in this thesis. We will
develop and implement in this thesis a benchmark approach, which we call the Y-chart approach, for a
particular class of programmable application-specific architecture calledStream-Based Dataflow Ar-
chitecture. The benchmark approach we develop results in an environment in which designers are able
to perform design space exploration for the stream-based dataflow architecture at a level of abstraction
that is higher than that offered by standard hardware description languages.

In Section 1.1 of this chapter we explain further why programmable application-specific architec-
tures will emerge for digital signal processing applications. Following this, in Section 1.2 we discuss
as an example the video signal processing architecture in a modern TV-set. Based on this example, we
illustrate how the trend towards programmable architectures will affect the next generation of TV-sets
and explain why general-purpose processors are not capable of providing the required performance
at acceptable cost. We focus on the stream-based dataflow architecture in TV-sets. In Section 1.3 we
indicate how we are going to explore the design space of this architecture at a high level of abstraction.
This chapter concludes with the statement of the main contributions of this thesis in Section 1.4 and
the further outline for the thesis in Section 1.5.

Introduction 3

1.1 Motivation

New advanced digital signal processing applications like signal compression and decompression, en-
cryption, and all kinds of quality improvements become feasible on a single chip because the number
of transistors on a single die is still increasing, as predicted by Moore’s law. Digital signal pro-
cessing applications involvereal-timeprocessing, which implies that these applications take in and
produce samples at a particular guaranteed rate, even under worst-case conditions. In addition, these
applications are very demanding with respect tocomputational power, i.e., the number of operations
performed in time, andbandwidth, i.e., the amount of data transported in time.

Architectures that realize the new applications cost-effectively in silicon must be able first of all
to deliver enough processing power and bandwidth to execute the applications and secondly to satisfy
the real-time requirements of the applications. The design of such new architecture configurations is
becoming an increasingly intricate process. Architectures are becoming increasingly programmable
so that they can supportmulti-functionalproducts as well asmulti-standardproducts (like a mobile
telephone operational worldwide). In the design of these architectures, it is no longer the performance
of a single application that matters, but the performance of aset of applications. This impedes the de-
sign of architectures that must satisfy all the given constraints such as real-time processing, utilization
of the resources, and programmability.

Before we look in more depth into the design problems of these new architectures, we illustrate
the trend towards more programmable application-specific architectures by looking at the video signal
processing architecture inside a modern television. In this domain, the need for architectures that can
execute a set of applications is clearly present.

1.2 Video Signal Processing in a TV-set

The trend towards devising new signal processing architectures that are programmable is clearly vis-
ible in the domain of consumer market TV-sets, where the digital revolution started in the 1980s and
early 1990s. In this period, the signal processing architecture inside a TV-set moved from analog
processing to digital processing, whereby analog functions were replaced by digital functions. The
all-digital TV architecture together with the expected continuation of transistor miniaturization in the
semiconductor industry has led to increased demand for new innovative signal processing architec-
tures.

1.2.1 TV-set

The signal path within a TV-set consists of three sections: afront-end and baseband processing sec-
tion, avideo signal processing section, and adisplay section, as shown in Figure 1.1. The first section
transforms a TV-signal coming from an outside source like an aerial antenna into a signal that the
display section visualizes on a display device, for example a Cathode Ray Tube (CRT). In between
these two sections is an analog video signal processing section that makes a received signal suitable
for display.

As the video signal processing section evolves from being analog to fully digital, a whole range of
new applications becomes available through digital signal processing. Examples of new digital appli-
cations that improve the quality of images are luminance peaking [Jaspers and de With, 1997], noise
reduction, and ghost image cancellation. Examples of complete new applications are picture reduc-
tion (Picture in Picture), picture enlargement (Zoom) [Janssen et al., 1997], and motion compensated
100Hz image conversions [de Haan et al., 1996].

4 1.2 Video Signal Processing in a TV-set

Cathode Ray Tube

Signal Processing

Front-end &
Baseband
Processing

Video Display Device

Figure 1.1 . The signal path within a TV-set consists of three sections: a front-end and
baseband processing section, a video signal processing section, and a display section.

A TV-set must also be compatible with an increasing variety of standards. Signals containing
content to be displayed may be delivered through many different sources, like cable TV, a satellite
dish, a computer, video recorder (VCR), or a set-top box. Traditionally these formats have complied
with conventional formats like NTSC (National Television System Committee), PAL (Phase Alternat-
ing Line), or SECAM (Sequentiel `a Mémoire), but increasingly often they are now also complying
with emerging standards like various types of MPEG (Moving Picture Expert Group) and computer
standards like SVGA (Super Video Graphics Array).

The increasing demand for new digital applications by consumers and the need for TV-sets to
comply to different standards has made a more complex video signal processing section necessary
in TV-sets [Claasen, 1993]. The video signal processing section of a modern high-end TV-set is
shown in Figure 1.2. Each of the applications shown has its own hardware processing unit, When
new applications are added, new hardware units are incorporated into the video signal processing
architecture to support them. Since the customer does not select all applications at the same time, the
architecture uses these units uneconomically.

PAL

NTSC

SECAM

SVGA

MPEG

100Hz

PiP

TeleText

Graphics

Noise
Reduction

Zoom

Cancel
Ghost

Figure 1.2 . Video signal processing section of a modern high-end TV-set.

Because each hardware unit is dedicated to one particular application, it is not possible for appli-
cations to share hardware units. However, if the hardware units were made less dedicated (which we
discuss later in this chapter), hardware units could be used to support more than one application. These
programmable architectures of tomorrow could be reprogrammed to execute other applications with

Introduction 5

the same amount of resources, thus improving the utilization of silicon in implementing architectures.
Thus, these architectures become cost effective for a set of applications.

1.2.2 Video Processing Architectures in the TV of the Future

The architecture most likely to be found in the TV-set of tomorrow [Claasen, 1993] will look similar
to the structure illustrated in Figure 1.3. This architecture is built around a programmable communi-
cation network to which various elements connect. The video-in processor consists of several input
channels. The video-out processor takes an output signal to the display section. A collection of pro-
cessing elements (PEs) operate as hardware-accelerators, and a general purpose processor and a large
high-bandwidth memory are present as well. The set of processing elements have their own controller
and operate very independently (but not completely) of the general-purpose processor.

Processor
Purpose
General

Video
Out

Controller

PE 1 PE 2 PE 3

Weakly Programmable

Video
In

Streams

Programmable Communication Network

High Bandwidth
Memory

Parallelism

Figure 1.3 . TV architecture of tomorrow.

The architecture in Figure 1.3 combines two architecture concepts: a general-purpose processor
and the architecture enclosed by the dashed line. These two concepts are needed because of the large
variety of timing constraints present in a TV-set, as we will show. The general-purpose processor
processes reactive tasks (e.g., a user pressing on the volume button on the remote control) and control
tasks (e.g., controlling the menus displayed on the screen and their functions). The dedicated pro-
cessing elements, on the other hand, execute data processing tasks, i.e., the digital signal processing
applications.

The large variations in timing constraints are caused by the structure of TV-signals. For example,
a standard PAL video signal consists of a sequence of frames presented at a rate of 25 interlaced video
framesper second. Each frame consists of twofields: an even field containing the even video lines
and an odd field containing the odd video lines. A field has 312 videolines, and each line consists
of 864 videopixels. Algorithms that operate on PAL video signals with different repetition periods –
either pixels, lines, fields, or frames – result in very different computational requirements. Suppose
an algorithm consists of 300 RISC-like operations and operates periodically on pixels, lines, fields,
or frames. The vastly different computational requirements are given in Table 1.1. An algorithm
operating at a field rate would perform 50�300, or 15,000 operations per second. An algorithm
operating at a pixel rate would perform 13.5M�300 operations per second, which is 4 Giga operations
per second.

A general-purpose processor (e.g., a RISC processor) is considered powerful enough to execute

6 1.2 Video Signal Processing in a TV-set

Type of repetition rate Computational requirements
for performing an operation (Operations per second)

Pixels 4.05� 109 = 300�13500000
Lines 4.8� 106 = 300�16000

Fields 15� 103 = 300�50
Frames 7.5� 102 = 300�25

Table 1.1 . Computational requirements for different types of repetition rates for performing
operations.

periodically scheduled algorithms with repetition cycles based on field or frame rates and it can also
perform all kinds of reactive and control tasks. The efficiency of general-purpose processors, as
measured in terms of performance per dollar, is increasing at a dazzling rate [Hennessy and Patterson,
1996]. However, they are still not powerful enough to execute periodically scheduled high-quality
video algorithms with repetition cycles based on pixel or line rates.

It is inevitable that architectures used in TV-sets and in computers will eventually be merged
to create new products like the PCTV [Rose, 1996] that are centered around one or more powerful
general-purpose processors. Many high-end general-purpose processors already demonstrate a clear
trend towards real-time processing using special multi-media instructions [Diefendorff and Dubey,
1997]. However, these general-purpose processors will not be able to furnish the processing power
and communication bandwidth in the near future that is required by current and forthcoming TV
applications. Consequently, at least for the coming decade, TV architectures will use a general-
purpose processor in conjunction with a special architecture for the high-performance, real-time video
processing.

1.2.3 Stream-Based Dataflow Architecture

The architecture enclosed by the dashed line in Figure 1.3 describes a programmable, application-
specific architecture for high-performance, real-time video applications. We call this architecture
Stream-Based Dataflow Architectureand we consider this architecture and its design in detail in this
thesis.

A Stream-Based Dataflow Architectureconsists of a global controller, a communication structure
and a set of parallel-operating processor elements that are weakly programmable. These processing
elements operate on streams that they exchange among each other via the communication structure
under control of the global controller. The architecture exploits the following characteristics so as to
be programmable, efficient, and able to satisfy real-time constraints.

Stream-based processingThe processing elements operate on streams: these are a natural form
with which to represent video as a one-dimensional sequence of video pixels [Watlington and
Michael Bove Jr, 1997].

Coarse-grained parallelism The processing elements exploit inherent coarse-grained parallelism
available within video applications by executing coarse-grained functions to achieve the re-
quired computational performance.

Introduction 7

Weakly Programmable The processing elements implement a limited set of coarse-grained func-
tions that provide the processing elements with the flexibility required to support a set of appli-
cations.

The granularity of the functions implemented by the processing elements highly influences the
efficiency of stream-based dataflow architectures. The granularity of the functions has two extremes,
as illustrated in Figure 1.4.

At one end of the spectrum, there are Application Specific Integrated Circuits (ASICs). Here,
each ASIC implements one video application like luminance peaking, noise reduction, or picture
in picture. An ASIC can only execute one application very efficiently in terms of silicon use. At
the other end of the spectrum are programmable domain specific architectures like the VSP [Vissers
et al., 1995] or Paddi [Chen, 1992]. These architectures use processing elements that implement small
sets of fine-grained functions like add, subtract, and compare. These fine-grained functions allow
the architectures to execute a wide range of video applications belonging to a specific application
domain while satisfying real-time constraints. However, in order to support this programmability,
these architectures dedicate a substantial part of their silicon area to control and communication and
less to the actual computation.

For some video applications a gap of a factor of ten to twenty is found in silicon efficiency between
an ASIC solution and a programmable solution [Lippens et al., 1996, 1991]. If multiple applications
execute at the same time, a collection of ASICs results in the most efficient solution. However, for a
given set of applications of which only one or a few execute simultaneously, the efficiency is no longer
that high. In that case, a domain-specific programmable architecture is not efficient either, because it
possesses more flexibility than required, i.e., the architecture can execute more applications than are
present in the set of applications. This surplus of programmability is present at the expense of extra
silicon.

Architectures

Programmability

Low

HighLow

High

Specific
Integrated

Circuits (ASICs)

Efficiency

Dataflow Architectures
Stream-based Programmable

Domain-Specific
Application-

Coarse-grained
Processing Elements Processing Elements

Fine-grained

Figure 1.4 . The relationship between granularity of the processing elements and the effi-
ciency and programmability for high-performance, real-time signal processing applications.
At one extreme of the spectrum, we find application-specific architectures that use very
coarse-grained processing elements. They are very efficient but cannot be programmed.
At the other end of the spectrum, we find programmable domain-specific architectures that
use very fine-grained processing elements. They are highly programmable but have a low
efficiency. Stream-based dataflow architectures result in the best balance between effi-
ciency and programmability.

Lieverse et al. [1997] have investigated the relationship between the granularity of the process-
ing elements and the efficiency and programmability of a stream-based dataflow architecture. For a
limited set of applications, coarse-grained processing elements (i.e., processing elements implement-
ing coarse-grained functions) result in the best balance between efficiency and programmability for

8 1.3 Design Space Exploration

high-performance, real-time signal processing applications. Therefore, we investigate stream-based
dataflow architectures that make use of coarse-grained processing elements.

1.3 Design Space Exploration

In the design of programmable application-specific architectures like the stream-based dataflow archi-
tecture, a designer has to make many choices, like the granularity of the functions that the processing
elements implement. Other choices include the number of processing elements to use or how much
bandwidth to allocate to the communication network. These and many more choices have an effect
on the overall performance of architectures in terms of utilization of the resources and throughput
of the various processing elements. Furthermore, because the architecture has to execute a set of
applications, particular choices might be excellent for one application in the set, but bad for another.

Nevertheless, a designer has to make choices such that the performance of the architecture is
satisfactory for the set of applications while being cost effective. To achieve this goal, a designer has
to maketrade-offs, i.e., weigh one choice against another and come to a compromise. A designer must
know what the design space of architectures looks like in order to make trade-offs. He acquires this
knowledge byexploringhow a particular performance metric depends on a particular parameter.

Design space exploration typically results in graphs like the one shown in Figure 1.5. It shows a
simplified, idealized relationship between a measured performance of the architecture for a range of
parameter values that each represent particular choices.

III

I
II

P
er

fo
rm

an
ce

High

Low

Low HighParameter value

Figure 1.5 . The relationship between a measured performance in the architecture and a
range of parameter values. Point I indicates the best trade-off between a particular perfor-
mance and parameter values. Point II shows a marginal increase of the performance at a
large cost and point III shows a deterioration of the performance.

In such graphs, there is often a point (I) representing the best trade-off between a particular per-
formance and parameter value; it is this point, the so-called knee, that a designer seeks. Selecting a
larger parameter value (i.e., closer to II) would result in a marginal increase in the performance at a
large cost. On the other hand, selecting a lower parameter value (i.e., closer to III) would result in a
deterioration of the performance.

We observed designs of programmable application-specific architectures at both Philips Research
and Delft University of Technology. Based on these observations, we conclude that it is current
practice to design these architectures at a low level of detail. Architectures are described in a standard
hardware description language like VHDL or Verilog and consequently the designer ends up with too
much detail. The level of detail involved limits the design space of these architectures that the designer

Introduction 9

can explore to look for better trade-offs. Therefore, a designer has difficulty finding a balance among
the many choices present in architectures during the design process. This makes it hard to produce
architectures that are both cost effective and programmable enough to support a set of applications.

In this thesis we present a design approach called the “Y-chart approach” that overcomes the
limitations introduced by the low level of detail currently involved in the design of programmable ar-
chitectures and which makes it possible to make better trade-offs in architectures. This approach leads
to an environment in which designers can first exercise architecture design, making design choices in
architectures quantitative usingperformance analysis.

This involves the modeling of architectures to determine a performance model and the evaluation
of this performance model to determine performance numbers, thus providing data for various per-
formance metrics of a processor. In addition, by systematically changing design choices in a Y-chart
environment, a designer should be able to systematically explore part of the design space of an ar-
chitecture. This exploration provides the designer with the insight required for making the trade-offs
necessary for a good architecture for a given set of applications.

Performance analysis can take place at different levels of detail and designers should exploit these
different levels to narrow down the design space of architectures in a stepwise fashion. A Y-chart
environment is used in each step, but at different levels of detail. Therefore, when the modeling and
evaluation of architectures is relatively inexpensive, a large part of the design space can be explored.
By the time the modeling of an architecture as well as the evaluation of this model become expensive,
the design space has been reduced considerably and it contains the interesting design points.

Applications

Retargetable

Performance
Numbers

Design Space Exploration

Mapping

Architecture
Modeling Modeling

Simulator

(Chapter 5)

(Chapter 7)

(Chapter 6)

(Chapter 7)

(Chapter 8)

(Chapter 4)

Figure 1.6 . The Y-chart environment we develop in this thesis. The highlighted components
of the chart are labeled with references to the chapters in which they are elaborated.

The Y-chart approach structures the design process of programmable architectures. It takes into
account right from the beginning the three core issues that play a role in finding good programmable
application-specific architectures, i.e., the architecture, the mapping, and the set of applications.

A general outline for the Y-chart environment as we will develop it in this thesis for stream-based
dataflow architectures in order to explore their design space is shown in Figure 1.6. We will do this at
a level of abstraction higher than that offered by standard hardware description languages.

1.4 Main Contributions of Thesis

The main contributions of this thesis are:

10 1.4 Main Contributions of Thesis

Y-chart Approach The pivotal idea in this thesis is to provide a means with which the effect of
design choices on architectures can be quantified. This resulted in the formulation of the Y-
chart approach, which quantifies design choices by measuring the performance.

We implemented the Y-chart approach in a Y-chart environment for the class of stream-based
dataflow architectures. This led to the following contributions:

Architecture Template for Stream-based Dataflow Architectures We present the stream-based dataflow
architecture as a class of architectures. We show that all choices available within this class of ar-
chitectures can be described by means of an architecture template that has a well defined design
space. We derive architecture instances from the architecture template.

Modeling Architectures in a Building Block Approach We use a high-level performance-modeling
tool to render performance analysis at a high abstraction level. Using this method, we model the
complete class of stream-based dataflow architectures while still obtaining cycle-accurate re-
sults. We use object oriented programming techniques extensively together with the performance-
modeling tool to construct building blocks. Using these building blocks, we construct exe-
cutable architecture instances of the architecture template of stream-based dataflow architec-
tures.

Stream-based Functions (SBF) ModelWe develop a new model of computation: the Stream-based
Functions (SBF) Model. This model combines Kahn Process Networks [Kahn, 1974] with the
a specialization of the Applicative State Transition (AST) Model proposed initially by Backus
[1978]. The SBF model is well suited for describing digital signal processing applications at
different levels of granularity, ranging from fine-grained to coarse-grained. We also develop a
simulator called SBFsim for the SBF model.

ORAS We develop the Object Oriented Retargetable Simulator (ORAS). Because ORAS is retar-
getable, it can derive a full functional simulator for all feasible architectures from the class of
stream-based dataflow architectures. The derived simulator operates very fast in terms of real
computer time while it also executes the correct functional behavior of an application. The ex-
ecution speed is a prerequisite to performing an exploration of the design space of the class of
stream-based dataflow architectures in a limited amount of time.

Mapping Approach We introduce the notion of the model of architecture. Using this notion, we for-
mulate a mapping approach in which we postulate that the model of computation should match
the model of architecture of stream-based dataflow architectures. Only in this way is a smooth
mapping possible. Moreover, it leads to an interface between applications and architecture. This
interface permits the execution of applications onto an architecture instance without its being
necessary to modify the original application when mapping the application onto an architecture
instance.

Design Space ExplorationWe use a generic design space exploration environment to perform an
exploration of stream-based dataflow architectures. We also formulate the problem of selecting
a set of parameters that result in a particular architecture which satisfies the design objectives
for a set of applications.

Different Design CasesWe use the Y-chart approach in two different design cases of programmable
architectures. One design case is theProphidvideo-processor architecture [Leijten et al., 1997]

BIBLIOGRAPHY 11

for high-performance video applications and the other is theJacobiumprocessor architec-
ture [Rijpkema et al., 1997] for array signal processing applications.

1.5 Outline of the Thesis

The organization of this thesis is as follows. We present the class of stream-based dataflow architec-
tures in detail and formulate the main problem statement in Chapter 2. Our solution approach – the
Y-chart approach – is presented and discussed in Chapter 3. The chapters that follow each discuss a
particular aspect of the Y-chart environment for the class of stream-based dataflow architectures.

We explain what performance analysis entails in Chapter 4. We look into the aspects that de-
termine the performance of a system, thus laying the foundation for performance analysis at a high
level of abstraction. We use a high-level performance analysis method to carry out the performance
analysis. Using this method, we set up an object oriented modeling approach leading to the notion of
building blocks.

In Chapter 5, we look at how to model stream-based dataflow architectures using the building
blocks discussed in Chapter 4. We construct the building blocks of the stream-based dataflow ar-
chitecture in detail. We explain how we describe a class of architectures using a parser. Finally,
we explain how to program stream-based dataflow architectures such that they execute a particular
application.

To model applications, we introduce a new model of computation, calledStream-Based Functions
(SBF). In Chapter 6, we explain what the SBF Model of computation comprises. We also explain how
the SBF Model is embedded in other well-established models of computations. How we implemented
this model of computation using C++ and Multi-threading is also described.

In Chapter 7 we combine aal these aspects to construct theObject oriented Retargetable Architec-
ture Simulator(ORAS). We combine the work on architecture modeling presented in Chapter 5 with
the work on application modeling in Chapter 6 to construct a retargetable simulator that executes at
high speed. We also look in detail how we can easily map an application onto an architecture instance.

In Chapter 8 we explain what design space exploration (DSE) implies. We embed the ORAS
developed in Chapter 7 in a generic design space exploration environment. We elaborate on the
statistical tools that the generic DSE environment uses to perform design space exploration efficiently.
We also explain how we actually embed the ORAS in the generic DSE environment.

We investigate in Chapter 9 two cases in which a programmable architecture is developed and we
use in their design the Y-chart environment developed in this thesis. One case concerns the Prophid
architecture for high-performance video application developed at Philips Research; the other concerns
the Jacobium architecture for a set of array signal processing applications developed at the Delft
University of Technology.

We conclude this thesis in Chapter 10 with our conclusions.

Bibliography

John Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs.Communications of the ACM, 21(8):613 – 641, 1978.

Pradip Bose and Thomas M. Conte. Performance analysis and its impact on design.IEEE Computer,
31(5):41 – 49, 1998.

12 BIBLIOGRAPHY

D.C. Chen.Programmable Arithmetic Devices for High Speed Digital Signal Processing. PhD thesis,
University of California at Berkeley, California, Department of Electrical Engineering and Com-
puter Science, 1992.

T.A.C.M. Claasen. Technical and industrial challenges for signal processing in consumer electronics:
A case study on TV applications. InProceedings of VLSI Signal Processing, VI, pages 3 – 11, 1993.

G. de Haan, J. Kettenis, and B. Deloore. IC for motion compensated 100hz TV, with smooth motion
movie-mode. InIEEE Transactions on Consumer Electronics, volume 42, pages 165 – 174, 1996.

Keith Diefendorff and Pradeep K. Dubey. How multimedia workloads will change processor design.
IEEE Computer, 30(9):43 – 45, 1997.

John Hennessy and Mark Heinrich. Hardware/software codesign of processors: Concepts and ex-
amples. In Giovanni De Micheli and Mariagiovanna Sami, editors,Hardware/Software Codesign,
volume 310 ofSeries E: Applied Sciences, pages 29 – 44. NATO ASI Series, 1996.

John L. Hennessy and David A. Patterson.Computer Architectures: A QuantitativeApproach. Morgan
Kaufmann Publishers, Inc., second edition, 1996.

Johan G.W.M. Janssen, Jeroen H. Stessen, and Peter H.N. de With. An advanced sampling rate
conversion algorithm for video and graphics signals. InIEE Sixth International Conference on
Image Processing and its Applications, Dublin, 1997.

Egbert G.T. Jaspers and Peter H.N. de With. A generic 2-D sharpness enhancement algorithm for
luminance signals. InIEE Sixth InternationalConference on Image Processing and its Applications,
Dublin, 1997.

Gilles Kahn. The semantics of a simple language for parallel programming. InProc. of the IFIP
Congress 74. North-Holland Publishing Co., 1974.

Edward A. Lee and David G. Messerschmitt. Engineering and education for the future.IEEE Com-
puter, 31(1):77 – 85, 1998.

Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prophid: A
heterogeneous multi-processor architecture for multimedia. InProceedings of ICCD’97, 1997.

P. Lieverse, E.F. Deprettere, A.C.J. Kienhuis, and E.A. de Kock. A clustering approach to explore
grain-sizes in the definition of weakly programmable processing elements. InProceedings of the
IEEE Workshop on Signal Processing Systems, pages 107 – 120, De Montfort University, Leicester,
UK, 1997.

Paul Lippens, Bart De Loore, Gerard de Haan, Piet Eeckhout, Henk Huijgen, Angelica Loning, Brian
McSweeney, Math Verstraelen, Bang Pham, and Jeroen Kettenis. A video signal processor for
motion-compensated field-rate upconversion in consumer television.IEEE Journal of Solid-Sate
Circuits, 31(11):1762 – 1769, 1996.

P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. McSweeney, J.O.
Huisken, and O.P. McArdle. PHIDEO: A silicon compiler for high speed algorithms. InProc.
EDAC, pages 436 – 441, 1991.

Nicholas Negroponte.Being Digital. Knopf, 1995.

BIBLIOGRAPHY 13

D.A. Patterson. Reduced instruction set computers.Comm. ACM, 28(1):8 – 21, 1985.

Edwin Rijpkema, Gerben Hekstra, Ed Deprettere, and Ju Ma. A strategy for determining a Jacobi spe-
cific dataflow processor. InProceedings of 11th Int. Conference of Applications-specific Systems,
Architectures and Processors (ASAP’97), pages 53 – 64, Zurich, Switzerland, 1997.

Frank Rose. The end of TV as we know it.FORTUNE, pages 58 – 68, 1996.

VHDL. IEEE Standard VHDL Language Reference Manual. IEEE Computer Service, 445 Hoes
Lane, P.O. Box 1331, Piscataway, New Jersey, 08855-1331, 1993. IEEE Std 1076-1993.

K.A. Vissers, G. Essink, P.H.J. van Gerwen, P.J.M. Janssen, O. Popp, E. Riddersma, and J.M. Veen-
drick. Algorithms and Parallel VLSI Architectures III, chapter Architecture and programming of
two generations video signal processors, pages 167 – 178. Elsevier, 1995.

John A. Watlington and V. Michael Bove Jr. Stream-based computing and future television.SMPTE
Journal, 106(4):217 – 224, 1997.

14 BIBLIOGRAPHY

Chapter 2

Basic Definitions and Problem Statement

Contents

2.1 Stream-based Dataflow Architectures . 16

2.1.1 Definitions . 16

2.1.2 Structure . 19

2.1.3 Behavior . 22

2.2 The Class of Stream-based Dataflow Architectures 31

2.2.1 Architecture Template . 32

2.2.2 Design Space . 32

2.3 The Designer’s Problem . 32

2.3.1 Exploring the Design Space of Architectures 33

2.3.2 Problems in Current Design Approaches 33

2.4 Related Work on Dataflow Architectures . 34

2.4.1 Implementation Problems of Dataflow Architectures 35

2.4.2 Other Dataflow Architectures . 35

2.4.3 Implementing Stream-based Dataflow Architectures 36

2.5 Conclusions . 39

S
TREAM-BASED dataflow architectures were briefly introduced in the previous chapter. We
showed that such architectures will be used for the high-performance video signal processing

section in the TV-sets of the near future. In this chapter, we look in more detail at the structure and
behavior of stream-based dataflow architectures.

Stream-based dataflow architectures are not one particular architecture, but rather a class of archi-
tectures. This class is described using an architecture template to characterize the class in a parame-
terized form. The architecture template has an associated design space and the design of architectures
becomes the selection of parameter values representing a particular architecture within the design
space. The problem designers face, however, is how to select these parameter values. How do design-
ers select these parameter values such that they result in architectures which satisfy the many design
objectives involved, such as real-time constraints, throughput of the architecture and the efficiency of
resources? At the same time, these architectures also need to be programmable enough that they can
execute a set of applications.

We start in Section 2.1 by defining what a stream-based dataflow architecture is. We introduce
definitions of terms to clarify what we understand in the context of this thesis by specific terms. We

15

16 2.1 Stream-based Dataflow Architectures

also describe the structure and behavior of stream-based dataflow architectures and introduce the many
choices present in both the structure and behavior of stream-based dataflow architectures. All these
choices together characterize the class of stream-based dataflow architectures.

To describe the class of stream-based dataflow architectures, in Section 2.2 we introduce the archi-
tecture template, which characterizes this class of architectures in a parameterized form. By assigning
values to all parameters in the architecture template, we can derive a particular architecture instance
that makes up a design. This brings us in Section 2.3 to the goal of this thesis, which is to provide a
systematic methodology for finding parameter values for an architecture template.

Dataflow architectures have already been around for many years in many different forms. We
conclude this chapter in Section 2.4 by presenting related work on dataflow architectures. We iden-
tify known problems within dataflow architectures and indicate to what extent stream-based dataflow
architectures exhibit these problems and how they cope with these problems.

2.1 Stream-based Dataflow Architectures

In the application domain of high performance real-time digital signal processing like video appli-
cations, the required processing power is in the order of hundreds of RISC-like operations per pixel,
while data streams are in the range of 10 to 100 Msamples per second. Consequently, this kind of
signal processing requires architectures that perform 10 to 100 billion operations per second and have
an internal communication bandwidth of 1 – 10 Gbytes per second. By their nature, stream-based
dataflow architectures comply with such requirements.

P
ro

ce
ss

in
g

 E
le

m
en

t

Global Controller

Communication Structure

C
o

ar
se

-G
ra

in
ed

Figure 2.1 . A stream-based dataflow architecture consisting of a number of Processing
Elements, a Communication Network, and a Global Controller.

2.1.1 Definitions

A schematic representation of the structure of a stream-based dataflow architecture is depicted in
Figure 2.1. It consists of a number ofProcessing Elements, aCommunication Network, and aGlobal

Basic Definitions and Problem Statement 17

Controller. The processing elements operate concurrently on streams, which we define as

Definition 2.1. STREAM

A streamis a one-dimensional sequence of data items. 2

Unless stated differently, a data item represents a sample. In the case of video, a sample is typically
a video pixel and in the case of radar, a sample is typically an integer or fixed-point value. A stream
can be broken down into packets of finite length, resulting in a packet stream. We define a packet as

Definition 2.2. PACKET

A packetis a finite sequence of data items and is a concatenation of a header and a data part.2

In the architecture, a processing element executes a pre-selected function operating on one or
more streams and producing one or more output streams. The pre-selected function is one of a finite
– typically, small – number of functions present in a processing element. These functions define the
function repertoire of a processing element.

Definition 2.3. FUNCTION REPERTOIRE

Thefunction repertoireof a processing element describes a finite number of different pre-defined
functions that the processing element can execute. 2

Each processing element has a function repertoire that typically, but not necessarily, differs from
the function repertoire of every other processing element. The grain sizes of the functions of the
function repertoire are a measure of their complexity.

Definition 2.4. GRAIN SIZE

A function has agrain sizeexpressed in terms of the equivalent number of representative RISC-
like operations, likeAdd, Compare, andShift. RISC-like functions have a grain size of one, by
definition. 2

The grain size provides a metric allowing us to quantify the complexity of functions. A function
with a grain size of 100 is supposed to have an executable specification in terms of approximately 100
RISC-like operations. [For more information on RISC instructions, see Appendix C of Hennessy and
Patterson, 1996]. We say that functions with a grain size of one arefine-grained. Similarly, functions
with a grain size between 1 and 10 aremedium-grainedfunctions, and functions with a grain size
larger than 10 arecoarse-grainedfunctions.

Although processing elements execute in parallel, each and every processing element executes
only one function from its function repertoire at a time. A processing element can switch at run-time
between the functions of the function repertoire, which leads to the notion of weakly programmable
processing elements.

Definition 2.5. WEAKLY PROGRAMMABLE PROCESSINGELEMENT

A weakly programmable processing elementcan switch at run-time between a fixed number of
pre-defined functions present in the function repertoire in such a way that only one function of the
function repertoire is active at a time. 2

Although the processing elements can execute functions ranging from fine-grained to coarse-
grained, the functions that it executes are typically coarse-grained, to balance best between pro-
grammability and efficiency, as shown in Figure 1.4. When the granularity of functions increases,
they become more dedicated and can, therefore, only be used to execute particular applications that

18 2.1 Stream-based Dataflow Architectures

belong to a set of applications. Consequently, coarse-grained functions are more specific than fine-
grained functions used in fully programmable architectures. The weakly programmable processing
elements and the grain size of the functions allow the architecture to provide just enough flexibility to
support a set of applications. We assume that only one application is executed on the architecture at a
time.

The global controller controls the flow of packets through the architecture. It contains aRouting
Programwith which to control the flow. This routing program indicates which processing element
processes which stream, using which function from the function repertoire. By changing the routing
program, we canreprogramthe architecture to execute another application.

We define stream-based dataflow architectures as follows:

Definition 2.6. STREAM-BASED DATAFLOW ARCHITECTURES

A Stream-based Dataflow Architectureconsists of a set of weakly programmable processing el-
ements operating in parallel, a communication structure and a global controller. The processing ele-
ments operate on packet streams that they exchange among themselves via the communication struc-
ture controlled by the global controller. 2

Stream-based dataflow architectures have a particular hierarchical structure and a particular be-
havior in time. We will now describe the structure and behavior of the architecture in more detail,
whereby we make use of the terminology that Veen [1986] uses to describe dataflow architectures in
general.

We want to emphasize that the architecture concept shown in Figure 2.1 was proposed by Leijten,
van Meerbergen, Timmer, and Jess [1997] and is further developed and discussed in greater detail in
Leijten [1998].

F
q

F
p

F
u

n
ct

io
n

al
 E

le
m

en
ts

R
o

u
te

rsO
u

tp
u

t
B

u
ff

er
s

P
ro

ce
ss

in
g

 E
le

m
en

t

Global Controller

Communication Structure

U
n

it
F

u
n

ct
io

n
al In

p
u

t
B

u
ff

er
s

C
o

ar
se

-G
ra

in
ed

Figure 2.2 . A detailed representation of the structure of a stream-based dataflow architec-
ture. The architecture consists of a set of processing elements, a communication structure,
and a global controller.

Basic Definitions and Problem Statement 19

2.1.2 Structure

A stream-based dataflow architecture is given in Figure 2.2. The architecture consists of a set ofpro-
cessing elements, acommunication structure, and aglobal controller. A processing element consists
of a number of input and outputbuffersandroutersand afunctional unit. The routers interact with
the global controller. The functional unit consists of a number offunctional elements(i.e., FEp and
FEq). Each functional element executes a function and the functions of the functional elements make
up the function repertoire of a processing element. The communication structure interconnects the
processing elements so they can communicate packet streams with each other under the control of the
global controller.

Packets

A packetconsists of adatapartD and aheaderpartH, as shown in Figure 2.3. The data part contains
a limited amount of data samples of, for example, a sampled video signal or radar signal. The header
part contains information needed to route packets through the architecture and identifies the function
that needs to operate on the data part. In the stream-based dataflow architecture, we use a header
format that consists of four fields, namely the base fieldHb, the source fieldHs, the function field
Hf, and the length fieldHl. They appear in the header part in the order given. The base and source
fields take part in the routing of packets. The function field indicates which function of the function
repertoire should process the data part of the packet. Finally, the length field indicates the number of
samples contained in the data part of a packet. The lengths of the data parts of the packets do not need
to be the same. A field in the header part takes the same amount of space as a sample in the data part
and we distinguish between data samples and header samples.

Base
Hb

Source Function Length
Hf Hl

Data
Hs

H D

Figure 2.3 . The structure of a packet consists of a data part D and a header part H.

Processing Elements

A processing elementconsists of a number of input and outputbuffers, a number ofroutersand one
functional unit, as shown in Figure 2.4. The functional unit is the central element of a PE. It has a
number of input and output ports. The input ports connect to the communication structure via buffers.
The output ports connect to routers via output buffers. Each port, whether an input or an output port,
connects to its own single buffer. Output buffers belonging to the same functional unit may or may
not share routers.

Both input and output buffers store samples temporarily to smooth out peak in the flow of data in
the architecture. Typically, though not necessarily, a buffer is aFirst-In-First-Out(FIFO) buffer. Each
buffer can hold a particular number of samples. If it can hold only one sample, then the buffer is a
handshakebuffer. If it can hold a finite amount of samples larger than one, then it is aboundedFIFO
buffer. Although it is not done in practice, theoretically a buffer can hold an unbounded number of
samples, in which case the buffer is anunboundedFIFO buffer.

In theory, each buffer has a side from which toreadand a side to which towrite. In Figure 2.4, the
write side is at the top of the buffers and the read side is at the bottom of the buffers. Consequently,

20 2.1 Stream-based Dataflow Architectures

D
ir

ec
ti

o
n

 o
f

th
e

S
tr

ea
m

F
un

ct
io

na
l

U
ni

t

Output Buffers

Input Buffers

Input Ports

Output Ports

Routers

Figure 2.4 . A processing element consists of a number of input and output buffers, a num-
ber of routers and one functional unit.

streams flow through the functional unit from top to bottom.
Routers connect to the read side of output buffers and, via the communication structure, to the

input side of some input buffer. At run-time, the routers update the information in the four header
fields of a packet. This affects the routing of packets and the function operating on the data part of
a packet. Routers interact with the global controller to obtain this new header information. Besides
changing the header fields, the router also checks whether the communication structure provides a
path to the correct input buffer. If such a path exists, the router uses it to transport a packet to its new
destination in the architecture.

There are two special kinds of PEs: a source PE and a sink PE. The source and sink processing
elements interact with the external world of the architectures. A source processing element produces
packet streams, whereas the sink processing element consumes packet streams. A regular PE connects
to the communication structure with both its inputs and its outputs. A source PE connects only with
outputs of the communication structure and a sink PE connects only with inputs to the communication
structure.

Functional Units

A functional unitconsists of the setF of functional elements(FEs), alocal controller, and input and
output ports, as shown in Figure 2.5. Functional Elements also have input and output ports, which
bind statically to the input and output ports of the functional unit. The setF specifies thefunction
repertoireof a processing element.

F = fFE1; FE2; : : : ; FExg (2.1)

A functional unit switches between the functional elements at run-time. This switching takes place
under the supervision of the local controller. Based on the value of the function fieldHf in the header
of a packet, the local controller resolves which functional element it should activate. Although pro-
cessing elements, and thus also functional units, operate concurrently, inside a functional unit only a
single functional element is active at a time.

Basic Definitions and Problem Statement 21

Controller
Local

FE0 FE1

Functional Unit
Input Ports

Functional Unit

Binding

Output Ports

Figure 2.5 . A functional unit consists of a set of functional elements (FE), a local controller,
and input and output ports.

In principle, functions implemented by functional elements can have a grain size that ranges from
fine-grained to coarse-grained. Fine-grained functions are RISC-like functions likeAddition,Subtrac-
tion, orComparison. Coarse-grained functions range from, e.g.,Finite Impulse Response(FIR) filters
andSample-Rate Conversion(SRC) filters to even coarser functions likeDiscrete Cosine Transfor-
mation(DCT) functions, orVariable Length Decoding(VLD) functions. The functions implemented
on the functional element can have parameters. A parameter of a FIR-filter, for example, could be
the number of filter coefficients. A sample rate converter may have a down-sampling factor as a
parameter.

A functional unit need not have both input ports and output ports. A source functional unit has no
input ports and a sink functional unit has no output ports. Only source and sink processing elements
contain sink and source functional units.

Functional Elements

A functional elementconsists of input and output ports, as shown in Figure 2.6, and implements a
functionusing all kinds of computational elements. The function reads data from the input ports
and writes data to the output ports. On the functional element, the function can have a pipelined
implementation and can maintain state information.

S
ta

te

Function

Pipeline

In
p

u
t

P
o

rt
s

O
u

tp
u

t
P

o
rt

s

Figure 2.6 . A functional element consists of input and output ports and implements a func-
tion using all kinds of computational elements.

The function that a functional element implements consumes samples from the input ports at a

22 2.1 Stream-based Dataflow Architectures

particular rate and produces samples on the output ports at a particular rate. We express thisrate in
terms of samples consumed or produced per unit time, where time is expressed in either seconds or
cycles. Acycleis equal to a multiple of a clock-cycle. The rate at which a function reads input data
or writes output data defines thethroughputof the function. The reciprocal of throughput defines
the initiation period. Thus, if a function has an initiation period of 2 cycles, and thus a throughput
of 1

2 a sample per cycle, the function reads (or writes) a single sample every 2 cycles. When a
function executes, it produces results that correspond to the currently consumed input arguments.
This takes a certain amount of time, which is defined as thelatencyof that function. A function
can have apipelinedimplementation on a functional element, which means that the function operates
concurrently on different sets of input samples where the function consumes each set of input samples
at different time instances. In a non-pipelined implementation of a function, the initiation period is
equal to the latency of the function. Pipelining functions leads to a reduction in the initiation period
of a function while the latency remains the same or increases. A pipeline has apipeline depth, which
indicates how many sets of samples a function concurrently operates on. The pipeline depth is equal
to latency divided by initiation period.

A functional element need not have both input ports and output ports. A source functional element
has no input ports and a sink functional element has no output ports. Only source and sink functional
units can contain source and sink functional elements respectively.

Global Controller

The global controller interacts with all routers in the architecture. It provides the routers with the
information they need to place in the header part of a packet. By changing the header information of
packets, routers change the routing of packets through architectures and identify the function that is to
operate next on the data part of a packet. The information the global controller stores via the routers
in the headers is contained in a routing program that is part of the global controller. By changing this
routing program, we reprogram an architecture instance to let it execute a different application.

Communication Structure

Thecommunication structureconsists of a number of input and output ports, and between these input
and output ports it realizes communicationchannels, as shown in Figure 2.7. The channels provide
parallel paths over which packets are communicated from an input port to a specific output port. All
routers connect to the input ports of the communication structure. The write sides of the input buffers
of all processing elements connect to the output ports of the communication structure.

The communication structure isreconfigurable, i.e, it can provide a channel from any input port
to any output port. Routers interact with the communication structure to obtain a channel from a
specific input port to a specific output port. Within the communication structure, the number of chan-
nels present indicates how many samples per cycle the communication structure can communicate in
parallel from its input ports to its output ports.

2.1.3 Behavior

Besides having a particular structure, stream-based dataflow architectures also have a particular be-
havior in time. We first discuss the behavior of stream-based dataflow architectures in general terms.
This is followed by a more detailed discussion on different behaviors that architectures can exhibit in
time.

Basic Definitions and Problem Statement 23

Communication StructureInput Ports

Channels
Output Ports

Routers

Output Buffers

Input Buffers

Figure 2.7 . The communication structure.

Dataflow Architecture

To understand what a dataflow architecture is, we first have to look at how parallel computations are
expressed as a directed graph. The earliest reference to a comprehensive theory in which parallel
computations are expressed as a directed graph in which the nodes represent functions and the arcs
represent data dependencies is in Karp and Miller [1966]. The functions operate concurrently on data
that is represented as atoken, which is an arbitrary data structure treated as a monolithic entity. Tokens
move from one node to another over the arcs that queue tokens. This model was namedDataflow
model of computation for the first time by Adams [1968]. Adataflow architectureimplements the
dataflow model of computation directly into hardware1.

Definition 2.7. DATAFLOW ARCHITECTURE

A dataflow architectureis an implementation of the dataflow model of computation. 2

A dataflow architecture can be classified as either data-driven or demand-driven [Jagannathan,
1995]. Indata-drivendataflow architectures, the node activation, or firing, is determined solely by
the availability of input data. Indemand-drivendataflow architectures, the need for data activates a
node. This node propagates its demand for data to other nodes and activates (fires) when its demands
are satisfied.

Furthermore, a dataflow architecture is classified as either static or dynamic [Jagannathan, 1995].
The termdynamic dataflowwas introduced for the first time by Dennis [1974]. In astaticdataflow
architecture, a function fires when tokens are present for all its arguments. In adynamicdataflow ar-
chitecture, tokens carry atag that uniquely identifies a token in a stream. A function fires when tokens
are present for all its arguments whose tags are identical. A dynamic dataflow architecture differs
from a static dataflow architecture in its ability to execute recursion and data-dependent conditionals
not known at compile-time.

A stream-based dataflow architecture is a true dataflow architecture because it implements a
dataflow model of computation. A functional element implements a function that executes when
tokens are present for all its input arguments. In contrast, in ’Von Neumann’ architectures a flow of
instructions (i.e. operators) operates on data stored in memory [Jagannathan, 1995]. The functional

1In addition to dataflow architectures, dataflow machines can also be discussed. We limit our discussion to dataflow
architectures to indicate that our only concern is the architecture

24 2.1 Stream-based Dataflow Architectures

elements in stream-based dataflow architectures operate not on individual tokens, but on streams of
tokens wrapped up in packets – hence the namestream-baseddataflow architectures.

A stream-based dataflow architecture is a data-driven dataflow architecture. The activation of the
functional unit as well as of the functional element is solely determined by the availability of input
tokens; i.e., functional units and functional elements schedule themselves in time on the availability
of data. Stream-based dataflow architectures therefore operate without the need for a global controller
that explicitly governs the order in which functional units and functional elements execute. The global
controller present in stream-based dataflow architectures only governs the flow of the packets through
the architecture.

A stream-based dataflow architecture is a dynamic dataflow architecture. It uses packets, each
of which has a header. This header tags the data present in the data part of a packet. Because of
this header, a functional unit knows which function of the function repertoire to activate. We discuss
this behavior in more detail later. The dynamic behavior of functions manifests itself in two ways:
functional units dynamically produce either more packets or packets of variable length.

The Sharing of Functional Units

By exploiting parallelism in computer architectures, computer scientists try to minimize the process-
ing time of a given workload. They traditionally focus onspeed-up, which is a measure of relative
utilization, e.g., it indicates how effectively an architecture uses its resources when extending these
resources while processing a workload. A linear speed-up is most desirable, implying that the architec-
ture fully utilizes newly added resources like processing elements while processing a workload, so that
it processes the workload in less time. These architectures normally process a confined workload, but
in the case of the stream-based dataflow architecture process, they process a continuous workload. In
addition, stream-based dataflow architectures process applications havingreal-time constraints, which
defines a pre-defined rate at which an architecture must take in samples or produce samples, even un-
der worst case conditions. Architectures with such real-time constraints should process streams at a
specific rate – neither slower nor faster.

Due to the presence of real-time constraints, we focus in stream-based dataflow architectures on
sharing, instead of processing a workload as fast as possible. In the context of stream-based dataflow,
sharingmeans that a functional unit can operate on more than one stream multiplexed in time. For a
functional unit we define thesharing factor� as

� =
e

r
(2.2)

wheree is the rate at which a functional unit can consume tokens andr represents the rate at which
the functional unit consumes a stream. The sharing factor� indicates how many streams of rater the
functional unit can consume multiplexed in time. The sharing factor is an upper bound. Switching
between streams involves an overhead that reduces the number of streams which the functional unit
multiplexes in practice.

When a particular architecture executes an application, adding functional units reduces the effi-
ciency of the architecture since the architecture cannot utilize the added resource. After all, it already
satisfies the real-time constraint of the application and processing a stream faster than the pre-defined
rate violates the real-time constraint. Making functional units share more streams, on the other hand,
allows the architecture to use fewer functional units to execute the same application. Sharing increases
theefficiencyof architectures. Since each functional unit has a function repertoire, a functional unit
can share streams while at the same time each stream can select a different function from the function
repertoire. The function repertoire increases theflexibility of architectures.

Basic Definitions and Problem Statement 25

Multiplexing Different Streams on a Functional Unit

Sharing streams on a functional unit requires multiplexing of these streams in time. This multiplexing
is determined either at compile-time or at run-time. In static dataflow architectures the multiplexing
of streams is solved at compile-time, as, for example, is done in the Video Signal Processing (VSP)
architecture [Vissers et al., 1995]. In dynamic dataflow architectures, the multiplexing is determined
at run-time. Since the stream-based dataflow architecture is a dynamic dataflow architecture, the
functional units have to multiplex streams at run-time.

Run-time multiplexing requires that functional units can discriminate between different streams.
In stream-based dataflow architectures, streams are partitioned andeach partition is embedded in a
packet. Data streams are thus converted into packet streams. Apart from the data part, each packet
also carries a header that allows a functional unit to discriminate between different streams. Because
a packet consists of a header and a data part, the processing of a packet happens in two phases. In
the first phase, the header processing takes place, and in the second phase, the data processing takes
place. In stream-based dataflow architectures, the functional units take care of the first phase – the
header processing – and the functional elements take care of the second phase – the data processing.

On stream-based dataflow architectures, these two phases are strictly separated. Functional units
only read and write the samples of the header part, whereas functional elements only read and write
samples of the data part (see Figure 2.3 showing the structure of a packet). As a result of this strict
separation, functional elements seemingly consume and produce only continuous streams of data
samples.

Header processing A functional unit takes care of the header processing, which involves the pro-
cessing of headers at both input ports and output ports. The local controller starts reading a header
from an input buffer we call theopcode bufferand removes the header from a packet, making the data
of a packet accessible for further processing by a functional element.

Because a functional element can read samples from more than one input buffer, the local con-
troller has to remove the headers from all the functional element’s input buffers, not only from the
one which serves as opcode buffer. The local controller ignores the information stored in headers read
from buffers other than the opcode buffer; only the information of the header read from the opcode
buffer is significant for further processing. After the local controller removed the headers from all
input buffers, the functional element reads only the samples that belong to the data part of packets.

A functional element produces one or more streams on the output buffers. However, stream-based
dataflow architectures operate on packets, so a stream of samples needs to be partitioned into a header
part and a data part. A part of a stream of samples needs a header prefix. The local controller prepares
these new headers, using the information in the opcode buffer. The local controller writes new header
samples to the output buffers of the functional element. By the time the functional element is activated
and writes samples to its output buffers, these data samples are preceded by new header samples and
the data samples automatically form the data part of the newly created packets.

Data processing Functional elements take care of the data processing. Because the functional units
take care of the headers, the functional elements read only samples contained in the data part of
packets. Functional elements read data samples from their input buffers, process them, and write
results to their output buffers. Because the functional unit has already written headers to these output
buffers, the new data samples are automatically preceded by a header. Due to the strict separation of
header and data processing, the functional elements are unaware of the presence of headers and seem
to consume and produce samples of continuous streams of data.

26 2.1 Stream-based Dataflow Architectures

Granularity of Switching

A functional unit switches between the functional elements in time. This switching can happen in
two different modes: a packet-switching mode and a sample-switching mode. Inpacket-switching
mode, a functional unit switches between functional elements at the granularity of packets. Insample-
switchingmode, a functional unit switches between functional elements at the granularity of samples.
The packet-switching mode provides a coarse-grained scheduling mechanism generating less switch-
ing in time. The sample-switching mode results in a fine-grained scheduling mechanism generating
more switching in time.

Packet-Switching In packet-switching mode, the functional unit switches between functional ele-
ments at the granularity of packets, as illustrated in Figure 2.8. This figure shows a functional unit
with a function repertoire of two functional elements,FE0 andFE1. Functional elementFE0 has one
input port and two outputs ports. Functional elementFE1 has two input ports and one output port
because the functional elements share input and output buffers (see Section 2.1.2), the functional unit
has two input buffers (B0 andB1) and two output buffers (B2 andB3). The figure shows which data
pass through the buffers in time. The shaded areas in the figure represent complete packets.

In the figure, bufferB0 is the opcode buffer of the functional unit. It contains a sequence of light
gray and dark gray packets. The function fieldHf of the light gray packets is equal to 0, activating
FE0. The function fieldHf of the dark gray packets is equal to 1, activatingFE1. The sequence on the
opcode buffer thus activates firstFE0, thenFE1, and so forth.

Input Stream on Buffer B_1

1 001

Stream on Opcode Buffer B_0

Packet

Void
Time

FE_1

FE_0

Functional Unit

Output Stream on Buffer B_2

Output Stream on Buffer B_3

Figure 2.8 . A functional unit in packet-switching mode switches between functional ele-
ments at the granularity of packets.

In packet-switching mode, the local controller reads the header from the opcode buffer containing
the function fieldHf. Based onHf, the local controller resolves which functional element to activate.
Activating a functional element means that the local controller passes on the control to that functional
element. The one havingcontrol is the only one being active in time. When the functional element
finishes processing, it returns control to the local controller of the functional unit. The functional
element finishes processing when it has read all data samples from the packet of the opcode buffer as
indicated byHl, the length field present in the header of the opcode buffer. By passing control back
and forth between the functional unit and functional element, the functional unit switches in time at
the granularity of packets between functional elements.

Suppose the local controller reads a header withHf equal to 0. This will cause the activation
of FE0. After the local controller has completely read the header it produces two new headers on
respectively bufferB2 and bufferB3 and passes on control toFE0. The functional element consumes
all data samples from the opcode buffer and produces new data samples on both output buffersB2 and
B3. After FE0 has consumedHl data samples, it returns control to the local controller, which starts

Basic Definitions and Problem Statement 27

to read the next header from the opcode buffer. The next header activatesFE1. BecauseFE1 has two
input ports, the local controller must remove the header from the packet present in bufferB1 as well.
When the data part of the packets is accessible on bothB0 andB1, the local controller activatesFE1.
Again,FE1 consumes the data part on both input buffers while producing new data on bufferB3. It
returns control to the local controller after it has readHl samples from the opcode bufferB0.

Sample-Switching In sample-switching mode, the functional unit switches between functional el-
ements at the granularity of samples as illustrated in Figure 2.9. This figure shows a functional unit
with a repertoire of two functional elements,FE0 andFE1. Functional elementFE0 has one input
port and two output ports. Functional elementFE1 has two input ports and one output port. The
functional elements in sample-switching mode must have their own input and output buffers and thus
the functional units have three input buffers (B0, B1 andB2) and three output buffers (B3, B4, and
B5). The figure shows what passes through these buffers in time. The shaded areas in the streams in
the figure represent single samples that can be either a data sample or a header sample.

In sample-switching mode, each functional element must have its own input and output buffers
since an individual sample cannot be associated with a particular stream. Sending a sample to a par-
ticular buffer identifies the stream to which a sample belongs and also automatically indicates which
functional element should process the sample. In Figure 2.9, only light gray samples are processed
by the light grayFE0. The dark gray samples are only processed by the dark grayFE1. In this figure,
the light and dark samples do not share any buffers.

FE_1

FE_0
B_3

B_4

B_5

B_0

B_1

B_2

Sample
Functional

Unit

Input Streams Output Streams

Time

Opcode Buffers

Cycle

Idle Cycle

Figure 2.9 . A functional unit in sample-switching mode switches between functional ele-
ments at the granularity of samples.

In sample-switching mode, each functional element has its own opcode buffer. In Figure 2.9,
buffersB0 andB1 are the opcode buffers ofFE0 andFE1, respectively. The local controller performs
the header processing for both functional elements. After the local controller finishes header pro-
cessing for one of the functional elements, it passes on control to that functional element. Contrary to
packet-switching mode, in sample-switching mode more than one functional element can have control
at the same time. Nonetheless, only one functional element is allowed to actually execute at a time.
The local controller uses a scheduler with which to decide which functional element executes.

A functional element is active only when the functional element is ready to execute, i.e. when
all its input ports contain data samples. The functional element informs the local controller that it is
ready by sending arequestfor permission to execute. The local controller can receive such requests
from other functional elements at the same time. Since only one functional element is allowed to
execute, the local controller grants one request at a time. To decide to which functional element it
should grant the request, the local controller uses a scheduler; for example, a Round Robin scheduler.

28 2.1 Stream-based Dataflow Architectures

When agrantedfunctional element executes, it consumes the data samples from the input buffers and
produces samples on the output buffers. After a functional element has executed and its input buffers
again contain data samples, it makes a new request to the local controller. After allHl data samples
have been read from the opcode buffer, a functional element returns control to the local controller of
the functional element’s functional unit.

In Figure 2.9, we assume that bothFE0 andFE1 have control and read data samples from the input
buffers.FE1 has all its input data available and requests the local controller to let it execute. The local
controller grants the request ofFE1 to execute, which consumes the two samples from bufferB1 and
B2, producing a new sample on bufferB5. Next, anidle cyclefollows, which means that none of the
functional elements of the function repertoire can execute during that cycle. After the idle cycle, the
next cycle starts andFE0 reads samples and issues a request to the local controller to let it execute.
The local controller grants this request, making sure only one functional element executes at a time.
This process is repeated again and again.

Communication Structure

Within the communication structure, a number of channels are present to communicate packets in
parallel from input ports to output ports. By changing the number of channels, the communication
structure implements different communication mechanisms ranging from a simple bus structure up to
a fully interconnected network structure like theswitch matrix[Vissers et al., 1995]. In the case of
a busstructure, the communication structure provides only a single channel. In the case of aswitch
matrix, the communication structure provides as many channels as needed such that all output buffers
can have a connection to input buffers at the same time. The bus structure and switch matrix structure
both represent extremes: any structure in between could serve as a communication structure.

The samples of packets are communicated over the communication structure using a particular
protocol. In stream-based dataflow architectures, two examples of protocols are a first-come-first-
served protocol and a time-division-multiplexed protocol.

When the communication structure employs aFirst-Come-First-Served(FCFS) protocol, its chan-
nels make up a pool of available channels. As soon as a router requires a channel for communication,
it claims an available channel. The communication structure takes a channel from the pool and sets
up a path from the input port that is connected to the router to the output port that is connected to the
input buffer of a processing element. The router claims the channel until it has completely transferred
a packet to the input buffer. If all channels are in use and the communication structure cannot set up a
path, the router has to wait until a channel becomes available.

When the communication structure employs atime division multiplexed(TDM) protocol, the ca-
pacity of a channel is multiplexed in time. The bandwidth ofeach channel is divided intoN time slots
of x cycles. All the routers are pre-assigned a time slot on a channel that they can use to communicate
samples. The router receives the time slot even if it does not have to communicate samples at all. If a
router is given its time slot, a channel is set up from the input port connected to the router to the output
port connected to the input buffer of a processing element the router wants to communicate with. The
router can communicate samples forx cycles. After thex cycles of the time slot have passed, the
same channel is set up for another router.

The TDM protocol guarantees that the communication capacity assigned to a router is a fraction of
the channel capacity. This capacity is pre-assigned and routers might not use all the assigned capacity
to transport samples. Although the FCFS protocol might be able to use the communication structure
more efficiently than the TDM protocol does, it is more difficult to determine whether the FCFS pro-
tocol satisfies the real-time constraints of architectures, because it does not guarantee communication

Basic Definitions and Problem Statement 29

capacity in time.
In the TDM protocol, routers communicate samples only in a specific time slot. This forces the

communication in architectures to take place in a particular rhythm. The global controller must inform
each router when it can communicate. This results in large amount of control interaction between the
global controller and the routers, which makes the global controller more complicated. In the FCFS
protocol, the routers themselves determine when to communicate samples and they do not interact
with the global controller. This leads to a simpler global controller.

Source/Sink Modes

The source and sink processing elements interact with systems external to the architecture. A source
processing element produces packet streams, whereas a sink processing element consumes packet
streams.

The source processing element consists of a source functional unit and output buffers that connect
to routers. A source functional unit wraps up an external stream of data samples (e.g. a TV-signal)
into a packet stream. The functional unit writes headers to its output buffers followed by a certain
amount of data samples (i.e. the packet lengthHl) from the external stream.

The sink processing element consists of a sink functional unit and input buffers. A sink functional
unit removes the headers from a packet stream, producing a continuous stream of data samples (e.g.
an output TV-signal). The functional unit reads packets from its input buffers, removes the headers
and writes the data samples into an external stream of data samples.

A source functional unit consumes an external stream at a particular rate while producing a packet
stream at a particular rate. Within stream-based dataflow architectures, the source functional unit uses
two different modes to produce packet streams, namely a stream mode and a burst mode.

In stream mode, the source functional unit produces a packet stream at the same rate at which it
consumes the external stream. Inburst mode, the source functional unit produces a packet stream at a
higher rate than that at which it consumes the external stream. In this case, the source functional unit
accumulates samples until it can send out a packet at the higher rate.

In the stream mode, the source functional unit generates packets in a continuous stream, whereas
in burst mode the source functional unit generates packets in bursts. Both modes are illustrated in
Figure 2.10. Every black dot shown represents a data sample; every light gray dot, a header sample;
and every square, a cycle. At the left-hand side are two external streams with a rate of 1 sample per 4
cycles each. These streams are consumed by two source functional units that produce packet streams
in burst mode (i.e., the box at the top of Figure 2.10) and in stream mode (i.e., the box at the bottom of
Figure 2.10). In burst mode, the source functional unit produces a packet stream at a rate of 1 sample
per cycle. The source functional unit has packed the data samples closer together. The data of the
external stream is preceded by 4 header samples. In stream-mode, the source functional unit produces
a packet stream at a rate of 1 sample per 4 cycles, which is the same rate as the external stream. Again,
the data samples are preceded by 4 header samples, of which only the last is still visible in the figure.

The mode in which a source functional unit operates affects the multiplexing of streams on func-
tional units. The stream mode is used when functional units operate in sample-switching mode. In
Figure 2.10, samples are produced in stream mode at a rate of 1 sample per 4 cycles. If a functional
unit has a throughput of 1, it can multiplex at maximum of four packet streamseach having a rate of
1 sample per 4 cycles.

If the same functional unit were to operate in packet-switching mode, it would generate samples at
a rate that is simply too slow. For every sample that the functional unit consumes, it has to wait 3 cycles
before it can read the next sample. However, when functional units operate in packet-switching mode,

30 2.1 Stream-based Dataflow Architectures

Time

Source

Source

(Burst-mode)

(Stream-mode)

Data Sample

Header Sample

External Data Stream Packet Stream

1 sample per 4 cycles

1 sample per 4 cycles

1 sample per cycle

4 cycles

Figure 2.10 . Two source functional units that operate on two external streams with a rate
of 1 sample per 4 cycles.

a source functional unit operates in burst-mode. In general, the burst mode can be used effectively
in both packet-switching mode and in sample-switching mode. The stream mode can only be used
effectively in sample-switching mode.

A sink functional unit, like a source functional unit, operates in either stream mode or in burst
mode. In the stream mode, it continuously consumes samples at a particular rate. In burst mode, it
consumes samples in bursts.

Different Arbitrage Schemes of the Global Controller

Routers interact with the global controller to obtain new header information. A router starts an inter-
action with the controller by issuing arequestto the global controller. The global controllergrants
this request and only then does a router actually exchanges new header information with the global
controller.

Within stream-based dataflow architectures, there are multiple routers but only one global con-
troller. It is very likely that routers try to issue requests concurrently to interact with the global con-
troller. A global controller can serve only a certain capacity of requests, i.e., it has an instantaneous
service capacity. The service capacity is in practice one request at a time. Consequently, the global
controller needs to arbitrate between different requests. Within the class of stream-based dataflow
architectures, the global controller can use different arbitrage schemes. Three examples of such an
arbitrage scheme are first-come-first-served, round robin, and time division multiplex.

In theFirst-Come-First-Served(FCFS) arbitrage scheme, requests of routers are stored in a FIFO
buffer. The global controller deals with the requests in the FIFO buffer in the order in which they
arrive. In theRound Robinarbitrage scheme, the requests of routers are stored at a fixed position in an
array. The global controller grants the requests in the array in a circular order as they appear. Finally,
the Time Division Multiplex(TDM) arbitrage scheme is a FCFS arbitrage scheme with additional
functionality with which to control which router can communicate samples over the communication
structure at which time slot.

When the global controller grants a request, it takes a certain amount of time to actually transport
new header information to a router. This is theservice timeof the global controller.

Basic Definitions and Problem Statement 31

2.2 The Class of Stream-based Dataflow Architectures

In the previous section, we have discussed the structure and behavior of stream-based dataflow ar-
chitectures. Recall that we have not been dealing with any stream-based dataflow architecture in
particular, but with a hypothetical architecture in which some choices, both structural and behavioral,
are left open, the so-calledarchitectural choices. Instead of discussing any particular stream-based
dataflow architecture, we consider aclass of stream-based dataflow architecturesthat is characterized
by the available architectural choices.

Table 2.1 shows the parameters corresponding with the architectural choices for the stream-based
dataflow architecture as well as the range of values a parameter may take. For example, the number
of processing elements is represented by the parameterP0. From the range given (i.e.f 2 : : :100g)
for P0, we may construct any architecture instance consisting of 2 up to 100 processing elements.
Another example is parameterP1, which indicates the number of channels present in the communi-
cation structure. As a final example, the parameterP2 represents the two protocols a communication
structure can employ. The two protocols are represented by the enumerated setfTDM;FCFSg.

ParameterArchitectural Choices
Name Range

Architecture Number of processing elementsP0 f2 : : :100g
Communication Structure Number of Channels P1 f1 : : :100g

Type P2 fTDM; FCFSg
Time Slot Length P3 f 1 : : : 100g

Sink/Source Function Units Type P4 f Stream, Burstg
Packet Length P5 f1 : : :1000000g

Global Controller Type P6 fFCFS;Round Robin;
TDMg

Service Capacity P7 f1 : : :3g
Service Response Time P8 f1 : : :10g

Per processing elementPEx

Functional Units Number of Functional ElementsPx f 1 : : : 10g
Type Px+1 fSample-Switching;

Packet-Switchingg
Buffers Type Px+2 fHandshake;Bounded;

Unboundedg
Input Buffers Capacity Buffer Px+3 f1 : : :1000g
Output Buffers Capacity Buffer Px+4 f1 : : :1000g
Routers Type Px+5 fShare;Singleg

Per Function ElementFEy

Functional Elements The Function it executed Py f any valid functiong
Latency Py+1 f 1 : : : 10g
Throughput rate Py+2 f 1 : : : 10g
Number of input arguments Py+3 f 1 : : : 3 g
Number of output arguments Py+4 f 1 : : : 3 g

Per Functionfn
Functions Function Parameters Pn : : :Pn+z depending on the function

Table 2.1 . The architectural choices present within the class of stream-based dataflow
architectures.

32 2.3 The Designer’s Problem

2.2.1 Architecture Template

To describe the class of stream-based dataflow architectures, we introduce the notion of an architecture
template, which we define as

Definition 2.8. ARCHITECTURE TEMPLATE

An architecture templateis a specification of a class of architectures in a parameterized form.2

An architecture template represents a class of architectures by expressing the available architec-
tural choices in terms of a parameter setP . A particular architecture within the class of architectures
is named an architecture instance, which is defined as

Definition 2.9. ARCHITECTURE INSTANCE

An architecture instance, or design, is the result of assigning values to all architectural choices,
i.e., parameters of the architecture template. 2

2.2.2 Design Space

The set of architectural choices in Table 2.1 describes many different architecture instances of the
stream-based dataflow architecture template. All these different instances together define thedesign
spaceD of the class of stream-based dataflow architectures. For an architecture templateAT with
parametersp0 : : : pn, the design spaceD is

D = P0 � P1 � � � � � Pn (2.3)

We can select a pointI in D by selecting for each parameterP0 toPn a particular valuep such that

I = (p0; p1; : : : ; pn) 2 D (2.4)

For this pointI we can derive an architecture instanceAI of AT

AT (I)! AI (2.5)

2.3 The Designer’s Problem

So far, we have considered the stream-based dataflow architecture template from the point of view of
structure and behavior. Now we turn to the designer who needs to design architectures, and in partic-
ular stream-based dataflow architectures, that can execute a set of applications. The designer has to
produce one or more architectures that satisfydesign objectivessuch as real-time constraints, through-
put of the architecture, resource efficiency, and programmability. This list can easily be extended with,
for example, power consumption and silicon area. We will confine ourselves to the design objectives
related to real-time constraints, throughput constraints, and utilization.

Definition 2.10. FEASIBLE DESIGN

A feasible designsatisfies all stated design objectives. 2

Thus the design problem a designer faces consists of selecting parameter values for an architecture
template such that a feasible design is found. This design task becomes increasingly difficult as
architectures become more programmable. A design should satisfy the design objectives not only for
a single application, but for a given set of applications.

A designer’s approach to constructing programmable applications-specific architectures, and in
particular, stream-based dataflow architectures, is what we consider in this thesis. The problem state-
ment for which this thesis will provide a systematic methodology is:

Basic Definitions and Problem Statement 33

Central Problem Statement of this thesis
Given an architecture templateAT and its design spaceD, a set of applications, and the
design objectives, provide a method to find parameter values of the architecture template
such that a feasible design results.

We discuss a feasible design and not an optimal design. The complexity of these architectures is
such that we simply do not know what an optimum might be. Nevertheless, of all possible feasible
designs, a designer is interested in the design best satisfying the stated design objectives. When one
feasible design has a better utilization than that of other feasible designs, it is considered a better
design.

Design Objectives

Real-time Constraints
Throughput Constraint
Utilization
Silicon Area Cost
Power Consumption
Programmability to Support a Set of Applications

Table 2.2 . Possible design objectives when finding an architecture for a set of applications.

2.3.1 Exploring the Design Space of Architectures

We observe that a design approach is not yet available for programmable architectures like stream-
based dataflow architectures. As we will show, design approaches currently in use seem unable to help
designers in evaluating the consequences of architectural choices with respect to the design objectives.
The level of detail introduced in current design approaches narrows down the design space that the
designer can explore. As a result, a designer cannot make the trade-off between the many architectural
choices shown in Table 2.1.

Because the designer cannot make the necessary trade-offs, the resulting design is eitherover-
designedor under-designed. In the first case, a design under-utilizes its resources and it is thus a more
expensive design than necessary; in the second case, the design cannot satisfy the imposed design
objectives.

2.3.2 Problems in Current Design Approaches

Designers typically start by sketching rough outlines of architectures on paper, which we callpaper
architectures. Because it is difficult to evaluate particular architectural choices at this stage, designers
tend to make qualitative statements about these paper architectures that lack a sound basis on which
to validate them. This makes designing feasible architectures an art rather than solid engineering.

Once designers have selected a particular paper design, they tend to fill in the detail of a design in
a hardware description language like VHDL or Verilog. This design approach is sometimes referred
to asGolden Point Design[Richards, 1994]. In this design approach, designers very quickly become
preoccupied by details of the design. They do not thoroughly evaluate the consequences of decisions
at a high enough level. For example, the high level decision to use a particular kind of buffer of a

34 2.4 Related Work on Dataflow Architectures

certain size presumably has a far greater impact on the overall performance of a design than do the
details of how a buffer communicates with a processing element.

As the description of the architecture becomes more detailed, it also becomes harder to change
the structure or behavior of the architecture. This makes it more difficult to try out other architectural
choices. Since simulation becomes an increasingly important tool when more detail is added, another
consequence of a more detailed architecture is that the simulation speed drops dramatically, especially
in the context of high performance video and radar applications. Consequently, only a few alternatives
can be evaluated in a reasonable amount of time. An associated problem with adding more and more
details is that many problems arise that were initially unforeseen. To solve these problems, designers
take ad-hoc decisions that can seriously affect the ability of architectures to satisfy their stated design
objectives.

Although designers develop programmable architectures, the development of the architecture is
often unrelated to the development of the set of applications. This further impedes making trade-
offs on behalf of supporting a set of applications. It is therefore very much the question if the final
architecture is sufficiently programmable to execute the complete set of applications while satisfying
the design objectives.

Another design approach is to transform digital signal processing applications in various steps of
refinement into a particular architecture. This approach is used, for example, in thesystolic array
design community [H.T. Kung and Leiserson, 1978; H.T. Kung, 1982] and thewavefrontdesign com-
munity [S.Y. Kung et al., 1982; S.Y. Kung, 1988]. Using all kinds of transformations like folding and
partitioning, the application is transformed into an architecture (see for example, figure 6.41 in S.Y.
Kung [1988]). For a set of applications, this refinement method would lead to different optimal ar-
chitectures for different applications. It lacks the ability to deal effectively with making trade-offs in
favor of the set of applications.

Finally, the hardware/software codesign design approach relies on an architecture template to
design architectures. One application is partitioned into hardware and software parts that fit onto this
architecture template [De Micheli and Sami, 1996]. Nevertheless, the architecture template typically
used in hardware/software codesign is too restrictive: it often consists of one or more co-processors, a
bus, and a programmable element like a CPU or a DSP. The architecture template is unable to handle
the demanding requirements of high-performance signal processing.

The Hardware/Software Codesign design approach lacks the ability to deal effectively with mak-
ing trade-offs in favor of the set of applications. Only recently has the problem of executing a set of
multi-media applications been addressed in the hardware/software codesign community (by Kalavade
and Subrahmanyam [1997]), albeit only for cyclo-static DSP applications.

2.4 Related Work on Dataflow Architectures

Work on dataflow architectures started in the early 1970s. It is Jack Dennis who is regarded as the
originator of the concepts of dataflow architectures [Dennis and Misunas, 1975]. People working on
dataflow architectures had great visions of plentiful computing power provided by powerful parallel
architectures based on simple computing principles [Veen, 1986]. Dataflow architectures, especially
dynamic dataflow architecture (see Section 2.1.3), were researched intensively during the 1980s and
the early 1990s. During the 1980s, the now famous Manchester Dataflow Architecture was conceived
and implemented [Gurd et al., 1985]. It typifies the dynamic dataflow architectures of that time. The
Manchester Dataflow Architecture was a general-purpose computer that used fine-grained, homoge-
neous functional units (i.e., each functional unit executes the same set of functions). This makes it

Basic Definitions and Problem Statement 35

possible for the architecture to do load balancing of the functional units, giving speed-up that was
nearly linear.

2.4.1 Implementation Problems of Dataflow Architectures

In general, dynamic dataflow architectures, although very elegant conceptually, suffer from severe im-
plementation problems. It was found to be impossible, as we will explain, to implement the dataflow
model of computation efficiently in hardware [Veen, 1986]. Dynamic dataflow architectures exploit
fine-grained functional elements, giving these architectures the most flexibility. This result, how-
ever, in enormous communication requirements leading to special, bulky communication structures.
Furthermore, dynamic dataflow architectures are able to execute recursion and data-dependent con-
ditionals, causing parallelism to arise at run-time. This run-time parallelism disturbs the ordering of
the tokens inside the architecture. To reorder these tokens at run-time, dynamic dataflow architectures
requirematching units. These matching units are special hardware units that utilizetagsand a certain
amount of associative memory to perform tag matching at run-time2. It is, however, very difficult to
assess in advance how large this memory should be. In addition, matching units need to have some
overflow mechanisms, which can be very bulky [Gurd et al., 1985]. Another issue making the im-
plementation of dynamic dataflow architectures difficult is the granularity of the data flowing around
the machine. This data is typically a single integer value, due to the fine-grained functions employed.
Tagging these fine-grained tokens results in an enormous overhead. In addition, it is very difficult to
generate unique tags for all the tokens flowing through the architecture at the same time. Of all the im-
plementation problems mentioned here, it is the implementation of matching units that has proven in
the end to be the Achilles heel of the implementation of dynamic dataflow architectures [Jagannathan,
1995].

2.4.2 Other Dataflow Architectures

As research continued, it became increasingly clear that pure dynamic dataflow architectures, in par-
ticular, fine-grained dataflow architectures, are not a viable option in the long term to become general-
purpose computing architectures [Jagannathan, 1995]. Instead, research continued to focus more
on hybrid data-driven/control-driven architectures calledMultithreading Architecturesor dataflow ar-
chitectures that are specialized for a particular application domain, calledDomain-specific Dataflow
Architectures.

Multithreading architectures combine dataflow and von Neumann models of computation [Dennis
and Gao, 1994]. These architectures hide the effects of both memory latency and synchronization
waits by switching coarse-grained functions on a RISC-style processor. Examples of such hybrid
architectures are the Monsoon processor [Papadopoulos and Culler, 1990] and the Sparcle processor
of the Alewife project [Agarwal et al., 1995].

Domain-specific architectures are specialized for a particular application domain. These architec-
tures try to exploit characteristics of a particular domain, for example real-timevideo signal processing
(VSP). VSP applications can be described in a very natural way using streams and dataflow models of
computation [Lee, 1992-1993; Jagannathan, 1995]. Dataflow architectures implement these dataflow
models of computation directly into hardware. We discuss domain-specific dataflow architectures in
more detail in the next section. We thereby make a distinctionbetween static domain-specific dataflow
architectures and dynamic domain-specific dataflow architectures.

2Architectures using these tags are calledtagged-token dataflow architectures. The Manchester Dataflow Architecture
is such a tagged-token dataflow architecture.

36 2.4 Related Work on Dataflow Architectures

An extensive (historical) overview of dataflow architectures that have been developed is presented
by Silc et al. [1998], who discuss the first dataflow architectures up to the latest developments in
dataflow architectures.

Static Domain-specific Dataflow Architectures

Building domain-specific dataflow architectures has already proven to be a productive route. For
high-performance video algorithms described in a static dataflow model of computation, both pro-
grammable architectures like the VSP [Vissers et al., 1995] and PADDI [Chen and Rabaey, 1990;
Yeung, 1995] and dedicated architectures [Lippens et al., 1991] exist. The systolic/wavefront array
community has also successfully exploited static dataflow concepts [H.T. Kung, 1982; S.Y. Kung
et al., 1982].

Dynamic Domain-specific Dataflow Architectures

Nevertheless, with the increased focus on multi-media applications, new problems are being intro-
duced that require dynamic execution of applications. Just consider applications related to MPEG
standards for video or AC3 standard for audio. The concepts of Quality of Server (QoS) will also lead
to the introduction of new applications that need to be scaled dynamically based on the availability of
resources.

Architecture Application Domain

Prophid High performance video applications
in consumer appliances [Leijten et al., 1997]

Jacobium Array signal processing applications [Rijpkema et al., 1997]
Pleiades Multi-standard mobile communication devices [Abnous and Rabaey, 1996]
Cheops Television of Tomorrow [Michael Bove Jr. and Watlington, 1995]

Table 2.3 . Architectures that have in common the use streams, medium to coarse-grained
processing elements, and which are (weakly) programmable to support a set of applica-
tions.

New architectures like stream-based dataflow architectures are emerging to support sets of these
new dynamic applications. Examples of such architectures are given in Table 2.3. These architectures
all have in common that they the use streams, contain medium to coarse-grained processing elements,
and are (weakly) programmable to support a set of applications.

2.4.3 Implementing Stream-based Dataflow Architectures

Let us focus more on problems encountered in the stream-based dataflow architecture, given the prob-
lems observed in implementing dynamic dataflow machines, i.e., the granularity of functions, over-
head from tagging tokens and generating unique tags, and the use of matching units.

Granularity of Functions

We studied which grain size is optimal for a set of applications and presented this study in [Liev-
erse et al., 1997]. In this study, we explored the efficiency of a stream-based dataflow architecture

Basic Definitions and Problem Statement 37

quantitatively in terms of silicon use as a function of the grain size of the function implemented on
functional elements. The architecture had to execute a set of 20 industrially relevant applications
initially developed to execute on VSP2 architectures.

This study clearly showed that for a set of applications, the use of coarse-grained functions resulted
in an implementation that was 2 to 5 times more efficient in silicon than a fine-grained dataflow
architecture like the VSP2. At the same time, the architecture using the coarse-grained functions
is programmable enough to execute the set of applications. The quantitative relationship found by
Lieverse et al. is shown in Figure 2.11. It shows the ratio of silicon area needed by stream-based
dataflow architectures to that needed by the VSP2 implementations to execute the set of applications,
as a function of processing elements and cluster size. The cluster size is, like the grain size, expressed
in terms of RISC-like instructions and is comparable to the grain size.

Figure 2.11 . The quantitative relationship between grain size of the functional elements and
silicon area of the stream-based dataflow architecture for a set of 20 industrially relevant
video-applications. The figure shows the ratio of silicon area needed by stream-based
dataflow architectures to that needed by the VSP2 implementations to execute the set of
applications, as a function of processing elements and cluster size. The cluster size is, like
the grain size, expressed in terms of RISC-like instructions and is comparable to the grain
size.

Tag Overhead and Generating Unique Tags

The processing elements in stream-based dataflow architectures communicate packet streams. Packets
have a data part of lengthL and a header part. The stream-based dataflow architecture uses four header

38 2.4 Related Work on Dataflow Architectures

samples to represent the header part. The header tags the data samples present in the data part. By
making a packet longer, we can spread the overhead introduced by the four header samples over more
samples: the longer the data part, the smaller the overhead per sample introduced by the header.

When a stream with a rate ofx samples/sec is broken down into a stream of packets with length
L, the overhead introduced by the four header samples results in an effective rate of the samples as

x �
1

1 + 4=L
� 100% = Effective Rate (2.6)

In general, the longer the packet, the smaller the overhead of a header. A packet length of 100 to
1000 is, for example, very common in video applications. A single video line takes approximately
800 samples. When using packets of 1000, the overhead is less than 0.4%. However, very long packets
negatively affect the switching of packet streams on a functional unit, which leads to large buffers:
other packet streams have to wait longer before being processed by a functional unit. As packets
become longer, it becomes more difficult to reuse a functional unit. This reduces the programmability
of functional units.

Stream-based dataflow architectures do not suffer that much from the unique tag problem. These
architectures require fewer unique tags because of the use of packets and static routing of packet
streams. Furthermore, knowledge about the applications can be exploited to generate unique tags. In
video, for example, there are strong relations between video frames.

Matching Units

Dynamic dataflow architectures require matching units to restore order in tokens streams. In principle,
stream-based dataflow architectures also have to reorder packets at run-time. We illustrate this with
the example shown in Figure 2.12. It shows a functional unit in packet-switchingmode, with two input
ports containing three functional elements (FE0, FE1, andFE2). Two input buffers connect to these
two input ports. The content of these two buffers is shown over time, with each gray area representing
a packet. The number beneath each packet indicates to which functional element it belongs (i.e. it is
the value ofHf in the header). We do not show the output buffers in the figure. The example is the
same as the example shown in Figure 2.8 except that it contains one additional functional element, i.e.
FE2 requires two input arguments.

The order of the packets in theOpcodeBuffer first causes the execution ofFE0, followed by
the execution ofFE1, which also consumes packets from bufferB1. The packet read from the
Opcodebuffer after the execution ofFE1 again causesFE1 to execute. Input bufferB1, however,
contains a packet belonging toFE2 and this situation causes adeadlock: the functional unit will never
be able to execute functional elementFE1. In such a case, a matching unit has to reorder packets in
both buffers such that the packets presented to the functional unit belong to eitherFE1 or FE2. This
procedure prevents deadlock from occurring.

The sharing of input buffers between various functional elements causes the reordering problem
in Figure 2.12. To solve this problem, the input buffers must not be shared, as is already required in
sample-switching mode. Although this is a solution for the reordering problem, it introduces as many
inputs buffers as there are input arguments for the functions of the function repertoire of a functional
unit, a result that might be undesirable.

Although sample-switching might solve the reordering problem through the introduction of more
buffers, it also leads to many more switches of the functional elements than occurs in packet-switching
mode. From work done on Multithreadingarchitectures [Dennis and Gao, 1994], we already know that
this fast switching makes implementations of sample-switching functional units difficult. Conversely,

BIBLIOGRAPHY 39

FE_0

FE_1
Buffer B_1

01

2 11

Functional Unit

FE_2

2 1

Time

Packet

Opcode Buffer

Figure 2.12 . A functional unit in packet-switching mode that deadlocks due to a matching
problem.

in packet-switching mode fewer switches occur. This makes the implementation of packet-switching
functional units simpler.

As indicated before, the dynamic behavior of functions implemented on functional elements man-
ifests itself in two ways: functional units dynamically produce either more packets or packets of
variable length. Both ways can disrupt the order of packets in a stream and hence do not solve the
reordering problem. This means further research is needed on methods guaranteeing deadlock-free
execution while still obtaining efficient implementations (this will be discussed briefly in Section 9.3).

2.5 Conclusions

In this chapter, we discussed the structure and behavior of stream-based dataflow architectures. We
showed that all choices available in both structure and behavior allow us to describe not just one
architecture, but rather, a class of architectures. We also showed that this class of architectures could
be described by means of an architecture template from which architecture instances can be derived.
The problem designers face, given an architecture template with its large design space, is to find a
feasible design. However, no good general design approach exists to support designers in exploring
the design space of programmable architectures. As a consequence, designers cannot make the proper
trade-offs leading to a good feasible design that is able to execute a set of applications. Finally, we
placed the stream-based dataflow architecture in perspective regarding other work done on dataflow
architectures.

Bibliography

Arthur Abnous and Jan Rabaey. Ultra-low-power domain-specific multimedia processors. InVLSI
Signal Processing, IX, pages 461–470, 1996.

D.A. Adams. A computational model with data flow sequencing. PhD thesis, Stanford University,
Dept. of Computer Science, 1968. TR/CS-117.

Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz, John Kubiatowicz,
Beng-Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT Alewife Machine: Architecture
and Performance. InProceeding of the ISCA’95, 1995.

40 BIBLIOGRAPHY

D.C. Chen and J.M. Rabaey. Paddi: Programmable arithmetic devices for digital signal processing.
In Proceedings of VLSI Signal Processing, IV, pages 240 – 249, 1990.

Giovanni De Micheli and Mariagiovanna Sami.Hardware/Software Co-Design, volume 310 ofSeries
E: Applied Sciences. NATO ASI Series, 1996.

Jack B. Dennis and Guang R. Gao. Multithreaded architectures: principles, projects and issues. In
Robert A. Iannucci, editor,Multithreaded Computer Architecture, A Summary of the State of the
Art, chapter 1, pages 1–71. Kluwer Academic Publishers, 1994.

J.B. Dennis. First version of a data flow procedure language. InLecture Notes in Computer Science,
volume 19. Springer-Verlag, 1974.

J.B. Dennis and D.P. Misunas. A preliminary architecture for a basic data flow architecture. In
Proceedings of the 2nd Annual Symposium on Computer Architectures, pages 126 – 132. IEEE
Press, 1975.

J.R. Gurd, C.C. Kirkham, and I. Watson. The Manchester Prototype Dataflow Computer.Communi-
cations of the ACM, 28(1):34 – 52, 1985.

John L. Hennessy and David A. Patterson.Computer Architectures: A QuantitativeApproach. Morgan
Kaufmann Publishers, Inc., second edition, 1996.

H.T. Kung. Why systolic architectures?IEEE Computer, 15(1), 1982.

H.T. Kung and C.E. Leiserson. Systolic arrays (for VLSI). InSparse Matrix Symposium, pages 256 –
282. SIAM, 1978.

R. Jagannathan. Dataflow models. In E.Y. Zomaya, editor,Parallel and Distributed Computing
Handbook. McGraw-Hill, 1995.

Asawaree Kalavade and P.A. Subrahmanyam. Hardware/software partioning for multi-function sys-
tems. InProc. of ICCAD’97, pages 516 – 521, 1997.

R.M. Karp and R.E. Miller. Properties of a model for parallel computations: Determinacy, termina-
tion, queueing.SIAM Journal on Applied Mathematics, 14(6):1390–1411, 1966.

Edward A. Lee. Design methodology for DSP. Technical Report 92-084, University of California at
Berkeley, 1992-1993.

Jeroen Leijten.Real-Time Constrained Reconfigurable Communication between Embedded Proces-
sors. PhD thesis, Eindhoven University of Technology, 1998.

Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prophid, a
data-driven multi-processor architecture for high-performance DSP. InProc. ED&TC, 1997.

P. Lieverse, E.F. Deprettere, A.C.J. Kienhuis, and E.A. de Kock. A clustering approach to explore
grain-sizes in the definition of weakly programmable processing elements. InProceedings of the
IEEE Workshop on Signal Processing Systems, pages 107 – 120, De Montfort University, Leicester,
UK, 1997.

BIBLIOGRAPHY 41

P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. McSweeney, J.O.
Huisken, and O.P. McArdle. PHIDEO: A silicon compiler for high speed algorithms. InProc.
EDAC, pages 436 – 441, 1991.

V. Michael Bove Jr. and John A Watlington. Cheops: A reconfigurable data-flow system for video
processing.IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 1995.

G.M. Papadopoulos and D.E. Culler. Monsoon: an explicit token-store architecture. InProceedings
of of the 17th ISCA, pages 82 – 91, 1990.

Mark A. Richards. The rapid prototyping of application specific signal processors (RASSP) program:
Overview and status. In5th International Workshop on Rapid System Prototyping, pages 1–6. IEEE
Computer Society Press, 1994.

Edwin Rijpkema, Gerben Hekstra, Ed Deprettere, and Ju Ma. A strategy for determining a Jacobi spe-
cific dataflow processor. InProceedings of 11th Int. Conference of Applications-specific Systems,
Architectures and Processors (ASAP’97), pages 53 – 64, Zurich, Switzerland, 1997.

J. Silc, B. Robic, and T. Ungerer. Asynchrony in parallel computing: From dataflow to multithreading.
Journal of Parallel and Distributed Computing Practices, 1998.

S.Y. Kung.VLSI Array Processors. Prentice Hall Information and System Sciences Series, 1988.

S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. Bhaskar Rao. Wavefront array processor: language,
architecture, and applications.IEEE Transactions on Computers, Special Issue on Parallel and
Distributed Computers, C-31(11):1054 – 1066, 1982.

Arthur H. Veen. Dataflow machine architecture.ACM Computing Surveys, 18(4):366–396, 1986.

K.A. Vissers, G. Essink, P.H.J. van Gerwen, P.J.M. Janssen, O. Popp, E. Riddersma, and J.M. Veen-
drick. Algorithms and Parallel VLSI Architectures III, chapter Architecture and programming of
two generations video signal processors, pages 167 – 178. Elsevier, 1995.

K.W. Yeung. A Data-Driven Multiprocessor Architecture for High Throughput Digital Signal Pro-
cessing. PhD thesis, University of California at Berkeley, 1995.

42 BIBLIOGRAPHY

Chapter 3

Solution Approach

Contents

3.1 The Evaluation of Alternative Architectures 44

3.1.1 Quantitative Data. 44

3.1.2 The Y-chart Approach . 44

3.2 Design Space Exploration Using the Y-chart Approach 45

3.3 Requirements of the Y-chart Approach . 46

3.3.1 Performance Analysis . 47

3.3.2 Mapping . 52

3.4 Development of a Y-chart Environment . 55

3.5 Related Work . 56

3.5.1 Design of General-Purpose Processors . 56

3.5.2 Design of Application-Specific Architectures 59

3.6 Conclusions . 60

T
HE architecture template of stream-based dataflow architectures offers many options to designers
for instantiating an architecture, as was explained in Chapter 2. So, how can designers explore

the design space of the architecture template to come to an architecture instance that satisfies his re-
quirements? In this chapter, we discuss an approach in which designers can use performance models
to make architectural choices. By evaluating the performance models of architecture instances, de-
signers acquire performance numbers that provide them with quantitative data. They make justifiable
decisions based on this quantitative data.

The idea of using performance numbers to compare architecture instances leads to the Y-chart
approach presented in Section 3.1 in which the performance of architectures is analyzed for a given
set of applications. Using this approach, we explain in Section 3.2 how we can explore the design
space of the architecture template. The Y-chart approach consists of five components having their
own particular requirements. In Section 3.3, we consider the requirements for performance analy-
sis an mapping. In this thesis, we development a Y-chart environment for the class of stream-based
dataflow architectures discussed in Chapter 2. In Section 3.4, we show each component of the Y-chart
and briefly discuss what the issues are within each component. We finish this chapter in Section 3.5
by looking at general-purpose processors. After all, designers have already been constructing pro-
grammable architectures for decades. As it turns out, designers use a benchmark design approach
which very much resembles the Y-chart approach.

43

44 3.1 The Evaluation of Alternative Architectures

3.1 The Evaluation of Alternative Architectures

We noticed in the previous chapter that the problem designers face when designing architectures like
stream-based dataflow architectures is the many architectural choices involved (see Table 2.1 for an
example). In the context of the architecture template, on what basis should designers decide that one
architectural choice is better than another? We somehow have to provide designers with a basis on
which they can compare architectural choices in an objective way.

3.1.1 Quantitative Data

The ranking of architectural alternatives should be based on evaluation of performance models of
architecture instances. A performance model expresses how performance metrics like utilization and
throughput relate to design parameters of the architecture instance. The evaluation of performance
models results in performance numbers that provide designers withquantitative data. This data serves
as the basis on which a particular architectural choice is preferred above another architectural choice
in an objective and fair manner.

3.1.2 The Y-chart Approach

We propose a general scheme with which to obtain the quantitative data, as shown in Figure 3.1.
This scheme, which we refer to as the Y-chart, provides an outline for an environment in which
designers can exercise architectural design and was presented for the first time in [Kienhuis et al.,
1997]. In this environment, the performance of architectures is analyzed for a given set of applications.
This performance analysis provides the quantitative data that designers use to make decisions and
to motivate particular choices. One should not confuse the Y-chart presented here with Gajski and
Kuhn’s Y-chart [Gajski, 1987], which presents the three views and levels of abstraction in circuit
design1. We used the term “Y-chart” for the scheme shown in Figure 3.1 for the first time in [Kienhuis
et al., 1998].

Analysis
Performance

Applications

Performance
Numbers

Mapping

Architecture
Instance

Figure 3.1 . The Y-chart approach.

We define the Y-chart approach as

Definition 3.1. Y-CHART APPROACH

1In Gajski and Kuhn’s Y-chart, each axis represents a view of a model:behavioral, structural, or physicalview. Moving
down an axis represents moving down in level of abstraction, from thearchitecturallevel to thelogical level to, finally, the
geometricallevel.

Solution Approach 45

TheY-chart Approachis a methodology to provide designers with quantitative data obtained by
analyzing the performance of architectures for a given set of applications. 2

The Y-chart approach involves the following. Designers describe a particular architecture instance
(Architecture Instancebox) and use performance analysis (Performance Analysisbox) to construct a
performance model of this architecture instance. This performance model is evaluated for the mapped
set of applications (Mappingbox and stack ofApplicationsboxes). This yields performance numbers
(Performance Numbersbox) that designers interpret so that they can propose improvements, i.e., other
parameter values, resulting in another architecture instance (this interpretation process is indicated in
Figure 3.1 by the lightbulb). This procedure can be repeated in an iterative way until a satisfactory
architecture for the complete set of applications is found. The fact that the performance numbers
are given not merely for one application, but for the whole set of applications is pivotal to obtaining
architecture instances that are able to execute a set of applicationsand obey set-wide design objectives.

It is important to notice that the Y-chart approach clearly identifies three core issues that play a
role in finding feasible programmable application-specific architectures, i.e., architecture, mapping,
and applications. Be it individually or combined, all three issues have a profound influence on the
performance of a design. Besides designing a better architecture, a better performance can also be
achieved for a programmable architecture by changing the way the applications are described, or
the way a mapping is performed. These processes can also be represented by means of lightbulbs
and instead of pointing an arrow with a lightbulb only to the architecture, we also point arrows with
lightbulbs back to the applications and the mapping, as shown in Figure 3.2. Nevertheless, we focus
in this thesis mainly, but not exclusively, on the loop describing the architecture design. Therefore the
emphasis is on the process represented by the arrow pointing back to the architecture instance box.

Analysis

Performance

Applications

Performance
Numbers

Mapping

Architecture
Instance

Figure 3.2 . The Y-chart with lightbulbs indicating the three areas that influence performance
of programmable architectures.

3.2 Design Space Exploration Using the Y-chart Approach

The Y-chart approach provides a scheme allowing designers to compare architectural instances based
on quantitative data. Using the architecture template of the stream-based dataflow architecture, as
introduced in Chapter 2, we can produce a set of architecture instances: we systematically select for
all parametersp in the parameter setP of the architecture templateAT distinct values within the
conceded range of values of each parameter. Consequently, we obtain a (large) finite setI of points
I .

I = fI0; I1; : : : ; Ing (3.1)

46 3.3 Requirements of the Y-chart Approach

Each pointI leads to an architecture instance as given in Equation 2.5. Using the Y-chart, we map on
each and every architecture instance the whole set of applications and measure the performance using
particular performance metrics, a process we repeat until we have evaluated all architecture instances
resulting from the setI. Because the design space of the architecture templateAT is defined by the
set of parameters ofAT (see Equation 2.3), in the process described above we explore the design
spaceD of AT .

Definition 3.2. EXPLORATION

Theexplorationof the design spaceD of the architecture templateAT is the systematic selection
of a value for all parametersPj 2 D such that a finite set of pointsI = fI0; I1; : : : Ing is obtained.
Each pointI leads to an architecture instance for which performance numbers are obtained using the
Y-chart approach. 2

When we plot the obtained parameter numbers for each architecture instance versus the set of
systematically changed parameter values, we obtain graphs such as shown in Figure 1.5. Designers
can use these graphs to balance architectural choices to find a feasible design.

Some remarks are in order in relation to Figure 1.5. Whereas the figure shows only one parameter,
the architecture template contains many parameters. Finding the right trade-off is a multi-dimensional
problem. The more parameters involved, the more difficult it will be. Note also that the curve shown
in the graph is smooth. In general, designers cannot assume that curves are smooth because the inter-
action between architecture and applications can be very capricious. Finally, the curve in the figure
shows a continuous line, whereas the performance numbers are found only for distinct parameter
values. Simple curve fitting might give the wrong impression.

3.3 Requirements of the Y-chart Approach

For designers to use the Y-chart approach in the design of architectures, they must be able to describe
both architecture instances (from an architecture template) and sets of applications. Designers must
also be able to derive mappings for these sets of applications onto different architecture instances.
The final requirement that this approach imposes on designers is that they can make models of the
described architecture instance which they can then analyze to obtain performance numbers.

Each box in the schematic of the Y-chart approach denotes a discipline in its own right, having
its own particular requirements. These requirements are discussed later in this thesis, with a separate
chapter dedicated to each discipline and its requirements. However, the five sets of requirements
are not mutually independent: the requirements for ‘performance analysis’ and ‘mapping’ stipulate
the requirements for ‘architecture’, ‘applications’, and ‘performance numbers’. In this section, we
consider the requirements for performance analysis and mapping in conjunction with a design process.

We have not said anything about the level at which a Y-chart should be constructed or at what level
architecture instances should be modeled and applications should be specified. As we will show, there
exists a trade-off between the effort required for modeling architecture instances, the effort required
for evaluation of the performance of such architecture instances, and the accuracy of the acquired
performance. A designer can exploit this trade-off to narrow down the design space of an architecture
template in a few steps. When modeling and evaluation is relatively inexpensive, the design space can
be explored extensively. By the time modeling and evaluation become expensive, the design space
has already been reduced considerably and contains the design points of interest.

The Y-chart approach requires that designers deal with the mapping problem at the beginning of
a design. Therefore, ideally designers should develop a mapping strategy concurrently with the de-

Solution Approach 47

velopment of the architecture instance and the set of applications. We formulate a mapping approach
with which such mapping strategy can be developed for the stream-based dataflow architecture.

3.3.1 Performance Analysis

Performance analysis always involves three issues: amodeling effort, an evaluation effortand the
accuracyof the obtained results [Lavenberg, 1983; van Gemund, 1996]. We address each of these in
more detail in Chapter 4. Performance analysis can take place at different levels of detail, depending
on the trade-offs that are made between these three issues. Very accurate performance numbers can
be achieved, but at the expense of a lot of detailed modeling and long evaluation times. On the other
hand, performance numbers can be achieved in a short time with modest effort for modeling but at the
expense of loss of accuracy. We place the important relations between these three issues in perspective
in what we call theAbstraction Pyramid.

The Abstraction Pyramid

The abstraction pyramid (see Figure 3.3) describes the modeling of architectures at different levels
of abstraction in relation to the three issues in performance modeling. At the top of the pyramid is a
designer’s initial rough idea (shown as a lightbulb) for an architecture in the form of a ‘paper architec-
ture’. The designer wants to realize this architecture in silicon. The bottom of the pyramid represents
all possible feasible realizations; it thus represents the complete design space of the designer’s paper
architecture. A discussion of the five main elements of the abstraction pyramid follows.

Cost of Modeling Moving down in the pyramid from top to bottom, a designer defines an increasing
expenditure of detail of an architecture using some modeling formalism. This process proceeds
at the cost of an increasing amount of effort, as indicated on thecost of modelingaxis at the
right-hand side of the pyramid. As a designer describes architectures in more detail, the number
of architectural choices (i.e. the number of parameters in the architecture template) increases,
expanding the basis of the pyramid. Each new architectural choice, albeit at a lower level of
detail, thus further broadens the design space of the architecture.

Opportunity to Change As the designer moves down and includes more detail using the modeling
formalism, the architecture becomes increasingly more specific. Details added at a given level
interfere with detail added at a higher level of abstraction. Due to this intertwining of detail, the
more detailed models become, the more difficult it is to make changes in architectures. Thus,
the opportunity to explore other architectures diminishes. This is indicated on theopportunity
axis at the left-hand side of the pyramid.

Level of Detail Lines intersecting the abstraction pyramid horizontally at different heights represent
architecture instances modeled at various levels of detail. At the highest level of abstraction,
architectures are modeled usingback-of-the-envelope models. Models become more detailed as
the abstraction pyramid is descended. Theback-of-the-envelope modelsis followed byestima-
tion models, abstract executable models, cycle-accurate models, and, finally, bysynthesizable
VHDL models. This represents the lowest level at which designers can model architectures.

We use the termback-of-the-envelope modelfor simple mathematical relationships describing
performance metrics of an architecture instance under simple assumptions related to utilization
and data rates. Estimation models are more elaborated and sophisticated mathematical relation-
ships to describe performance metrics. Neither model describes the correct functional behavior

48 3.3 Requirements of the Y-chart Approach

Low

Alternative realizations

cycle-accurate
models

explore

explore

High

HighLow

Design Space

estimation models

back-of-the-envelope

abstract executable
models

A
b

st
ra

ct
io

n

O
p

p
o

rt
u

n
it

ie
s

C
o

st
 o

f
M

o
d

el
in

g
/E

va
lu

at
io

n

synthesizable

VHDL models

Figure 3.3 . The abstraction pyramid represents the trade-off between modeling effort, eval-
uation speed, and accuracy, the three elements involved in a performance analysis.

or timing. The termabstract executable modeldescribes the correct functional behavior first,
without describing the behavior related to time. The termcycle-accurate modeldescribes the
correct functional behavior and timing of an architecture instance in which a cycle is a multiple
(including a multiple of one), of a clock cycle. Finally, the termsynthesizable VHDL model
describes an architecture instance in such detail, in both behavior and timing, that the model
can be realized in silicon.

Accuracy In the abstraction pyramid, accuracy is represented by the gray triangles. Because the
accuracy of cycle-accurate models is higher than the accuracy of estimation models, the base
of the triangle belonging to the cycle-accurate models is smaller than the base of the triangle
belonging to the estimation models. Thus the broader the base, the less specific the statement a
designer can make in general about the final realization of an architecture.

Cost of Evaluation Techniques to evaluate architectures to obtain performance numbers range from
back-of-the-envelope models where analytical equations are solved symbolically, using, for
example,Mathematicalor Matlab, up to the point of simulating the behavior in synthesizable
VHDL models accurately with respect to clock cycles. Insimulation, the processes that would
happen inside a real architecture instance are imitated. Solving equations only takes a few
seconds, whereas simulating detailed VHDL models takes hours if not days. The axis at the
right-hand side represents both cost of modeling andcost of evaluation.

Exploration

The abstraction pyramid shows the relationship between the effort required for the modeling of archi-
tecture instances at different levels of abstraction, the effort required to evaluate such an architecture

Solution Approach 49

model and the accuracy of the results obtained from evaluating the architecture models. When ex-
ploring the design space of an architecture template, designers may make different trade-offs between
these three issues at different times.

The higher the abstraction, that is, the higher up in the abstraction pyramid, the faster a model
of an architecture instance can be constructed, evaluated and changed. Conversely, the lower the
abstraction, i.e. the deeper down in the abstraction pyramid, the slower a model can be constructed,
evaluated and changed. The accuracy of the performance numbers obtained is less in the former case
and higher in the latter case.

The trade-off designers make is as follows. Higher up in the pyramid they can explore a larger
part of the design space in a given time. Although it is less accurate, it helps them to narrow down
the design space. Moving down in the pyramid, the design space which they can consider becomes
smaller. The designer can explore with increased accuracy only at the expense of taking longer to
construct, evaluate, and change models of architecture instances.

The process of narrowing down on the design space is illustrated in the abstraction pyramid.
Three circles are drawn at the level of estimation models and three are at the level of cycle-accurate
models. Each circle represents the evaluationof an architecture instance. An exploration at a particular
abstraction level is thus represented as a set of circles on a particular line intersecting the abstraction
pyramid.

Stacks of Y-chart Environments

Due to the level-dependent trade-off between modeling, evaluation , and accuracy, designers should
use different models at different levels of abstraction when exploring the design space of architectures.
At each level, they should study the appropriate (part of the) design space in order to narrow it down.
The Y-chart approach used at these different levels is, however, invariant: it still consists of the same
elements, as shown in Figure 3.1. This leads to the following definition of aY-chart environment:

Definition 3.3. Y-CHART ENVIRONMENT

A Y-chart Environmentis a realization of the Y-chart approach for a specific design project at a
particular level of abstraction. 2

The different levels represented in the abstraction pyramid thus indicate that more than one Y-chart
environment is needed in a design process for architectures. Instead, different Y-chart environments
are needed at different levels of abstraction, forming a stack as illustrated in Figure 3.4. This fig-
ure shows three possible Y-chart environments: one each at a high, a medium, and a low level of
abstraction.

In the abstraction pyramid, more than these three levels of abstraction are given. However, de-
signers will not model architectures at all possible levels, because of limited resources (i.e. personnel
and time), but will instead resort to separate models for just a few levels – say three levels – that we
indicate as high, medium and low. We discuss these three levels in more detail. For each level we
indicate which model from the abstraction pyramid in Figure 3.3 fits which level as well as what is
typically examined at each level.

High Level Early in the design, designers make use of very abstract, high-level models – the so-
called back-of-the-envelope models and estimation models – to model architecture instances. This
allows them to construct many architecture instances very quickly. Designers typically use generic
tools like Matlab or Mathematicato evaluate the performance of these models by solving analytic
equations. These tools can compute complex equations (symbolically) within a few seconds. The

50 3.3 Requirements of the Y-chart Approach

High Level

Medium Level

Low Level

Applications

Performance
Numbers

Applications

Performance
Numbers

Applications

Performance
Numbers

Mapping

Mapping

Mapping

VHDL
Simulator

Cycle Accurate
Simulator

Matlab /
Mathematica

Estimation
Models

Models

Models
Cycle Acc.

VHDL

(moving down in the Abstraction Pyramid}

(moving down in the Abstraction Pyramid}

Figure 3.4 . A stack of Y-chart environments, with a different model at each level of abstrac-
tion.

resulting performance numbers typically represent rough estimates for throughput, latency, and uti-
lization. The tools evaluate the performance metrics either numerically or symbolically. At this stage,
different architecture instances are compared based on therelativeaccuracy of performance numbers.

Medium Level As the design space for the architecture template narrows, designers use models
that are more detailed. A designer uses abstract-executable models and cycle-accurate models at
the medium level in the abstraction pyramid to describe architecture instances as required by the
Y-chart approach. At a medium level of abstraction, designers can compare the performances of
moderately different architectures. Both the construction of these models and the evaluation time
will take longer than for the back-of-the-envelope and estimation models, since they include more
detail. Models at this level require architecture simulators that typically require from minutes to hours
to carry out a simulation. These simulators most likely employ discrete-event mechanisms [Ulrich,
1969; Breuer and Friedman, 1976]. The performance numbers at this level typically represent values
for throughput, latency, and utilization rates for individual elements of architecture instances. As the
models become more accurate, the accuracy of the performance numbers also becomes higher. At
this stage, the performances of architecture instances are in the same range. The relative accuracy of
performance numbers is no longer sufficient; therefore different architecture instances are compared
based onabsoluteaccuracy of performance numbers.

Low Level Finally, as the design space narrows down further, a designer wants to be able to compare
the performance of slightly different architecture instances accurately to within a few percent. As
shown in the abstraction pyramid, the designer uses detailed VHDL models to describe architecture
instances as required by the Y-chart, taking significant amounts of time and resources. Designers
can carry out the simulations using standard VHDL simulators. Simulation time required for these
architecture instances can be as much as several days. The obtained performance numbers are accurate
enough that a designer can compare differences in the performance of architecture instances to within

Solution Approach 51

a few percent. The performance numbers extracted at this level are not, however, high-level metrics.
They do not give the utilization of the resources of the architecture instance or the throughput of a
complete processing element; instead, they produce detailed waveforms. Special tools are needed to
translate this detailed information back to high-level metrics.

Design Trajectory

The abstraction pyramid presents trade-offs between modeling, evaluation, and accuracy that result in
a stack of Y-chart environments being used. This stack leads to adesign trajectoryin which designers
can model architectures at various levels of detail. The Y-chart approach and the stack of Y-chart
environments thus structure the design process of programmable application-specific architectures.

Within the design trajectory, designers perform design space exploration at each level and narrow
down the design space containing feasible designs. Therefore the design space is explored when
modeling and evaluation are relatively inexpensive, i.e., higher up in the abstraction pyramid. By
the time modeling and evaluation become expensive, i.e., down in the abstraction pyramid, the design
space is already reduced considerably and contains the interesting design points. The design trajectory
in which the design space is gradually reduced differs from the golden point design approach discussed
in Section 2.3.

HIGH

MEDIUM

LOW

(a) Golden Point Design

HIGH

MEDIUM

LOW

(b) Design Trajectory

Figure 3.5 . (a), the golden point design approach. (b), the design approach in which de-
signers use Y-chart environments.

In Figure 3.5(a), we show the design approach that is refer to as thegolden point design[Richards,
1994]. Here a design is selected (the golden point) and modeled directly at a low level in the pyramid.
Because hardly any exploration took place, it is first of all very much the question whether the selected
point results in a feasible design. Secondly, due to the low level of detail already involved, it becomes
very difficult to explore other parts of the design space, thus leading to suboptimal design. Thirdly, it
is very likely that designers will be confronted with unpleasant surprises at late stages in the design
process. This can lead to costly rework and slipping time schedules. In Figure 3.5(b), the design
approach is shown in which designers use Y-charts at different levels of abstraction. In this approach,

52 3.3 Requirements of the Y-chart Approach

designers explore the design space of architectures at different levels of abstraction and gradually
narrow down the design space containing potential feasible designs.

3.3.2 Mapping

Mapping pertains to conditioning a programmable architecture instance such that it executes a partic-
ular application. It leads to a program that causes execution of one application on the programmable
architecture. Mapping involves assigning application functions to processing elements in architecture
instances that can execute these functions. It also involves mapping the communication that takes
place in applications onto communication structures in architecture instances.

We consider applications that have real-time requirements. When we map these applications onto
an architecture instance, we can look at mapping “in the small” and “in the large”. In mapping in
the large, we condition an architecture instance such that it executes applications under real-time
constraints and we also ensure that the applications do not deadlock. In mapping in thesmall, we
only condition the architecture such that it executes applications. In this case, there is no guarantee
whatsoever that real-time constraints are satisfied or that an application will not deadlock. Mapping
in the small is already a difficult problem and it is the problem that we address when we talk about
“mapping”. Thus henceforth we mean “mapping in the small” when we say mapping2.

We discuss the basic idea that we used to make the mapping of applications as simple as possible,
i.e., that applications and architecture do – somehow – naturally fit. When mapping is simple to
realize, designers will experiment more with trying out different routing programs and will be able to
develop a mapping strategy concurrently with the architecture template.

Mapping Applications onto Architecture Instances

We assume that a natural fit exists if the model of computation used to specify applications matches
the model of architecture used to specify architectures and if the data types used in the models are
similar. This idea is shown in Figure 3.6. We first explain what a model of computation and model of
architecture are and then we show how this idea results in a mapping approach.

Architecture

Data Type

Application

Model of Architecture Model of Computation

Figure 3.6 . A smooth mapping from an application to an architecture only takes place if the
model of computation matches with the model of architecture and when a similar kind of
data type is used in both models.

2Mapping is sometimes also referred to ascompilation

Solution Approach 53

Model of Computation

Applications are specified using some kind of formalism that has an underlying model of computation.
We define a model of computation, inspired by [Lee and et al., 1994], as

Definition 3.4. MODEL OF COMPUTATION

A Model of Computationis a formal representation of the operational semantics of networks of
functional blocks describing computations. 2

So, the operation semantics of a model of computation governs how the functional blocks interact
with one another realizing computations. Many different models of computation already exist that
have specific properties. Different models have proven to be very effective in describing applica-
tions in various application domains [Chang et al., 1997]. Some examples of well-known models of
computation areDataflow Models, Process Models, Finite State models, andImperative Models.

The dataflow model of computation and some forms of process models are well suited to describ-
ing digital signal processing applications [Chang et al., 1997]. Therefore, we restrict ourselves in this
thesis to the use of these models. We discuss dataflow models and process models in more detail in
Chapter 6.

Model of Architecture

In analogy with a model of computation, we define the concept of model of architecture as

Definition 3.5. MODEL OF ARCHITECTURE

A Model of Architectureis a formal representation of the operational semantics of networks of
functional blocks describing architectures. 2

In this case, the functional blocks describe the behavior of architectural elements and the oper-
ational semantics of a model of architecture governs how these functional blocks interact with one
another. We described the model of architecture of stream-based dataflow architectures having par-
ticular properties: these architecture are programmable and exploit parallelism and streams to satisfy
tough real-time constraints, computation requirements, and bandwidth requirements.

To describe the functional blocks, e.g. the basic elements of the stream-based dataflow architec-
tures as well as their operational semantics, we develop a modeling approach in Chapter 4 based on a
high-level performance modeling approach. In Chapter 5, we use this modeling approach to describe
instances of stream-based dataflow architectures.

Data Types

In both applications and architectures, data that is exchanged is organized in a particular way and has
particular properties. These properties are described by adata type. Examples of simple data types
are integers, floats, or reals. More complex data types are streams of integers or matrices.

To realize a smooth mapping, the types used in the applications should match with the types used
in the architecture. If architectures use only streams of integers, the applications should also use
only streams of integers. Suppose an application uses only matrices whereas an architecture instance
on which we want to map the application uses only streams. Because the types do not match, we
can already say that we cannot map the application directly onto the architecture instance. We first
have to express the matrices in terms of streams of integers. A stream of integers, however, has very
different properties from a matrix (e.g. a matrix is randomly accessible), having a profound influence

54 3.3 Requirements of the Y-chart Approach

on how the application should execute on the architecture (we look at this issues in more detail in
Chapter 6). Therefore, to obtain a smooth mapping of applications onto architectures the data in both
the applications and the architecture should useexactlythe same kind of data types.

This does not imply that applications cannot be specified using other data types than the ones used
in particular architectures. To realize a smooth mapping, however, a designer has to specify explicitly
how the data types used in the application are transformed into data types used in the application.
Thus, if an architecture uses only streams and an application uses matrices, a designer has to express
explicitly how to transform these matrices into a stream of integers. We remark here that such a trans-
formation can seriously affect in a negative way the performance of the application on an architecture
instance.

Natural Fit

Given an application that is described using a model of computation and an architecture instance
that is described using a model of architecture, when we say the application fitsnaturally onto the
architecture instance, we mean that:

1. The architecture instance provides at least primitives similar to those used in the application.
For example, the functions used in the application should also be found in the architecture
instance.

2. The operational semantics of the architecture instance at least matches the operational semantics
of the application. For example, when functional elements implement functions operating on
streams in a data-driven manner, then the functions in the application should behave in exactly
the same way.

3. The data types used in the application should match the data types used in the architecture
instance. For example, when an architecture instance transports only streams of samples, an
application should also use only streams of samples.

For applications that need to be mapped onto instances of the stream-based dataflow architectures,
this natural fit has as a consequence that functions used in the applications map to functions imple-
mented by functional elements and that the edges representing communication map to combinations
of input and output buffers, routers, and the communication structure. The last consequence of a nat-
ural fit is that applications operate on streams in a data-driven manner because stream-based dataflow
architectures only operate on streams in a data-driven manner.

Mapping Approach

The mapping approach we use in this thesis is to have a model of computation and a model of ar-
chitecture that fit naturally as illustrated in Figure 3.6. A consequence of this mapping approach is
that we have to introduce a new model of computation, which we call the Stream-Based Functions
Model (SBF). We will present this model in Chapter 6. This model of computation matches the way
functional elements operate within the model of architecture of stream-based dataflow architectures.
We demonstrate the mapping approach in detail in Chapter 7.

Solution Approach 55

3.4 Development of a Y-chart Environment

So far, we have only given a rough sketch of the generic Y-chart approach. We now focus on the de-
velopment of one particular Y-chart environment for stream-based dataflow architectures as discussed
in Chapter 2. We will develop the Y-chart approach shown in Figure 3.7 at themedium levelof detail
(as shown in Figure 3.4).

Applications

Retargetable
Simulator (ORAS)

Performance
Numbers

SBF-model

Design Space Exploration

Mapping

Arch. Model
(Pamela/C++)

(Chapter 5)

(Chapter 7)

(Chapter 6)

(Chapter 7)

(Chapter 8)

(Chapter 4)

Figure 3.7 . The Y-chart environment as we will build it in this thesis. The six main compo-
nents (including the design space exploration) of the Y-chart environment are labeled with
the number of the chapter containing the detailed discussion of the components.

The Y-chart environment uses simulation for the performance evaluation. We use simulation be-
cause it is the only technique available that handles dynamics involved in applications and architecture
instances. We come back to this important point in Chapter 4.

The presentation of the Y-chart environment for the class of stream-based dataflow architectures
is as follows:

Chapter 4: Performance Analysis & Performance Numbers In this chapter, we explain what per-
formance analysis entails and we look into the aspects that determine the performance of archi-
tectures. This chapter lays the foundation for performance modeling at a high level of abstrac-
tion, which is described in the chapters that follow.

Chapter 5: Architecture Modeling In this chapter, we look at how we can model the architectural
elements of stream-based dataflow architectures using the building blocks discussed in Chap-
ter 4. We discuss the description of the architecture template of the stream-based dataflow ar-
chitectures using composition rules. We also discuss in this chapter how stream-based dataflow
architectures are programmed to execute a particular application.

Chapter 6: Application Modeling In this chapter, we discuss how we should model applications
that operate on streams. We propose a new model of computation, calledStream-based Func-
tions (SBF), with which to describe these applications. This model combines Kahn Process
Networks [Kahn, 1974] with a specialization of the Applicative State Transition (AST) Model
as proposed by Backus [1978]. This specialization is inspired by the AST model proposed
by Annevelink [1988]. The SBF model is well suited for describing digital signal process-
ing applications at different levels of granularity, ranging from fine-grained to coarse-grained.
We also explain in this chapter how we implement this model of computation using C++ and
multithreading, resulting in the simulator SBFsim.

56 3.5 Related Work

Chapter 7: Retargetable Simulator & Mapping In this chapter, we combine the concepts presented
in the previous chapters together to construct theObject oriented Retargetable Architecture Sim-
ulator (ORAS). We obtain the performance numbers of the architecture instance and we show
that the SBF model matches the functional elements of the stream-based dataflow architecture.

Chapter 8: Design Space ExplorationIn this chapter, we explain how we have embedded the Y-
chart environment in a design management system calledNelsis[ten Bosch et al., 1991]. The
resulting design space exploration environment automatically constructs and systematically
evaluates architecture instances, leading to the exploration of the design space of stream-based
dataflow architectures.

Chapter 9: Two Design CasesIn this chapter, we look at how we can use the Y-chart environment
in two design cases for different application domains.

3.5 Related Work

Programmable architectures have already been being developed for decades in the domain of general-
purpose processor (GPP) design. In this domain, designers from Silicon Graphics, DEC, and Intel
– to name a few – develop complex architectures calledinstruction-set processorsor microproces-
sors. These processors execute a word-processor application as easily as a spreadsheet application
or even simulate some complex physical phenomenon. Therefore, designers working in this domain
know what programmability implies in terms of (complex) trade-offs between hardware, software,
and compilers.

A benchmark method is used in the design of general-purpose processors that can be cast into a
particular Y-chart environment. In this section, we first show that the design of GPPs fits into our
Y-chart approach. This is followed by a discussion on related work on programmable application-
specific architectures.

3.5.1 Design of General-Purpose Processors

In the beginning of the 1980s, revolutionary GPPs emerged that were called RISC microproces-
sors [Patterson, 1985]. These processors were developed in a revolutionary way; namely, designers
used extensive quantitative analysis of a suite ofbenchmarks, which is a set of applications. As a
result, these architectures were smaller, faster, cheaper and easier to program than conventional archi-
tectures of that time. With the advent of the RISC microprocessors, the design of GPPs in general
began to swing away from focusing purely on hardware design. Designers started to focus more on
the quantitative analysis of difficulties encountered in architecture, mapping (or compiling), and the
way benchmarks are written. Currently this quantitative approach is the de-facto development tech-
nique for the design of general-purpose processors [Bose and Conte, 1998] (An excellent book on the
quantitative design approach of RISC based processors is “Computer Architectures: A Quantitative
Approach” by Hennessy and Patterson [1996]).

We can cast the general-purpose processor architectures design approach in terms of our Y-chart
approach as presented in this chapter. For example, Hennessy and Heinrich [1996] developed the
MIPS R4000 microprocessor using the Y-chart depicted in Figure 3.8. The benchmarks are specified
in the C programming language. These benchmarks are known as the SPECmark programs [SPEC-
marks, 1989]. Using a C-compiler, tuned especially to reflect the R4000 architecture, and a special
architecture simulator calledPixie, they evaluated the performance of the R4000. The performance

Solution Approach 57

numbers produced by Pixie were interpreted using thePixstatprogram. The dashed box represents
the fact that the architecture in the Y-chart of Figure 3.8 is not specified as a separate entity, but that it
is hard coded into the GNU GCC compiler and architecture simulator Pixie.

Pixstat

GNU GCC

Pixie

SPECmarksMIPS R4000

Figure 3.8 . The Y-chart used in the construction of the MIPS R4000.

According to Hennessy and Heinrich, the design space of the MIPS R4000 is extremely large
and evaluating alternatives is costly for three reasons: construction of accurate performance models,
long simulation runs, and tuning of the compiler to include architectural changes. Therefore, different
trade-offs were considered between the effort required for modeling, evaluation speed and accuracy
during the design trajectory. As a result, Hennessy and Heinrich used four different simulators at
increasing levels of detail in the design of the MIPS R4000, as shown in Table 3.1. One can clearly
see that the simulation speed drops dramatically as more detail is added. Hennessy and Heinrich
consider the top two levels of simulation to be the most critical levels in the design of processors,
because they allowed them to explore a large part of the design space of the MIPS R4000, which
helped them to make the best trade-offs.

Simulator Level of Accuracy Sim. Speed

Pixie Instruction Set > 106 cycles/sec
Sable System Level > 103 cycles/sec
RTL (C-code) Synchronous Register Transfer> 10 cycles/sec
Gate Gate/Switch < 1 cycles/sec

Table 3.1 . Different Levels of Simulation used in the MIPS R4000 design.

The benchmark approach leads to highly tuned architectures. By changing the suite of benchmark
programs, an architecture can be made very general or the opposite, very specific. If the benchmark
suite contains very different programs like a word processor application, a spreadsheet application
and a compiler application, an architecture results that is optimized for a broad range of applications.
Such a benchmark suite was used, for example, in the design of the R4000 by Hennessy and Hein-
rich. If the benchmark suite contains only video applications, a more dedicated processor architecture
results that is optimized for video applications. We show next three processor designs in which the
selection of benchmarks results in more application-specific processor architectures. Furthermore,
the three designs show how the Y-chart approach fits into the design approach used to construct these
processors.

Camposano and Wilberg [1996] used the approach for designing application-specific VLIW (Very
Long Instruction Word) architectures for low-speed video algorithms like JPEG, H.262 and MPEG1.

58 3.5 Related Work

Camposano and Wilberg use a Y-chart, as shown in Figure 3.9(a). The video applications written in
C are compiled into generic RISC-instructions using the GCC/MOVE developed by Corporaal and
Mulder [1991]. They annotated the RISC instructions to describe the correct behavior of the VLIW
instance under design, resulting in new C-code. They compiled this C-code again using a standard
C-compiler into an executable. When executed, the executable generated performance numbers de-
scribing the performance of a VLIW instance. In this project, Camposano and Wilberg used two levels
of simulators, i.e., the compiled simulator and a VHDL simulator.

Sijstermans et al. [1998] used the quantitative approach for the design of theTriMedia pro-
grammable multi-media processor TM1000 [Rathnam and Slavenburg, 1996]. They used a Y-chart,
as shown in Figure 3.9(b). They compiled a set of applications that were written in C into object-
code, using a commercial compiler framework. The architecture simulatortmsimcan simulate this
object-code clock-cycle accurately. Both the compiler and the simulator areretargetablefor a class
of TriMedia architectures that they describe using a Machine Description File (MDF).

Živojnović et al. [1996] used the quantitative approach for DSP processors. They used a Y-chart,
as shown in Figure 3.9(c). As a benchmark, they used a special set of C functions called DSP-
stone [̌Zivojnović et al., 1994]. They mapped the benchmarks onto the retargetable simulator called
SuperSimusing a retargetable version of the GNU GCC-compiler. They described a class of DSP-
architectures using the special languageLISA.

Executable

Performance
Numbers

C++ Sim.
Objects

MOVE GCC
Appl. (C)

Video

(a) Camposano and Wilberg
[1996]

Performance
Numbers

MDF Applications

TmSim

Framework

Comm. Compiler

(b) Sijstermans et al. [1998]

GNU GCC

Performance
Numbers

LISA DSPstone

SuperSim

(c) Živojnović et al. [1996]

Figure 3.9 . Y-chart environments used in various design projects.

The cases presented use architecture simulators developed at different levels of detail with differ-
ent accuracy and execution speed. To quantify these differences, we investigated different architecture
simulators for microprocessors. As given in Table 3.2, we found the average number of instructions
per second to be 200,000 for aninstruction setsimulator of a MIPS R3000 [Larus, 1994], 40,000 for
a clock-cycle accuratesimulator of a TriMedia [Sijstermans et al., 1998] and 500 for anRTL accu-
ratesimulator of the DLX microprocessor in VHDL [Hennessy and Patterson, 1996]. The simulation
speed numbers found compare with the simulation speed numbers reported by Hennessy and Heinrich
in Table 3.1.

To put these simulation speeds into perspective, we assume that we want to simulate one video
frame of 720�576 pixels by a simple video algorithm of 300 RISC-like instructions per pixel. The
execution of the algorithm requires respectively 10 minutes, 54 minutes and more than a whole day.
The numbers found emphasize again the need for different levels of simulators, because speed is a
critical characteristic in the context of design space exploration in a Y-chart environment.

In the cases presented, designers make refinements to well-known architectures commonly re-

Solution Approach 59

Simulator Architecture Language Accuracy Sim. Speed 1 Video
Instr./sec Frame

SPIM MIPS 3000 C instruction 200.000 10 min.
tmsim TriMedia C clock cycle 40.000 54 min.
DLX DLX VHDL RTL 500 1.2 days

Table 3.2 . Different Levels of Architecture Simulators.

ferred to asload-store architectures. Good detailed models exist for these architectures. Good com-
piler frameworks like GNU GCC [Stallman, 1988] and SUIF [Wilson et al., 1994] also exist for them.
Consequently, designers of microprocessors can use applications written in the C-language; for ex-
ample, the SPECmarks, JPEG, and MPEG [Rao and Hwang, 1997] as well as GSM and many other
applications. To map these applications, designers can resort to tuning compiler frameworks to in-
clude architectural changes. The model of computation underlying the C-language fits naturally with
the model of architecture of load-store architectures.

3.5.2 Design of Application-Specific Architectures

Within the domain of programmable application-specific architectures, the Y-chart approach is a new
approach. In the design of emerging programmable architectures, quantifying architectural choices in
architectures is by no means current practice. By casting GPP design projects into particular Y-chart
environments, we showed that the use of the Y-chart approach is common practice in GPP designs. In
that respect, the design of programmable application-specific architectures is moving in the direction
of GPP design. Nevertheless, making the Y-chart approach available in the design of programmable
application-specific architectures differs significantly from designing GPP architectures, for the fol-
lowing four reasons:

1. No well-defined architecture models exist for the emerging programmable application-specific
architectures.

2. There does not exist a de-facto language with which to describe the high-performance digital
signal processing applications naturally.

3. Because a de-facto standard is lacking, no large collection of benchmarks is quickly available.

4. Because a de-facto standard and well-established architecture models are lacking, no good and
open mapping (compiler) frameworks exist that can be tailored to suit new architectures.

To construct good feasible programmable architectures requires that the design space of these ar-
chitectures can be explored. Therefore Y-chart environments are needed at different levels of abstrac-
tion. In this thesis, we show that we can construct a Y-chart environment for stream-based dataflow
architectures. In the chapter to come, we show how to construct a Y-chart environment for stream-
based dataflow architecture at the cycle-accurate level of abstraction (medium level in Figure 3.4).
In doing so, we indicate how the architecture modeling takes place, as well as how this modeling
process is seriously affected by the mapping of applications and by the way the set of applications are
specified.

60 3.6 Conclusions

3.6 Conclusions

The Y-chart approach is the main idea presented in this chapter. It is a methodology in which designers
use quantitative data providing them with a sound basis on which to make decisions and motivate
particular design choices. The realization of the Y-chart approach for a specific design project at a
particular level of detail leads to a Y-chart environment. Within such an environment, we can perform
a design space exploration by systematically changing design choices.

The Y-chart approach uses performance analysis to obtain quantitative data. There is an important
trade-off within performance analysis between the effort required for modeling, evaluation speed,
and accuracy, which weillustrated in the abstraction pyramid. As a consequence of this trade-off,
designers should use a stack of Y-chart environments, each at different levels of detail. Using this
stack, designers narrow down the design space of an architecture template in a stepwise fashion. By
the time both modeling an architecture instance and evaluating this model become expensive, the
design space is already reduced considerably and contains the interesting (feasible) designs.

The Y-chart approach takes into account the three core issues that play a role in finding good
programmable application-specific architectures. These are the architecture, the mapping, and the set
of applications. Therefore attention for mapping is required from the very beginning. We formulate
an approach that should result in a smooth mapping of an application onto architecture instances.

Bibliography

Jurgen Annevelink.HiFi, A Design Method for Implementing Signal Processing Algorithms on VLSI
Processor Arrays. PhD thesis, Delft University of Technology, 1988.

John Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs.Communications of the ACM, 21(8):613 – 641, 1978.

Pradip Bose and Thomas M. Conte. Performance analysis and its impact on design.IEEE Computer,
31(5):41 – 49, 1998.

M.A. Breuer and A.D. Friedman.Diagnosis & Reliable Design of Digital Systems. Computer Science
Press, Woodland Hill, California, 1976.

R. Camposano and J. Wilberg. Embedded system design.Design Automation for Embedded Systems,
1(1):5 – 50, 1996.

Wan-Teh Chang, Soonhoi Ha, and Edward A. Lee. Heterogeneous simulation - mixing discrete-event
models with dataflow.VLSI Signal Processing, 15(1/2):127 – 144, 1997.

H. Corporaal and H. Mulder. Move: A framework for high-performance processor design. InPro-
ceedings of Supercomputing, pages 692 – 701, Albuquerque, 1991.

D. Gajski.Silicon Compilers. Addison-Wesley, 1987.

John Hennessy and Mark Heinrich. Hardware/software codesign of processors: Concepts and ex-
amples. In Giovanni De Micheli and Mariagiovanna Sami, editors,Hardware/Software Codesign,
volume 310 ofSeries E: Applied Sciences, pages 29 – 44. NATO ASI Series, 1996.

John L. Hennessy and David A. Patterson.Computer Architectures: A QuantitativeApproach. Morgan
Kaufmann Publishers, Inc., second edition, 1996.

BIBLIOGRAPHY 61

Gilles Kahn. The semantics of a simple language for parallel programming. InProc. of the IFIP
Congress 74. North-Holland Publishing Co., 1974.

B. Kienhuis, E. Deprettere, K.A. Vissers, and P. van der Wolf. An approach for quantitative analysis of
application-specific dataflow architectures. InProceedings of 11th Int. Conference of Applications-
specific Systems, Architectures and Processors (ASAP’97), pages 338 – 349, Zurich, Switzerland,
1997.

Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. The constructionof a retargetable
simulator for an architecture template. InProceedings of 6th Int. Workshop on Hardware/Software
Codesign, Seattle, Washington, 1998.

James Larus. SPIM, a MIPS r2000/3000 simulator. Available from the University of Wisconsin, 1994.

Stephen S. Lavenberg.Computer Performance Modeling Handbook. Acadamic Press, 1983.

Edward A. Lee and et al. An overview of the Ptolemy project. Technical report, University of
California at Berkeley, 1994.

D.A. Patterson. Reduced instruction set computers.Comm. ACM, 28(1):8 – 21, 1985.

R.K. Rao and J.J. Hwang.Techniques and Standards for Image, Video and Audio Coding. Prentice
Hall, 1997.

S. Rathnam and G. Slavenburg. An architectural overview of the programmable multimedia processor
tm1. InProc. Compcon. IEEE CS press, 1996.

Mark A. Richards. The rapid prototyping of application specific signal processors (RASSP) program:
Overview and status. In5th International Workshop on Rapid System Prototyping, pages 1–6. IEEE
Computer Society Press, 1994.

F Sijstermans, E.J. Pol, B. Riemens, K Vissers, S. Rathnam, and G. Slavenburg. Design space explo-
ration for future trimedia CPUs. InICASSP’98, 1998.

SPECmarks. Spec benchmark suite release 1.0, 1989.

R.M. Stallman.Using and Porting GNU CC. Free Software Foundation, Cambridge, MA, 1988.

K.O. ten Bosch, P. Bingley, and P. van der Wolf. Design flow management in the NELSIS CAD frame-
work. In Proc. 28th ACM/IEEE Design Automation Conference, pages 711–716, San Francisco,
1991.

E.G. Ulrich. Exclusive simulation of activity in digital networks.Communications of the ACM, 12
(2):102 – 110, 1969.

Arjan. J.C. van Gemund.Performance Modeling of Parallel Systems. PhD thesis, Laboratory of
Computer Architecture and Digital Techniques, Delft University of Technology, 1996.

V. Živojnović, J. Martinez, C. Schl¨ager, and H. Meyr. DSPstone: A DSP-oriented benchmarking
methodology. InProceedings of ICSPAT’94, Dallas, 1994.

Vojin Živojnović, Stefan Pees, Christian Schl¨ager, Markus Willems, Rainer Schoenen, and Heinrich
Meyr. DSP Processor/Compiler Co-Design: A Quantitative Approach. InProc. ISSS, 1996.

62 BIBLIOGRAPHY

R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W. Liao, C.-W. Tseng,
Hall M., Lam M., and J. Hennessy. SUIF: A parallelizing and optimizing research compiler. Tech-
nical report, Stanford University, 1994. CSL-TR-94-620.

Chapter 4

Performance Analysis

Retargetable
Simulator (ORAS)

Mapping

Applications

SBF-Model(Pamela/C++)

Arch. Model

Performance
Numbers

Contents

4.1 Performance Analysis . 64

4.1.1 A System . 64

4.1.2 Performance Modeling . 65

4.1.3 Performance Evaluation . 65

4.1.4 Accuracy . 66

4.1.5 Trade-off . 66

4.2 The PAMELA Method . 66

4.2.1 A Simple System . 67

4.2.2 PAMELA Modeling Technique . 67

4.2.3 PAMELA Evaluation Technique . 73

4.3 Objectives in Using the PAMELA Method . 76

4.4 An Object Oriented Modeling Approach using PAMELA 77

4.4.1 The Object . 78

4.4.2 Modeling a System as a Network of Objects 79

4.4.3 Describing the Structure of an Object in C++ 80

4.4.4 Describing the Behavior of an Object Using PAMELA 81

4.4.5 Building Blocks . 84

4.5 Simulating Performance Models with the RTL 85

4.6 Related Work . 87

4.7 Conclusions . 88

P
ERFORMANCE analysis is at the heart of the Y-chart approach. The Y-chart approach uses
performance analysis to render performance numbers with which design choices can be quanti-

fied. The purpose of this chapter is to present the basic elements required for performance analysis,
thus laying the foundation for the work described in succeeding chapters. These elements are used in
succeeding chapters to further develop the Y-chart for stream-based dataflow architectures.

In Section 4.1, we explain the two steps involved in performance analysis: construction of a
performance model and the evaluation of this model to obtain performance numbers. Section 4.2
presents a particular performance analysis method called the PAMELA method. Using an example of
a simple system, we show how to use the PAMELA method to construct and simulate a performance
model to obtain the desired performance numbers. The objective of the original PAMELA method
differs from our objective with the Y-chart approach, as we will explain in Section 4.3. To make the
PAMELA method more suitable for our purpose, we will modify it such that it becomes an object

63

64 4.1 Performance Analysis

oriented modeling approach consisting of two parts, a structure part and a behavior part, as we will
explain in Section 4.4. The object oriented modeling approach leads us to the development of building
blocks. Using these, we can construct a performance model of a system very effectively. To simulate
a performance model, we use a process scheduler which is part of PAMELA’s RTL. In Section 4.5, we
explain how this process scheduler simulates a performance model and how the PAMELA primitives
interact with the RTL process scheduler. Performance analysis is a vast and rich field of research,
mainly because performance analysis always involves modeling, evaluation, and accuracy. Different
trade-offs among these three issues exist, with each leading to a different means of doing performance
analysis. In Section 4.6, we look at related work on performance analysis.

4.1 Performance Analysis

The problem we consider in this chapter is how in general to determine the performance of a system
for particular performance metrics like parallelism, utilization, and throughput.

4.1.1 A System

A systemis a collection ofresourcesthat process a workload, whereby aworkload is a collection
of tasks. A system can be, for example, a chain of machines that process material according to a
manufacturing protocol. These machines define the resources that process material which defines the
workload of the machines. The machines process the material as specified by the manufacturing pro-
tocol. A stream-based dataflow architecture together with its set of applications is also a system. The
architecture describes resources like functional elements, routers, and the communication structure.
These resources process the applications that define the workloads. The resources of the architec-
ture process these workloads according to the routing programs that are down-loaded onto the global
controller.

The process to determine the performance of a system is what we callperformance analysis.
Performance analysis involves two steps: the first step is to make a performance model of a system
and the second step is to evaluate this performance model to obtain performance numbers for particular
performance metrics. The transformation from a system to a performance model is calledperformance
modelingand the evaluation of this performance model is calledperformance evaluation. A schematic
representing the steps involved in performance analysis is given in Figure 4.1.

Performance
Modeling

Evaluation
Performance

Performance
Numbers

Performance
Model

System

Workload

Resources

Figure 4.1 . Performance analysis of a system.

Performance Analysis 65

4.1.2 Performance Modeling

In the performance-modeling step, we construct aperformance modelthat is an abstraction of the
real system it represents. This model captures only those aspects of the real system that determine
the performance of that system. To be able to model a system, we need to know what determines its
performance. As argued by van Gemund [1996], only four aspects determine the performance ofany
system. These four aspects define the four components of what we call the performance modeling
basis.

Definition 4.1. PERFORMANCEMODELING BASIS

ThePerformance Modeling Basis(PMB) consists of the four different components that determine
the performance of a system, namelycondition synchronization,mutual exclusion, execution timeand
conditional control flow. 2

These components are as follows:

Condition Synchronization (CS): relates to data dependencies between tasks or to limited resources.

Mutual Exclusion (ME): relates to the fact that two or more tasks cannot operate overlapped in time
or that a resource cannot be used by more than one task at a time.

Execution Time (ET): relates to how long a task takes to execute or how long a resource is used.

Conditional Control Flow (CCF): relates to conditional selections at run-time between either tasks
or resources.

Performance modeling thus means that we model a system by describing it in terms of the four
components of the PMB. The first two aspects, condition synchronization and mutual exclusion, relate
to synchronization between resources or tasks [Andrews and Schneider, 1983]. The other two aspects,
execution time and conditional control flow, relate to the behavior of a single task or resource.

In the abstraction pyramid in Figure 3.3, we showed that performance modeling can happen at
different levels of abstraction. When the four components of the PMB are described in less detail, the
description becomes more abstract (i.e. higher in the pyramid), and when they are described in more
detail, a description is less abstract (i.e. lower in the pyramid). In Chapter 5, we show how the four
components of the PMB can describe architecture instances of the stream-based dataflow architecture.

4.1.3 Performance Evaluation

The performance evaluation step evaluates a performance model to obtain performance numbers for
specific performance metrics. Examples of performance metrics are the total time required by a system
to process a workload, the level of parallelism achieved in a system, the utilization of resources, and
the amount of data exchanged between tasks.

A performance model can be evaluated in many ways. It can be done in a symbolic way (after
transforming the performance model to a time-domain representation) or via simulation. The back-of-
the-envelope and estimations models presented in the abstraction pyramid are evaluated in a symbolic
way. The abstract executable models, the cycle-accurate models and synthesizable models are evalu-
ated using simulation.

66 4.2 The PAMELA Method

4.1.4 Accuracy

In the end, performance analysis yields performance numbers of a certainaccuracy. If the derived
value for a particular performance metric is equal toT 0 whereas the real performance of a system is
equal toT , we say that the accuracy increases if the difference betweenT andT 0 becomes smaller.
Thus, a higher accuracy indicates that the obtained performance numbers are closer to the real perfor-
mance numbers. However, accuracy comes at a certain price. More accurate performance numbers
are obtained at the expense of having to model a system in more detail and, typically, in having to
evaluate it longer.

4.1.5 Trade-off

Performance analysis involves three issues: performance modeling, performance evaluation, and the
accuracy of the obtained results. A trade-off must be found between these three aspects, as we already
illustrated when discussing the abstraction pyramid in Figure 3.3.

The level of detail at which we model a system in the performance modeling step influences the
accuracy, as does the kind of evaluation technique used in the performance evaluation step. Nonethe-
less, the accuracy of the modeling step and evaluation step cannot be considered separately. The level
of detail at which we describe a performance model influences the level of accuracy obtainable in the
evaluation step.

4.2 The PAMELA Method

In this thesis, we make use of a high-level performance analysis method to analyze the performance
of architecture instances of stream-based dataflow architectures. This method is called the PAMELA
method and was developed by van Gemund [1996] at Delft University of Technology.

The PAMELA method (PerformAnce ModEling LAnuage) includes the two techniques required
to do performance analysis. It contains a technique for performance modeling and it contains a tech-
nique for performance evaluation of a performance model. The modeling technique provides a simple
language in which to express performance models that can be evaluated either analytically or via
simulation. We will consider in this thesis only the simulation technique.

We present the PAMELA method on the basis of an example of a simple system. Using this
example, we explain how to create a performance model for this system using the PAMELA modeling
technique. Next, we evaluate this model using simulation and show how we can obtain performance
numbers. While working through the example, the main principles of the PAMELA method are
explained.

We first explain what the PAMELA performance modeling technique encompasses and introduce
a few simple primitives. These primitives allow us to describe a system using the four components of
the PMB. Using these primitives and a pseudo-C language, we show how to construct a performance
model for a simple system. After the modeling step, we evaluate the performance mode of the system
through simulation. Based on the results of the simulation, we show how we can acquire performance
numbers for specific performance metrics like total execution time, utilization, and parallelism. For a
more in-depth discussion on the PAMELA method we refer to the work of van Gemund [1996].

Performance Analysis 67

4.2.1 A Simple System

To illustrate the PAMELA method, we model and evaluate the system given in Figure 4.2. This
simple system is composed of two resources and a workload that is described by atask graph, which
is a collection of interconnected tasks. Each node in the task graph performs a particular task (i.e.,
taskA to taskH). The directed, solid lines (or edges) between the tasks representdata dependencies
that govern the order in which tasks have to execute. The dashed lines indicate the resource a task
must possess in order to execute.

The two resources of the system areresource1 and resource2. TasksA, G, andH require
resource1 to execute and tasksB,C,D,E andF requireresource2 to execute. A task does not have
exclusive access to a resource, but has to share the resource with other tasks. The execution of a task
takes a certain amount of time, as given between brackets in each node. For example, taskA takes
three time units to execute and taskF requires one time unit to execute. It also means that taskA
keepsresource1 in its possession for three time units and taskF keepsresource2 in its possession
for one time unit.

Process

Data Dependency

B(1)

A(3)

C(2)

E(1)D(1)

G(2)

H(1)

F(1)

resource1 resource2

Figure 4.2 . A simple system, composed of two resources (resource1 and resource2) and
a workload described by a collection of tasks (A to H). The directed lines represent data
dependencies governing the order in which tasks execute. The dashed lines indicate the
resource a task must possess in order to execute.

4.2.2 PAMELA Modeling Technique

The PAMELA modeling technique provides alanguageto describe performance models of a system
like the one given in Figure 4.2. The language is composed of three primitives: processes, semaphores
and delays.

A processexecutes a sequence of statements composed of imperative language constructs like
the conditional statementsif andwhile, variables, and functions. Asemaphoreis a mechanism for
enforcing process synchronization [Dijkstra, 1968]. Finally, adelay indicates how much progress a
process makes in time, expressed as integer values1 representingtime units.

1In the original PAMELA language, the delay is a real value. However, we confine the delay value to be an integer value

68 4.2 The PAMELA Method

A semaphore is a primitive that has an integer value. Processes manipulate this value using theP
andV operators2. TheP operator decrements the value whereas theV operator increments the value
of a semaphore. When this value becomes zero using aP operator, the semaphore causes the process
executing theP operator to block. Ablocked processstops executing its sequence of statements.
A process remains blocked until another process executes theV operator, giving the semaphore a
nonzero value. This lifts the blocking condition and the blocked process can continue its sequence of
statements.

Processes make progress autonomously in time using thedelayoperator and we refer to processes
asactiveprimitives. Processes are hindered in their autonomous progress by semaphores. We refer to
semaphores aspassiveprimitives.

Modeling a System Using the PAMELA Modeling Technique

Using the primitives of the PAMELA language, we now describe the system given in Figure 4.2. We
do not use the original PAMELA; instead we use apseudo Clanguage combined with the PAMELA
primitives. In the system, we only describe taskG and resources and dependencies related to this task.
After we have indicated how to describe a complete performance model, we explain how the three
PAMELA primitives describe the four components of the PMB, as required to make a performance
model of a system.

Use of Symbols We describe programs in a pseudo C language. Those familiar with the C program-
ming language should have no difficulties in understanding the code. The program sections we present
in this chapter and succeeding chapters contain only the minimal statements necessary to represent a
particular section of program. Initialization and declarations of variables are usually not presented. In
referencing elements of programs, we use the following convention. Variables or functions to which
we refer in a program are written asx andread , representing a variable and a function, respectively.
Both special operators likeV or P and special program statements that we will introduce in this chap-
ter are written using the bold face font. Finally, when we refer to names in figures, we write these
names asA, for example, orresource1.

Modeling Approaches A system consists of resources and tasks. However, the PAMELA language
provides processes, the active primitives and semaphores, and the passive primitives. This leads to two
possible modeling approaches [Kreutzer, 1986]: material-oriented modeling and machine-oriented
modeling. In theMaterial-oriented Modelingapproach, the tasks of a workload are modeled mainly
using active primitives. In theMachine-oriented Modelingapproach, resources are mainly modeled
using active primitives. Which approach we should use very much depends on what we want to
achieve with the constructed model. We come back to this important issue in Section 4.3, where we
motivate why we want to adapt the original PAMELA method to make it more appropriate for our
purpose.

For the moment, we model the system given in Figure 4.2 using the material-oriented modeling
approach. We thus model each task as a process. We use semaphores to model data dependencies and
resources. The delay primitive is used to indicate how long it takes to execute a task.

because we express delays in terms of number of cycles, and these are always represented as integer values (to be explained
further in Chapter 5).

2P is the first letter of the Dutch word “passeren,” which means “to pass”;V is the first letter of “vrijgeven,” the Dutch
word for “to release” [Dijkstra, 1981].

Performance Analysis 69

Modeling Data Dependencies and ResourcesResources and data dependencies are modeled us-
ing semaphores in the material-oriented modeling approach. When we look at taskG, we need to
model its data dependencies with taskH, taskF, and taskC. We also have to model the relationship
with resource1. These three data dependencies and the resource are described as semaphores in
Program 4.1.

Program 4.1. MODELING DATA DEPENDENCIES ANDRESOURCES

/* Data Dependencies */
semaphore dependency_CG 0;
semaphore dependency_FG 0;
semaphore dependency_GH 0;

/* Resources */
semaphore resource1 1;

In Program 4.1, we first show the three semaphores describing the data dependencies of taskG
with tasksC, F, andH. The value of each semaphore is initialized to zero. As a consequence, when a
process uses theP operator on one of these semaphores, it will block. Suppose the process describing
taskG executes theP operator on semaphoredependency CG. As explained, the process will block.
It remains blocked until the process describing taskC increments the semaphore using theV operator.
This causes the value of semaphoredependency CGto become nonzero. Using the semaphore, task
C will always execute before taskG, and the semaphore thus implements a data dependency.

After describing the semaphores implementing the data dependencies, we show the semaphore
implementingresource1. This semaphoreresource1 is initialized, in contrast to the data depen-
dencies, to a nonzero value, and in particular, to the value of one. As such, a process using the
P operator on this semaphore will not block. However, the next process using theP on the same
semaphore will block because the semaphore has acquired a zero value. As a consequence, only one
process can have exclusive access toresource1. When the first process uses theV operator, giving the
semaphore a nonzero value, it releases the resource so that the blocked process can obtain exclusive
access to the resource.

Modeling a Task TaskG in the system of Figure 4.2 has a data dependency with taskC and task
F. Consequently, TaskG can only execute after both dependencies with taskC and taskF have been
satisfied, i.e., after these tasks have already executed. Before taskG executes, it first needs to have
resource1 in its possession. After this is the case, then taskG executes, taking 2 time units. This
is followed by releasing the resource and indicating to taskH that it is allowed to execute. This
sequence of events as explained so far is modeled – like any other task – using a process. For taskG,
this process description is given in Program 4.2. It describes a sequence of statements enclosed by the
word processand curly brackets. The statements between the curly brackets are executed one after
the other. When the sequence comes to the end, i.e., at the last closing curly brackets, the sequence
starts all over again with the first statement after the wordprocessand the opening curly bracket.

In the process description in Program 4.2, we see that the sequence of statements consists of only
P, V anddelay operators. When the process starts, it executes theP operator on the semaphore that
implements the data dependency with taskC. Since this semaphoredependency CGis initialized to
a value of zero, processG blocks. It remains blocked until the process modeling taskC executes a
V operator on semaphoredependency CG. After the dependency with taskC is satisfied, processG
executes theP operator on semaphoredependency FG, which models the data dependency with task

70 4.2 The PAMELA Method

F.

Program 4.2. MODELING OF TASKG AS A PAMELA PROCESS

process G {
/* Check dependency with Process C and F */
P(dependency_CG);
P(dependency_FG);

/* Claim the resource */
P(resource1);

/* The execution of a task takes 2 time units */
delay(2);

/* release the resource */
V(resource1);

/* Satisfy dependency of Process H */
V(dependency_GH);

}

After both dependencies have been satisfied, processG tries to take possession ofresource1
by executing theP operator on semaphoreresource1 . If this resource is available, the process
continues. If not, the process blocks until the resource becomes available again. If taskG has acquired
the resource, other processes modeling taskA and taskH that try to acquire the same resource will
block, giving processG exclusive access to the resource. When processG possessesresource1, it
can execute in 2 time units, as modeled by thedelayoperator.

After processG takes two time units to execute, it releases the resource that it also held in its
possession for 2 time units, by executing theV operator on semaphoreresource1 . This is followed
by executing theV operator on semaphoredependency GHto indicate that the process modeling task
H can continue to execute.

Although we only showed taskG, we can completely describe the system of Figure 4.2. To do
this, we have to describe each task in the system in a similar way as done in Program 4.2 and each
data dependency and resource in a similar way as done in Program 4.1.

Performance Modeling Basis

The three PAMELA primitives are able to describe the four components of the PMB. We now describe
the componentsCondition Synchronization,Mutual Exclusion, andExecution Time. To describeCon-
ditional Control Flow, we have to extend the process description as given for taskG in Program 4.2
to obtain a functional performance model.

Condition Synchronization Semaphores implement conditionsynchronization, the component which
relates to data dependencies between tasks or to limited resources. A semaphore describes a data
dependency by initializing the semaphore to zero; as long as the data dependency condition is
not satisfied, the semaphore remains zero and blocks a process executing theP operator on that
semaphore. When the data dependency condition is satisfied using theV operator, the blocked
process proceeds. The first three semaphores in Program 4.1 describe condition synchronization
due to data dependencies.

Mutual Exclusion Semaphores also implement mutual exclusion, the component which determines
that two or more tasks cannot operate overlapped in time or that a resource cannot be used by

Performance Analysis 71

more than one task at a time. If a semaphore is initialized to the value of one, only one task
is allowed to access a resource at a time. The first task acquiring the resource by using theP
operator makes the semaphore zero, and all tasks trying to acquire the same resource will block.
The semaphoreresource1 in Program 4.1 describes mutual exclusion of theresource1.

TaskG in the system shown in Figure 4.2 requires onlyresource1 in order to execute. In
general, a task could require possession ofmultiple resourcesin order to execute. This multiple
resource possession is modeled correctly byP andV operators.

Execution Time The delay primitive models the execution time, the component which determines
how long a task takes to execute or how long a resource is used. The integer value associated
with thedelayoperator either indicates how many time units a task takes to execute or how long
a resource is used. In Program 4.2, thedelayoperator shows that it takes taskG two time units
to execute. Furthermore, sinceresource1 was claimed before and released after executing the
delayoperator, it is thus used by taskG for two time units. Note that we do not actually perform
a task.

Conditional Control Flow The sequence of imperative statements describes thecontrol flowof a
process. A process has a conditional control flow when the sequence of statements consists of
conditional statements likeif andwhile. Conditional statements can affect control flow, based
on the evaluation of conditions at run-time.

In Program 4.3, we see part of a process description of a task. It describes a process that executes
based on the value of variablex . If the variablex has a value larger than 256, it takes the process six
time units to execute, otherwise it takes the process two time units to execute.

Program 4.3. MODELING CONDITIONAL CONTROL FLOW

process {

/* Execution time of a Task */
if (x > 256) {

delay(6);
} else {

delay(2);
}

}

In the description of processG in Program 4.2 no variables are used; only relationships between
tasks and resources have been modeled. Nonetheless, as shown in Program 4.3, conditional con-
trol flow requires data with which to resolve conditions at run-time. Put in other words, we need to
have afunctional performance model, which models besides the relationships between tasks and re-
sources, also the correct functional behavior of a system. When only relationships between tasks and
resources have been modeled, the model is also called anuninterpreted performance model, whereas
a functional performance model is also called aninterpreted performance model[RASSP Taxonomy
Working Group (RTWG), 1998].

To describe the correct functional behavior of the system in Figure 4.2, we have to extend all the
descriptions of the processes modeling tasks in a way such as shown for taskG in Program 4.4. This
program shows the process description given in Program 4.2, but also uses global and local variables
and a function. To illustrate conditional control flow, we also extended the process description of task
G as shown in Program 4.3.

72 4.2 The PAMELA Method

Program 4.4. A FUNCTIONAL PROCESSDESCRIPTION INPAMELA

/* Declaration of Global Variables */
integer C_data;
integer F_data;
integer G_data;

process G {
/* Check dependencies with Processes C and F */
P(dependency_CG);
integer arg1 = C_data;

P(dependency_FG);
integer arg2 = G_data;

/* Claim the resource */
P(resource1);

/* The execution of a task takes two or six time units */
if (arg1 > 256 || arg2 > 256)

delay(6);
else

delay(2);

/* Perform a function on the data */
integer arg3 = add(arg1,arg2);

/* release the resource */
V(resource1);

/* Store data in the global variable of Process G */
G_data = arg3;

/* Satisfy dependency of Process H */
V(dependency_GH);

}

Performance Analysis 73

The functional process description of taskG starts with declaring the global variablesC data ,
F data , andG data as integers. These variables are used to communicate data along data dependen-
cies within the system given in Figure 4.2. Because the variables are declared globally, other processes
can access this data. The description of processGhas nearly the same sequence of PAMELA prim-
itives as Program 4.2. The first two data dependencies are followed by statements in which local
variables i.e.,arg1 andarg2 , are assigned the value of the global variablesC data andF data .
Only after the data dependencies are satisfied do the global variablesC data andF data carry useful
data.

After processG hasresource1 in its possession, it evaluates the condition of theif -statement.
If variablearg1 or arg2 has a value larger than 256, executing the task takes six time units instead
of two, as already shown in Program 4.3. After the correctdelay operator has been executed, the
process executes a function, in this caseadd , which adds the values of variablearg1 and variable
arg2 together. The result of the addition is stored in the local variablearg3 . After resource1 has
been released, processG assigns variablearg3 to variableG data . It also indicates to the process
modeling taskH that the dependency is satisfied and that variableG data carries useful data.

Summary The three primitives of the PAMELA language can describe the four components of
the PMB. Three out of the four components require only that the relationships between tasks and
resources be described. These three components areCondition Synchronization, Mutual Exclusion,
andExecution Time. The componentConditional Control Flowrequires additionally that a functional
description be used to describe tasks. This implies that data is explicitly transported from process to
process and that functions can operate on this data.

As we shall discuss in Section 4.3, when a performance model uses the first three components
to model a system (resulting in an uninterpreted performance model), it can be evaluated using an-
alytical techniques. When, however, conditional control flow is involved (leading to an interpreted
performance model), simulation is the only available technique.

4.2.3 PAMELA Evaluation Technique

After we have described all tasks in the system of Figure 4.2 in the same way as we did for taskG
in Program 4.2, we end up with a performance model for that system. To evaluate this performance
model, we use the evaluation technique of the PAMELA method to obtain performance numbers for
particular performance metrics. Although the PAMELA method provides two evaluation techniques
(i.e. an analytical and a simulation technique), throughout this thesis we use only the simulation
technique which we will discuss later on in more detail.

Simulation

Simulation techniques are based on imitating processes that run in the system. Using a simulation en-
gine, these processes are replayed as they would happen in the real system, albeit at a high higher level
of abstraction. Such a simulation engine implements this abstract level by replacing the continuous
time axis of the real system by a virtual time axis, leading to adiscrete eventsimulation. In Chapter 5,
we show how we can relate this virtual time to the notion of clock cycles in architectures. Eachevent
indicates a point in time at which the simulation engine needs to reconsider the consequences of the
currently occurring event for the further execution of processes. In the PAMELA performance models,
events are only caused by theP, V anddelay operators. Thus to simulate a PAMELA performance

74 4.2 The PAMELA Method

model, the simulation engine must step through all generated events and at each event, decide what to
do next.

When we simulate the performance model constructed for the system in Figure 4.2, we obtain
the results shown in Table 4.1. This table shows which process is active at which time instance. The
set-up of Table 4.1 very much resembles aGantt Chart.

Process Res1 Res2 delay dep. 1 2 3 4 5 6 7 8 9 10 11 12

A * 3 - 2 2 2

B * 1 A 2

C * 2 A 2 2

D * 1 - 2

E * 1 C 2

F * 1 DE 2

G * 1 CF 2 2

H * 1 BG 2

Table 4.1 . The execution of the processes used to model the system of Figure 4.2. It shows
which process is active at which time instance. In the first column all processes (A through
H) of the performance model are given. This is followed by the two columns describing
which process uses (indicated with an ’*’) resource1 or resource2. This is followed by two
columns expressing the time required by a task to execute and with which tasks a task has
data dependencies. Next the virtual time axis is given from the discrete time interval t=1 to
t=12. An empty place means a process is waiting, an ’2’ indicates the process is running a
collection of statements.

To show how the simulation engine comes to the execution trace given in Table 4.1, we next
discuss how the collection of processes executes in time.

The simulation of the performance model starts at t=0. ProcessesA andD do not depend on other
processes and can use theP operator to claim the required resources. ProcessA acquiresresource1
and processD acquiresresource2. It takes processD one time unit (modeled using thedelayopera-
tor) to finish. At t=1, it releases (via aV operator)resource2 and satisfies the data dependency with
processF using aV operator. ProcessF must wait until the data dependency relation with ProcessE is
also satisfied, and it remains blocked until then. ProcessA terminates after 3 time units and releasing
resource1 at t=3, thereby satisfying the data dependencies with processesB andC.

ProcessesB andC both require the sameresource2 to execute at t=4. However, only one process
can access the resource at a time. Consequently, the simulation engine must performresource conflict
arbitration to decide which process may access the resource first. It uses a non-deterministic resource
conflict arbitration scheme.

Thus the process that claims the resource first obtains the resource first. Suppose processC
acquires the resource first. Its execution takes two time units and it releasesresource2 at t=5. While
processC executes, processB blocks until resource2 becomes available. At t=5, processB can
acquireresource2 and executes. At the same time, processC satisfies the data dependencies with
processesG andE. Nevertheless, processG remains blocked until processE satisfies the dependency
with processF. At t=5, both processesB andE needresource2. If processE would needresource1
instead ofresource2, it could have executed in parallel with processB. Suppose processB claims the
resource before processE. It executes first, taking 1 time unit. At t=6, it terminates, satisfying the data
dependency with processH, and releasesresource2. ProcessE acquiresresource2 and executes,

Performance Analysis 75

taking 1 time unit. It terminates at t=7, releasing the resource and satisfying the data dependency
with processF. For processF, the data dependency with processD was already satisfied at t=1.
Therefore processF claimsresource2 and executes, taking 1 time unit. It terminates at t=8, releasing
resource2 and satisfying the dependency with processG. Since no other process holdsresource1,
processG executes, taking 2 time units. At t=10, processG terminates, releasesresource1, and
satisfies the data dependency with processH. The dependency with processB was already satisfied for
processH at t=6. Therefore processH can execute after it claimsresource1. The process executes,
taking 1 time unit, and terminates at t=11.

In conclusion, processing the workload described by the task-graph in Figure 4.2 with two re-
sources requires in total 11 time units. This gives thetotal execution timeTend = 11 for the system
of Figure 4.2. The total execution time is a performance metric and the performance number obtained
through simulation equals 11 time units.

Performance Numbers

The workload of the system consists of 8 tasks with a combined execution time of 12. The combined
execution time is found by adding up the execution time of each task, as given by the number between
brackets in Figure 4.2. If the executions of the 8 tasks were independent of each other, the system
would require 3 time units to process the workload andTend = 3. However, condition synchronization
influences the order in which processes must execute. Due to this ordering, the system would require
a total execution time of at leastTend = 10. Moreover, mutual exclusion also influences the ordering
of the processes. Because a resource can be accessed by only one process at a time, additional delays
are introduced. The processesB andC as well as the processesB andE require the sameresource2.
These processes will be sequentialized in time, causing them to wait. As a result, the total execution
time increases and becomesTend = 11.

We can use the total execution timeTend to derive performance numbers for other performance
metrics. One such performance metric is parallelism, which we define as

Parallelism=
Combined Execution Time of the Workload

Tend
: (4.1)

If the workload of 8 tasks with a combined execution time of 12 is processed in parallel,Tend = 3. If
condition synchronization is taken intoaccount,Tend = 10. Finally, if mutual exclusion is also taken
into account, thenTend = 11. Thus the amount of parallelism achieved in the system in these three
different situations is respectively123 , 12

10 , and12
11 , as shown in table 4.2.

Performance Model takes into accountParallelism

Execution Time 12
3 = 4

+ Condition Synchronization 12
10 = 1.2

+ Mutual Exclusion 12
11=1.09

Table 4.2 . Parallelism in the System.

Another performance metric is theutilizationof the resources, which is

Utilization=
Time a Resource is Used

Tend
� 100%: (4.2)

76 4.3 Objectives in Using the PAMELA Method

If a resource is used for 4 time units during the total execution time of 11, it achieves a utilization of
4
11 � 100% = 36:3%. The utilizations ofresource1 andresource2 are given in Table 4.3. In both
cases, the utilization of the resources happens to be 54.5%.

Resource Utilization Rate Used by Process

Resource1 (3+2+1)/11�100% = 54.5% A+G+H
Resource2 (2+1+1+1+1)/11�100% = 54.5% B+C+D+E+F

Table 4.3 . Utilization of the Resources.

Other performance metrics besides total execution time, parallelism, and utilization exist. We
present more of these in Chapter 7.

4.3 Objectives in Using the PAMELA Method

We already mentioned that two modeling approaches exist: material-oriented modeling and machine-
oriented modeling. The choice between these two modeling approaches touches upon the fundamental
issue of ease ofmodelingas opposed to ease ofevaluation. As we will explain, the original PAMELA
work focused on ease of evaluation, whereas we are focusing on ease of modeling. As a consequence,
we will adapt the PAMELA method to better suit our needs in modeling systems.

The PAMELA method was developed originally by van Gemund to quickly yield parameterized
performance models of parallel programs that run on shared-memory as well as distributed-memory
(vector) computers. The PAMELA method was primarily developed to be part of a compiler for such
computers. The compiler could analyze these parameterized performance models, guiding the com-
piler in the mapping of the programs. Thus instead of simulating the PAMELA model, an analytical
method had to be employed. The analytical method transforms a PAMELA model automatically into
an explicit symbolic performance model. This symbolic performance model yields fast and crude
performance predictions that the compilers uses to steer the mapping. Consequently, van Gemund
focused primarily on deriving symbolic performance models at run-time from a PAMELA model, be-
cause he wanted to construct PAMELA performance models such that they could be analyzed easily.

In the construction of the PAMELA method, van Gemund traded off ease of modeling for ease of
evaluation [van Gemund, 1996]. He used a material-oriented modeling approach and constructed only
uninterpreted performance models. Consequently, these models do not contain conditional control
flow 3.

Within this thesis, however, we want to explore the design space of an architecture template and
we require a modeling approach that permits us to construct many different architecture instances
quickly. Therefore, we trade off ease of modeling for ease of evaluation. We will use a machine-
oriented modeling approach to model architecture instances that deliver cycle-accurate performance
numbers. The architecture instances are interpreted performance models of which the performance
can only be evaluated via simulation. The PAMELA method provides a simulation engine referred to
as theRun-Time Library, or RTL. We discuss the RTL in detail in Section 4.4.4.

To illustrate the two different objectives that are possible (ease of modeling versus ease of eval-
uation), in Figure 4.3 we show the two steps involved in performance analysis, namely performance

3van Gemund modeled condition control flow by means of distributions, and as a consequence conditional statements
do not need to be evaluated. This only works when conditional statement can be captured by means of distributions and
such distributions are known

Performance Analysis 77

modeling and performance evaluation. Since van Gemund desires symbolic expressions, he con-
structed a model of the system using a material-oriented modeling approach. The model obtained can
be analyzed analytically, yielding symbolic performance models. He rendered performance numbers
via a transformation of the PAMELA model into the time domain. Notice that a model of the system
obtained via the material-oriented modeling approach can be evaluated using simulation, but that a
model of the system obtained via the machine-oriented modeling approach cannot be reduced to a
symbolic expression.

throughput

parallelism

utilization

throughput

parallelism

utilization

Machine
(Resources)

(Workload)

Application
PAMELA

Performance
Model
(system)

Transformation

Simulator
(RTL)

Simulation

Modeling

Modeling

Performance Modeling

Machine-oriented

Material-oriented

Machine-oriented

Material-oriented

(Only for Material-oriented Modeling Approach)

(For Both Modeling Approaches)

Performance Evaluation Performance Numbers

Σ Σ Σ

Figure 4.3 . The two different objectives possible in performance analysis: ease of modeling
versus ease of evaluation.

The programming paradigm used to construct a performance model of a system in a material-
oriented model differs from that for a machine-oriented model [van Gemund, 1996]. Aprocedural
orientedprogramming paradigm describes the material-oriented modeling approach well; therefore
the original PAMELA language employed a procedural oriented language. On the other hand, an
object orientedprogramming paradigm is a good method with which to describe the machine-oriented
modeling approach. We will show in the remaining part of this chapter how we can use the PAMELA
primitives and the RTL in an object oriented modeling approach. We implement a message-passing
interface on top of the PAMELA primitives by embedding the PAMELA primitives in the object
oriented programming language C++ to ease the construction of the performance model of complex
systems.

4.4 An Object Oriented Modeling Approach using PAMELA

To ease the construction of complex systems while still being able to derive performance numbers
via simulation, we embedded the PAMELA primitives in the object oriented programming language
C++. We first explain what an object is, and then we explanation that the objects we use consist of a
structure part and a behavior part. We use this kind of object to model the system of Figure 4.2 again.

Following this example, we look again at taskG of the system and explain in detail how this
task is represented as a C++ object. Then we describe how a process is created for this C++ object.
This includes the description of the PAMELA run-time library (RTL), which implements the three
PAMELA primitives as functions in C.

78 4.4 An Object Oriented Modeling Approach using PAMELA

4.4.1 The Object

The basic element of an object oriented programming language is the object. Anobjectconsists of
a data part as well as amethodspart that operates on the data part [Goldberg and Robson, 1983].
The data part and the method part of an object, and thus the whole object, is defined using aclass
description. Individual objects can beinstantiatedfrom such class description, which means that an
object is created taking up a certain amount of space. When an object is instantiated, a special method,
theconstructor, is called. This constructor is called only once for each object at the time when the
object is instantiated.

The strength of objects is that they are well suited for use in constructing a (complex)struc-
ture [Mellor and Johnson, 1997; Monroe et al., 1997; Kumar et al., 1994; Post et al., 1998] that is
the decomposition of a system into parts and relationships between those parts. In an object oriented
programming language, a structure is hence constructed by interconnecting objects whereby each ob-
ject can be composed of other interconnected objects. Within a structure, objects connect to other
objects and only exchange information along these connections. An object exchanges information
with other objects by invoking methods of those other objects. This way of exchanging information is
referred to as “message passing” [Goldberg and Robson, 1983]. The available methods of each object
thus defines for other objects which messages it can exchange; in other words it defines aninterface.
Objects exchanging messages with another object remain completely unaware of what happens inside
this object, since it hides unnecessary information.

Besides describing the structure, we also have to describe the behavior of each object. Bybehavior
we mean the function that the object describes in time. To describe the behavior of an object, we
specify a process that describes the input/output relations of that object in time. As we will see
in Chapter 5, not every object is given a process. Recall that there is a distinction between active
primitives, which are processes, and passive primitives, which are semaphores. An object that uses
a process is called anactive objectand one that does not is called apassive object. A passive object
usesP andV operators in its methods, but no processes.

Connection with

Structure

Behavior

Object

other Objects

Figure 4.4 . The objects we construct have a structure part and a behavior part.

We use the object oriented programming language C++ [Stroustrup, 1991] to create an object.
Although other object oriented programming languages like objective-C [The Stepstone Corporation,
1989] or Java [Arnold and Gosling, 1996] could have been used, we use C++ for reasons of per-
formance. The constructed objects in C++ have a structure part and a behavior part, as shown in
Figure 4.4. The figure also shows the object connects with four objects, as indicated by the black
circles. The object can only exchange information with the four objects to which it connects.

Performance Analysis 79

4.4.2 Modeling a System as a Network of Objects

To show how we can use an object as depicted in Figure 4.4, we will model the system of Figure 4.2.
Because we haven’t yet explained how this system relates to architectures like stream-based dataflow
architectures, we cannot yet explain machine-oriented modeling adequately; therefore, for didactic
reasons, we model the simple system using a material-oriented modeling approach. In Chapter 5,
however, we show several examples of objects used in a machine-oriented modeling approach.

The performance model of the system in Figure 4.2 obtained using objects is shown in Figure 4.5.
To come to this model, we replaced each task by an active object having a structure part and a process
part. We also replaced the two resources by a passive object having only a structure part. The model
shown in Figure 4.5 still models the system using a material-oriented modeling approach.

structure

behavior

structure

behavior

F(1)G(2)

C(2)

A(3)

H(1)

B(1)

E(1)D(1)

structure

behavior

structure

behavior

structure

structure

behavior

structure

behavior

structure

behavior

structure

behavior

Semaphores

structure

resource1 resource2

Figure 4.5 . The system described using objects that have a structure and a behavior part.
For simplicity, the links between the objects that use resource2 are not shown, but do really
exist.

We implement all the links between different objects (for example, between objectB and object
H) directly via a semaphore. The dashed line from objectresource1 to the objects modeling tasks
A, G, andH is one and the same semaphore. Notice that although it is not shown in Figure 4.5, a
semaphore also exists between objectresource2 and the objects modeling tasksB, C, D, E andF.

We now further elaborate on how the object modeling taskG is described as a C++ object of type
Taskand how a process from the run-time library is added to this object. We do not describe the object
modeling the resources, because enough examples will be given in the next chapter.

80 4.4 An Object Oriented Modeling Approach using PAMELA

4.4.3 Describing the Structure of an Object in C++

Before we can construct an objectTaskmodeling a task in the system of Figure 4.5, we need to
describe a class definition. In Program 4.5, we give the class description for the objectTask . In C++,
a class definition always starts with the keywordClass.

Program 4.5. CLASS DEFINITION OF THETask OBJECT

class Task {
/* Data Elements */
semaphore in1;
semaphore in2;
semaphore out;
semaphore resource;
int delay;

/* Methods */
/* Constructor */
Task(semaphore, semaphore, semaphore, semaphore, int)

/* init Process */
init_process(void);

}

Class Definition

Within this class description, an object is defined that consists of five data elements4 of which four
are semaphores and one is a single integer value. Three semaphores represent dependencies (in1 ,
in2 , andout) and one semaphore represents a resource (resource). The integer delay valuedelay

indicates the time required by a task to execute.
Within the same class description, two methods are defined for aTask object. Each method has

an implementation, which describes the function a method performs. One method is the construc-
tor 5 of theTask object while the other method isinit process . The constructor method is called
when aTask object is instantiated from the class description. The constructor has a number of ar-
guments that need to be provided when an object is created. In this case, the arguments include four
semaphores and an integer value. The constructor is used to set up the structure of an object, while the
init process method is used to create the behavior of an object. We describe first what happens
when the constructor is called, followed by what happens when theinit process method is called.

Calling the Constructor

To instantiate an object representing taskG in the system of Figure 4.5, we call upon the C++ func-
tion new, as given in Program 4.6. In creating theTask object, we pass on the semaphores already
described in Program 4.1 as arguments of the constructor. We also pass on the integer value 2, to
indicate taskG takes two time units to execute.

4All the elements in the data part of the class definition are variables in C/C++. Therefore, semaphorein1 is a variable,
as is the integerdelay

5In C++, methods are described using the:: notation. It should be read asclass::method , which describes the
implementation of a particular method of a class. The constructor method of a class always has the same name as the class.
ThusTask::Task describes the implementation of the constructor of classTask .

Performance Analysis 81

Program 4.6. INSTANTIATE AN OBJECT REPRESENTING TASKG

new Task(dependency_CG, dependency_FG, dependency_GH, resource1, 2)

Executing thenew function causes the execution of the constructor, as shown in Program 4.7. In
the constructor, the argumentsdep1 , dep2 , dep3 , res and, finally,task delay are assigned to the
variables declared in the data part of theTask object in Program 4.5. The value of variabledep1 is
thus assigned to variablein1 . Because objectTask is created as shown in Program 4.6, argument
dep1 equals the semaphoredependency CGthat describes the dependency between taskC and task
G. Therefore variablein1 equals semaphoredependency CG.

Program 4.7. THE CONSTRUCTOR OFTask OBJECT

Task::Task(semaphore dep1, semaphore dep2, semaphore dep3, semaphore res, int task_delay)
{ // Constructor of a Process

in1 = dep1;
in2 = dep2;
out = dep3;
resource = res;
delay = task_delay;

}

4.4.4 Describing the Behavior of an Object Using PAMELA

We have shown how an object captures the structural elements in its data part, and in particular, for
taskG. Now we will look at how we can add a behavior part to the structure part of an object after we
present the run-time library PAMELA.

Run-time Library (RTL)

The PAMELA language describes performance models using three primitives:processes, semaphores
anddelays. These three primitives have been implemented as C functions in the PAMELARun-Time
Library (RTL) [Nijweide, 1995]. The RTL is a simple, non-preemptivemultithreadingpackage. It
provides the notion of parallelism in the sequential programming language C [Kernighan and Ritchie,
1988]. The RTL implements aprocess scheduler, interleaving the parallel processes on a single CPU.
It differs from many other multithreading packages [Open Software Foundation, 1995; Proven, 1995;
Mueller, 1993], in that it uses the notion ofvirtual time.

The RTL implements processes aslightweight processes. Lightweight processes are implemented
in the same address space [Finger, 1995], which makes communication of variables between processes
very simple and efficient. Each process has its ownthread-of-execution, and a thread has its own
contextof variables (state). Whenever the process scheduler switches a process on the CPU, it restores
the context of the thread. This is calledcontext switching. The processes are called lightweight
processes because the threads have a small or ‘light’ context6. This introduces only a small overhead
and, consequently, the process scheduler can switch the context of processes quickly.

6This is in contrast toheavyweightprocesses used, for example, in the UNIX operating system. These processes have
their own address space and require pipes to communicate variables with other processes. As such, these processes have a
big or ‘heavy’ context, and context switching on a UNIX system requires more time than a context switch of a lightweight
process.

82 4.4 An Object Oriented Modeling Approach using PAMELA

The complete RTL and its C functions are described in detail in [Nijweide, 1995]. We now discuss
the function used to construct a process, the functions that implement the semaphore operatorsP and
V and the function which implements thedelayoperator.

Process: The RTL describes a process as an ordinary C function called theprocess function. The
RTL creates an instance of a process function in memory. A process scheduler switches these
instances of the process functions in time to give the appearance of their executing in parallel.
A process is created via thepam fork statement. This statement requires three arguments: a
name for identification purposes, a C function that is the process function, and an additional
argument. This additional argument is used by a process to initialize itself when it is created.

Semaphore operators:The RTL implements theP andV operators aspam P and pam V state-
ments respectively. These statements operate on semaphores created via thepam alloc state-
ment. This statement requires two arguments, namely a name for identification purposes and an
initialization value.

Delay operator: The RTL implements thedelayoperator as apam delaystatement. This statement
manipulates the time of a process. The operator requires a non-negative integer value.

The RTL provides more functions than just those mentioned above. We will wait, however, to
introduce these functions until they are used.

Creating a Process

All the tasks in Figure 4.2 are modeled using a process. We therefore need to create a process for
each object that models a task in the system-modeling example in Figure 4.5. Assume that we have
instantiated an object for each task and stored links to other objects in the data part of these objects.
In this example we do this using only semaphores.

A process is created for each object by calling the init process method, as shown for theTask

object in Program 4.8. This method causes the execution of thepam fork statement. As explained
when discussing the RTL-library, this invokes the creation of a process with the name “task ” that
executes the process functiontask function . The argumentthis is passed on to this process.
In the C++ programming language thethis pointer represents the complete data part of an object.
Therefore, thepam fork statement passes on the complete data structure of the object to the process
functiontask function .

In the case of theTask object that models taskG, the data part of this object contains the
semaphores describing the data dependencies with tasksC, F andH. It also contains the semaphore
describing theresource1.

Program 4.8. CREATING A PROCESS FOR ANOBJECT

Task::init_process(void) { pam fork ("task",task function,this); }

A Process

The RTL creates a process from the process function by creating a unique instance in memory using
the pam fork statement. In the case of theTask object, the RTL creates a process based on the
process functiontask function , as shown in Program 4.9.

Performance Analysis 83

A process function always consists of two parts. In the first part, the process decodes thethis

pointer and initializes its local variables. Thethis pointer received is the data structure from the
object creating the process. In the second part, the process function runs as the actual process.

Program 4.9. MODELING A PROCESS VIA APROCESSFUNCTION

void task_function(void)
{

/* Initialize the Process */
Process p = (Process) pam args (pam me ());
semaphore in1 = p.in1;
semaphore in2 = p.in2;
semaphore out = p.out;
semaphore resource = p.resource;
int task_delay = p.delay;

/* Run the Process */
while(1) {

/* Check dependencies with other Processes */
pam P (in1);
pam P (in2);

/* Claim the resource */
pam P (resource);

/* The execution of a task takes a parameterized amount of time */
delay(task delay);

/* release the resource */
pam V (resource);

/* Satisfy dependency of a Process */
pam V (out);

}
}

Initialize the Process In the first part, the process function decodes the data structure that was
passed on by the constructor via thethis pointer. To actually acquire thethis pointer from the
object creating the process, the process uses two RTL statements,pam argsandpam me. Statement
pam me identifies the process and thepam args statement retrieves the argument for that process.
The data structure of the object is accessible via the variablep in Program 4.9 andp.in1 is one and
the same semaphore asin1 in Program 4.5. This semaphore is assigned to the local semaphorein1

in the process function as part of the initialization of the process. The initialization step finishes after
all variables have been decoded to a local variable of the process function.

Execute the Process In the second part, the process function runs the actual process. The pro-
cess starts with thewhile(1) statement, which creates an endless loop. The curly bracket after the
while statement matches one-to-one with the curly bracket after the wordprocessin Program 4.2.
Furthermore, the statements in between the curly brackets of thewhile statement match one-to-one
with the statements given between the curly brackets related to theprocessdescribed in Program 4.2.
Henceforth, in this thesis, the wordprocessalways relates to the second part of a process function.

In the sequence of statements describing theprocess, the delay statementdelay does not have a

84 4.4 An Object Oriented Modeling Approach using PAMELA

fixed value. Instead it receives aparameterizedvalue from theTask object. The delay value is passed
on as an argument of the constructor in the same way as was done for the semaphores.

4.4.5 Building Blocks

A C++ object describes both a structure part and a behavior part. Its structure and methods are
described via the class definition. Its behavior is described using a RTL process. The result of con-
structing aTask object for taskG is given in Figure 4.6.

Semaphore* in1

pam_delay(2);

Semaphore* in2
Semaphore* out

Semaphore* resource

}

Behavior

Structure

Process Function

this-pointer

C++ Object

dependency_FG

Process {

dependency_CG

dependency_GH

resource1

Data-part

Figure 4.6 . The construction of a PAMELA Process inside a C++ object.

In the structure part of the object we see again the three semaphores representing data dependen-
cies with other objects and one semaphore representingresource1. In the way taskG is modeled, it
is the semaphores that allow objects to exchange information with other objects.

Localized References

The object shown in Figure 4.6 encapsulates a process, as well as localizes the references to other
objects (or semaphores) used by that process. This process can only use the structural information
defined for an object in the class description. Therefore, all references to other objects are expressed
in variables of the class description of the object and thuslocalizedto that object.

The process encapsulated by the object in Figure 4.6 can only operate on the semaphoresin1 ,
in2 , out andresource . The process does not know to which semaphore it actually connects because
this is determined when the object is instantiated. The semaphores expressing the data dependencies
dependency CG, dependency FG, anddependency GH in Program 4.6 bind to the semaphores
in1 , in2 and out respectively in Program 4.2. This also applies to the semaphoreresource1 ,
which binds toresource in the process.

A consequence of localizing the references is that the definition for objectTask in Program 4.5
can also be used to define taskF in the system-modeling example in Figure 4.5. TaskF also has

Performance Analysis 85

two input semaphores, one output semaphore, and one semaphore for a resource. By instantiating the
object as was done in Program 4.10, we obtain an object that models taskF.

Program 4.10. INSTANTIATE AN OBJECT REPRESENTING TASKF

new Task(dependency_DF, dependency_EF, dependency_FG, resource2, 1)

Note that we change the parameter value that describes the execution time of taskF in Pro-
gram 4.10. Instead of taking two time units as we did for taskG, we now set the parameter value
to 1, which causes taskF to execute in one time unit.

By localizing the references of a process, we obtain objects representingBuilding Blocks. These
building blocks represent modular elements that are self-contained and parameterized. We define a
building block as

Definition 4.2. BUILDING BLOCK

A building blockis a self-contained, parameterized object with a structure part and a behavior
part. 2

That a building block isself-containedmeans that it can only exchange information with other
building blocks to which references are present in the structural part. The exchange of information
takes place using the “message passing” mechanism. Consequently, the internal structure of a build-
ing block remains invisible to the other building blocks in a system, a key requirement in obtaining
modular elements.

There is a distinction between active objects and passive objects; a similar distinction exists for
building blocks. Anactive building blockuses one or moreprocessesto describe its behavior part. A
passive building blockuses only semaphores andpam P andpam V statements to describe its behav-
ioral part. Thepam P andpam V statements are incorporated into methods of the building block and
these methods describe the behavioral part of the building block. We show several examples of active
and passive building blocks in Chapter 5, in which we use building blocks extensively to construct the
performance models of stream-based dataflow architectures by combining building blocks.

4.5 Simulating Performance Models with the RTL

We use simulation to obtain the performance number of a performance model for a system. PAMELA’s
RTL provides not only processes, semaphores and delay statements, but also a process scheduler. We
now explain how this process scheduler simulates a performance model and how the PAMELA prim-
itives interact with the RTL process scheduler. We discuss the RTL in more detail, showing that the
RTL has a very simple structure. This simple structure makes it possible to execute faster than with
other kinds of discrete event simulators.

A process is said to berunnableif it is not in a blocking state. A process can attain a blocking
state only when executing apam P statement, and a process is taken out of this state via apam V
statement. Each process has its own notion of time, represented by its owntime stamp. The value of
this time stamp changes directly using apam delaystatement or indirectly using apam P statement.
The time stamp is used by the process scheduler to order processes in time.

Although only one process can execute at a time, RTL implements aprocess schedulerthat sched-
ules one process after the other, giving the impression that processes execute in parallel. The process
scheduler uses two different queues to schedule processes. One queue, theRunnable Processes Queue

86 4.5 Simulating Performance Models with the RTL

(RPQ), contains all runnable processes, while the other queue, theBlocked Processes Queue(BPQ),
contains per semaphore a queue with blocked processes. Each semaphore has a queue, because more
than one process can block on one and the same semaphore. A schematic of the process scheduler
with the two queues is given in Figure 4.7. This figure shows a “snapshot in time” of the filling of the
two queues and the running process. In the figure, a circle represents a process. The number in each
circle in the RPQ represents the value of the time stamp of each process. The letter in the circles in
the queues of the BPQ represents the semaphore on which a process blocks.

One process runs at t=5, executing a sequence of statements. RPQ contains 6 processes that are
runnable. Two processes can run at t=5, two processes can run at t=6, one process can run at t=10 and,
finally, one process can run at t=12. After the running process terminates for reasons we explain later,
the next runnable process to become the running process would be the first process in the RPQ. The
runnable processes in RPQ are ordered according to their time stamp. BPQ contains three queues for
three different semaphores:A, B andC. The queue of semaphoreA contains three blocked processes,
the queue of semaphoreB contains one blocked process, and the queue of semaphoreC contains two
blocked processes. These processes can block because, for example, a resource is not yet available.
A process is placed into the BPQ only via apam P statement. It is taken out of the BPQ only via a
pam V statement.

on semaphore A
Process is blocking

6 10 126555

Running
Process

Runnable Processes Queue

Time Stamp t = 5

Pam_P

Pam_V

Blocked Processes Queue

A

B

A A

C C

Figure 4.7 . The process scheduler of the PAMELA run-time library uses two queues to
schedule processes.

If the running process executes a PAMELA primitive (e.g., apam P, apam V, or apam delay),
then an event takes place. At that moment, the process that is running returns control to the process
scheduler, which reconsiders the consequences for further execution of processes. Depending on the
PAMELA construct executed, the process scheduler reacts as follows:

pam P: If the semaphore is zero, then the running process must block on this semaphore. In this
case, the process scheduler places the process in the appropriate semaphore queue in the BPQ
and makes the next runnable process from the RPQ the running process. Otherwise, the running
process decrements the semaphore and the process scheduler allows the process that is running
to continue.

pam V: This leads to two different cases. In the first case, the value of this semaphore (e.g., semaphore
A) changes from zero to one. This causes the first blocked process in the appropriate semaphore

Performance Analysis 87

queue in the BPQ to become runnable. The process scheduler makes this runnable process the
new running process. Before it does this, it puts the running process, which has a time stamp
t=5, back into the RPQ. The new running process is given the same time stamp as the running
process (t=5). In the second case, the running process increments a semaphore and the value of
the semaphore becomes larger than one. In this case, the process scheduler allows the process
that is running to continue.

pam delay: This statement adds a certain amount of time to the time stamp of the running process
and the process scheduler puts this process back into the RPQ. This process gets ordered in
the RPQ according to its new value of the time stamp. The process scheduler makes the next
runnable process from the RPQ the running process.

The process scheduler of the RTL is anon-preemptivescheduler, which means that the process
scheduler cannot preempt a running process in order to regain control. It must wait to regain control
until the running process reaches a PAMELA construct that causes an event. Only then does the
process scheduler get the control back from a process.

Note that the way processes get scheduled by the process scheduler results in a feasible schedule,
which is not necessarily the fastest schedule. Processes are activated as soon as possible because the
RTL implements a simple list-scheduler; however, this does not always result in the fastest sched-
ule [De Micheli, 1994]. For an example, look at Table 4.1, which shows the scheduling of processes
used to model the system of Figure 4.2. If taskB were not scheduled at t=6, but instead slightly later,
it could execute in parallel with taskG without resource conflict. As a consequence, the resulting total
executing time in this case would beTend = 10 instead ofTend = 11.

4.6 Related Work

Traditionally,Queuing Theory[see, for example, Lazowska et al., 1984] has been used in performance
analysis of computer designs. It can be used to describe a system in terms of servers and independent
clients. These clients access the servers following a negative exponential distribution in time. The
strength of queuing theory is that it derives a system’s steady state behavior analytically. This makes
queuing theory very useful for determining the capacity of servers. Queuing theory is, however, too
restrictive for our purpose because of its model. This model is not able to describe, for example,
condition synchronization between various clients or conditional control flow.

Petri Nets[Petri, 1962; Jensen, 1991] were originally developed to study concurrency and to ana-
lyze issues likeliveness, deadlockandstarvation[Ben-Ari, 1982], using analytical techniques. To use
petri nets for performance analysis requires the use ofTimed Petri Nets[Van der Aalst, 1992]. These
petri nets can be analyzed analytically in the time domain only under the assumption that transition
takes place using a negative exponential delay. If the system constructed is ergodic, a Markov chain
can be constructed that can be analyzed analytically. However, instead of using analytical techniques,
simulation can be used to derive the performance of a system [ASPT, 1994].

In contrast to queuing theory and petri nets,simulation toolslack an analytical basis. To ren-
der performance numbers, simulation tools use simulation instead and typically employ event-based
simulation techniques. Simulation tools are popular because they provide simple compositional con-
structs to build large and complex models and they describe interpreted performance models well.
Simulation tools use a textual or graphical representation to define a system. Many different simula-
tion tools exist that are tailored to specific application domains. In the signal processing domain the

88 4.7 Conclusions

following tools (to name a few) are available: the Ptolemy system [in particular, the DE-domain, Buck
et al., 1992], the Maisie environment [Bagradia, 1995] and the BoNES environment [Cadence, 1998].

Another tool that can be used for performance analysis is VHDL or Verilog. Although these
languages were developed originally to describe and simulate hardware at a much lower level, i.e.,
Register Transfer Level (RTL), a VHDL simulator is basically a parallel simulator using event simu-
lation. In contrast to the previously discussed simulation tools, these languages are able to simulate
systems very accurately. Nonetheless, VHDL is also used for performance analysis on a higher level
of abstraction, as done, for example, by Rose and Shackleton [1997].

Standard programming languages like C [Kernighan and Ritchie, 1988] or C++ [Stroustrup, 1991]
are used instead of simulation tools to construct performance models. These provide a high degree of
freedom in constructing models of systems, but at the same time, they lack a systematic approach or
well defined simulation model. Furthermore, standard programming languages lack the notion of a
simulation engine to handle parallel simulations.

The object oriented modeling approach that uses PAMELA to describe the behavior of each build-
ing block as presented in this chapter is a very interesting approach for the following reason. The use
of C++ gives us a large amount of freedom to model different architecture instances, as we will show
in Chapter 5, where we discuss the modeling of stream-based dataflow architectures. The PAMELA
primitives provide high-level modeling primitives like semaphores, processes, and delays. This re-
sults, as we will also see in Chapter 5, in compact descriptions when modeling the building blocks of
architecture instances. VHDL, for example, does not provide these high level primitives.

The PAMELA method gives accurate performance values using simulation. Other modeling ap-
proaches can provide symbolic representations for performance numbers, but these representations are
not accurate enough since not all four components of the Performance Modeling Basis are included.
For example, queuing theory cannot describe condition synchronization, whereas the analytical eval-
uation technique of the PAMELA method cannot handle conditional control flow.

The RTL provides a very efficient simulation engine because of its simple structure. We we
will quantify the simulation speed in Chapter 7, when we discuss the construction of a retargetable
simulator for stream-based dataflow architectures. The execution model of the RTL is more restrictive
than the discrete simulation engines used in most simulation tools, but this results in fast simulation.

4.7 Conclusions

The Y-chart approach uses performance analysis to render performance numbers. In this chapter, we
presented the Performance Modeling Basis (PMB), which describes the four components determining
the performance of a system. We presented the PAMELA method with which to carry out perfor-
mance analysis. The method describes the four components of the PMB using only three high-level
primitives: semaphores, processes and delays.

Our objective in light of Y-chart approach is to model architecture instances easily. To satisfy
this objective, we had to modify the original PAMELA method from a procedural modeling approach
to make it to an object oriented modeling approach. This led us to the definition of building blocks,
which have a structure part and a behavior part. A system is easily constructed by simply combining
these building blocks. The structure parts of building blocks use C++ whereas the behavior parts use
primitives of the PAMELA run-time library (RTL). The RTL is a simple multithreading package that
implements semaphores, processes, and delays. The RTL also provides a process scheduler, allowing
us to perform parallel simulations of a system constructed using building blocks.

BIBLIOGRAPHY 89

Bibliography

G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent programming.ACM Com-
puting Surveys, 15(1):4 – 43, 1983.

Ken Arnold and James Gosling.The Java Programming Language. Addison-Wesley, 1996.

ASPT. ExSpect 5.0 User Manual. Eindhoven University of Technology, Eindhoven, the Netherlands,
1994.

Rajive Bagradia.Maisie User Manual. UCLA Parallel Computing Lab, 1995. Release 2.2.

M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982.

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A framework for
simulating and prototyping heterogeneous systems.International Journal of Computer Simulation,
1992. Special issue on Simulation Software Development.

Cadence. Bones 4.0. http://www.cadence.com, 1998.

Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill International
Editions, 1994.

E.W. Dijkstra. Cooperating sequential processes. In F. Geunys, editor,Programming Languages,
pages 43 – 112. Academic Press, 1968.

E.W. Dijkstra. Personal Communication, 1981.

Jonathan Finger. Lightweight tasks in C.Dr. Dobb’s Journal, pages 48 – 50, 1995.

Adele Goldberg and David Robson.Smalltalk-80, The Language and Its Implementation. Addison-
Wesley Publishing Company, Xerox Palo Alto Research Center, 1983.

K. Jensen. Coloured petri nets: A high level language for system design and analysis. In K. Jensen and
G. Rozenberg, editors,High-level Petri Nets: Theory and Application, pages 44 – 122. Springer-
Verlag, 1991.

Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentine Hall Software
Series, second edition, 1988.

Wolfgang Kreutzer.System simulation, programming styles and languages. International Computer
Science Series. Addison-Wesley, 1986.

Sanjaya Kumar, Jamer H. Aylor, Barry W. Johmson, and Wm. A. Wulf. Object-oriented techniques
in hardware design.Computer, 27(6):64–70, 1994.

E.D. Lazowska, J. Zahorja, G. Graham, and K. Sevcik.Quantitative System Performance: Computer
System Analysis Using Queueing Network Models. Prentice-Hall, 1984.

Stephen J. Mellor and Ralph Johnson. Why explore object methods, patterns, and architectures?IEEE
Software, 14(1):27 – 30, 1997. Guest Editor’s Introduction.

Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. Architectural styles, design
patterns, and objects.IEEE Software, 14(1):43 – 52, 1997. Theme Issue.

90 BIBLIOGRAPHY

Frank Mueller. A library implementatio of POSIX threads under UNIX. InPro-
ceedings of the USENIX Conference, pages 253–261, San Diego, CA, 1993.
http://www.informatik.hu-berlin.de/ mueller/ .

Marc Nijweide. The pamela run-time library, version 1.3. Technical Report 1-68340-27(1995)06,
Laboratory of Computer Architecture and Digital Techniques, Delft University of Technology,
1995.http://dutepp0.et.tudelft.nl/ gemund/publications.html .

Open Software Foundation.OSF/DCE Application Development Guide, chapter Threads, pages 2–1
to 2–24. Prentice Hall, 1995. release 1.1.

C.A. Petri.Kommunikation mit Automaten. PhD thesis, Institut f¨ur Instrumentelle Mathematik, Bonn,
Germany, 1962.

Guido Post, Andrea Muller, and Rainer Schoenen. Object-oriented design of ATM switch hardware
in a telecommunication network simulation environment. InProceedings of GI/ITG/GMM Work-
shop Methoden und Bescheibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen, Paderborn, 1998.

Christopher Proven. POSIX threads, 1995. WWW ref only.
http://www.mit.edu:8001/people/proven/pthreads.html.

RASSP Taxonomy Working Group (RTWG). RASSP VHDL modeling terminology and taxonomy.
http://rassp.scra.org/documents/taxonomy/taxonomy.html , 1998. Revision
2.4.

Fred Rose and John Shackleton. Performance modeling of system architectures.VLSI Signal Pro-
cessing, 15(1/2):97 – 110, 1997.

Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 2nd edition, 1991.

The Stepstone Corporation.Objective-C Compiler v4.0. The Stepstone Corporation, 1989.

W.M.P. Van der Aalst.Interval Timed Coloured Petri Nets and their Analysis. PhD thesis, Dept. of
Computer Science and Mathematics, Eindhoven University of Technology, 1992.

Arjan. J.C. van Gemund.Performance Modeling of Parallel Systems. PhD thesis, Laboratory of
Computer Architecture and Digital Techniques, Delft University of Technology, 1996.

Chapter 5

Architectures

Retargetable
Simulator (ORAS)

Performance
Numbers

Mapping

Applications

SBF-Model

Arch. Model
(Pamela/C++)

Contents

5.1 Architectures . 92

5.1.1 Pictorial Representation . 92

5.1.2 Architectures . 93

5.1.3 Cycle-accurate Model. 94

5.2 Modeling Architectures . 95

5.3 Modeling Architectures using the PMB . 95

5.3.1 Machine-oriented Modeling Approach . 96

5.3.2 Building Blocks . 96

5.3.3 Architectural Element Types . 98

5.4 Modeling the Architectural Elements as Building Blocks 100

5.4.1 Packets . 101

5.4.2 Architecture . 103

5.4.3 Processing Element . 103

5.4.4 Communication Structure . 103

5.4.5 Global Controller . 104

5.4.6 Buffer . 105

5.4.7 Router . 107

5.4.8 Functional Unit . 109

5.4.9 Functional Element . 111

5.4.10 Pipeline . 116

5.4.11 Ports . 120

5.5 Describing an Architecture Template . 121

5.5.1 Composition Rules. 121

5.5.2 Architecture Description Language. 123

5.6 Programming an Architecture Instance . 127

5.6.1 Application Network . 127

5.6.2 Mapping . 128

5.6.3 Programming Model . 128

5.6.4 Example . 133

5.7 Conclusions . 135

91

92 5.1 Architectures

T
HE subject of this chapter is the modeling of architecture instances of the architecture template
of stream-based dataflow architectures that yield cycle-accurate performance numbers. In the

Y-chart approach, we must be able to derive architecture instances from an architecture template that
we can evaluate to obtain performance numbers. As motivated using the abstraction pyramid shown
in Figure 3.3, we want to model those architecture instances at a higher level of abstraction, i.e., we
represent only the details relevant to obtaining the performance of an architecture instance, suppress-
ing irrelevant details. As motivated in Chapter 4, the Performance Modeling Basis (PMB) describes
exactly those details relevant to describing the performance of a system. The PMB can be expressed
using only processes, semaphores and delays. In this chapter, we use these primitives together with
the concept of building blocks that was also introduced in Chapter 4 to describe architecture instances
cycle-accurately. This way we model architectures at a level that is more abstract than that offered by
standard hardware description languages.

We start off in Section 5.1 with explaining what we consider an architecture to be; until now,
we have given only pictorial representations of architectures. We also explain what we consider a
cycle-accurate model to be. Modeling an architecture in the context of the Y-chart approach implies
that we need to derive an instance from the architecture template of stream-based dataflow architec-
tures. In Section 5.2, we explain the four issues involved in this modeling process. In Section 5.3, we
explain how executable architecture instances are constructed from building blocks. We construct a
building block for each architectural element of the architecture template of stream-based dataflow ar-
chitectures and we construct executable models of architecture instances by combining these building
blocks. Stream-based dataflow architectures are composed of many different architectural elements.
In Section 5.4, we model each architectural element as a building block and describe in detail its
structure and its behavior. We also show how only the three PAMELA primitives (semaphores, pro-
cesses and delays) introduced in Chapter 4 are used to model the various architectural elements. We
describe an architecture template in Section 5.5, using composition rules. Stream-based dataflow ar-
chitectures are programmable architectures. In Section 5.6, we explain the programming model of
stream-based dataflow architectures. We show how instances of the stream-based dataflow architec-
ture are programmed for a particular application, leading to the routing program that is down-loaded
onto the global controller. We conclude this chapter by presenting a comprehensive example in which
we program a particular architecture instance for a particular application.

5.1 Architectures

So far, in our references to architectures, and especially stream-based dataflow architectures, we have
depended on our rather intuitive understanding of what an architecture might be. Since this chapter is
about modeling architectures, we begin by explaining what we consider an architecture to be.

5.1.1 Pictorial Representation

Architectures are normally represented in a pictorial way, using block diagrams. Theseblock diagrams
describe a network consisting of boxes and lines connecting the boxes to each other. The boxes are
given names related to the kind of functions they are supposed to perform. We have been presenting
the stream-based dataflow architecture in exactly this way, which is shown again in Figure 5.1. In this
figure (which is the same as Figure 2.2, but shown again here for clarification), we gave names to the
boxes to indicate their function in the architecture. We gave boxes the nameroutersto indicate that

Architectures 93

they should transport packets,buffersto indicate that they should temporarily store data andfunctional
unitsto indicate that they should select the correctfunctional elementat run-time, and so forth.

F
q

F
p

F
u

n
ct

io
n

al
 E

le
m

en
ts

R
o

u
te

rsO
u

tp
u

t
B

u
ff

er
s

P
ro

ce
ss

in
g

 E
le

m
en

t

Global Controller

Communication Structure

U
n

it
F

u
n

ct
io

n
al In

p
u

t
B

u
ff

er
s

C
o

ar
se

-G
ra

in
ed

Figure 5.1 . A pictorial representation of a stream-based dataflow architecture.

This way of representing an architecture is intuitive an it may lack precision. Yet when it comes
to reasoning about architectures, then it is mandatory that the architectures be given well-defined
structure and behavior. This does not exclude pictorial representation, but it does require that all
constituent parts be well defined and have unique behavior.

5.1.2 Architectures

Architectures can be represented intuitively using a block-diagram representation as discussed previ-
ously. We define an architecture as

Definition 5.1. ARCHITECTURES

An architectureis a network or graphG(V;E), whereV defines a set of architectural elements
andE defines a set of connections along which architectural elements can communicate with one
another corresponding to a particular model of architecture. 2

An architecture is thus made up of a network of interconnected architectural elements. The archi-
tectural elements in the network can only communicate with those architectural elements to which it
connects. We define an architectural elements as

Definition 5.2. ARCHITECTURAL ELEMENT

An architectural elementis either an architecture or an entity having a particular structure and
behavior. 2

Examples of architectural elements are routers, functional elements, and global controllers. Each
of these architectural elements describes a particular behavior. A router routes packets, a functional

94 5.1 Architectures

element executes a particular function, and the global controller governs the flow of packets. Using
these architectural elements, we can describe, for example, the stream-based dataflow architecture
shown in Figure 5.1 as a network of architectural elements, giving the architecture a distinct structure
and behavior in time.

Alternative Behaviors

Stream-based dataflow architectures describe a class of architectures within which architectural choices
are present. A communication structure, for example, can have either a FCFS or TDM behavior. Sim-
ilarly, functional units can have a packet-switching or sample-switching behavior, or a buffer can have
a handshake, a bounded FIFO, or an unbounded FIFO buffer behavior.

Given these choices, we look at architectural elements as having a particularpropertythat is real-
ized using one or more behaviors. The property of a communication structure is that it communicates
packets from routers to input buffers, the property of a functional unit is that it selects the correct
functional element at run-time, and the property of a buffer is that it stores data temporarily. This
leads to the notion of architectural element types, which we define as

Definition 5.3. ARCHITECTURAL ELEMENT TYPE

An architectural element typedescribes the aggregated properties of an architectural element with-
out implementing these properties using a particular behavior. 2

Therefore, if we use architectural element type ‘Buffer’ in an architecture, we indicate that it has
to store data temporarily, without specifying which behavior implements this property. We can still
choose between a handshake behavior, a bounded FIFO behavior, and an unbounded FIFO behavior.

5.1.3 Cycle-accurate Model

An architectural element describes the behavior of a piece of hardware that it models. It describes the
function of the hardware in time, in which time is divided into cycles that we define as

Definition 5.4. CYCLE

A cycleis multiple of a clock cycle as used in synchronous hardware. 2

The duration of a behavior of an architectural element can be expressed in cycles. Since an
architectural element models a piece of hardware, it can only describe the behavior of the hardware it
represents functionally correctly at the level of cycles. As such, an architectural element is a cycle-
accurate model of the hardware. We define a cycle-accurate model to be

Definition 5.5. CYCLE-ACCURATE MODEL

A cycle-accurate modelis a model that describes the behavior of the actual hardware that it rep-
resents correctly at time instances separated by cycles. 2

We use cycle-accurate models of hardware, e.g. the architectural elements, because it simplifies
the description of the behavior of architectural elements significantly. We rely in this chapter on
the PMB presented in Chapter 4 to describe the architectural element cycle-accurately. The four
components of the PMB can be expressed in terms of high-level primitives like processes, semaphores,
and delays. These high-level primitives permit us to specify the behavior of architectural elements in
less detail, as we will show in Section 5.4. Due to the abstract descriptions, a consequence is that the
simulation speed increases and that it become easier to modify the behavior of architectural elements.

Architectures 95

5.2 Modeling Architectures

Modeling an architecture in the context of the Y-chart implies that we derive architecture instances
from the architecture template; for example, the architecture template of stream-based dataflow archi-
tectures described in Chapter 2. The problem of constructing an executable performance model of an
architecture instance involves the following four issues:

1. We must be able to describe an architecture template.

2. We must be able to define particular architecture instances of an architecture template.

3. We must be able to construct an architecture instance such that we can obtain performance
numbers.

4. We must be able to program the architecture instance such that it can execute applications.

The four issues are shown in Figure 5.2. This figure shows the architecture template from which
an architecture instance is derived. Which instance that is, must be specified in some way, most likely
in a textual format. In the modeling process, architectural elements are interconnected according to
the specification of an architecture instance, resulting in an executable performance model. Finally,
the architecture instance needs to be programmed to execute a particular application.

Modeling

Define an
Architecture Instance

Architecture Template Architectural Elements

Architecture
Instance

Programming

3

2

1

4

Figure 5.2 . The four issues involved in performance modeling in the context of the Y-chart.

In the remaining part of this chapter, we describe the four elements of Figure 5.2 in separate
sections.

5.3 Modeling Architectures using the PMB

To model an architecture instance at a high level of abstraction, we express architectural elements in
terms of the PMB. This implies that we have to identify the four components of the PMB in stream-
based dataflow architectures. Functional units and functional elements, for example, are driven by
the availability of data and we can implement this behavior using condition synchronization. Routers

96 5.3 Modeling Architectures using the PMB

communicate exclusively with one global controller. We implement this kind of interaction using mu-
tual exclusion. Functional elements execute functions to process data samples taking a certain amount
of time, which we implement using execution time. Packets have different lengths and the length of a
packet determines the amount of time a functional element requires to operate on a particular packet.
We implement this behavior using conditional control flow.

5.3.1 Machine-oriented Modeling Approach

We use the machine-oriented modeling approach to describe architecture instances of the stream-based
dataflow architecture, i.e., we view an architecture as a machine that processes material. The machine
is described by the architectural elements like buffers, functional units, and routers. The material is
described by the stream that flows through the architecture. As streams (the material) flow through the
architectural elements (making up the machine) they are processed by the architectural elements. How
the architectural elements operate together to process streams is controlled by the routing program that
is down-loaded onto the global controller. Thus, the architectural elements define the resources and
the streams define the workload.

In the machine-oriented modeling approach, we model resources mainly using active primitives
[Kreutzer, 1986]. We describe functional elements, functional units, and routers using one or more
processes. We describe the remaining resources, i.e., the communication structure, the global con-
troller, and buffers, using semaphores. Although we could have modeled these resources as active
elements, we use semaphores because these lead to a more efficient simulation. In contrast to the
material-oriented modeling used in Chapter 4, here data dependencies and tasks representing a work-
load are distributed over various architectural elements.

5.3.2 Building Blocks

We introduced building blocks in Chapter 4 to describe a system in terms of the PMB. Building
blocks describe architectural elements well, because architectural elements are also self-contained
entities having a particular structure and behavior. Therefore, if we describe architectural elements as
building blocks, we can describe architecture instances by simply combining building blocks (see, for
example, Figure 4.5).

Describing a FIFO Buffer

A building block is an object and an object consists of a data part and methods. Methods define
an interface that other objects use to communicate with an object. If we consider the architectural
element ‘FIFO’, we know that we want to write data to the buffer to store it and, later, read this data
from the same buffer using a FIFO behavior. To access the FIFO buffer we define areadand awrite
method. The implementations of the read and write methods of object FIFO are given in Program 5.1.

Because we model a buffer as a passive element, we use onlypam P andpam V statements that
operate on the semaphoresdata androom . The FIFO buffer has a particular capacity and we initialize
the semaphoreroom with the valuecap and initialize the semaphoredata with the value zero. To
see how a FIFO buffer behaves, we need a process that writes to the buffer and a process that reads
from the buffer, i.e., the classic Producer/Consumer example [Ben-Ari, 1982].

Architectures 97

Program 5.1. THE READ AND WRITE METHODS OF AFIFO BUFFER

FIFO::read
{

pam P (data); // Is there data available?
aSample = queue[readfifo]; // read from buffer
readfifo = (++readfifo)%cap;
pam delay (1); // Reading takes one cycle
pam V (room); // Tell there is room again

}
FIFO::write(aSample)
{

pam P (room); // Is there Room on the FIFO?
queue[writefifo] = aSample; // Write in buffer
writefifo = (++writefifo)%cap;
pam delay (1); // Writing takes one cycle
pam V (data); // Tell there is data available

}

ReadWrite

FIFO Buffer

ReadWrite

Process Process

Producer Consumer

Figure 5.3 . A simple Producer/Consumer system.

Producer/Consumer Example

A simple producer/consumer system is given in Figure 5.3. A writeprocesstries to write samples into
a FIFO buffer that has a capacity of 4 positions. Concurrently, a readprocesstries to read samples
stored in the FIFO buffer. The FIFO buffer is modeled as an object with aread and awrite method,
as given in Program 5.1. The writeprocessaccesses the FIFO buffer using thewrite method and the
readprocessaccesses the FIFO using theread method.

If the write processwants to write a sample into the FIFO buffers by using thewrite method,
there needs to be room available in the buffer. This condition is checked using thepam P(room)

statement. If no room is available, the writeprocessblocks until data becomes available. When room
is available, sampleaSample is written in the circular bufferqueue and then apam V is executed
on data .

Concurrently with the write process, the readprocesstries to read samples from the FIFO buffer
with theread method. To read a sample, there needs to be data available. This condition is checked
using thepam P(data) statement. If no data is available, the readprocessblocks and remains
blocked until data becomes available. Semaphoredata initially causes the blocking of the read
process, but after the writeprocessexecutespam V(data) , indicating that data is available, the read
processunblocks, taking a sample from thequeue . This is followed by executingpam V(room) to
indicate that room is again available to store a new sample.

98 5.3 Modeling Architectures using the PMB

Cycle-Accuracy and Cycle Calibration

Reading or writing a sample into the FIFO buffer takes time and must be taken intoaccount when
modeling hardware. In both the methodsread and write we therefore included thepam delay
(1) statements, which causes the reading and writing of samples to take time. The readprocess
trying to read a sample at t=10 will execute thepam delay statement in theread method and, as a
consequence, the time stamp of the readprocesschanges from t=10 to t=11. The same applies, after
the necessary changes, for writing a sample into the FIFO buffer.

In a real hardware implementation, this reading and writing might requirex clock cycles. If we
take 1 time unit, which is modeled with thepam delay (1) statement, equal to thesex clock cycles,
we relate the virtual PAMELA time to the notion of clock cycles. Now each time unit is a cycle
representingx clock cycles. We calibrate a cycle by taking the number of clock cycles required to
read a sample from a buffer or to write a sample to a buffer.

5.3.3 Architectural Element Types

We have shown that we can construct a FIFO buffer to which a sample can be written or from which a
sample can be read. In the architecture template of the stream-based dataflow architectures, however,
we indicated that buffers can have various behaviors, of which the FIFO behavior is only one choice.
In the example given in Program 5.1, the behaviors of theread andwrite methods are fixed, while
we want them to be a choice.

Object Oriented Techniques

To implement such options, we rely on object oriented programming principles like polymorphism
and inheritance. An object is instantiated from a class definition. We can describe a hierarchy of class
descriptions usinginheritance, which specifies that a derived class inherits the data part and methods
of its parent class. These derived classes thus have at least the same methods as their parent class, but
they can re-implement methods usinglate bindingor polymorphism. This technique allows one and
the same method to have different implementations describing different behaviors. Finally, there exists
in object oriented programmingabstract classeswhich only define methods but no implementations.
In this case, derived classes only inherit the method description and it is the responsibility of the
derived class to implement these methods. We use abstract class definitions to provide a uniform
interface for derived classes.

The Buffer Type

We use abstract classes and inheritance to describe architectural element types. For each type we
define an abstract class and derive new classes implementing the abstract methods. In this way, we
attain architectural element types with a uniform interface having different behaviors. Using abstract
classes, we defined a uniform interface that other types can use to communicate with this type, without
their knowing which behavior a type actually uses.

Architectural element typebufferhas several possible implementations (e.g. handshake, bounded,
and unbounded FIFO). Therefore we describe typebuffer as an abstract class defining the methods
read andwrite. Since classbuffer is abstract it does not provide an implementation for these meth-
ods. We derive new class descriptions from classbufferthat represent a handshake buffer behavior, a
bounded FIFO buffer behavior, and an unbounded FIFO buffer behavior. These derived classes have

Architectures 99

Class
Buffer

Hand
Shake

Bounded

Unbounded
Read

Write

Abstract Class Derived Class

Provides the Interface Implements the Interface

FIFO

FIFO

Figure 5.4 . The buffer class defines the interface (e.g., the read and write methods) that
other classes implement.

the same two methodsreadandwrite from the buffer class via inheritance, but implement them dif-
ferently, resulting in a different behavior. The handshake buffer, the bounded FIFO buffer, and the
unbounded FIFO buffer implement the two methods using a single buffer position, a circular buffer,
and a linked list, respectively.

The separation between the abstract classbuffer and the three derived classes is illustrated in
Figure 5.4. Architectural element typebuffercan store data temporarily using the uniform interface
which consists of aread and awrite method. Nevertheless, typebuffer can store data using three
different behaviors.

For architectural elements that can have more than one behavior (see Table 2.1), we construct
abstract classes as shown in Figure 5.5. For these abstract classes, we derived classes that provide the
implementation of the methods of the abstract classes. In Figure 5.5, we see again the architectural
element typebuffer with its three implementations as described in Figure 5.4: handshake, bounded
FIFO and unbounded FIFO. One architectural element type, the processing element, does not have an
implementation. It represents a hierarchical architectural element that serves as acontainerfor other
element types.

Revised Producer/consumer System

We have revised the way we model the producer/consumer system shown in Figure 5.3. In Figure 5.6,
we show the producer/consumer system modeled using building blocks. It shows three building blocks
of which two are processing elements (A andB) that exchange samples with each other via the FIFO
buffer (FIFO Buffer). Processing elementA is the producer and processing elementB is the consumer.

The representation of the active building blocksA andB was already explained in Chapter 4. Note
that the structural part ofA andB contains references to the architectural element typeBuffer and not
to a FIFO buffer. In theprocessdescription of processing elementA, theprocesswrites a sample
to theOut buffer. Inprocessdescription of Processing ElementB, theprocessreads a sample from
the In buffer. In contrast to theprocessdescriptions given in Chapter 4, these processes start all over
again when they have written a sample to a buffer or when they have read a sample from a buffer.
Thus, these processes read and write samplescontinuously; in other words, they operate on streams.

The representation of the passive building blockFIFObuffer does not encapsulate a process, but
instead uses methods to describe the behavior of the building block. The methodsread andwrite

100 5.4 Modeling the Architectural Elements as Building Blocks

(Architectural Element) (Type) (Behavior)

Buffer

Pipeline

Functional Element

Handshake

Synchronous
Asynchronous

Functional Unit Packet-switching
Sample-switching

Processing Element

Functional Element

Controller

Router

Architectural
Elements

Base Class Abstract Classes Derived Classes

First-come-first-served
Round Robin

First-come-first-served
Round Robin
Time-Division-Multiplexed

Time-Division-Multiplexed

Bounded FIFO
Unbounded FIFO

Figure 5.5 . The class hierarchy of architectural elements and different behavior imple-
mented by derived classes.

(of which the implementation is given in Program 5.1), operate on the two semaphoresroom and
data. Strictly speaking, the structure part of the FIFO buffer is void, since this building block does
not contain structural information. However, for clarification, we included the two semaphores stored
in the data part of the object FIFO.

Notice that the processes are unaware of whether the buffers they read to or write from by call-
ing the methodsread andwrite are handshake buffers, bounded FIFO buffers, or unbounded FIFO
buffers. Theread andwrite methods of the FIFO buffer are selected via polymorphism. Note also
that the processes are shielded from the knowledge of which buffer they are reading from or writing to
in the system. NeitherinBuffer noroutBuffer relates to a specific element in the system. Only when
a processing element is instantiated as part of total system does theinBuffer of PEB relate to buffer
In and theoutBuffer of PEA to bufferOut.

5.4 Modeling the Architectural Elements as Building Blocks

In this section, we explain how the architectural elements of stream-based dataflow architectures are
described as building blocks. In Table 5.1, we show the architectural element types that we consider,
along with the section in which each type is discussed.

As Table 5.1 shows, we make a clear distinction between active building blocks and passive build-
ing blocks. If we describe an active building block, we describe itsprocess. If we describe a passive

Architectures 101

Behavior

Structure

this-pointer

Process {

}

Out In

Passive Building Block Active Building BlockActive Building Block

Behavior

Structure

this-pointer

Process {

}

ReadWrite

Method read

Method read

Structure

Behavior

inBuffer.read();outBuffer.write();

Buffer Out Buffer InSemaphore room
Semaphore data

Processing Element BProcessing Element A
(Producer) FIFO Buffer (Consumer)

Figure 5.6 . The producer/consumer system, revised to included building blocks to model
the system.

element, we describe itsmethodsusing onlypam P, pam V, andpam delay statements. Although
a type can have more than one behavior, we explain only one behavior. We make an exception for
functional units and functional elements of which we discuss both the packet-switching and sample-
switching of functional units and functional elements. We also make an exception for type pipeline;
for this type, we discuss both the synchronous and asynchronous pipeline behavior.

In Table 5.1, we make the distinction betweenworkload modelingand resource modeling. In
the workload modeling part, we explain how we represent streams that flow through architecture
instances. In the resource modeling part, we explain architectural element types. In discussing types,
we start by describing two types that serve only as containers for other types.

In describing the structure and behavior of architectural elements, we use the same pseudo C
language as used in Chapter 4. Although pointers are used in the real code, we avoid the use of pointers
in the program descriptions, to make the code more readable. Furthermore, we used constructs of the
Standard Template Library(STL) [Musser and Saini, 1996] in the code. This library provides high-
level programming constructs likevectorsandsets. These constructs appear asvector<> andset<> .
The object on which the constructs operate is given between the<> brackets. Sometimes a vector is
used where the use of a set would be more intuitive. However, a vector can be implemented more
efficiently than a set, leading to faster execution. In general, we write C code in such a way that we
obtain the fastest executable code. In Chapter 7, we show that the speed at which we can evaluate the
performance of an architecture instance is a very important quality.

5.4.1 Packets

Streams that flow through the architecture are each partitioned into packets, forming a stream of
packets. Packets consist of a header part and a variable data part. The data part contains samples and
the header part contains header fields. We construct objects for both data types. We created the class
Sample for the sample object, andHeader for the header object. To be able to store both types in a
buffer, we have to create an abstract classToken from which we derive classSamples as well as class
Header . The classToken thus represents an arbitrary data structure that we treated as a monolithic

102 5.4 Modeling the Architectural Elements as Building Blocks

Architectural elements Type Section Behavior Passive/Active

Workload Modeling
Packet 5.4.1 Sample

Header
Resource Modeling

Architecture 5.4.2 Container
Processing Element 5.4.3 Container
Communication Structure 5.4.4 SwitchMatrix Passive
Global Controller 5.4.5 FCFS Passive
Buffer 5.4.6 Bounded FIFO Passive
Router 5.4.7 FCFS Active
Functional Unit 5.4.8 Sample-Switching FU Active

Packet-Switching FU Active
Functional Element 5.4.9 Function Execution Passive

Packet-switching Read Active
Sample-switching Read Active
Write Active

Pipeline 5.4.10 Synchronous Passive
Asynchronous Passive

Ports 5.4.11 Write Ports Passive

Table 5.1 . Outline of discussion of various architectural elements.

entity.

Sample

A samplehas a valuevalue and carries a time stamptime stamp . The structure of a sample is given
in Structure 5.1.

Structure 5.1. THE STRUCTURE OF ASAMPLE

int time_stamp;
double value;

Object sample carries a true value that is operated upon by the function implemented by a func-
tional element. Because an individual sample can hold a value, we can simulate the functional be-
havior of an architecture correctly. This allows us to construct both uninterpreted and interpreted
performance models.

Header

A headerconsists of four fields: the base fieldbase , the source fieldsource , the function field
function and the length fieldlength . The structure of a header is given in Structure 5.2.

Although header consists of four fields, we modeled it as one data structure. Thebase (Hb)
andsource (Hs) fields are involved in the routing of packets through an architecture instance. The

Architectures 103

Structure 5.2. THE STRUCTURE OF AHEADER

int base;
int source;
int function;
int length;

function field (Hf) stipulates which function of a functional unit should process the data part of a
packet and, finally, thelength field (Hl) indicates the number of samples contained in the data part
of the packet.

5.4.2 Architecture

Type architectureconsists of the following types: a communication structurecommunication , a
global controllercontroller , and a set of processing elementsprocessingElements . The struc-
ture of elementarchitectureis given in Structure 5.3.

Structure 5.3. THE STRUCTURE OFELEMENT ARCHITECTURE

GlobalController controller; /* structure */
CommunicationStructure communication;
set<ProcessingElement> processingElements;

Typearchitecturecaptures the top-level structure of a stream-based dataflow architecture (see, for
example, Figure 2.1). It does not describe a behavior, because it serves only as a container for other
types.

5.4.3 Processing Element

Type processing element(PE) consists of a vector of input buffersinBuffers , a vector of output
buffersoutBuffers , a vector of routersrouters and one functional unitfunctionalunit . The
structure of elementprocessing elementis given in Structure 5.4.

Structure 5.4. THE STRUCTURE OFELEMENT PROCESSINGELEMENT

vector<Buffer> inBuffers; /* structure */
FunctionalUnit functionalUnit;
vector<Buffer> outBuffers;
vector<Router> routers;

Typeprocessing elementdoes not describe a behavior, because it only serves as a container for
other types. Two special kinds of PEs do exist: asource PEand asink PE. The source PE produces
packet-streams and the sink PE consumes packet-streams.

5.4.4 Communication Structure

Typecommunication structurecontains the parametercapacity and the semaphorechannels . The
structure of elementcommunication structureis given in Structure 5.5.

104 5.4 Modeling the Architectural Elements as Building Blocks

Structure 5.5. THE STRUCTURE OFELEMENT COMMUNICATION STRUCTURE

int capacity; /* parameter */
semaphore channels; /* semaphore */

Type communication structureprovides for the communication of streams of packets between
processing elements. It has a number of channels available, the total of which equalscapacity . The
semaphorechannels is initialized with the value ofcapacity . The semaphore describes condition
synchronization. If we assign a value of 1 tocapacity , we model a bus structure consisting of
one channel. If an architecture instance containsM output buffers and we assign this valueM to
capacity , we model a switch matrix.

We model a switch matrix behavior of typecommunication structureas a passive element. Its
methods are given in Program 5.2. A routerprocessclaims a channel on the communication structure
using themethodclaimChannel . It checks the availabilityof channels by executingpam P(channels) .
If no channels are available, the routerprocessblocks until a channel becomes available. A routerpro-
cessreleases the channel by calling themethodreleaseChannel , which executespam V(channels) .

Program 5.2. METHODS OF THECOMMUNICATION STRUCTURE

method claimChannel
{

pam P (channels);
}
method releaseChannel
{

pam V (channels);
}

5.4.5 Global Controller

Typeglobal controllercontains therouting program , the semaphorerequests and the two pa-
rameters:service time and capacity . The structure of elementglobal controller is given in
Structure 5.6.

Structure 5.6. STRUCTURE OFELEMENT GLOBAL CONTROLLER

Program routing_program; /* parameters */
int service_time;
int capacity;
semaphore requests; /* semaphore */

Typeglobal controllersteers the flow of packet streams through an architecture instance. It in-
cludes arouting programcontaining the information that routers use to route packet streams through
an architecture instance. For that purpose, routers interact with the global controller, which provides
new header information (how this is done is explained later when we discuss routers). The router uses
this information to update the header information of the packet that it is currently processing. The
global controller also provides a reference to an input buffer. A router must send the packet that it is
currently processing to this referenced input buffer.

Architectures 105

The global controller can handle a certain amount of requests from routers in parallel, as indicated
by the parametercapacity . The semaphorerequest is initialized using this parameter value and
describes mutual exclusion. When a router posts a request to the global controller, it takes the global
controller a certain amount of time (in cycles) to serve that request. The parameterservice time

indicates how many cycles such a request takes, describing execution time in terms of the PMB.
The global controller contains a routing program. This is a list of entries in which each entry

contains three fields: abase value, a function value, and areferenceto an input buffer. These three
fields are part of the programming model of stream-based dataflow architectures (which we explain
in detail in Section 5.6). The global controller can address the entries in the list. It uses the base field
of a received header to do this. An example of a program list is given in Table 5.2, where the first
column defines the address of an entry and the three values next to the address describe the content of
the entry: the three fields mentioned previously. Suppose a header arrives at the global controller. The
base field of this header carries the value 2. The global controller must therefore look up the entry
with address 2, which is represented in Table 5.2 by the gray box. This entry contains the value 4 for
the base field, the value 1 for the function field and references to input bufferB 0.

Address Base Function Input Buffer
1 2 0 B 0
2 4 1 B 0
3 4 1 B 1

Address of an Entry Entry

List of Entries

Table 5.2 . Example of a routing program of the global controller.

We model the FCFS behavior of typeglobal controlleras a passive element. One of its methods
is given in Program 5.3. The global controller also implements methods similar to the ones described
in Program 5.2 that are calledclaimController andreleaseController . These methods op-
erate on semaphorerequests . After a routerprocessclaims the global controller usingmethod
claimRouter , it calls themethod newHeader to access the global controller.

The global controller decodes the received headeraHeader , to gain access to the base field of
the header. This gives the addressaddress of the required entry in the routing program. Before
the global controller assigns new values to the header, it gives the value of the base field to the source
field of the header, as part of the programming model. Next, the base and function fields receive a new
value based on values stored in the entry in the routing program. This takesservice time cycles and
is modeled by delaying the routerprocessinteracting with the global controller forservice time

cycles using thepam delay statement. After this delay, the global controller returns a reference to
a new input buffer part of an architecture instance. The routerprocesswill send the packet that it is
currently processing to this input buffer.

5.4.6 Buffer

Typebuffercontains the parametercapacity , and two semaphoresroom anddata . The structure of
elementbuffer is given in Structure 5.7.

Type buffer interconnects either the input of a functional unit to the communication structure
or the output of a functional unit to a router. A buffer can store a particular number of samples,
as given by the parametercapacity . The buffer initializes the semaphoreroom with the parameter

106 5.4 Modeling the Architectural Elements as Building Blocks

Program 5.3. GLOBAL CONTROLLER METHODS

method newHeader(aHeader)

// Get The Address from the Base
int address = aHeader.getBase();

// Assign the Base field to the Source Field
aHeader.setSource(aHeader.getBase());

// Get New information from the Program
aHeader.setBase(program[address].getBase());
aHeader.setFunction(program[address].getFunction());

pam delay (service_time);

// Determine new input Buffer
input_Buffer = program[address].getBuffer();
return input_Buffer;

Structure 5.7. THE STRUCTURE OF ABUFFER

int capacity; /* parameter */
semaphore room; /* semaphores */
semaphore data;

capacity and initializes the semaphoredata with a zero value. Both semaphores describe condition
synchronization.

We model the bounded FIFO behavior of typebufferas a passive element. Its methods are given
in Program 5.4. This program describes the implementation of themethod read and themethod
write of a FIFO buffer (These two methods were also discussed in Section 5.3).

The bounded FIFO buffer uses aqueue to store tokens (vector<Token>). When a routerpro-
cessreads aToken 1 from a FIFO buffer using themethod read , the readmethod first executes
pam P(data) . If no Token is available, the router blocks, implementing a blocking read. It remains
blocked until new data becomes available. Otherwise, the readmethodcontinues by reading aToken

from the queuequeue . After the readmethodreads theToken , it executespam P(room) to indicate
that new room is available on the FIFO buffer.

When a routerprocesstries to write aToken into the FIFO buffer, it uses themethod write .
Theprocessexecutespam P(room) . If no room is available in the FIFO buffer, the routerprocess
blocks, implementing a blocking write. The routerprocessremains blocked until new room becomes
available. Otherwise, theprocesscontinues by storing theToken in the queue. After theToken is
stored, theprocessexecutespam V on semaphoredata , using the write method, to indicate that new
data is available on the FIFO buffer.

Before a routerprocesswrites to an input buffer, it must first have exclusive access to this buffer.
For that purpose, the input buffers are extended with a semaphore that implements mutual exclusion.
This semaphore is claimed and released in a similar way as used in the communication structure and
global controller (described in Program 5.2).

1We sayToken , because it can be either aSample object or aHeader object

Architectures 107

Program 5.4. THE METHODS OF AFIFO BUFFER

method read
{

pam P (data); // Is there data available?
aToken = queue[readfifo]; // Read from the buffer
readfifo = (++readfifo)%cap;
pam V (room); // Tell there is room again

}
method write(aToken)
{

pam P (room); // Is there Room on the FIFO?
queue[writefifo] = aToken; // Write in the buffer
writefifo = (++writefifo)%cap;
pam V (data); // Tell there is data available

}

5.4.7 Router

TypeRoutercontains a reference to a global controllercontroller , a reference to the communica-
tion structurecommunication and a bufferbufferIn . Its structure is given in Structure 5.8.

Structure 5.8. ROUTER

Controller controller; /* structure */
CommunicationStructure communication;
Buffer bufferIn;

Type router is responsible for the routing of packets produced by a functional unit to its new
destination in an architecture instance, via the communication structure. A router interacts with the
global controller for each packet to provide arriving packets with new header information.

We model the FCFS behavior of typerouter as an active element. Itsprocessis given in Pro-
gram 5.5. It starts by reading a header from the bufferbufferIn , which connects to the router at
its read side and a functional unit at its write side. It takes the routerprocess4 cycles to read in a
header (i.e., one cycle for each header item). Then the routerprocessclaims the global controller
controller to get new header information and a reference to a bufferoutBuffer . The routerpro-
cesssends the packet-stream from thebufferIn to theoutBuffer . Before it can do this, it must
claim a channel on the communication structurecommunictionStructure . In addition, the router
processchecks whether theoutBuffer is available2. When both a channel and theoutBuffer are
available, the routerprocessreads in a sample from bufferbufferIn and writes out the sample to
buffer outBuffer , taking in total one cycle. The routerprocessrepeats this routine until it has read
and written anumberOfSamples samples to the new input buffers, describing the conditional control
flow of the PMB. The routerprocessreleases theoutBuffer and the channel on the communication
structure and starts all over again with reading a new header.

2The namesinBuffer andoutBuffer buffer are given as seen from the router, becauseof the localized references
technique. This sometimes leads to confusing names because the output buffer of a router is the input buffer connected to a
functional unit.

108 5.4 Modeling the Architectural Elements as Building Blocks

Program 5.5. A FIRST-COME-FIRST-SERVED ROUTER PROCESS

process FCFS_router {
// Read Header
header = bufferIn.read();
pam delay (4);

controller.claimController(); {
// And decode to which new buffer the data should go
bufferOut = controller.newHeader(header);
// Assign the output Buffer to the outputPort
outputPort(bufferOut);

}
controller.releaseController();

communicationStructure.claimChannel(); {
bufferOut.claimBuffer();
{

// Send out the New Header
bufferOut.write(header);
pam delay (4);
// Determine how many Samples are in a Packet
numberOfSamples = header.getLength();
// Read the rest of the packet!
for numberOfSamples do {

aSample = bufferIn.read();
pam delay (1);
bufferOut.write(aSample);

}
}
// Packet is processed, we can continue
bufferOut.releaseBuffer();

}
communicationStructure.releaseChannel();

}
}

Architectures 109

5.4.8 Functional Unit

TypeFunctional Unit(FU) consists of a vector of input portsinputPorts , a vector of output ports
outputPorts and a vector of functional elementsrepertoire . The structure of elementFunctional
Unit is given in Structure 5.9.

Structure 5.9. STRUCTURE OF A FUNCTIONAL UNIT

vector<ReadPort> inputPorts; /* structure */
vector<WritePort> outputPorts;
vector<FunctionalElement> repertoire;

TypeFU contains of a number of functional elements (FE) which defines the repertoireF (see
Equation 2.1). At run-time, the FU selects the correct FE to execute. Besides activating the correct
FE, it also strips off headers from packets at input ports and prepares new headers on output ports.
Two special kinds of FUs exist: asource FUand asink FU. A source FU does not have input ports.
A sink FU does not have output ports. A source FU is exclusively part of a source PE, and a sink FU,
of a sink PE.

We model the behavior of typeFE as an active element. The process describing the behavior is
referred to as the local controller of the FU. The local controller can describe two different behaviors:
a packet-switching behavior where the local controller switches between FEs in between packets, and
a sample-switching behavior where the local controller switches between FEs in between samples.

We are now going to discuss the behavior of the local controller for the packet-switchingprocess
described in Program 5.6 and the sample-switchingprocessdescribed in Program 5.7.

Packet-Switching

The packet-switchingprocessswitches between FEs on the boundaries of packets. In this mode, the
FEs of the repertoire can share input and output buffers (or ports, because a buffer connects to a port)
of a FU. A special port, theopcode port(which connects to the opcode buffer), is reserved for the
run-time selection of the FE. The header arriving at the opcode port is used by the local controller to
activate a specific FE. The opcode port is always the first input port of a FU (i.e.inputPorts[0]).
We have explicitly named this port (and buffer) to emphasize its special role.

A model of a FU is depicted in Figure 5.7. The FU has two input ports and two output ports
(represented by black circles in the figure). The repertoire of the FU consists of two FEs:FE0 and
FE1. The FEs connect via their ports to the ports of the FU. This is called thebindingof the FE to the
FU. In this mode, FEs always share the opcode port of the FU. In the example of Figure 5.7, the two
FEs also share an output port of the FU.

Theprocessrepresenting the local controller of the FU is represented as the white disc in Fig-
ure 5.7. Although not shown explicitly in the figure, theprocessconnects to all input and output ports
to strip off headers from read ports and prepares new headers on write ports. Theprocessactivates a
FE using the semaphoresExecute andDone.

The packet-switchingprocessstarts by reading a header from theOpcodePort . It gets the correct
function fieldfunc from the header viamethod getFunction . Next, theprocessselects from the
vector repertoire the func -th FE. Theprocessstrips off the header from the input ports of this
FE and places new headers on the output ports of this FE. Next, theprocessactivates the FE from
the repertoire by executingpam P(fe.execute) . This semaphore is connected to the functional
elementfe . This is directly followed by executingpam V(Done) , which causes theprocessto

110 5.4 Modeling the Architectural Elements as Building Blocks

Functional Element 1

Functional Element 0

Opcode Port

Packet-Switching
Process

Input Ports Output Ports

Binding

execute done Controller
Local

Figure 5.7 . Model of a Packet-Switching FU.

block: theprocesshas given control to the functional elementfe . In packet-switching mode, the
functional element will readlength samples from the opcode port before it returns control to the
FU. The functional element returns control by executingpam V(Done) . This causes the blocked
processto continue, which will start all over again by reading a header from the opcode port. The
semaphoresExecute andDone describe a dependency between the FU and a functional element and
thus describe the condition synchronization of the PMB.

Program 5.6. THE PACKET-SWITCHING PROCESS

process packet_controller {
// Read a Header from the Opcode Buffer
header = opCodePort.readHeader();

// Determine the correct function of the repertoire
func = header.getFunction();
// Resolve which function from the repertoire we want to use
fe = repertoire[func];

// How many Inputs and Outputs do we have for the function
inputPorts = fe.getInputBufferVector();
outputPorts = fe.getOutputBufferVector();

// Read Header from the Buffers, except the Opcode Buffer
foreach inputport 2 inputPorts n{opCodePort} {

inputport.stripHeader();
}

// Prepare a Header on the Outputs that are involved
foreach outputport 2 outputPorts {

outputport.pushHeader(header);
}

fe.setLength(length);

pam V (fe.execute); // hand over control to the functional Element

pam P (fe.done); // Wait until the Functional Element terminates
}

Architectures 111

Sample-Switching

The sample-switchingprocessswitches between FEs on the boundaries of samples. In this mode,
FEs cannot share buffers and each FE requires its own set of input and output buffers. Each buffer
relates exclusively to a particular FE. In sample-switching mode, the function field is not used to select
the correct FE from the repertoire. The sending of a packet to a particular buffer already determines
which FE will operate on the data part of the packet. Nonetheless, each FE requires its own opcode
port. The header read from this port is needed to create new headers on the output ports of a FE and
to determine when to read the next header, becauselength samples are read from the opcode buffer.
In Figure 5.8, a sample-switching FU is shown that has a repertoire of two functional elements:FE0
andFE1. Each FE has its own set of input and output buffers. Each FE also has its own opcode port.

Theprocessrepresenting the local controller of the FU is represented as the white disc in Fig-
ure 5.8. It describes a Round Robin scheduler that decides which FE to activate using the semaphores
Execute andDone.

Functional Element 1

Functional Element 0

Sample-Switching
Process

Input Ports Output Ports

Opcode Port

Opcode Port

execute done
Local

Controller

Figure 5.8 . Model of a sample-switching FU.

Theprocesschecks whether all FEs from the repertoirerepertoire are runnable in a Round
Robin fashion (What is required for an FE to be runnable, will be explained later when we discuss
the FEs). Theprocesschecks whether a FE is runnable by testing the semaphorefe.execute using
the pam T statement of the Run-Time Library. A semaphore is eitherblockingor non-blocking.
If semaphorefe.execute of FE fe tests as being blocked (i.e.REQUEST), it represents a re-
quest to the Round Robin scheduler that it wants to execute. Theprocessactivates the FE (i.e.
pam V(fe.execute)) and waits until the FE finishes (i.e.pam P(fe.done)).

When none of the FEs in the repertoire has posted a request at a particular time instanceT , the
processtries again to check the FEs one cycle later (i.e., at timeT + 1) by advancing its time using
thepam delay (1) statement.

5.4.9 Functional Element

Type Functional Element(FE) consists of a vector of input portsinputPorts , a vector of output
portsoutputPorts , a pipelinepipeline and a functionfunction . It also contains the parame-
ters latency and initiation period and the semaphoresexecute anddone . The structure of
ElementFunctional Elementis given in Structure 5.10.

Type functional elementexecutes functionfe function on the data part of packets. It reads
this data from the input ports with a particular throughput, given by the parameterinitiation

112 5.4 Modeling the Architectural Elements as Building Blocks

Program 5.7. SAMPLE SWITCHING FU PROCESS

process FUsample_controller {
activate = false;
// Check requests to execute from all FEs in the repertoire
foreach fe 2 repertoire {

if (pam T (fe.execute) == REQUEST) {
activate = true;
pam V (fe.execute); // Grant the Request
pam P (fe.done); // Wait until FE terminates

}
}
if (activate == false) {

// No FE posted a request, advance
// time by one cycle and try again
pam delay (1);

}
}

Structure 5.10. THE STRUCTURE OF AFUNCTIONAL ELEMENT

vector<ReadPort> inputPorts; /* Structure */
vector<WritePort> outputPorts;
Pipeline pipeline;
Function fe_function;

int latency; /* Parameters */
int initiation period;

semaphore execute; /* Semaphores */
semaphore done;

Architectures 113

period 3. Functions in the domain of signal processing are often pipelined. Therefore, samples
reside in the FE for a certain amount of time depending on the depth of the pipeline. The parameter
latencyindicates how many stages a pipeline contains. We indicate each stage as being aslot in the
pipeline.

Type functional element consists of three parts, as shown in Figure 5.9. It consists of areadpart,
apipelineand awrite part. We model the read and write parts as active elements and the pipeline as a
passive element. A FE has a readprocessand a writeprocesswhich are both given as white circles
in Figure 5.9. The pipeline is shown in between the two processes. The semaphore pairexecute and
done relate only to the readprocessand describe the same semaphores as given in Figure 5.7 and
Figure 5.8.

In describing the functional element, we first look at how functionfe funtion executes, fol-
lowed by a discussion on the readprocessand writeprocessof a functional element. The pipeline is
discussed later in Section 5.4.10.

WritePipelineRead
process process

ReadPort WritePort

Read Process executes the function of the FE

execute done

Figure 5.9 . Model of a functional element.

Function Execution

The FE executes a signal processing function. For that purpose, the readprocesscalls themethod
executeFunction22 as given in Program 5.8. This causes the functionfe function to execute,
consuming two input samples and producing two output samples.

When the readprocessexecutesmethod executeFunction22 , it starts to read the samples
sample0 andsample1 from respectively input portsportIn[0] andportIn[1] of the FE. The
samples read by calling themethod getSample belong to the data part of packets because the local
controller of the FU has already removed the headers on both ports. After reading the samples, the
function fe function executes, consuming the two input samples while producing the two new
samplesnew sample0 andnew sample1 .

The functionfe function is not pipelined, since it does not operate concurrently on different
sets of samples. Nevertheless, we want to describe pipelined functions. Hence, we have to model the
pipeline behavior explicitly, as we explain next.

Modeling Pipeline Behavior Suppose we want to describe the behavior of a function that is pipelined
latency slots4 deep. If we put a new sample in the pipeline at each new cycle (e.g. letinitiation period

equal one), the first sample should leave the pipelinelatency cycles later at the earliest. Using this

3Recall that the initiation period is the reciprocal of throughput
4Also referred to as thedepthof a pipeline

114 5.4 Modeling the Architectural Elements as Building Blocks

Program 5.8. EXECUTE A 2 INPUT, 2 OUTPUT FUNCTION

method executeFunction22 {
sample0 = portIn[0].getSample();
sample1 = portIn[1].getSample();

// Execute the FE-function
(fe_function)(sample0, sample1, &new_sample0, &new_sample1);

// Calculate when these Samples are ready to leave the FE
leave_time = pam time () + (latency * initiation period);

// Pass the Execution to the sample
new_sample0.setTime(leave_time);
new_sample1.setTime(leave_time);

// Put results in the Pipeline
pipeline_portIn[0].putSample(new_sample0);
pipeline_portIn[1].putSample(new_sample1);

}

assumption, we model a pipeline as follows. The readprocessexecutes the functionfe function

instantaneously. Let the function produce new samples at, say, time instancet. The readprocess
calculates for these samples a timetl, which is the time instance at which these samples are allowed
to leave the FE. The timetl is calculated as

tl = t + latency: (5.1)

The timetl is stored in the time stamp (see Structure 5.1) of the samples produced by the function
fe function and the readprocessputs the samples in the pipeline.

The pipeline is basically nothing more than a FIFO queue. When the readprocesswrites samples
in a slot, all slots in the queue move one place. At the end of the queue, the writeprocesswants to
read a slot with samples. However, the pipeline does not give the slot to the writeprocessbefore the
time t0 of the writeprocessequals or is greater than the time stamptl of the samples stored in the slot
read by the writeprocess.

t0 � tl (5.2)

When the time of the writeprocesssatisfies Equation 5.2, the pipeline allows the writeprocessto
read the slot. As a consequence, the writeprocesswrite the samples contained in the slot to output
ports at timetl or later. Thus the samples leave the FE at the correct moment in time.

The initiation period valueinitiation period influences theresidence timeof samples in the
pipeline. If the initiation period of a FE increases, for example from one sample per cycle to one
sample per 2 cycles, the residence time of the sample in the pipeline increases. The pipeline of the FE
is filled with new slots at a lower pace. The time the samples can leave the FE instead becomes equal
to

t0 � t+ (initiation period � latency) (5.3)

Notice that we have completelyuncoupledthe function’s execution from the time it takes to execute.
This provides a very flexible way to change the behavior of the function, without needing to rewrite
the function. We only have to change the parameterslatency andinitiation period to obtain a
function that behaves as if it were pipelined more deeply.

Architectures 115

We defined a specific method in Program 5.8 to execute a function with 2 input arguments and 2
output arguments. It would be more convenient to have a generic method that calls any function with
n inputs andm outputs. However, a C function call always requires a fixed number of input arguments
while producing a fixed number of output results. Therefore, a generic solution is not possible and
we need a specific method for all different combinations of numbers of input arguments and output
results.

Read and Write Processes of a Functional Element

Type FE can have two possible behaviors: a packet-switching behavior or a sample-switching be-
havior. The packet-switching and sample-switching behaviors differ in how they describe the read
process, but the writeprocessis the same for both behaviors.

Packet-Switching Read Process of a FE A FE in packet-switching mode has a readprocessas
given in Program 5.9. When thisprocessstarts, it immediately blocks onexecute using apam P.
The FU in which the FE resides can activate theprocessby executingpam V(execute) . See, for
example, the end of Program 5.6 which describes the packet-switchingprocessof a FU. Here the
pam V is executed on semaphorefe.execute , which is the same semaphore asexecute . When
the processunblocks, it gets into a for-loop to guarantee that it readslength samples from the
opcode port. In the loop, the FE tries to get a slot on the pipelinepipeline . It blocks if no slot
is available. If a slot is available, the readprocessexecutes themethod executeFunction22 as
shown in Program 5.8. This causes the execution of functionfe function and the function results
are stored in the pipeline. Following this, the readprocessindicates to the pipelinepipeline that
new data is available by executingmethod readSlot of the pipeline. Next, the readprocessis
delayedinitiation period cycles using thepam delay statement. After the readprocesshas
readlength data samples from the opcode port, it executespam V(done) . The readprocesshas
processed a complete packet from the opcode buffer and gives back control to the local controller. This
describes the conditional control flow of the PMB. After the control is given back, the readprocess
blocks again on thepam Pexecute until the FU re-activates the FE.

Sample-Switching Read Process of a FEA FE in sample-switching mode has a readprocessas
given in Program 5.10. Recall that FEs do not share buffers in sample-switching mode. Therefore we
model the header processing within the readprocess, which is differently from the packet-switching
mode, where the header processing is done by the local controller of the FU.

The readprocessstarts by reading a header from the opcode buffer. This is followed by re-
moving headers from other input portsinputports and producing new headers on the output ports
outputports . After the header processing, the readprocessgets in a for-loop to make sure it reads
at leastlength samples from the opcode port. The readprocesstries to get a slot on the pipeline
pipeline . If a slot is available, the readprocessexecutes themethod executeFunction22 as
shown in Program 5.8. This causes the execution of functionfe function and the function results
are stored in the pipeline. Then the readprocessposts to the Round Robin scheduler of the FU in
which it resides that it wants to execute. It executespam P on semaphoreexecute , which is the
same semaphore asfe.execute in Program 5.7, and describes the sample-switchingprocessof a
FU. The readprocessblocks on the semaphore and remains blocked until the Round Robin scheduler
grants the readprocesspermission to proceed by executingpam V(execute) . What follows after
that was explained when discussing the readprocessin packet-switching mode. The only difference
is that the readprocessalready executespam P(done) already after it has processed one function

116 5.4 Modeling the Architectural Elements as Building Blocks

Program 5.9. READ PROCESSFUNCTION OF A PACKET-SWITCHING FE

process execute_packet {
// Wait until the local controller of the Functional Unit reads the
// Headers from the input ports
pam P (execute);

// Read at least the complete data part of the Opcode port
for i=0 to length step 1
{

// Get a write slot on the Pipeline
pipeline.getReadSlot();

// Call the Function
Execute_Function22();

// Arguments are stored in Slot, and stable
pipeline.readSlot();

// Model the throughput of this Functional Element
pam delay (initiation period);

}
// Complete Packet is processed, indicate to the FU this FE is done

pam V (done);
}

execution. Therefore, the Round Robin scheduler can execute another readprocessof another FE in
the next cycle. Finally, the readprocesscontinues until it has readlength samples. Then the read
processhas processed a complete packet from the opcode buffer and the readprocessstarts to read a
new header from the opcode port.

Write Process of a FE The writeprocessis the same for packet-switching and sample-switching
FEs. It is given in Program 5.11. The writeprocessstarts by obtaining a slot from the pipeline
pipeline using themethod getWriteSlot . If no slot is available, the writeprocessblocks. If a
slot is available, the writeprocessreceives the samples from the pipeline slot and puts them into the
appropriate output port, using themethodputSample . The writeprocessreads the slot only when its
time matches the time stamp of the samples. How this takes place is explained later when we discuss
the pipeline. After the writeprocesshas written all the samples of the pipeline slot into the output
ports, it releases the pipeline slot using thewriteSlot method. This frees up a slot in the pipeline
for use by the readprocessof the FE.

5.4.10 Pipeline

TypePipelineconsistsof a vector of input portsinputPorts and a vector of output portsoutputPorts .
It also contains the two semaphoresroom anddata . The structure of elementpipelineis described in
Structure 5.11.

Type pipeline models the pipeline in a FE. A readprocessputs samples onto the read ports
inputPorts . A write processputs samples onto the write portsoutputPorts . There are always as
many input ports as output ports. Besides ports, the pipeline accommodates a queuequeue of slots
(vector<slot>). This is a FIFO queue, implemented as a circular buffer. A slot on the queue con-

Architectures 117

Program 5.10. READ PROCESSFUNCTION OF A SAMPLE-SWITCHING FE

process execute_sample {

// Read a Header from the first input Buffer
header = opCodePort.readHeader();

// Read Header from the Buffers
// Start at 1, because the Opcode buffer is already read
foreach inputport 2 inputPorts n{opCodePort} {

inputport.stripHeader();
}

// Prepare a Header on the Outputs that are involved
// The binding is already resolved in the FE
foreach outputport 2 outputPorts {

outputport.pushHeader(header);
}

length = header.getLength();
for i = 0 to length step 1{

// Get a write slot on the Pipeline
pipeline.getReadSlot();

// Call the FE Function
Execute_Function22();

// Tell the Functional Unit we have the samples
// and want to execute the function
pam P (execute);

// Arguments are stored in Slot, and stable
pipeline.readSlot();

// Model the throughput of this Functional Element
pam delay (initiation period);

// Tell the Functional Unit we are done with the samples
pam V (done);

}
}

Program 5.11. WRITE PROCESSFUNCTION OF A FE

process FE_writeprocess {
// First we get the arguments from the Pipeline
pipeline.getWriteSlot();

j = 0;
// Read a sample from the pipeline slot to the
// Appropriate output port
foreach outputport 2 outputPorts {

aSample = pipeline_portOut[j].getSample();
outputport.putSample(aSample);
j = j + 1;

}
// Give the slot free
pipeline.readSlot();

}

118 5.4 Modeling the Architectural Elements as Building Blocks

Structure 5.11. THE STRUCTURE OF APIPELINE

vector<ReadPort> inputPorts; /* Structure */
vector<WritePort> outputPorts;

semaphore room; /* Semaphores */
semaphore data;

sists of a vector of samples (vector<Sample>). The number of samples stored in the slot depends
on the number of output ports of the FE. If a FE has three output ports, then a slot contains three
sample positions. The latency parameterlatency of the FE function stipulates the number of slots
contained in the queue. Thus, if the function has a latency of 7, then 7 slots are accommodated in the
queue.

A pipeline is shown in Figure 5.10. It has two input ports, two output ports and a queue containing
seven slots. Each slot can store two samples. The semaphoresroom anddata provide the synchro-
nization between the readprocessand writeprocessconnected to the pipeline. The semaphores
describe condition synchronization.

ReadPorts

Slot

WritePorts

Figure 5.10 . Model of a pipeline. It has two input ports, two output ports and a queue
containing seven slots. Each slot can store two samples.

Typepipelinehas two behaviors: asynchronousand anasynchronouspipeline behavior.

A synchronous pipeline allows a writeprocessto take a slot only if all of the slots in the pipeline
are full. If the writeprocessreads a slot, it cannot read a new slot until the readprocesswrites
a new slot.

An asynchronous pipeline has its readprocessuncoupled from the writeprocess. A write process
can read slots from the pipeline while a readprocessis blocking and a readprocesscan write
slots while a writeprocessis blocking. If the writeprocessreads slots, empty slots appear in
the asynchronous pipeline that are also referred to asbubbles. A readprocesscompresses these
bubbles when it writes slots while the writeprocessblocks.

We model the behaviors of typepipelineas a passive element. Program 5.13 goes with the read
method of a pipeline. Program 5.12 goes with the writemethod of a pipeline.

The Write Methods of Pipelines

The write methods of a pipeline are given in Program 5.12. When a writeprocessdemands a slot
from the pipeline using themethod getWriteSlot , the writeprocesschecks the semaphoredata

using thepam P statement to verify whether a full slot is available in the queuequeue . If so, then
the writeprocessreceives the slot from the queue. It takes out a singe sample from the slot, namely
the one at slot position 0. The writeprocesschecks the sample’s time stamp, which indicates when

Architectures 119

the sample should leave the FE. The writeprocesscalculates the differencedelay between the time
of the time stamp and its own current time as given bypam time. If delay is less than zero, the
current time is ahead of the time stamp. In this case, the sample must have experienced some delay
because of congestion. Nevertheless, it is ready to leave the FE. Ifdelay is greater than zero, then
the writeprocessdelays itselfdelay cycles, using thepam delaystatement. After the elapse of this
delay time, the samples of the slot leave the FE at the time instance calculated by the readprocess.

After the writeprocesshas received a slot and has written all the samples of the slot into output
ports, it signals that the slot is available again, using thereadSlot method. This method executes
pam V(room) , which indicates to the readprocessthat a free slot is again available.

Program 5.12. THE WRITE METHODS OF PIPELINES

method getWriteSlot
{

// Is a slot with data available?
pam P (data);
slot= queue[readfifo];
readfifo = (++readfifo)%cap;

// Get a sample from the slot
aSample = slot[0];

// Check time stamp against the current time
delay = aSample.getTime() - pam time () ;

// Slow down the sample if needed
if (delay > 0) {

pam delay (delay);
}

}
method writeSlot
{

--full_slots;
// There are free slots available
pam V (room);

}

The Read Methods of Pipelines

The read methods of a pipeline are given in Program 5.13. The readprocessclaims a slot on the
pipeline using themethod getWriteSlot . The readprocessdetermines whether a slot is available
by checking the semaphoreroom using apam P. If a slot is available, then the pipeline receives the
slot from the queue. Moreover, the readprocessinitializeseach slot position to NULL. This becomes
important when multi-rate functions are used. In that case the function does not always produce
samples (this will be explained in Chapter 6, when we discuss stream-based functions). The ‘NULL’
allows the writeprocessto distinguish between a new written sample and empty slot positions, so that
it knows whether it has to write a sample to an output port or not.

When a readprocesshas written to a slot, it uses themethod readSlot to signal that the slot
contains data. We model the distinction between synchronous and asynchronous pipelines in the way
we define themethod readSlot in Program 5.13. The firstreadSlot method is for a synchronous
pipeline. Thismethod indicates that data is available only when all slots of a pipeline are occupied.
If a pipeline containscap slots, data is only available whencap slots are full. If the pipeline is
full (i.e. full slots equalscap), the readprocessindicates that data is available by executing

120 5.4 Modeling the Architectural Elements as Building Blocks

pam V(data) . Hence, a writeprocesscan read a slot from the pipeline only when the readprocess
completely fills the pipeline.

The secondreadSlot method in Program 5.13 is for an asynchronous pipeline. In this case, the
readprocesswrites slots which the writeprocessreads as soon as they are written using themethod
getReadSlot . The writeprocess, however, is delayed until its time stamp has the correct value. In
the case of an asynchronous pipeline, the readprocesssignals immediately that data is available after
it executes thereadSlot method, by executingpam V(data) .

Program 5.13. THE READ METHODS OF A PIPELINE

method getReadSlot
{

// Is there a slot available on the Pipeline?
pam P (room);
slot = queue[writefifo];
writefifo = (++writefifo)%cap;
foreach sample 2 slot {

sample = NULL;
}

}
method ReadSlot (Synchronous Pipeline)
{

full_slots++;
// Only when the pipeline is completely full, data becomes available
if (full_slots == cap)

pam V (data);
}
method ReadSlot (Asynchronous Pipeline)
{

full_slots++;
pam V (data);

}

5.4.11 Ports

Ports act as interfaces between different architectural elements. For example, they handle the headers
in the FUs and FEs. Ports of FUs and FEs interface to input or output buffers. Pipeline ports interface
between the readprocessand writeprocessand the pipeline. Ports come in different variants. We
now take a closer look at one of them, the write port which connects to output buffers. This port
processes the new headers on the output ports. It also determines the time it takes to write a sample to
an output buffer.

Write Port

The structure of a write port of a FU (or a FE, because, for that matter, in both cases the write ports
are the same) is given in Structure 5.12. The structure description should actually contain only the
bufferoutBuffer , but for an explanation of how ports behave, we show other elements as well.

The write port connects to the bufferoutBuffer . It processes the headers that precede streams
of samples produced by FEs. Both the packet-switchingprocessof a FU and the sample-switching
readprocessof a FE push headers onto the queueheaderQueue in the write port. The write port
keeps track of the status of a packet using the variableslength andstate . Finally, the write port
has a variableOffset which plays an important role in the programming model of the architecture,
as we explain in Section 5.6.

Architectures 121

Structure 5.12. THE STRUCTURE OF AWRITEPORT

Buffer outBuffer; /* structure */
deque<Header> headerQueue;

int length;
int state;

int Offset;

The write port requires a header queue, because FEs are pipelined. It can happen that a packet-
switchingprocessof a FU or sample-switching readprocessof a FE tries to push a header onto the
write port usingmethodpushHeader before the processing of the previous packet has completed. A
readprocesscan already start to process a new packet before the writeprocesshas finished processing
the old packet. Nevertheless, a write port knows when a packet is done, using the two state variables
previously mentioned. The variablelength indicates the length of the packet. The variablestate

keeps track of the progress made with the filling of a packet of lengthlength .
The methods of a write port are given in Program 5.14. The writeprocessof a FE writes samples

to a write port using themethod putSample as shown in Program 5.11. Because the function of
a FE does not necessarily produce results on its outputs, it may be thataSample represents aNULL

instead of a sample. If aNULL is present, it is ignored because it indicates that the function did not
produce a result. Otherwise the writeprocesschecks whetheraSample is the first sample of a packet.
If so, it writes a header, followed by sampleaSample .

Writing a sample to this output port and thus to the output bufferoutBuffer requires one cycle
for the writeprocessand is modeled with apam delay statement. When a writeprocessof a FE
writes a sample at time instancet, it can write the next sample no sooner than at time instancet+ 1.

When the writeprocessmust write a header, it pops the first header from theheaderQueue .
It modifies the base field of the header by adding an offset (Offset) to the base field. Within the
method writeHeader , the writeprocessobtains thelength of the header and, finally, the write
processwrites the header to the output buffer. This takes four cycles, as modeled by thepam delay.
The writeprocessthus experiences an additional delay of 4 cycles when writing a header.

5.5 Describing an Architecture Template

The building blocks discussed in the previous section need to be combined to describe an architecture
instance of the architecture template of stream-based dataflow architectures. In this section, we look
at how we can describe an architecture template and how we can specify a given architecture instance
of the architecture template. Moreover, we describe how building blocks are combined to realize an
executable architecture instance.

5.5.1 Composition Rules

We describe an architecture template in terms ofcomposition rulesthat state which architectural
element types are allowed to connect with each other and to what extent. We use theBackus-Naur
Form (BNF) [Backus and Naur, 1959] to describe these composition rules.

At the top level, stream-based dataflow architectures consist of a global controller, a communi-
cation structure and a list of processing elements as explained in Chapter 2. The composition rule

122 5.5 Describing an Architecture Template

Program 5.14. WRITE PORT METHODS

method pushHeader(aHeader)
{

headerQueue.push(aHeader);
}
method putSample (aSample)
{

// Write the data if valid
if (aSample != NULL)

// Sample is valid
if (state == 0)

// First Sample, write the Header First
writeHeader();

// Write the Sample
pam delay (1);
output_buffer.write(aSample);
state = ++(state)%length;

}
method writeHeader
{

// Each time we write a Header, we have to take it off the Queue
header = headerQueue.pop();

// Get the correct offset of the output port
header.setBase(header.getBase() + Offset);

// Get the length of the packet
length = header.getLength();

// While writing the Header, give back control to caller
pam delay (4);
output_buffer.write(header);

}

Architectures 123

expressing this top-level structure is expressed in BNF as follows:

Architecture := Global Controller Communication Structure List Of Pes

Next, we further specify what a list of processing elements (PEs) implies. A list of processing
elements should contain at least one or more processing elements. We express this requirement in a
recursive way as follows:

List of Pes := PE
j List of Pes PE

In this rule the “j” symbol indicates a choice: we can select this or (“j”) that. Thus, we select
either a single PE (PE) or a list of PEs (List of Pes) that could again consist of a single PE or a list
of PEs, and so forth. Different variants exist of a processing element. They can either be a regular PE,
a source PE, or a sink PE. The composition rule describing the existence of these three types is stated
in BNF as follows:

PE := Regular PE
j Source PE
j Sink PE

Recall that the “j” symbol indicates a choice. If we look further at these three variants, then we
see that each variant has its own set of requirements in terms of the functional unit type, the use of
input and output buffers and the use of routers. The composition rule expressing these requirements
for each of the three PE variants is as follows:

Regular PE := Input Buffers FU Output Buffers Routers
Source PE := Source FU Output Buffers Routers
Sink PE := Input Buffers Sink FU

We can continue to construct composition rules until we have completely described the architec-
ture template of stream-based dataflow architectures. We have done just that; the BNF rules describing
the complete architecture template of stream-based dataflow architectures are given in Appendix A.

5.5.2 Architecture Description Language

The composition rules used to describe the architecture template can also be used to define thegram-
mar of a language. We use the BNF rules of Appendix A to define the grammar of theArchitecture
Description Language. We can use this language to describe architecture instances of the architecture
template.

To compare a textual description of an architecture instance with the grammar, we used the tools
Flex [Paxson, 1990] andBison[Donnelly and Stallman, 1992]. Flex breaks up the textual description
into keywords and other identifiers. Bison matches these keywords and identifiers against the grammar
of the language (i.e., the set of BNF rules given in Appendix A) and activates the approriate action if
a feasible composition rule is found.

124 5.5 Describing an Architecture Template

Creating a Building Block for an Architectural Element

We now consider the composition rules for architectural element typebufferand show how and when
a parser creates a building block for this type. The composition rule expressing the three different
behaviors of typebufferis:

Input Buffer := Bounded FIFO
j Unbouned FIFO
j HandShake

Now, if we look futher at the composition rule related toBounded FIFO , we find a composition
rule that looks as follows:

Bounded FIFO := INPUTBUFFER ’ f’ TYPE ’:’ FCFS ’(’ NUM ’)’ ’;’ ’ g’
f

// Associated Action in C++
Buffer* buffer = new FIFO($7);

g

In this composition rule, we introducekeywordslike INPUTBUFFER, TYPEandFCFS. The parser
uses these keywords to decide where to break up a textual description defining a particular architecture
instance. It then tries to match these keywords with the defined set of BNF rules. If the parser finds
a valid rule, like the one given forBounded FIFO , it activates the action associated with that rule,
which is given between the curly brackets. We associated the action of creating a building block for
the FIFO buffer with the composition rule for theBounded FIFO , by instantiating an object of class
FIFO using thenew statement.

In the instantiation of this object or building block, the parser passes along a parameter. In the case
of the FIFO buffer, the parser passes on the parameter representing the capacity of the FIFO buffer.
The parameter is the seventh position in the composition rule ofBounded FIFO , which corresponds
with theNUMfield describing a numerial value. This value is represented by$7 and is passed on to
the constructor of the FIFO buffer and bound to the parametercapacity (shown in Structure 5.7).

Specify an Architecture Instance

Using the architecture description language, we can specify one particular architecture instance of
the stream-based dataflow architecture. As an example, in Figure 5.11 we show the architecture
description of the architecture instance shown in Figure 5.12. We include the same terms (preceded
by the symbol “//”) as used in Figure 5.12 in this architecture description.

In the first lines, we define a communication structure (Communication) and a global controller
(Controller), followed by a list of processing elements (ProcessingElement). The list consists
of three processing elements: a sink PE, a regular PE, and a source PE. For the regular PE we define
the input and output buffers (InputBuffer , OutputBuffer respectively), the routers (Router)
and the functional unit (FunctionalUnit) . We also give the regular PE the nameFilter . The
functional unit of PEfilter consists of two functional elements (FunctionalElement), named
LowPass andHighPass . The ports of the functional element bind to the ports of the functional unit
in a particular way as described in the binding part (Input andOutput part).

Architectures 125

Architecture Dataflow {
Communication { Type: FCFS (10); }
Controller { Type: Fcfs (1, 5); }

ProcessingElement Source(0,1) { // B_3
OutputBuffer { Type: BoundedFifo (100); }
Router { Type: Fcfs ; } // R_0
SourceUnit {

Type: Burst (packets= 120,base= 45);
FunctionalElement input(0,1) { // FE_{source}

Function { Type: GeneratorSource (file= in); }
Binding {

Output (0->0);
} } } }

ProcessingElement Filter(2,2) {
InputBuffer { Type: BoundedFifo (100); } // B_0 & B_1
OutputBuffer { Type: BoundedFifo (100); } // B_4 & B_5
Router { Type: Fcfs ; } // R_1 & R_2
FunctionalUnit {

Type: Packet ;
FunctionalElement LowPass(1,2) { // FE_{source}

Function { Type: LowPass (initiation period= 1,latency= 18); }
Binding {

Input (0->0);
Output (0->0);
Output (1->1);

} }
FunctionalElement HighPass(2,1) { // FE_{source}

Function { Type: HighPass (initiation period= 1,latency= 10); }
Binding {

Input (0->0);
Input (1->1);
Output (0->1);

} } } }

ProcessingElement Sink(1,0) {
InputBuffer { Type: BoundedFifo (100); } // B_2
FunctionalUnit {

Type: Burst (packets= 120);
FunctionalElement Sink(1,0) { // FE_{sink}

Function { Type: GeneratorSink (file= out); }
Binding {

Input (0->0);
} } } }

}

Figure 5.11 . An Example of an architecture description.

126 5.5 Describing an Architecture Template

R2

Communication Structure

Global Controller

B0 B1 B2

Source FE1FE0 Sink

B4 B5B3

R0 R1

Figure 5.12 . A particular stream-based dataflow architecture instance.

Levels of Parameterization

We defined in Chapter 2 the architecture template of stream-based dataflow architectures as a list of
parameters as shown in Table 2.1. The architecture description, however, uses a language to make
the construction of an architecture instance easier and more intuitive, while defining the same list of
parameters, albeit implicitly. Parameters now appear in three different forms:structural, behavioral,
andfunctional. We now describe these three forms of parameterization and illustrate how they surface
in the architecture description shown in Figure 5.11.

Structural Parameters: A variable number of architectural elements can be used to describe an
architecture instance. The number of processing elements used and the number of functional
elements used in a functional unit are both examples of structural parameters. In the architecture
description, for example, we have selected three processing elements. For one of these, the
regular processing element, we selected a functional unit containing two functional elements.

Behavioral Parameters: An architectural element type has one or more behaviors. For example, the
communication structure has two different behaviors (FCFS or TDM), and the input and output
buffers have three different behaviors (handshake, bounded FIFO, and unbounded FIFO). A
behavioral parameter selects a behavior from the list of available behaviors. In the architecture
description, the keywordTypeindicates these behavioral parameters. The behaviors selected for
each type are emphasized by writting them in italics. For example, the communication structure
is of typeFCFSand the input buffers are of typeBoundedFifo.

Functional Parameters: Each behavior of an architectural element can have its own particular pa-
rameter. For example, a FIFO buffer requires a parameter value indicating its capacity (for all

Architectures 127

buffers the capacity is set to100 samples) and the global controller requires a value for the
number of requests it can handle in parallel (1) from routers and how many cycles a request
takes (5).

The functions installed onto the functional element can also have parameters. In the architecture
description, the functionsGeneratorSource andGeneratorSink in the source and sink PE,
respectively, have a parameter indicating from which file theGeneratorSource should read
(file=in) or to which file theGeneratorSink should write (file=out). The functions
LowPass andHighPass have parameters likelatency andinitiation period , but could
also have additional parameters that express, for example, an array of filter coefficients.

5.6 Programming an Architecture Instance

Stream-based dataflow architectures are programmable architectures. We need to execute applications
on architecture instances, and therefore we want to program the architecture instance. Programming
an architecture instance means that we down-load a routing program onto the global controller of the
architecture instance. The global controller is responsible for the correct routing of packets through an
architecture instance. For that purpose, routers interact with the global controller to obtain new header
information that they store in the header of the packet they process. Which information to store in
such a header is determined in theprogramming modelused in stream-based dataflow architectures.
Before we explain this model5, we first have to say very briefly something about how we model
applications as a network and what mapping of an application onto an architecture instance implies.
After we discuss modeling of applications and mapping, we introduce the programming model.

5.6.1 Application Network

Applicationsare modeled as anetworkor a direct graphG(V;E). In these graphs, the nodesV execute
functions and the edgesE represent FIFO buffers. The functions consume streams of samples from the
buffers and produce streams of samples on buffers. The buffers interconnect the nodes in a point-to-
point fashion. An example of an application modeled as a network is given in Figure 5.13. The nodes
designate the functionfA; fB; : : : ; fQ, andfsource andfsink. Thefsource produces a stream of samples and
the fsink consumes the streams. How each function consumes and produces samples, or alternatively,
what the model of computation is, will be discussed in detail in Chapter 6. Only structural information
of the network is relevant for the purpose of explaining the programming model.

A B P E Q

C

D

Source Sink

1 3 4 7 8 10

2 6

5 9

Figure 5.13 . An application network.

5This programming model is based on a proposal of Leijten et al. [1997]

128 5.6 Programming an Architecture Instance

5.6.2 Mapping

To understand the programming model, we need to know how application networks such as the one
given in Figure 5.13 map onto an architecture instance. If we look at application networks, we see that
they contain three elements: edges, nodes, and streams. Somehow these three elements need to find
a place on the architecture instance. Although we come back to this issue of mapping in Chapter 7,
we will say already that we describe application networks in such a way that the three elements map
directly onto architectural elements, as illustrated in Figure 5.14.

In this figure, we see that an edge (Edge) maps onto a combination of an output buffer (OutputBuffer),
a router (Router), and an input buffer (InputBuffer). A node (Node) maps one-to-one onto a func-
tional element (FE) of a functional unit (functionalunit). A node can only map to the FE when the FE
implements the same function as the node. If a function of the application is not implemented by one
of the FEs, the application cannot be mapped. Finally, the stream (Stream) consisting of individual
samples (indicated as light gray circles) maps to a stream of packets, where a single packet (packet)
has a header (header) which consists of four fields (indicated as dark gray circles) and a data part
(data). The four header fields are: the base fieldHb, the source fieldHs, the function fieldHf, and the
length fieldHl (see the picture of a header in Figure 2.3). When we refer to a header, we represent it
as< Hb;Hs;Hf;Hl >.

Router
Input BufferOutput Buffer

Edge

FE

(maps to) (maps to) (maps to)

Functional Unit

Node Stream

header

packet

data

Figure 5.14 . Mapping of an application onto an architecture.

5.6.3 Programming Model

In the programming model, we must number the edges in application networks in a particular way.
Another part of the programming model relates to how routers and fucntional units change the content
of headers at run-time, which we explain below.

Numbering the Edges in the Application Network

We number all edges in an application network in such a way that each edge has a unique number.
Moreover, we number the edges that leave a node in such way that we obtain consecutively numbered
output edges. To illustrate what we mean by “consecutively numbers output edges”, we show in
Figure 5.15 part of an application network consisting of three nodes:P, Q andR. All the edges
that leave these nodes have a unique number, and they are numbered consecutively from left to right.
The edges leaving nodeP are numbered 2,3; The edges leaving nodeQ are numbered 4,5,6; and the
edges leaving nodeR are numbered 9,10,11. In this numbering, the left-most edge carries the lowest

Architectures 129

number. This number is called thebaseof the node and plays an important role in the programming
model. In Figure 5.15, the base of nodeP is 2, the base of nodeQ is 4, and the base of nodeR is 9.

Q

P

R

1

8

2 3 7

6
4

5

9

10 11

(base)

(base)

(base)

Figure 5.15 . Edges leaving a node must have consecutive numbers.

The edges in the application network in Figure 5.13 are numbered in the correct way: all edges
have a unique number. Furthermore, the edges leaving nodeA are numbered consecutively (i.e. 2,3),
as are the edges leaving nodeB (i.e. 4,5). The base of nodeA is equal to 2 and the base of nodeB
is equal to 3. If a node has only one output edge, the base equals the number of that edge. Thus, the
base of nodeP is equal to 7.

Header Changes at a Router

A router interacts with the global controller to obtain new content for the header of the packet that it
is currently processing. When a packet arrives at a router, the header field of that packet changes as
given in Equation 5.4.

< Hb;Hs;Hf;Hl >old
Router
! < H0

b;Hb;H0
f;Hl >new (5.4)

The length of the packet remains unchanged and thus fieldHl remains unchanged. As part of the
programming model, the base fieldHb of the old header is copied into the source field (Hs) of the new
header. Therefore in Equation 5.4 we write the old value ofHb at the position ofHs. The two fields
in the new header that receive new content are the base fieldH0

b and the function fieldH0
f. This new

content is provided by the global controller.
When the global controller receives a header, it uses the base fieldHb to determine the address

of the entry containing the new header information (see Section 5.4.5). Each entry consists of a base
field, a function field, and a reference to an input buffer. The content of the base field is assigned to
H0

b and the content of the function field is assigned toH0
f.

As part of the routing program, the global controller provides a reference to the correct input
buffer. The correct programming model, however, is that routers interact with the communication
structure to obtain a channel to a specific input buffer based on fieldHs in a header. Nonetheless,
we use a slightly different scheme: we avoid another decode step in the communication structure, by
allowing the global controller to give a straightforward pointer to an input buffer. As a consequence,
a router now only needs to claim a channel on the communication structure and it needs to claim
the input buffer exclusively to model the existence of a path from the router to the input buffer. The
scheme used correctly describes the programming model, but it very much simplifies the model of the
communication structure, which leads to a faster simulation.

130 5.6 Programming an Architecture Instance

Address Base Function input Buffer
1 2 0 B 0
2 4 1 B 0
3 4 1 B 1

list of Entries

Address of an Entry Entry

Global Controller

(Output Buffer)

(Input Buffer)

Communication
Structure

Router

< 2; 10; 0; 100 >old

< 4; 2; 1; 100 >new

(interaction)

Figure 5.16 . A router with an input buffer and an output buffer. Since the router does
not connect directly to the input buffers, but via the communication structure, the commu-
nication structure is also shown. To get the correct content for the new header, the router
interacts (as indicated by the dashed line) with the global controller which contains a routing
program.

The changes taking place in the header are shown again in Figure 5.16. The figure shows a router
with an input buffer and an output buffer. Since the router does not connect to the input buffers
directly, but instead via the communication structure, we show the communication structure explicitly
in the figure. To obtain the correct content for the new header, the router interacts (as indicated by the
dashed line) with the global controller. The global controller contains a routing program, which is the
one already shown in Table 5.2 and discussed in Section 5.4.5.

When a packet arrives with the header< 2; 10; 0; 100 >, the base field (Hb = 2) is assigned
to the source fieldHs in the new header. The length of the packet (Hl = 100) is copied without
modification into the new header. To get the new content for the base field and function field, the
router interacts with the global controller. To decide which entry is relevant for the packet, the global
controller looks at the base fieldHb. This provides the correct address of the entry applicable for this
header. In Figure 5.16, the base field equals 2, which addresses the entry containing a base field equal
to 4 and a function field equal to 1. Therefore, in the new header the new base field becomesH0

b = 4
and the new function fieldH0

f = 1. Finally, the new header is< 4; 2; 1; 100 >.

Header Changes at a Functional Unit

When a packet is produced by a functional element having more that one output, the router must be
able to distinguish between the packets, i.e., which packet is produced on which output. A router does
not generally know to which output port of a functional element it connects. A functional element may
share an output buffer with other functional elements. Furthermore, the output ports of a functional
element can bind to any particular output port of a functional unit. Packets produced at different
outputs still need to go to different locations in an architecture instance. A router considers a packet
to be different from other packets when it has a different value for the base fieldHb.

Functional units use a particular scheme to decode which output port produces a particular packet.
In a functional unit, the header read from the opcode buffer is used to produce new headers on the

Architectures 131

output ports (see Section 5.4.8, where we explain the modeling of functional elements). The header
read from the opcode buffer contains the base fieldHb. An Offsetis added to this base field of which
the value depends on the output port used (see Section 5.4.11 where we describe the write port). A
functional unit thus changes the old header content into a new header content as given in Equation 5.5.

< Hb;Hs;Hf;Hl >old
FU
!< Hb + Offset;Hs;Hf;Hl >new (5.5)

All the output ports of the functional unit have consecutively ordered offset values. Thus, if the
functional unit hasN output ports, then the left-most output port has an offset of 0 and the right-most
output port has an offset equal toN � 1.

The concept of adding an offset is illustrated in Figure 5.17. This figure shows a FU with one input
port and two output ports. The output ports are numbered consecutively from left to right: the left
output port has anOffset of 0 and the right output port has anOffset of 1. Now when a header arrives
at the input port (theOpcodeBuffer) with Hb equal to 4, the local controller of the FU produces two
new headers at the two output ports, with one having a new base field of 4 and the other of 5.

< 4 + 1;Hs;Hf;Hl >new

0 1
Offset

Opcode
Buffer

(Input Buffer)

(Output Buffers)

(Functional Unit)(Functional
Elements)

< 4;Hs;Hf;Hl >old

< 4 + 0;Hs;Hf;Hl >new

Figure 5.17 . Base number of a functional unit. This figure shows a FU with one input and
two output ports. The output ports are numbered consecutively from left to right: the left
output port has a Offsetof 0 and the right output port has an Offsetof 1.

Program an Architecture Instance in 3 Steps

We explained what happens with a header at routers and at the output ports of functional units. We
also explained how we number edges in an application network. We now explain how these three
elements combine to program an application. Recall that the output edges of a node and the output
ports of a functional unit are both numbered consecutively. We now show how the edge numbers
relate to the base field (Hb) of a header.

Suppose a functional unit reads a header from the opcode buffer. The header has a base field
containing the base of a node in an application network. For example, the base fieldHb carries the
value 4, which is the base of nodefB in the application network given in Figure 5.13. The functional

132 5.6 Programming an Architecture Instance

unit produces new headers on the output ports by adding an offset to the base field. The new base
fields now represent the edge numbers of the edges leaving the node. Therefore, for the application
network in Figure 5.13, the new headers contain base fields equal to 4 and 5, which are the two output
edges of nodefB.

The packet with a header containingHb = 4 traverses edge number 4 and the output packet
containingHb = 5 traverses edge number 5. For one packet a router reads the entry at address 4,
which contains routing information to route the packet to a functional element executing the function
fP. For the other packet, a router reads the entry at address 5, which contains routing information to
route the packet to a functional element executing the functionfD.

Now assume that a functional unit contains a functional element which executes the functionality
of nodef in an application network. If the base field of the header on the opcode buffer of a functional
unit contains the base value of nodef , then the new headers produced on the output ports of the
functional unit contain base fields representing the edge numbers of the edges leaving nodef . This is
due to the consecutively numbered edges leaving a node as well as the output ports having consecutive
numbered offsets. At routers, the new base fields cause entries to be read from the routing program at
addresses which equal the edge numbers leaving nodef .

Address Base Function Input Buffer
old Hb newHb Hf Name

1 2
2 6 1 B0

3 4 1 B0
...

...
...

...
10 x

Table 5.3 . The routing program stored in the global controller.

A routing program for an application network is set up in three steps:

1. We set up a table, as shown in Table 5.2. There is an entry in the table for each edge in a
network. We create a table with the addresses 1 to 10, as shown in Table 5.3, for the application
network in Figure 5.13, which contains edges numbered from 1 to 10.

2. For each address – which corresponds to an edge – we determine to which node it points in the
application network. We fill in the base of this node at the base address. Thus, in the application
network in Figure 5.13, address 1 points to nodefA, which has a base equal to 2. Address 2
points to nodefC, which has a base equal to 6. We fill in the base field for each address in
Table 5.3. Address 10 in this table points to thefSink function. This function does not have
a base and in this case we can fill in any arbitrary value. We therefore wrote down a “x” to
indicate a “don’t care” situation.

3. We fill in specific information about the architecture instance, namely the input buffer field and
the function field. Each address in Table 5.3 points to a node in the application network execut-
ing a particular functionf . In the architecture instance, we identify a functional unit containing
a functional element that executes the same functionf . The position of this functional element
in the repertoire of the functional unit determines the value of the function field. The selected
functional element reads from a different input buffer for each input argument. The address

Architectures 133

we consider corresponds with an edge in the application network as well as to one of the input
buffers of the functional element. The name of this buffer determines the content of the buffer
field. We repeat the procedure to find the function field and input buffer field until all entries in
Table 5.3 are filled.

Note that in the last step, we locate a functional element that executes the correct functionf .
Hence, executing an application on an architecture requires that there be at least a functional element
available for each function in the application network. It is always possible to construct an architecture
that can always execute the application. To do this for each node in the application network, we
construct a FU with one FE executing the node’s function. The application network then mapsone-to-
oneto the architecture. If an architecture instance is given and a function of the application network
can be executed by more than one FE, then we can arbitrarily choose a FE. However, one choice can
give better performance than another choice.

5.6.4 Example

To further illustrate how an application maps onto an architecture instance, we now go though an
example in which we map a particular application onto a particular architecture instance. The archi-
tecture instance is given in Figure 5.12 (this is the architecture instance described in the architecture
description in Figure 5.11) and the application network is given in Figure 5.18.

The application network is depicted in Figure 5.18. The application has four function nodes:
fSource, fSink, f0 andf1. The functionfSource generates a stream of samples (represented as the black
dots) on edge 1. These samples are taken in by functionf0, resulting in two streams: one on edge 2
and one on edge 3. The samples on these edges are taken in by functionf1, resulting in one stream on
edge 4. Finally, the samples on this edge are taken in by the functionfSink where the stream ends.

(base)

1 4
Source f0 f1 Sink

3

2

Figure 5.18 . The Application.

The Mapping

We map the application functionf0 to the architecture instance’s functional elementFE0. Similarly,
we map the application functionf1 to the architecture instance’s functional elementFE1. Hence,FE0
andFE1 execute the functionsf0 and f1, respectively. The functionsfSource andFSink map to the
source FE and sink FE. The edges in the application map onto combinations of an output buffer, a
router and an input buffer, as shown in Table 5.4. Thus, edge 2 maps onto output bufferB4, routerR1

and input bufferB0.

Routing Program

The global controller uses a routing program as given in Table 5.5. This table causes the architecture
instance to execute the application network given in Figure 5.18.

134 5.6 Programming an Architecture Instance

Edge Output Buffer! Router! Input Buffer
1 B3 ! R0 ! B0

2 B4 ! R1 ! B0

3 B5 ! R2 ! B1

4 B5 ! R2 ! B2

Table 5.4 . Mapping of Edges to buffer/router/buffer combinations.

Address Base Function Input Buffer
old Hb newHb Hf Name

1 2 0 B0
2 4 1 B0

3 4 1 B1
4
5 x 0 B2

Table 5.5 . The routing program stored in the global controller.

We derived this table using the 3-step approach given in the previous section. First of all, we need
to set up an entry for each edge in the application network. The edges are numbered from 1 to 4 and
we create the list of entries as given in Table 5.3 for these four edges. Secondly, we fill in the base
fields. For example, address 1 represents edge 1 in the application network and points to the node
executing functionf0. This node has a base value of 2 and we thus fill in a 2 at the base field on
address 1. We repeat this procedure for all addresses in Table 5.5. Thirdly, we fill in the function field
and buffer field for each entry in the table. We look again at address 1, which represents edge 1. The
functionf0 maps toFE0, the first entry in the function repertoire of the regular PE. Consequently, the
function field of the entry at address 1 is assigned the value 0. Furthermore, edge 1 maps to the input
buffer of FE0, which isB0. Thus, the buffer field of the entry at address 1 is assigned the nameB0.

Table 5.3 differs from Table 5.5 in the sense that the entry at address 4 is empty, while there is an
entry at address 5 although edge 5 does not exist in the application network. Entry 4 is empty because
the output port ofFE1 does not connect to output bufferB4, but connects instead to output buffer
B5. The port connecting to bufferB5 adds an offset of 1 to the base field. This interferes with the
consecutive number of the output ports and, as a consequence, address 4 never appears. In this case,
we start to renumber the addresses – but also the edge numbers in the application network – from
address 4 onward by adding a 1 to each address. Address 4 thus becomes address 5.

The result of the interaction between the routers and the global controller is changes in the headers
at both routers and at the output ports of functional units while they flow through the architecture. The
changes taking place in the headers are given for the application in Table 5.6.

Resulting Behavior in Time

The routing program given in Table 5.5 causes the interleaving of two streams in time on the same
FU, as shown in Figure 5.19. In the figure, we can recognize the four buffers of the FU: the two input
buffers and two output buffers. The packets belonging tof0 are light gray and the packets belonging
to f1 are dark gray. FieldHf in the header of the opcode buffer (B0) determines which FE is activated.
A 0 indicates thatHf equals 0 and a1 indicates thatHf equals 1. The first packet in the opcode buffer

Architectures 135

At the Router At the Output Port of a FU

Edge BeforeRouter
! After BeforeFU

! After

1 <1,0,0,x>
R0! <2,1,0,x> <2,1,0,x>

FU0! <2,1,0,x> (B4)

<2,1,0,x>
FU0! <3,1,0,x> (B5)

2 <2,1,0,x>
R1! <4,2,1,x>

3 <3,1,0,x>
R2! <4,3,1,x> <4,2,1,x>

FU1! <5,2,1,x> (B5)

4 <5,0,0,x>
R2! <x,5,0,x>

Table 5.6 . Header changes in the architecture.

activatesFE0, the next packet activatesFE1, and so forth.

1 001

Stream on Opcode Buffer B_0

Input Stream on Buffer B_1

Time

FE_1

FE_0

Functional Unit

Output Stream on Buffer B_4

Output Stream on Buffer B_5

Figure 5.19 . Interleaving streams on the functional unit.

WhenFE0 is activated, it reads a packet fromB0 and produces packets onB4 andB5. The packet
written intoB4 will be written intoB1 via routerR1. The packet written intoB5 will be written into
B1 via routerR2. Consequently, different packets will appear inB0. Buffer B0 thus contains packets
belonging to both functionsf0 andf1. The FU reads a new packet from the opcode bufferB0, which
activatesFE1. BecauseFE1 requires two input arguments, the FU strips the header from the packet
onB1. FE1 produces a packet onB5 that follows the packet previously produced byFE0. RouterR2
can, however, separate these two packet streams at run-time such that some packets go toB0 and other
packets go toB2. Notice that when the source FU is involved with filling input bufferB0 via router
R0, packets produced byFE0 have to wait inB4 until routerR1 notices thatB0 is available.

5.7 Conclusions

In the Y-chart approach we need to be able to derive executable architecture instances from the archi-
tecture template of stream-based dataflow architectures. To do so, we used the Performance Modeling
Basis (PMB), which allows us to describe architecture instances at a higher abstract level than possible
with standard hardware description languages, while being cycle-accurate.

We indicated that constructing an executable architecture instance from an architecture template
yielding cycle-accurate performance numbers involves four issues: describing an architecture tem-
plate, specifying an architecture instance, creating an executable model for the architecture instance,
and programming an architecture instance.

We used the building block approach presented in Chapter 4 to construct architecture instances
based on the PMB. We modeled all the architectural elements of stream-based dataflow architecture

136 BIBLIOGRAPHY

as a building block at the abstract, cycle-accurate level. Furthermore, we showed the usefulness of
building block and object oriented techniques like polymorphism and inheritance. These techniques
were key to describing in a flexible way architectural elements having more than one behavior.

We showed that we use composition rules expressed in Backus-Naur Form (BNF) to define an
architecture template. We modeled the architecture template of stream-based dataflow architectures
in Appendix A using BNF rules. We showed that BNF rules can also be used to define the grammar
of an architecture description language. We used this language to describe a specific architecture
instance of the architecture template. We also showed how composition rules and building blocks
combine such that a parser can automatically construct an executable architecture instance from an
architecture description.

To provide an architecture instance with a workload, we need to program the architecture in-
stances. We explained the programming model of stream-based dataflow architectures. This involved
our explaining how we model applications as networks and how we map these networks onto an archi-
tecture instance. We also discussed a comprehensive example showing how we program a particular
architecture instance for a particular application.

The generality of the architecture modeling approach presented in this chapter will be discussed
in Chapter 7, where we use this approach to construct a retargetable architecture simulator for stream-
based dataflow architectures.

Bibliography

John Backus and Peter Naur. The syntax and semantics of the proposed international algebraic lan-
guage of the Zurich ACM-GAMM conference. InProceedings of the International Conference on
Information Processing (ICIP), Paris, 1959.

M. Ben-Ari. Principles of Concurrent Programming. Prentice-Hall, 1982.

Charles Donnelly and Richard Stallman.BISON, The YACC-compatible Parser Generator. The Free
Software Foundation, 1992. release 1.20.

Wolfgang Kreutzer.System simulation, programming styles and languages. International Computer
Science Series. Addison-Wesley, 1986.

Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prophid, a
data-driven multi-processor architecture for high-performance DSP. InProc. ED&TC, 1997.

David R. Musser and Atul Saini.STL Tutorial and Reference Guide: C++ programmingwith standard
template library. Addison-Wesley Professional Computing Series, 1996.

Vern Paxson.Flex - fast lexical analyzer generator, 1990. Online manual pages of Flex.

Chapter 6

Applications

Retargetable
Simulator (ORAS)

Performance
Numbers

Mapping
(Pamela/C++)

Arch. Model Applications
SBF-Model

Contents

6.1 Stream-Based Applications . 138

6.2 Imperative Programming Languages . 139

6.3 Stream-Based Functions . 142

6.4 The SBF Object . 143

6.4.1 Functions . 144

6.4.2 Controller . 144

6.5 Example of an SBF Object . 145

6.6 Networks of SBF Objects . 147

6.6.1 Composition of SBF Objects .. 147

6.6.2 Decomposition of SBF Objects. 150

6.7 Related Work . 150

6.7.1 Dataflow Models . 150

6.7.2 Process Models . 151

6.7.3 Combined Dataflow/Process Models . 152

6.8 Implementation of the SBF model . 153

6.8.1 Host Language. 153

6.8.2 Coordination Language. 156

6.9 Conclusions . 157

T
HE digital signal processing (DSP) applications on which we focus in this thesis appear in do-
mains like video, audio and graphics. Examples of such applications are compression and de-

compression applications, encryption, and all kinds of quality improvements. A natural way of de-
scribing these applications is a network of nodes that execute functions operating on streams of data.
The nodes interconnect with each other via buffers over which data is communicated and abstracted
by means of tokens. The operation semantics of these networks is described by their model of com-
putation. In this chapter, we will introduce a new model of computation, which we call Stream-Based
Functions (SBF). We will use this SBF model to describe the sets of applications in the context of the
Y-chart environment we develop in this thesis. The main reason why we developed the SBF model was
to make possible a smooth mapping of applications onto architecture instances. This mapping process
is discussed in Chapter 7, along with a discussion of the development of a retargetable simulator.

In Section 6.1, we consider stream-based applications and give an example of one – the Picture
in Picture application which is used in modern high-end TV-sets. When stream-based applications
are described as a network, the functions in the network exchange tokens between each other. An

137

138 6.1 Stream-Based Applications

important question is then what the token represents, and we investigate this problem in Section 6.2. In
Sections 6.3–6.3, we present stream-based dataflow functions model of computation. Many models of
computation already exist, like dataflow models, process models, and mixed dataflow/process models.
In Section 6.7, we put the SBF model in perspective with respect to these models. We have constructed
the simulator SBFsim, for simulating networks of SBF objects. In Section 6.8, we explain how we
constructed this simulator using the programming language C++ and a multithreading package. We
also show that we can reuse the building block approach (presented in Chapter 4) within the simulator
SBFsim.

6.1 Stream-Based Applications

We model DSP applications by means of a network, as already discussed in Chapter 5. We focused
there only on the structural information of the network. In this chapter, we mainly focus on the model
of computation of such networks and the internals of each node in a network.

In a network describing a DSP application, the nodes describe functions that have a complexity
ranging from fine-grained to coarse-grained. Furthermore, the nodes execute concurrently, exchang-
ing streams of tokens with each other via buffers. The buffers temporarily store the streams of tokens
without changing the ordering of the tokens. We refer to applications that can be described in this way
as beingstream-based applications, and we define them as:

Definition 6.1. STREAM-BASED APPLICATION

A stream-based applicationis an application that can be described as a network or directed graph
G(V;E), whereV defines a set of nodes executing functions on streams of data and whereE defines
a set of buffers through which nodes exchange streams of data corresponding to a particular model of
computation. 2

A stream-based application describes astatic network, which means that nodes are not created or
destroyed during execution. Nodes within the network may produce and consume a variable amount
of tokens while executing. As a consequence, the stream-based application may describe adynamic
application, i.e., an application containing data-dependent conditionals that can only be resolved at
run-time.

Picture in Picture

An example of a stream-based video application is shown in Figure 6.1. It describes thePicture
in Picture (PiP) algorithm, which reduces a picture to half its size in both horizontal and vertical
directions and places the reduced picture onto a full screen picture showing two images on a TV
screen [Janssen et al., 1997]. The Picture in Picture application is used in modern high-end televisions.

In the PiP example, aSource produces an infinite stream of video samples that are filtered by
an N-tap Finite Impulse Response (FIR) filter. Then the stream is passed through a Sample-rate
Converter (SRC) that performs a down-sampling of a factor two. Next, video images are transposed
(Transpose), i.e., samples are re-ordered in such a way that two consecutive samples belong to two
different video lines. The stream then passes again through an N-tap FIR filter and a SRC, this time
to perform a vertical down-sampling of a factor two. The second transpose function performs a re-
ordering on the stream that results such that consecutive samples now belong to the same video line.
Finally, the sink consumes the samples.

In the example, the sample-rate converters have a fixed factor of two. In this case, each node
knows exactly how many tokens to consume and produce while executing. The PiP algorithm thus

Applications 139

SinkTransposeSRCFIR

FIR SRC TransposeSource

Vertical Lines

Horizontal Lines

Figure 6.1 . The Picture in Picture (PiP) algorithm, which reduces a picture to half its size
in both the horizontal and the vertical directions.

describes a static algorithm. If the scale factor of the sample-rate converters can vary during execution,
the nodes have to consume and produce a variable amount of tokens based on the value of the scale
factor. In that case, the PiP application describes a dynamic application.

6.2 Imperative Programming Languages

People use imperative programming languages like C or Matlab to describe stream-based applications.
If we want to describe the PiP application in Figure 6.1 using such a language, an important question
is what the tokens being exchanged between the functions of the application represent, i.e. do they
represent a completevideo imageor a singlevideo pixel?

Func. A

Func. B

SinkFunc. C

Figure 6.2 . A simple video application consists of four functions (A, B, C, and Sink) oper-
ating on video streams. The black circles represent data.

Suppose we have the stream-based applicationshown in Figure 6.2. In this figure, two functions (A
andB) have already produced data (represented by the black circles). When describing this application
using an imperative language, the tokens will in all likelihood be chosen to represent a complete video
image, because this makes it easier to describe the application. There are two reasons for this. The
first one is that a simplesequential orderingof functions can be used to describe the application, i.e.,
in the video application given, we can first execute functionA, then functionB followed by functionC
and finally functionSink. The second reason is that the representation of a complete video image can
be treated as a singlematrix, with as consequence that functions can merely use indices to randomly
access individual video pixels.

The filter functionNeighborhoodis given as a Matlab program in Program 6.1 as an illustration of
a matrix representation of a complete video image. Matlab differs from C in that it uses only matrices
and vectors as data types and it uses a different syntax. Other than that, the two languages are very
similar. The function shown accepts the matrixmatrix and produces the matrixnew and can be used
for both function nodesA andB in Figure 6.2. The filter determines a new value for each pixel (i.e.

140 6.2 Imperative Programming Languages

(i,j)) using its four neighbors. The function accesses these neighborhood pixels usingfor -loops
as iterators (e.g.,i ,j) and indices expressed in these iterators (e.g.,i+1 , j+1). To keep the function
simple, we did not include the exceptions that occur at the fringes of the matrix. Describing the filter
neighborhood in this way isonlypossible because a complete video image is available as the matrix.
When the filter function terminates, the matrixnew represents the video image for the next function
that will execute in the sequence of function executions (e.g. functionC).

Program 6.1. NEIGHBORHOOD FILTERING

matrix new = Function NeighborHood(matrix)
for i = 2 to N-1 step 1

for j = 2 to N-1 step 1
new(i,j) = Average((i,j), (i-1,j),

(i+1,j), (i,j-1), (i,j+1));
end

end
return matrix A_new

It is relatively simple to describe stream-based applicationsusing imperative languages. The above
function described the functionality correctly, and in that respect, there is nothing to find fault with
in the way the application is described, including the fact that a token represents a complete video
image.

However, the application needs to be implemented onto an architecture instance. In fact, the
application in Program 6.1is already mapped onto a particular architecture, namely the computer
executing the application. The architecture of a standard computer architecture assumes that a large
background memory is available which is accessed by only one statement at a time. For example, the
matrices of Program 6.1 are mapped into this background memory and use indices in the matrices to
address the background memory.

The computer architecture differs strongly from the stream-based dataflow architectures. Stream-
based dataflow architectures do not assume a large background memory. Furthermore, video-images
are only available as streams of video samples. Stream-based dataflow architectures would become
impractical if they had to buffer complete images between the functions executing on the architectures.
These architectures would consist mainly of memory and use only a few small computational units.
Also, the buffering of complete images would prevent much of the parallelism present in applications
from being utilized. For example, in the case of theNeighborHood function, all pixels not within
close range of pixels(i,j) , could in principle operate in parallel with pixels(i,j) . However, in an
imperative language only one statement executes at a time, so this will not happen.

To fully utilize the potential of stream-based dataflow architectures, we thus have to rewrite ap-
plications such that they use streams and express the amount of parallelism present in the application
when operating on these streams. To achieve this goal, we can no longer assume that a video image
is available as a matrix ot that functions can use indices to access neighborhood pixels, as was done
in Program 6.1. Suppose theNeighborHood function in Program 6.1 were to read video samples
from a stream in which the video samples are ordered according to the lexicographical ordering of the
iteratorsi andj . Then some neighborhood samples would have been read from this stream too early
(e.g. via indicesi-1 , j-1), whereas other samples would still need to be read (e.g. via indicesj+1 ,
i+1).

If the type of data used in a stream-based application does not match the type of data used in a
stream-based dataflow architecture, then a smooth mapping of the application onto an architecture
becomes difficult. We already indicated this problem in Section 3.3.2 when we discussed mapping.

Applications 141

We cannot assume that an application which uses matrices would map easily onto an architecture
that uses neither background memory nor random accesses on this memory, but instead only involves
streams.

In the case of stream-based dataflow architectures, we therefore need to rewrite stream-based
applications such that they are consistent with the assumption that weonly have streams of video
pixels instead of other data types. This dramatically affects how stream-based applications can be
described, and introduces the following three problems:

Parallelism: Functions will become active concurrently. A simple sequential ordering of the original
functions is no longer satisfactory.

Decomposition: Functions will operate on streams of samples. The original functions have to be
decomposed into functions operating on streams of samples only.

Consumption Patterns: Functions will operate on a one-dimensional data structure instead of multi-
dimensional data structures like matrices. This requires a transformation from multi-dimensional
data structures to one-dimensional data structures, thus causing functions to consume and to
produce tokens in different patterns.

If we rewrite the application in Figure 6.2 using streams of samples instead of images, the four
functionsA, B, C andSink no longer follow a sequential ordering; they operate concurrently on dif-
ferent streams. FunctionC consumes tokens concurrently with the functionsA andB, which produce
tokens. In Figure 6.3 we show again the application as given in Figure 6.2, but now with the two
tokens (i.e. the black circles) in the figure representing a single video pixel instead of a complete
image.

A AA

A

A

Tokens Consumed by Func. C

B BB B

Func. A

Func. B

SinkFunc. C
P1
P0

Time

P0
P1

Sample

Figure 6.3 . A simple video application (revised). We rewrote the application using streams
instead of matrices. As a consequence, all four functions become active concurrently.
Functions A, B, C and Sink no longer follow a sequential ordering but operate concurrently
on different streams. Function C, for example, consumes tokens produced by the functions
A and B in a particular pattern.

By removing thefor-next loops in Program 6.1, we obtain the functionAverage , which oper-
ates only on single samples. FunctionC in Figure 6.3 reads samples from the functionsA andB in a
particular pattern as shown below the box labeledFunc:C. The two input ports of functionC, ports
P0 andP1, consume the tokens produced by functionA or functionB in the way given in the table.

Given a stream-based application using streams instead of images, we want to rewrite it using only
streams of samples. The question we need to answer is which model of computation best describes
the applications, taking into account issues like parallelism, decomposition of functions, and different
consumption/production patterns.

142 6.3 Stream-Based Functions

6.3 Stream-Based Functions

We propose a new model of computation calledStream-Based Functions(SBF) with which stream-
based applications can be described. The essential concepts in this model areStream-Based Function
ObjectsandChannels. Stream-based applications are described as anetworkof SBF objects commu-
nicating concurrently with each other using channels. These channels interconnect SBF objects and
buffer the tokens communicated by SBF objects. The buffers are unbounded FIFO queues that can
contain an infinite sequence of tokens, i.e. a stream.

A network of SBF objects describes a special kind of network:Kahn Process Networks[Kahn,
1974]. In Kahn Process Networks, aprocessmaps one or more input streams into one or more output
streams by executing a sequence of statements. Some statements perform a read on a channel and
some statements perform a write on a channel. When reading from a channel containing no tokens,
the process stalls completely until tokens become available again, implementing ablocking-read. A
write on a channel can always proceed, implementing anon-blocking write.

An example of a process network is given in Figure 6.4. It shows a number of processes connected
to each other via channels over which the processes exchange streams of tokens. We assume that these
tokens represent a scalar variable. TheSource process produces a stream that is taken in by thefilterA
process. This process produces a stream that is further processed by thefilterB process. This second
filter produces two streams: one back to thefilterA process and the other to theSink process.

SinkSource Filter A Filter B

Figure 6.4 . An example of a Kahn Process Network. A number of processes connected to
each other via channels over which the processes exchange streams of tokens represented
as black circles.

The sequence of statements inside a Kahn process consists of a mix of control statements, read and
write statements, and function-call statements. A Kahn process does not structure these statements
in any particular way. The SBF objects, on the other hand, structure these statements according to
the ’Applicative State Transition’ (AST) Model described by Backus [1978]. An SBF object does
not implement the full AST model, but a specialization that is inspired by the AST model proposed
by Annevelink [1988]. As a consequence, an SBF object contains three components: aset of functions,
a controller, andstate. An enabled function consumes a number of tokens from input channels,
performs its function, and writes tokens to output channels. By repeatedly enabling functions, an SBF
object operates on streams. The controller enables the functions of the set in a particular sequence and
uses data stored in the state of the SBF object to determine which function it must enable next.

Kahn process networks have the property that they execute in adeterministic order[Kahn, 1974;
Kahn and MacQueen, 1977], which means that the computation of the result of the network is inde-
pendent of the schedule of the processes in the Kahn process network. Therefore, for a stream with the
same input data presented to the network, the computed output stream is always the same, irrespective
of the schedule used to compute this result: it could have been a completely sequential schedule or a
complete parallel schedule or any schedule in between. A Kahn process network executes determin-
istically by using a blocking read to prohibit a process from testing the availability of data. Hence, a

Applications 143

Kahn process is either waiting for data or performing computations. An SBF object only structures
a Kahn process and does not impose new restrictions affecting the behavior of the process. Thus,
networks of SBF objects and Kahn process networks describe the same applications.

6.4 The SBF Object

An SBF object has an inside view and an outside view. Inside an SBF object the following three
components are present: aset of functions, a controller, and astate. Outside an SBF object ports are
present: read and writeports. These ports connect to channels, allowing SBF objects to communicate
streams with each other.

An SBF object is shown in Figure 6.5. The object contains a set of functionsffa; fbg, a controller,
and state. The SBF object also has two read ports and one write port that connect to the unbounded
FIFO buffersBuffer0, Buffer1, andBuffer2, respectively. These buffers implement the channels be-
tween different SBF objects.

Read Ports

Enable Signal

Output Buffer0

Write PortState

f_a

f_b

Input Buffer0

Input Buffer1
Controller

Figure 6.5 . An SBF object.

The set of functionsP determines the functionality of an SBF object. It must not be empty and
may contain the following functions:

P = ffinit; fa; fb; : : : ; fxg: (6.1)

These functions evaluate within an SBF object in asequential ordersuch as,

finit; fa; fb; fa; fb; fa; : : : : (6.2)

Thecontrollergoverns the order of function evaluations. It keeps track of the evaluation order using
the variablec, called thecurrent state. Each time the current statec changes, atransitiontakes place.
The current state is stored in the control spaceC. Other variables are stored in the data spaceD. The
control space and data space together define the state spaceS of an SBF object

S = C �D; such thatC \D = ;: (6.3)

As explained in Chapter 4, anobjectconsists of a data part and a methods part operating on the data
part [Goldberg and Robson, 1983]. SBF objects have a similar structure in the sense that the state
corresponds with the data of an object and the set of functions corresponds with methods of an object.
The control of an SBF object can be seen as a special method of the object.

144 6.4 The SBF Object

6.4.1 Functions

For each functionf from the setP , there is a function call

f(x0; : : : ; xm; D) = (y0; : : : ; yn; D
0); (6.4)

such that the functionf modifies the current data spaceD into the new data spaceD0 and the input
datax0; : : : ; xm into the output datay0; : : : ; yn. A function call can either have no input data or no
output data, in which case it describes asourceor asinkfunction respectively. A source function only
produces tokens and a sink function only consumes tokens. A function reads its input data from read
ports and writes its output data to write ports. It is statically determined on which read port or write
port a function operates.

When the controllerenablesa function, it reads input data from the input ports, performs the
function and writes output data to output ports. The function reads all its input data using blocking
reads. State variables are immediately available. A function can read only one token from an input
argument. Once a function has obtained all input data, it will not obtain any new inputs until it writes
the output data to the write ports and installs new state variables. During the evaluation of a function,
the stateS cannot change and does not change. Consequently, a function operates without any side
effects. When the enabled function has written all its output data, we say the function hasfired.

A function reads data from a read port using a blocking read. Therefore, if data is available, the
function reads the data; otherwise it blocks. This causes a function to read its input datax0; : : : ; xm
in a sequential order from the input ports. It first reads tokenx0, followed by tokenx1 and so forth
until tokenxm has been read. The blocking read prohibits the testing of a read port on the availability
of tokens. As a consequence, a function cannot have another behavior based on the results of testing a
condition; thus it evaluates unconditionally: it is either waiting on a port or it is performing computa-
tions. A function writes the output datay0; : : : ; yn to the appropriate write port using a non-blocking
write, also in a sequential order.

6.4.2 Controller

The controller governs the enabling sequence of functions. It keeps track of this sequence in the
current state variablec. The controller moves from the current statec to another statec0 whenever
a transition occurs. All obtainable states are described by the control spaceC. The control space
is traversed as determined by thetransition function!, which associates the next statec0 with each
current statec.

! : C �D ! C; !(c; d) = c0 (6.5)

To determine the next statec0, the transition function observes the control spaceC and the data space
D. The controller cannot change the data space; it can only observe it. Although the controller is
not connected to any read or write port, the transition function describes dynamic behavior. When
deciding what the next state will be, it observes the data spaceD affected only by the function ofP .

The transition function describes a path through the control space by going from the current state
to a new state. If both the data space and control space are observed to determine the next state, the
transition function describes infinitely many paths. Ateach new state, which path is started depends
on the content ofD.

In a more restricted case, when the transition function observes only the control spaceC to deter-
mine the next state, it always describes a single path to traverse the control space. Furthermore, if this

Applications 145

path is finite, the transition function determines a new statec which has previously been the current
state, thus describing acycle. This cycle brings the state of the controller back into a previous state in
a fixed number of transitions.

At each state, a specific function needs to be evaluated as determined by thebinding function�.
This binding function associates a functionf from the setP with a particular control statec. Only
one function can be associated with a state.

� : C ! P; �(c) = f (6.6)

Using the transition function! and the binding function�, the controller describes a sequence in
which the functions of setP are enabled. A function becomes enabled and fires. This causes a
transition to take place, and using! and� a new function is determined that is enabled the next time,
leading up to the sequence described as follows:

finit
�(!(S))
�! fa

�(!(S))
�! fb

�(!(S))
�! : : : fx

�(!(S))
�! : : : (6.7)

Thus an SBF object operates on streams by repeatedly enabling a function from the set of functions
P , which reads from a buffer and writes tokens to a buffer. We remark that only the functions use
a blocking read. A transition, or alternatively the evaluation of the! and� functions, takes place
instantaneously. This behavior described by an SBF object is referred to as aFire-and-Exit behavior.
When we explain how we implement an SBF object, we explain why SBF objects describe such
behavior.

The sequence given in Equation 6.7 results in a deterministic behavior of the SBF object. The
functions of setP all evaluate unconditionally because of the blocking read. They also observe only
one read port at a time. For the same input sequence of tokens, functions evaluate in the same output
sequence. At the same time, the functions alter the data spaceD in a deterministic way, after all the
functions have executed unconditionally. The transition function, which observes both the control
space and the data space to resolve a new current state, also changes deterministically. Consequently,
the complete SBF object describes a deterministic sequence.

When an SBF object is created, the controller needs to start at a particular statec. Within an
SBF object, a specialinitialization functionfinit is available that initializes the stateC. This way
the variablec is set to a particular value. Within an SBF object, the first evaluated function is the
initialization function. It evaluates only once.

6.5 Example of an SBF Object

An example of an SBF object is given in Figure 6.6. The SBF object contains a set of functions
ffa; fb; fcg, a controller, and a state containing the variablesc (the current state, being an element of
C) andx (a variable, being an element ofD).

Functionfa reads input data from the two read ports and writes output data to the write port.
Functionfb reads the input data from the read port connected toBuffer0 and writes the output data
to the write port. Functionfc does not have input data; it only writes output data to the write port. All
functions can change the data spaceD. However, only functionfa changes variablex in D and only
functionfb reads variablex in D.

If function fa is enabled, it reads first one token fromBuffer0 and then one token fromBuffer1. If
Buffer0 does not contain any tokens, the complete SBF object blocks until a token becomes available
in Buffer0 even though data might already be available onBuffer1. When both tokens are available,

146 6.5 Example of an SBF Object

Controller

f_a

f_b

f_c

(c,x)State

Buffer1

Buffer0

Buffer2

Figure 6.6 . An SBF object containing a set of functions ffa; fb; fcg, a controller, and a state
containing the variables c and x.

the functionfa evaluates. The resulting token is written toBuffer2. The function also installs the state
variablex inD. Whenfa has fired again, a transition takes place and the next function enabled is again
fa. Whenfa has fired, a transition takes place and the next function enabled is functionfb. It reads a
token fromBuffer0 first and then it reads the state variablex and evaluates. The result is written to
Buffer2. Thusfb has fired and a transition takes place and the next function enabled is functionfc. It
immediately evaluates because it requires no input. Functionfc writes the resulting token toBuffer2.
Functionfc has fired and a transition takes place and the next function enabled is functionfa. This
function was already enabled and the SBF object now describes a path in the sequence of enabling
functions. The sequence of enabling can thus repeat indefinitely.

In the example, the controller enables the functions in the sequencefa; fa; fb; fc. This sequence
is obtained by defining the binding function as

�(c) =

8>>>>><
>>>>>:

fa; if c = 0

fa; if c = 1

fb; if c = 2

fc; if c = 3;

(6.8)

and the transition function as

!(c) = c+ 1 (mod 3): (6.9)

The transition function determines a new state based only onc, describing a single path through
the state spaceC = fc0; c1; c2; c3g. After four transitions, the transition function always returns to its
start statec0, thus it is a cyclo-static scheduler [Bilsen et al., 1995].

The sequence of functions results in a particular consumption/production pattern of tokens. These
patterns are shown in Table 6.1 for the SBF object in our example. It shows the four states, the
functions executed at these states, and the three buffers from which the functions read tokens (R) or
to which they write tokens (W). For functionfa, a token is read from bothBuffer0 andBuffer1 and
a token is written toBuffer2. This is then repeated once and followed by the execution of function
fb consuming one token fromBuffer0 and producing one token onBuffer2. Next the functionfc is
executed; it consumes nothing, but produces a token onBuffer2. The whole consumption pattern
shown in Table 6.1 can be repeated an infinite number of times. We remark that a function may read
only one token from a buffer at a time. A function is not allowed to read more than one token at a time

Applications 147

or to write more than one token at a time. In order for a function to bemulti-rate, it must be divided
into a sequence of functions.

Current Function Buffer0 Buffer1 Buffer2
State
c0 fa R R W
c1 fa R R W
c2 fb R W
c3 fc W

Table 6.1 . Token consumption/production pattern of the SBF object shown in Figure 6.6. It
shows the four states of the object and the functions executed at these states. It also shows
the three buffers from which the functions read tokens (R) or to which they write tokens (W).

The SBF object shown in Figure 6.6 could implement thefilterA process given in Figure 6.4. In
that case,Buffer0 implements the channel between the processesSink andfilterA. Buffer1 imple-
ments the feedback channel between the processesfilterB andfilterA. Finally,Buffer2 implements the
channel between the processesfilterA andfilterB.

6.6 Networks of SBF Objects

We describe stream-based applications as networks of SBF objects in which the SBF objects represent
the coarse-grained functions. We already defined the granularity of functions in Chapter 2. We define
the granularity of an SBF object as

Definition 6.2. GRANULARITY OF AN SBF OBJECT

The granularity of an SBF object is the total number of RISC-like operations needed to express
each function of the set of the SBF object. 2

As indicated in Chapter 2, the granularity of the functions that a functional element implements
is an important design parameter. And as we have seen in Section 5.6 where we discussed how we
program a stream-based dataflow architecture, a node in an application network maps directly to a
functional element. In the networks discussed in this chapter, these nodes are SBF objects. Given a
network of SBF objects, is it possible to change the granularity of the various SBF objects?

We can change the granularity of nodes in a network by combining SBF objects to construct a new
SBF object (i.e. a composition) that will have a larger granularity, or we can construct SBF objects
(i.e. a decomposition) that will have a smaller granularity by partitioning an SBF object. Although
we could also describe a hierarchy of SBF objects, i.e., a function of the set of functions is again an
SBF object, we will not further discuss this.

Before we explain how a composition and a decomposition of a SBF object works out, we first
introduce the term “variant” of a function; A function in a SBF object is bound statically to input and
output ports or a state variable. Avariantof functionf performs the same functionf but is bound to
other input and output ports or state variables.

6.6.1 Composition of SBF Objects

We construct a new SBF object by combining two or more SBF objects, using the following steps:

148 6.6 Networks of SBF Objects

1. Combine the two sets of functionsP andQ of both SBF objects to obtain the new setZ = P[Q.
The setZ will contain variants of functions if necessary.

2. Combine the statesS andS 0 of both SBF objects to get the new stateW = S + S 0.

3. If one or more channels (i.e., the unbounded FIFO buffers) are enclosed by the new SBF object,
map the channels into the state of the new SBF object.

4. Construct a new schedule that interleaves the functions of setZ to determine a new transition
function! and a new binding function� for the new SBF object.

f_af_a

(x) (y)

ControllerController

State State
A B

f_b f_c

(a)
f_a

f_c

(y)

Controller

State B

A

f_a

f_b

(x)

Controller

State

(b)

Figure 6.7 . Combining two SBF Objects to form a new, more coarse-grained SBF object.

As an example, in Figure 6.7 we show two cases ((a) and (b)) in which two SBF objects, re-
spectivelyA andB, are combined to form a SBF object. SBF objectA contains the set of functions
P = ffa; fbg and the stateS containing the variablex. SBF objectB contains the set of functions
Q = ffa; fcg and stateS 0 containing the variabley. Both SBF objects have only one read port and
one write port. The functions in setP read from the read port and write to the write port of SBF object
A. The same applies to the functions in setQ for SBF objectB.

In the case shown in Figure 6.7(a), we combine the two SBF objects such that a channel connecting
both SBF objects is enclosed by the new SBF object. The new SBF object is shown in Figure 6.8(a).
According to the three steps presented previously, we first combine the functions of setP andQ to
form the new setZ = ffa; f

0
a; fb; fcg. The functionf 0a is a variant of the functionfa. Secondly, we

combine the state of both SBF objects to obtain the new stateW containing the variablesx andy.
Thirdly, because the new SBF object encloses a channel present between the two SBF objectsA and
B, we map this channel into the stateW . A consequence of mapping the channel into the stateW is
that functionsfa andfb of SBF objectsA andB respectively, write and read from the state instead of
writing and reading from ports. The same is true for the functionsfc andfa of SBF objectsA andB
respectively. Because functionfa of SBF objectA writes to the state and functionfa of SBF object

Applications 149

B reads from the state, we need a variant offa in the set of functionZ. Fourthly, and finally, we
schedule the functions in setZ of the new SBF object.

In the case shown in Figure 6.7(b), we combine the two SBF objects in one new SBF object. The
new SBF object is shown in Figure 6.8(b). According to the three steps presented previously, we first
combine the functions of setP andQ to form the new setZ = ffa; f

0
a; fb; fcg. Again a variant offa

is required. The functionfa reads from and writes to the top two ports. The variantf 0a reads from and
writes to the bottom two ports. Secondly, we combine the state of both SBF objects to obtain the new
stateW containing the variablesx andy. We can omit the third step because no channel is enclosed
by the two SBF objects. Fourthly, and finally, we schedule the functions in setZ of the new SBF
object. By combining SBF objects as we have shown, we obtain a new SBF object which is coarser
in its grain size.

f_a

f_a’

f_b

f_c

(x,y)

Controller

State

(a)

(x,y)

f_a

f_c

f_b

f_a’

Controller

State

(b)

Figure 6.8 . The new combined SBF objects.

Where the SBF objectsA andB operate in parallel, the new SBF object executes the functions
sequentially. In the fourth step, we interleave the functions such that they execute one after the other.
Thus, constructing a coarser SBF object leads to less parallelism.

In the case in which we combine the SBF objects enclosing a channel as depicted in Figure 6.7(a),
we mapped the channel into the state of the new SBF object. A channel is, however, an unbounded
FIFO buffer. If we find a static schedule between the functions of setZ in the SBF object given in
Figure 6.8(a), then we can definitely map the unbounded FIFO buffer into a bounded buffer in the
state of the new SBF object [Bhattacharyya and Lee, 1994].

3

2

1

1

2

3
Buffer2

Buffer1

Buffer0

SBF_1SBF_0

Figure 6.9 . When scheduling the functions inside a SBF object, we should ensure that we
do not introduce deadlock.

150 6.7 Related Work

When scheduling the functions inside a SBF object, we should make sure that we do not introduce
deadlock. In Figure 6.9 we show two SBF objects,SBF0 andSBF1, connected to each other via
three buffers,Buffer0, Buffer1, andBuffer2. SBF0 is scheduled in such a way that it first produces a
token onBuffer0 and then reads a token fromBuffer1 and, finally, produces a token onBuffer2. This
sequence is indicated by the numbers 1 to 3 from top to bottom. The other SBF object,SBF1, tries
to read a token fromBuffer2 first, then produces a token onBuffer1 and, finally, reads a token from
Buffer0. This sequence is indicated by the numbers 1 to 3 from bottom to top.

The situation presented in Figure 6.9 will deadlock.SBF0 is able to produce a token onBuffer0,
but blocks when trying to read a token fromBuffer1. On the other side,SBF1 tries to read a token
from Buffer2, but blocks because no token is ever produced on this buffer becauseSBF0 blocks while
reading fromBuffer2. Thus, if two or more SBF objects are related, care should be taken to prevent
deadlock from occurring.

6.6.2 Decomposition of SBF Objects

Decomposing an SBF object into new SBF objects that have a smaller granularity is more difficult
than composing one new SBF object from smaller SBF objects. When decomposing an SBF object,
we need to determine the available parallelism in the object. This implies that we have to solve the
transformation from a sequential schedule into a parallel schedule, which is known to be a difficult
problem [Banerjee, 1988].

We continue to decompose SBF objects until the set of functions consists of a single function: a
RISC-like function. These SBF objects thus have a granularity of one, by definition. SBF objects in
this case have a state space equal toC = fc0g and the transition function is equal toc = 1 and the
binding function binds the RISC function to this state. The state of this SBF object is empty. When,
however, a data-dependent function, for example acompare, is used, it is not clear what the transition
and binding functions or the state look like.

6.7 Related Work

Many models of computation have been proposed over the years to describe stream-based applica-
tions. The models that are relevant to the proposed SBF model are the dataflow, process, and mixed
models.

6.7.1 Dataflow Models

The dataflow model of computation describes stream-based applications is a natural way, retaining
the parallelism present in an application. It describes applications as a network of dataflowactors
that performs a particular computation. Actors connect with each other via buffers, allowing them
to communicate tokens with each other. The condition under which an actor is able to perform a
computation is determined by afiring rule. When an actor has evaluated, e.g., has consumed tokens
and produced new tokens, it hasfired. A dataflow model requires ascheduleto compute. A scheduler
determines at compile time or at run-time the ordering of actors, using a scheduling technique like
data-drivenevaluation,demand-drivenevaluation, orlazy evaluation [Jagannathan, 1995]. Some
well-known dataflow models are homogeneous dataflow (HDF), synchronous dataflow (SDF), cyclo-
static dataflow (CSDF) and dynamic dataflow (DDF).

Homogeneous dataflow [Veen, 1986] is the simplest dataflow model. In this model, buffers hold
only a single token and each actor has only one firing rule. To fire, incoming buffers connected to

Applications 151

an actor must contain a token and all outcoming buffers must be empty. A feasible schedule always
exists and can be derived at compile time. This model cannot describe multi-rate behavior since a
buffer can contain at most one token. HDF can describe static applications.

The synchronous dataflow model [Lee and Messerschmitt, 1987] is capable of describing multi-
rate effects. In this model buffers are bounded FIFO buffers. Each actor still has one firing rule
and therefore the actors consume and produce a fixed pattern of tokens. The tokens consumed and
produced by all actors in a network can be expressed usingbalance equations. If a solution to this
system of balance equations exists, a feasible schedule exists and can be found at compile time.
The sizes of the buffers can also be determined at compile time. SDF can describe static multi-rate
applications.

The cyclo-static dataflow model [Bilsen et al., 1995] allows each actor to have one or more firing
rules called upon in a known static order. This results in different consumption/production patterns
of tokens, repeated infinitely many times. If a feasible schedule exists, it is found at compile time by
solving a system of balance equations. CSDF can describe cyclo-static multi-rate applications.

The dynamic dataflow model [Jagannathan, 1995] allows each actor to have a set of firing rules
that are not ordered in any particular way. A specific function is bound to each rule of the set. As
soon as one of the rules in the set is satisfied, a valid firing is found and the function associated with
that rule is executed. This model can describe data-dependent consumption/production patterns and is
capable of describing dynamic applications. Since the rules are not ordered, non-deterministic effects
occur. A typical example is the two-input merge function, which has two non-ordered firing-rules;
the rule chosen first is unknown. The DDF model requires a run-time scheduler to evaluate. Be-
cause a schedule cannot be found at compile-time owing to the Turing halting problem [Buck, 1993],
the boundedness of the buffers cannot be calculated at compile time. DDF can describe dynamic
applications in a non-deterministic way.

A more restrictive DDF model is used in the Ptolemy system [Buck et al., 1992]. This model
also allows each actor to have a set of firing rules, but they are ordered instead; one rule must follow
the other. This model describes dynamic applications in a deterministic way. It requires a run-time
scheduler to evaluate. This restrictive DDF model can describe dynamic applications in a deterministic
way.

6.7.2 Process Models

Another way to describe stream-based applications is via process models. Process models describe
an application as a network of processes connected with each other via buffers. The buffers allow
processes to communicate tokens with each other. Each process proceeds autonomously, i.e., it is not
controlled by a global scheduler. A process interacts according to a particularprotocol with other
processes in a network. Two well-known process models with different protocols areKahn Process
Networks(see Section 6.3) andCommunicating Sequential Processes.

In Kahn process networks [Kahn, 1974; Kahn and MacQueen, 1977], buffers represent unbounded
FIFO queues. These queues automatically buffer output of a process and allow processes, which run
forever, to consume tokens from buffers at different rates. A process stores tokens on a buffer by using
a non-blocking write and reads tokens from a buffer with a blocking read. The blocking read prohibits
testing of ports on the availability of data; a process can only observe one port at a time. Hence a
process is either waiting on a port or performing computations; therefore, Kahn process networks
describe applications in a deterministic way.

In communicating sequential processes [Hoare, 1978, 1985], a buffer is a single place buffer. If
one process puts a token into the buffer, it blocks until the process at the other end of the buffer

152 6.7 Related Work

removes the token from the buffer. It is possible to use unbounded FIFO buffers, but CSP must model
them as a process. Within a CSP process which is intended to terminate, it is possible to test on the
availability of data and to select and perform a specific function based on the test results. Hence, the
CSP model can describe applications in a non-deterministic way.

6.7.3 Combined Dataflow/Process Models

A combination of dataflow models and process models can also be used to describe stream-based ap-
plications. Examples of combined dataflow/process models are theDataflow Process Networkmodel
and theApplication State Transitionmodel. The former model combines the Kahn process network
model with dynamic dataflow, whereas the latter model combines CSP with dynamic dataflow.

In the dataflow process network model (DPN) [Lee and Parks, 1995; Parks, 1995], a single Kahn
process contains a function and a set ofsequential firing rules. The process itself checks which firing
rule applies, instead of some global scheduler doing this as in the dataflow models. The process
checks these rules in a sequential order with blocking reads (which is why this model usessequential
firing rules). If a valid firing rule is found, the process fires the actor or function. At the moment the
process fires the actor, all input arguments of the function are present and it evaluates instantaneously.
Tokens are written to the output ports using a non-blocking write. After evaluating the function, the
process checks the firing rules again until a valid firing is found.

In the Application State Transition Model (AST) [Kung, Annevelink, and Dewilde, 1984; Ann-
evelink, 1988], a single CSP process contains a set of functions, whereby each function reads input
data from specific read ports and writes data to specific write ports. When one function from the set
is active, other functions are idle until it has evaluated. After a function evaluates, a control function
fc decides which function to evaluate next based on states and installs a new states0 [Held, 1996].
Within the AST mode, the control function can read tokens from a special control port and use these
tokens to decide which function it should evaluate next. The CSP process used in the AST model is
specialized by forbidding the use of non-deterministic processes and by forbidding the use of sequen-
tial compositions of processes. Because this model was inspired by the concept of the applicative state
transition model presented by Backus [1978], it is namedaccordingly.

When we compare the SBF model with other models discussed, we see that the SBF model de-
scribes a combined dataflow/process model. It combines the Kahn process network model with the
dynamic dataflow model. The SBF model differs from the DPN model by having a set of functions
instead of a single function present in a process. Furthermore, the SBF model uses the notion of a
controller instead of a set of firing rules. As a consequence, when a function is activated within the
SBF model, the function reads input data from input ports with a blocking read and writes data with a
non-blocking write. The SBF model differs from the AST model in that it uses Kahn process networks
instead of CSP processes. A Kahn process runs forever, which is more consistent with the notion of
streams. In addition, the Kahn model describes dynamic applications naturally in a deterministic way.
In contrast, a CSP process typically terminates and describes a non-deterministic process [Hoare,
1978]. Furthermore, the controller in a SBF model only observes the state of a SBF object to deter-
mine the next state. Hence the controller does not have a direct connection to the world outside the
SBF object using a control port, as it does in the AST model.

All three models presented distinguish between one or more functions and a control part. In ad-
dition, the models describe a fire-and-exit behavior. Each time a function evaluates, the control part
observes that a transition took place. Such a transition leads to the clear sequence of function activa-
tions as shown in Equation 6.7. However, a Kahn process is a free interleaving of control and function
statements, as long as the sequence of statements uses blocking reads. In that case, a Kahn process

Applications 153

might containfor -loops and other control constructs; the clear notion of a transition is then no longer
present. The notion of a transition is nevertheless pivotal to successfully integrating applications onto
architecture instances, as we will explain in Chapter 7 (where we discuss the mapping of SBF objects
onto functional elements of instances of the stream-based dataflow architecture). Transitions define
clear moments at which to switch from evaluating an application to evaluating an architecture instance
on which the application is mapped.

Finally, we remark that the SBF model can act as dataflow models HDF, SDF, CSDF and determin-
istic DDF. In the case of HDF and SDF, the set of functions contains only one function. Furthermore,
the transition function is equal toc = 1 and the binding function binds the only function present to the
control statec, which is always 1. In the case of CSDF, the setP contains more than one function. In
this case, the transition function describes a cycle-static schedule by observing only the control space
C to determine the next state. In the case of deterministic DDF, the setP contains more than one
function. The transition function determines the next state based on both the data spaceD and the
control spaceC.

6.8 Implementation of the SBF model

We have constructed the simulatorSBFsimfor simulating arbitrary networks of SBF objects. This
simulator uses the object oriented programming language C++ and a multithreading package, and it
consists of approximately 3000 lines of code. To describe a stream-based application as a network
of SBF objects requires that we describe both the network of SBF objects as well as the SBF objects
themselves. We use two different languages, as proposed in [Lee and Parks, 1995]; one to describe
the network, called thecoordination language, and one to describe the SBF objects, called thehost
language.

6.8.1 Host Language

The SBFsim simulator uses the programming language C++ as the host language. A C++ object
describes an SBF object very easily because of the similarity between a C++ object and an SBF
object. The stateS (i.e., both data spaceD and control spaceC) is implemented as data of an object.
The functions of the setP are implemented as methods of an object. The controller of an SBF object is
implemented using the C++ function-calloperator() [Stroustrup, 1991]. This operator is a special
method that overloads the functional-call operator of an object, a step which facilitates the integration
of an SBF object in a process, as we show later.

To show how a C++ object describes an SBF object, we describe the sample rate converter (SRC)
used in the PiP example that was given in Figure 6.1 as an SBF object. In the PiP application, the SRC
performs a simple down-sampling of a stream of tokens by a particular factor (e.g., a factor of 2). The
SRC is described as an SBF object by the C++ objectDownSampling . Program 6.2 describes the set
of functions and Program 6.3 describes the controller. The SBF object has two functions,function A

and function B. They are both implemented as methods of the C++ objectDownSampling , as
shown in Program 6.2. Within the functions, tokens are read using theget function, and written
using theput function. Infunction A, a token (e.g.,aToken) is read from a channel via read port
in , processed by the (identity) functionf and assigned to a new token (e.g.,aNewToken) written to a
channel via write portout . Function B only reads a token and then destroys it immediately. Hence,
it does not produce any output.

The functions within Program 6.2 have as arguments a read and a write port instead of values.

154 6.8 Implementation of the SBF model

Program 6.2. THE SET OF FUNCTIONS MODELED INC++

DownSampling::function_A(ReadPort in, WritePort out)
{

// Get Token
Token aToken = in.get();

// Perform Function
Token aNewToken = f(aToken);

// Put Token
out.put(aNewToken);

}
DownSampling::function_B(ReadPort in)
{

// Get Token
Token aToken = in.get();
delete aToken; // Throw away the token

}

This way functions themselves can perform the synchronization with channels using theget andput

functions.
The controller of the SBF object is described in Program 6.3. It implements the binding function�

and transition function!. The current state of the controllerc is modeled via the C++ object variable
state . This variable is defined in the data part of the C++ object. The binding function decides that
function A is enabled if the state variable equals zeros, otherwisefunction B is enabled. After a
function ends, i.e., has fired, the transition function evaluates. It determines the new current state value
state . In this example, the transition function increases the state variablestate by one, modulo a
factorfactor . SBF objectDownSampling realizes a down-sample factor of two if we assign a value
of two to the variablefactor in the controller.

Program 6.3. CONTROLLER MODELED IN C++

DownSampling::operator()(ReadPort in, WritePort out)
{

// The Binding Function
if (state == 0) {

function_A(in, out);
} else {

function_B(in); // Throw away token, no output
}
// Transition Function
state = (++state%factor); // State variable

}

Each SBF object executes concurrently with other SBF objects in a network. To have concur-
rency within a C++ environment, we use a simple multithreading package that providesprocessesand
semaphores, which can describe Kahn process networks. We already discussed such a package in in
Chapter 4, namely the PAMELA Run Time Library [Nijweide, 1995] (RTL). We are already familiar
with this library and therefore reuse the RTL Library in SBFsim. SBFsim basically describes a Kahn
process network simulator that should correctly describe the partial ordering of samples within a net-
work. Because this does not require time, other multithreading packages would do equally well. To
describe Kahn process networks, Parks [1995] uses standard POSIX threads and B˘ohm [1983] uses

Applications 155

UNIX processes.
Using the RTL, a process is created that we use to let an SBF object run concurrently with other

SBF objects. We use semaphores to implement FIFO buffers between the processes, as shown in
Program 5.1. The RTL implements a process scheduler that interleaves the execution of processes as
explained in Section 4.5. This gives the notion of SBF objects that execute concurrently.

Program 6.4. EXAMPLE OF PROCESS

// endless loop
while(1)
{

(SBF object)(inPort 0, outPort 0);
}

An example of a RTL process is given in Program 6.4. It describes a process that never terminates,
because it contains an endless loop using thewhile(1) statement. Inside the loop, an SBF object is
called as a function call with two arguments,inPort 0 andoutPort 0. These two arguments are
respectively the read port and write port connected to channels which are FIFO buffers that connect
to other SBF objects within a network.

Building Blocks

The building blocks introduced in Chapter 4 are used again to describe a single SBF object. The
behavioral part of a building block describes the process of an SBF object and could be the process
description as given in Program 6.4. The structural part of the building block contains references
to channels. For the SBF object described in Program 6.4, the structural part would thus contain
references to the channels via read portinPort 0 and write portoutPort 0.

The description given of the example of a system in Figure 4.5 describes a network of SBF objects,
if we do not take resourceresource1 and resource2 into account. Each node in the network is a
building block representing an SBF object and the edges between the nodes are unbounded FIFO
buffers instead of semaphores. In this way, the network in Figure 4.5 describes an application as a
network of SBF objects.

Fire-and-Exit Behavior

Each process defines a single thread-of-control that is passed on from the endless loop to the controller
of an SBF object via the function-call operator (this is shown in Program 6.3). Assuming that this is
the SBF objectDownSampling , then the binding function in the controller program gives the thread-
of-control to eitherfunction A or function B. If, at any moment, one of the functions terminates
(i.e., the function has fired), the function returns the thread-of-control to the controller, which executes
the transition function. This function updates the state of the SBF object. Finally, the thread-of-control
exits the controller and returns to the endless loop in Program 6.4 and the whole process described is
repeated another time.

The description in Program 6.4 shows clearly why an SBF object describes aFire-and-Exit be-
havior. Recall the sequence that we presented in Equation 6.7, in which a function of the set fires and
a transition takes place. Each time a functionfires, the transition function executes and the thread-of-
controlexitsthe controller of the SBF object to return to the endless loop. Within the endless loop, we
can determine whether transition took place. As we will explain in Chapter 7, we use the notion of a

156 6.8 Implementation of the SBF model

(SBF Object)(....); (Transition)

Fire

Process

Exit

Figure 6.10 . Fire-and-Exit behavior.

transition to couple time to an SBF object. Each time a transition takes place, we execute apam delay
statement. Therefore, the execution of a function takes time.

Library of SBF Objects

We store SBF objects in alibrary to encourage reuse of previously defined SBF objects. Furthermore,
we allow SBF objects to describe SBF objects in a parameterized form. Using the overloading of
the function-call operator, an arbitrary SBF object with one input and one output can be used in Pro-
gram 6.4. For that purpose, an SBF objectSBF Object is instantiated from the library. Notice that a
process description as given in Program 6.4 describes a one-input, one-output function call. Therefore
separate function descriptions are needed for other combinations of input and output arguments.

6.8.2 Coordination Language

The SBFsim simulator uses a dedicated coordination language that is implemented using aparserto
recognize a network description language1. This language describes the processes used in a network
and the connections between these processes. The parser also instantiates SBF objects from the library
and places them onto the processes. Furthermore, it instantiates unbounded FIFOs for the channels
between SBF objects.

Program 6.5. NETWORK OFSBF OBJECTS

Program PictureInPicture {
(x1) = Source<Source>(NULL);
(x2) = FIR_H<FIR>(x1);
(x3) = SRC_H<DownSampling(factor=2)>(x2);
(x4) = Transpose_H<Transpose>(x3);
(x5) = FIR_V<FIR>(x4);
(x6) = SRC_V<DownSampling(factor=2)>(x5);
(x7) = Transpose_V<Transpose>(x6);
(NULL) = Sink<Sink(stop=1000)>(x7);

};

An example of a network description is given in Program 6.5. It describes the PiP application
given in Figure 6.1. We create a process in the network description for each coarse-grained function
in the application. We created a process, for example, for the horizontal SRCSRCH that one input
x2 and one outputx3 . For each process, SBFsim creates a RTL process as described in Program 6.4.

1See Section 5.5, where we describe an architecture template, for more information about the use of a parser. In that
section we also explain how the parser instantiates building blocks

Applications 157

SBFsim installs an SBF Object that is taken from a library on these processes, as described between
the “< >” brackets. For example, SBFsim installs on processSRCH the SBF objectDownSampling ,
as described in Programs 6.2 and 6.3. An SBF object likeDownSampling can be parameterized.
In the network description, we indicate that the SBF objects forSRCH andSRCV should perform a
down-sampling of a factor of 2.

Each process in Program 6.5 has input and output arguments: on the left-hand side the output
arguments and on the right-hand side the input arguments. The source and sink processes have no
input and output arguments, respectively, as indicated by the keywordNULL. The channels between
the processes arex1 to x7 . In the example, SBFsim implements each channel as an unbounded FIFO.
The sink process has the additional parameterstop=1000 , to indicate that it should stop executing
after it has read 1000 tokens. When the sink process stops, the whole network stops.

Although Kahn process networks require unbounded FIFOs, Parks [1995] discusses the construc-
tion of Kahn networks using bounded FIFOs. He argues that the deterministic properties in a Kahn
process networks are retained when bounded FIFOs are used. The use of bounded FIFOs requires
blocking writes to implement a write to a bounded channel. We constructed SBFsim such that it can
instantiate FIFO buffers of arbitrary (parameterized) capacity.

6.9 Conclusions

Within the Y-chart environment we want to map sets of applications onto architecture instances. In
this chapter, we introduced the stream-based functions model of computation to describe the set of
applications. The main reason why we developed the SBF model was to make a smooth mapping
of applications onto architecture instances possible. The SBF model is a new model of computation
suitable for describing stream-based applications as a network of SBF objects.

We presented the SBF object and showed that it has a solid foundation in two well-known models:
Kahn process networks and the AST model developed by Backus. The SBF model structures Kahn
processes such that they consist of a set of functions, a controller and state. We call such a structured
Kahn process an SBF object. SBF objects describe control (the controller) and dataflow (the set of
functions) in one and the same SBF object. This provides a high degree of flexibility when describing
(complex) consumption/production patterns of tokens from streams. These consumption/production
patterns result from transforming multi-dimensional data structures into one-dimensional streams.

SBF objects can describe fine-grained to very coarse-grained functions. As such, networks of
SBF objects describe applications at different levels of granularity. The granularity of the SBF objects
influences the granularity of the function executed by an functional element. The granularity of these
functions is an important design parameter in stream-based dataflow architectures. The granularity
of SBF objects can be enlarged by combining them into a new SBF object or it can be reduced by
decomposing an SBF object into a set of new SBF objects.

We placed the SBF model of computation in the context of other relevant models of computa-
tion. We considered dataflow models like homogeneous dataflow, synchronous dataflow, cyclo-static
dataflow, and dynamic dataflow. We also discussed process models like Kahn process networks and
communicating sequential processes. Finally, we discussed models that combined dataflow/process
models like the dataflow process network model and the application state transitionmodel. We showed
that the SBF model also describes a combined dataflow/process model.

Finally, we described the construction of SBFsim, a simulator that can simulate networks of SBF
objects. In the description of these networks, we made the distinction between the host language,
in which we describe SBF objects, and the coordination language in which we describe the network

158 BIBLIOGRAPHY

of SBF objects. We showed that the SBF model of computation can be implemented very simply
using C++ and a multithreading package. We also showed that we can reuse the building block ap-
proach presented in Chapter 4 by representing each SBF object by a building block. The coordination
language used in SBFsim is built using a parser that parses a network description language.

Bibliography

Jurgen Annevelink.HiFi, A Design Method for Implementing Signal Processing Algorithms on VLSI
Processor Arrays. PhD thesis, Delft University of Technology, 1988.

John Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs.Communications of the ACM, 21(8):613 – 641, 1978.

U. Banerjee.Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.

Shuvra S. Bhattacharyya and Edward A. Lee. Memory management for dataflow programming of
multirate signal processing algorithms.IEEE Transactions on Signal Processing, 42(5), 1994.

G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static data flow. InIEEE Interna-
tional Conference ASSP, pages 3255 – 3258, 1995.

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A framework for
simulating and prototyping heterogeneous systems.International Journal of Computer Simulation,
1992. Special issue on Simulation Software Development.

J.T. Buck.Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model.
PhD thesis, Dept. of EECS, University of California at Berkeley, 1993. Tech. Report UCB/ERL
93/69.

A.P.W. Bŏhm.Dataflow Computation. Number 6 in CWI tract. Centrum voor Wiskunde en Informat-
ica, Amsterdam, 1983. Dutch.

Adele Goldberg and David Robson.Smalltalk-80, The Language and Its Implementation. Addison-
Wesley Publishing Company, Xerox Palo Alto Research Center, 1983.

Peter Held.Functional Design of Dataflow Networks. PhD thesis, Delft University of Technology,
1996.

C.A.R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8):666 – 677,
1978.

C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

R. Jagannathan. Dataflow models. In E.Y. Zomaya, editor,Parallel and Distributed Computing
Handbook. McGraw-Hill, 1995.

Johan G.W.M. Janssen, Jeroen H. Stessen, and Peter H.N. de With. An advanced sampling rate
conversion algorithm for video and graphics signals. InIEE Sixth International Conference on
Image Processing and its Applications, Dublin, 1997.

Gilles Kahn. The semantics of a simple language for parallel programming. InProc. of the IFIP
Congress 74. North-Holland Publishing Co., 1974.

BIBLIOGRAPHY 159

Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. InProc. of the
IFIP Congress 77, pages 993 – 998. North-Holland Publishing Company Co., 1977.

S.Y. Kung, J. Annevelink, and P. Dewilde. Hierarchical iterative flowgraph integration for VLSI array
processors. InProceedings University of Southern California (USC) Workshop on VLSI and Signal
Processing, 1984.

Edward A. Lee and David G. Messerschmitt. Synchronous data flow.Proc. IEEE, 75(9):1235 – 1245,
1987.

Edward A. Lee and Thomas M. Parks. Dataflow process networks.Proceedings of the IEEE, 83(5):
773–799, 1995.

Marc Nijweide. The pamela run-time library, version 1.3. Technical Report 1-68340-27(1995)06,
Laboratory of Computer Architecture and Digital Techniques, Delft University of Technology,
1995.http://dutepp0.et.tudelft.nl/ gemund/publications.html .

Tom Parks.Bounded Scheduling of Process Networks. PhD thesis, University of California at Berke-
ley, 1995.

Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 2nd edition, 1991.

Arthur H. Veen. Dataflow machine architecture.ACM Computing Surveys, 18(4):366–396, 1986.

160 BIBLIOGRAPHY

Chapter 7

Construction of a Retarget-
able Simulator and Mapping

Performance
Numbers

Applications

SBF-Model(Pamela/C++)

Arch. Model

Retargetable
Simulator (ORAS)

Mapping

Contents

7.1 Retargetable Architecture Simulators . 162

7.1.1 Requirements . 163

7.2 The Object Oriented Retargetable Simulator (ORAS) 163

7.3 Development of ORAS . 165

7.3.1 Step 1: Structure . 165

7.3.2 Step 2: Execution Model . 166

7.3.3 Step 3: Metric Collectors . 166

7.4 Mapping Applications . 167

7.4.1 Mapping Approach . 168

7.4.2 Matching Models of Architecture and Computation 169

7.4.3 Control Hierarchy . 170

7.5 The Interface Between Application and Architecture 172

7.5.1 The Application – Architecture Interface 173

7.5.2 Restricting Resources . 175

7.6 Construction Example . 175

7.7 Related Work . 176

7.8 Discussion on ORAS . 177

7.8.1 Building Blocks . 178

7.8.2 High-level Primitives . 178

7.8.3 Interpreted Model . 178

7.8.4 Limitations . 178

7.9 A Generic Approach for a Retargetable Simulator 179

7.9.1 Step 1: Structure . 179

7.9.2 Step 2: Execution Model . 179

7.9.3 Step 3: Metric Collectors . 180

7.9.4 Mapping . 180

7.10 Conclusions . 180

161

162 7.1 Retargetable Architecture Simulators

T
HE use of the concepts presented in the previous chapters, for the construction of theObject
oriented Retargetable Architecture Simulator(ORAS) is what we discuss in this chapter. We

also discuss how applications map onto executable architecture instances that have been derived from
the architecture template of stream-based dataflow architectures, using ORAS.

So far, we have discussed performance modeling techniques in Chapter 4 to model systems to
acquire performance numbers. In Chapter 5, we used this modeling technique to construct executable
architecture instances of stream-based dataflow models using building blocks. In Chapter 6 we ex-
plained how we model applications using the stream-based function (SBF) models. In this chapter,
we combine the concepts presented in the last three chapters to construct ORAS.

A retargetable simulator derives specific simulators for different architecture instances. It does
this from an architecture template as we discuss in Section 7.1. The retargetable simulator ORAS is
presented in Section 7.2 and is followed in Section 7.3 by an explanation of the three steps involved
within ORAS. Being able to derive a simulator for an architecture instance is not all that is required
to produce performance numbers; we must also map applications onto such an architecture instance.
How applications, which are written as networks of SBF objects, map onto architecture instances is
discussed in Section 7.4. The SBF model describes dynamic dataflow. The workload that an applica-
tion represents may change, depending on the content of the stream that the application processes at
run-time. To reflect the correct dynamic workload on an architecture instance without much modifi-
cations an architecture/application interface is needed, as we discuss in Section 7.5. In Section 7.6,
we present an example that shows how ORAS constructs an architecture instance that executes the
Picture in Picture (PiP) application (discussed in Chapter 6). We look at a one-to-one mapping and a
many-to-one mapping of this application onto an architecture instance. In Section 7.7 we discuss re-
lated work on constructing high-level retargetable architecture simulators. In Section 7.8 we evaluate
ORAS in the context of other architecture simulators. Finally, in Section 7.9, we reconsider the three
steps used in ORAS and show how they provide a generic outline for retargetable simulators for other
architecture templates.

7.1 Retargetable Architecture Simulators

To be able to execute architecture instances within the Y-chart environment, we need a retargetable
architecture simulator for the architecture template of stream-based dataflow architectures. We define,
inspired by [Marwedel and Goossens, 1995], a retargetable architecture simulator to be

Definition 7.1. RETARGETABLE ARCHITECTURESIMULATOR

A Retargetable Architecture Simulatoris a simulator that can simulate different architecture in-
stances from an architecture template if an architecture description is provided for each architecture
instance. 2

In this chapter, we develop a retargetable simulator that derives a specific executable simulator
for a specific architecture instance. We also discussed the development of the retargetable simulator
in [Kienhuis et al., 1998]. When we say a retargetable simulatorderivesa specific executable sim-
ulator, we mean that the retargetable simulator instantiates a specific executable simulator in various
steps. By executing such a derived simulator, we obtain the desired performance numbers for an
architecture instance.

Construction of a Retargetable Simulator and Mapping 163

7.1.1 Requirements

The retargetable simulator that we develop for stream-based dataflow architectures needs to satisfy to
the requirements of retargetability, execution speed, andaccuracy.

Retargetability The retargetable architecture simulator must be capable of deriving simulators for
all possible architecture instances of an architecture template. The parameters present in an
architecture template of stream-based dataflow architectures clearly indicate the level of retar-
getability required. We should exploit this confinement to obtain efficient retargetable simu-
lators. Furthermore, the derived simulator should simulate valid instances of the architecture
template. We thus need to be able to verify whether an architecture instance is a valid one with
respect to the architecture template of stream-based dataflow architectures.

Execution SpeedThe retargetable simulator will be used in Chapter 8 to evaluate the performance
of architecture instances for the purpose of design space exploration. This leads to a very
important requirement for the derived simulators, namely their execution speed. In the end it
is the execution speed that determines the number of instances which we can evaluate within
a certain amount of time. This requirement is especially important in application domains
like video and radar that are very computationally intensive and involve a large amount of
communication. Providing support for retargetability introduces a certain amount of overhead
in a simulator. Since this overhead reduces the simulation speed of the derived simulators, it
should be kept as small as possible.

Accuracy Here we study derived simulators that deliver cycle-accurate performance numbers. These
simulators must also be able to execute the dynamic behavior of both the architecture and the
applications. That is to say, the simulators must evaluate an interpreted performance model1.
We provide such a model by mapping applications onto architecture instances and executing
the application on the architecture instance.

7.2 The Object Oriented Retargetable Simulator (ORAS)

We develop theObject Oriented Retargetable Simulator(ORAS), which derives a specific simulator
for an architecture instance using the following three steps:

1. ORAS constructs the structure of an architecture instance from a textual architecture descrip-
tion.

2. ORAS adds an execution model to the structure of the architecture instance to obtain an exe-
cutable architecture instance.

3. ORAS instruments the executable architecture instance withmetric collectorsto measure and
to extract performance numbers for selected performance metrics.

The three steps implemented in ORAS are shown in Figure 7.1. The first step concerns only the
structure of architecture instances. In this step, ORAS exploits object oriented principles to construct
the structure of architecture instances. It employs a parser that combines architectural elements, which
are modeled as building blocks, to construct the structure of a stream-based dataflow architecture

1See Chapter 4 where we explain what interpreted and uninterpreted performance models are

164 7.2 The Object Oriented Retargetable Simulator (ORAS)

Buidling Blocks

Architecture

Simulator

Executable
Arch. Inst.

Run-Time Library

Defined as ClassesGrammar

1. Structure

2. Execution Model

3. Measuring

Object Oriented Principles

PAMELA

Function Library (SBF)

Description
Architecture

Parser

Processes

Instrumenting

Architecture Template Architecture Elements

PAMELA constructs

Metric Collectors

Structure

Routing
Program

Figure 7.1 . The three steps used within the Object oriented Retargetable Architecture Sim-
ulator (ORAS).

instance. The parser validates whether an architecture instance specified in a textual architecture
description complies with the architecture template. In the second step, ORAS adds an execution
model based on the Run-Time Library (RTL) to the structure of an architecture instance, yielding an
executable architecture instance. It also instantiates SBF objects from the function library. In the
third step, ORAS instruments the executable architecture instances with metric collectors to measure
and extract performance numbers for particular performance metrics during a simulation. Finally, the
derived simulator reads in a routing program to execute an application, thus rendering the requested
performance numbers.

Figure 7.1 is very similar to Figure 5.2, which shows the four issues involved in constructing an
executable model of an architecture instance from an architecture template. Figure 7.1 differs from
Figure 5.2 in that the use of building blocks to model architectural elements is explicitly indicated in
it. In addition, the modeling process is split into three separate steps. Each building block contains a
structural part used in the first step, a behavior part used in the second step, and the building blocks are
instrumented to extract performance numbers in the third step. Another difference is that SBF objects
are instantiated onto functional elements from a library of SBF objects in the second step.

Construction of a Retargetable Simulator and Mapping 165

7.3 Development of ORAS

In our development of ORAS, we focused primarily on constructing a retargetable architecture sim-
ulator that executes fast while being cycle-accurate and capable of performing a functionally correct
simulation. We now elaborate on the three steps used in ORAS.

7.3.1 Step 1: Structure

The first step taken in ORAS concerns the construction of an architecture instance that is a feasible
instance of the architecture template of the stream-based dataflow architecture. The construction of
such complex structures is easier if a programming language satisfies the following requirements:

Composition We defined an architecture to be a collection of interconnected architectural elements
as explained in Section 5.1. Each architectural element defines the constituent elements of an
architecture instance and is modeled as a building block. We combine these building blocks to
form larger hierarchical structures. For setting up the structure of an architecture instance, only
the structural part of a building block is relevant.

Behaviors We introduced the notion of “architectural element type” to indicate that an architectural
element has properties that can be implemented using more than one behavior. We describe
the concept oftypesby means of abstract classes. When we construct an architecture using
only types, we can still select various behaviors. This is illustrated in Figure 5.4), in which we
show the typeBufferdescribed as an abstract class with read and write methods. Three classes
are derived from this abstract class, and they implement different behaviors, namely that of a
handshake buffer, a bounded FIFO buffer, and an unbounded FIFO buffer. For the stream-based
dataflow architecture we set up a class hierarchy (as shown in Figure 5.5) which shows the
abstract classes describing architectural element types and the derived classes describing the
various behaviors of the types.

Verification The architecture instance for which ORAS derives a simulator must comply with the
architecture template of stream-based dataflow architecture. We explained in Section 5.5 how
we can specify an architecture template in terms of composition rules in BNF2. These rules
also describe the grammar of an architecture description language.

ORAS uses a parser (i.e., Flex and Bison) to decompose a textual architecture description into
elements that the parser matches against the grammar of the architecture template. If a valid
rule is found, the parser activates the associated action; for example, instantiating an object
representing a building block from the class hierarchy shown in Figure 5.5. The parser also
resolves interconnections between objects, i.e., which object connects to which other object.

High-Level Constructs ORAS constructs the structure of architecture instances by combining ob-
jects. To facilitate the combination of objects, ORAS adopts high-level programming constructs
like vectors, lists, andmaps. These high-level constructs are part of the new standard in C++
libraries called theStandard Template Library(STL) [Musser and Saini, 1996]. Because STL3

implements the high-level constructs using the C++ template mechanism [Stroustrup, 1991],
the constructs are very efficient and introduce very little overhead. STL has proven to be a key
technology for the effective and efficient development of ORAS.

2See appendix A for the BNF rules describing the composition rules of the architecture template of stream-based dataflow
architectures

3Examples of STL constructs were shown when describing the various building blocks in Section 5.4

166 7.3 Development of ORAS

7.3.2 Step 2: Execution Model

In the second step, ORAS adds an execution model to the structure of an architecture instance, to
acquire an executable architecture instance. The model it adds is the Run-Time Library presented in
Section 4.4. The process descriptions of building blocks are created during this step, usingmethod
init process as discussed in Chapter 4. The processes activated for the various types of architec-
tural elements were discussed in Section 5.4.

ORAS instantiates the structure of all objects in the first step and in the second step passes this
structure on to the processes of building blocks (Using thethis-pointeras explain in Section 4.4).
Because the structure of the architecture is already resolved in the first step, processes no longer have
to decode any structural aspects of the architecture at run-time. This is a crucial step in the creation of
an efficient simulator that is still retargetable. In this second step, ORAS also instantiates SBF objects
(as presented in Chapter 6) onto functional elements. ORAS does thiswithout any modificationof
the SBF object. We explain in detail in the second part of this chapter how the instantiation of SBF
objects onto functional elements takes place.

7.3.3 Step 3: Metric Collectors

The building blocks in ORAS are instrumented with metric collectors so that they can harvest the
performance numbers from the derived simulator. Thesemetric collectors, which can be activated in
the third step, are special objects that collect performance numbers during a simulation for high-level
performance metrics and present the results, possibly in statistical form, at the end of a simulation.

Element Type Performance Metric

Comm. Structure Utilization
Controller Utilization
Buffer Filling Distribution
Routers Response Time Controller
Functional Unit Utilization, Number of Context Switches
Functional
Element

Utilization, Pipeline Stalls
Initiation Period, Number of Operations

Architecture Number of Operations, Total execution time

Table 7.1 . Metric collectors implemented for the instrumentation of different architectural
element types.

In Table 7.1 some performance metrics are given for architectural elements of the stream-based
dataflow architecture. The metric collectors gather information about the complete architecture, such
as the number of executed operations or the total execution time in cycles. We can use these numbers
to evaluate, for example, the performance metric “parallelism”. Other collectors may measure how
long a semaphore blocks a process, thus measuring “response time” or “waiting time”.

In Program 7.1, we show the code ofmethodwrite of a FIFO-buffer again, but now we include
the code for the metric collectormetricCollector to determine the filling distribution within the
FIFO buffer, an instrumentation done for every FIFO buffer in the architecture. Each time a token
is written into the FIFO buffer, the metric collector determines how many tokens are present in the
buffer at write times. At the end of a simulation, a metric collector creates a histogram of the FIFO

Construction of a Retargetable Simulator and Mapping 167

Program 7.1. THE WRITE METHOD OF A BOUNDED FIFO BUFFER

void Fifo::write(Sample a)
{

pam P (room); // Is there Room in the FIFO?
metricCollector.histogram(token++); // Instrumentation
buffer[writefifo] = a; // Write in buffer
writefifo = (++writefifo)%capacity;
pam delay (1); // It takes 1 clock cycle to write
pam V (data); // Tell there is data available

}

Avg

Compiled
FIR Router 1 unbounded histogram

Response Time Controller

R
el

.
F

re
q.

(

%

)

2015105

100

80

60

40

20

0

Figure 7.2 . Histogram of the sample distribution of a buffer.

buffer filling, as shown in Figure 7.2.
The histogram shows in percent how many samples are in a buffer when a sample is written into the

buffer. On average, there are 9 samples in the buffer when a sample is stored in the buffer. However,
the maximum number of samples that can be stored at a particular time instance is 19 samples. The
minimum number of samples that are stored at a particular time instance is 5 samples.

We show performance numbers in Table 7.2, produced by some of metric collectors given in
Table 7.1. It shows the visit count and utilization for the functional elements “LowPass” and “Trans-
pose”. As an example,LowPassFilter was visited 25830 times during a simulation; it was thus
utilized for 33.19%. The table also shows the total number of operations executed by all functional
elements in a simulation (83937), which, according to metric collectorparallelism , means that on
average 1.08 functional units were active per cycle.

7.4 Mapping Applications

Not only must we derive a simulator for an architecture instance, but we must also be able to map
applications (e.g. the workload) onto such an architecture instance to evaluate its performance. We
think that this mapping can be solved quickly only if the model of computation matches the model
of architecture (we presented this mapping approach in Section 3.3.2). In this section, we show what
a natural matching of models of architectures and computations actually implies. We also show that

168 7.4 Mapping Applications

LowPassFiltervisit count = 25830
LowPassFilterutilization = 33.19%
Transposevisit count = 12911
Transposeutilization = 16.59%
Parallelism = 1.08
Operations = 83937

Table 7.2 . Results produced by metric collectors.

this mapping leads to a 3-level control hierarchy.

7.4.1 Mapping Approach

We discussed the mapping of applications already briefly in Section 5.6, where we discussed the
programming model of stream-based dataflow architectures. In that section, we showed that edges
of the network map to a buffer/router/buffer-tuple, that a node of the network maps to a functional
element installed on a functional unit, and that a stream maps to a packet stream. Later, in Chapter 6,
we specified what the model of computation of such network is and how the internals of such a
node look. So, instead of mapping a node onto a functional element, we map an SBF object onto a
functional element, as shown in Figure 7.3. A smooth mapping of this SBF object onto a functional
element is only workable when the model of computation of the SBF model matches the model of
architecture of stream-based dataflow architectures.

Router
Input BufferOutput Buffer

Edge

FE

(maps to) (maps to) (maps to)

Functional Unit

Stream

header

packet

data

SBF Object

State

f_a

f_b

Controller

Figure 7.3 . The mapping of an application described using the SBF model onto an archi-
tecture instance.

The actual digital signal processing takes place within functional elements. They execute func-
tions that process the streams containing data samples (see, for an example, Section 5.4.9 where
we modeled a functional element as a building block). When we want to map an application onto an
architecture instance, it is the function of a functional element, however, that should describe the func-
tionality represented by SBF objects. Such a simple mapping only takes place when the functional
elements are indeed capable of describing the behavior of SBF objects. In stream-based dataflow
architectures, functional units shield off functional elements from details of the architecture. Con-

Construction of a Retargetable Simulator and Mapping 169

sequently, functional elements appear to operate in isolation on unlimited streams and they remain
unaware of the fact that these streams are transported through architecture instances as packets.

As we defined it in Chapter 3, the model of architecture is the interaction between the various
architectural elements. In the model of architecture of stream-based dataflow architectures, however,
functional elements may be considered separately from other architectural elements. Because SBF
objects map to these functional elements, it is only the behavior of functional elements that needs
to be considered in the mapping. The communication taking place over buffer/router/buffer-tuples
needs to adhere to a FIFO behavior, so the matching relationship between the stream-based dataflow
architecture and stream-based functions model becomes the relationship as shown in Figure 7.4. The
SBF objects part of the SBF model of computation should match the functional elements, which is
part of the model of architecture of stream-based dataflow architectures.

Time

Functional Elements

Model of Architecture Model of Computation

Stream Based Functions

Architecture Algorithms

Data Type

Streams

Samples
Ordering of Samples Ordering of Samples

Figure 7.4 . Matching the model of computation of the SBF object to the model of architec-
ture defined by the functional elements implies that SBF objects map to functional elements.

7.4.2 Matching Models of Architecture and Computation

The mapping of an SBF object onto a functional element is illustrated in Figure 7.5. It shows a
functional element with its read and write processes and a pipeline between these processes. It is
similar to Figure 5.9, except that it has an SBF object with 2 input ports and 2 output ports mapped
onto the read process of the functional element. This is possible because the model of computation
of the SBF object matches the model of architecture determined by the behavior of the functional
element.

Model of Computation A network of SBF objects is a Kahn process network and the SBF objects
obey the Kahn rules. These rules assert that the underlying process of a single SBF object observes
one buffer at a time and either reads a token from the buffer or blocks, implementing a blocking read.
The same rules apply when writing to buffers (based on the assumptions stated by Parks [1995]).

170 7.4 Mapping Applications

Model of Architecture A functional element operates in a data-driven fashion, which means that
its activity is determined solely by the availability of data. The read process of a functional element
checks the availability of data by reading tokens from the input buffer using blocking reads. It reads
from one buffer at a time. The writing of tokens happens using a blocking write.

State

f_a

f_b

Controller

Read Ports

Read Process WriteProcess

Write Ports

Pipeline

Objects
SBF

SBF Object

(Maps to)

Instantiate

Figure 7.5 . Mapping of an SBF Object onto the read process of a functional element.

Matching Both an SBF object and a read process of a functional element describe the same exe-
cution rules, i.e. the Kahn rules. Likewise, both an SBF object and a functional element operate on
continuous streams of data of the same type, i.e. streams of samples. Because the behavior of both the
functional element and the SBF object is the same, and moreover, because both operate on continuous
stream of samples representing data samples, we conclude that SBF objects can seamlessly integrate
into read processes of functional elements. How this integration takes place inside ORAS is discussed
in Section 7.5.

7.4.3 Control Hierarchy

When we write applications as a network of SBF objects, we assume unlimited resources: each SBF
object is a process on its own and it interconnects with other SBF objects in a point-to-point fashion
using FIFO buffers. In contrast, an architecture instance on which we map applications has a limited
amount of resources at its disposal. It exploits functional unit sharing to enhance efficiency, and
uses a function repertoire to enhance flexibility, as explained in Section 2.1.3 where we discussed the
behavior of stream-based dataflow architectures.

Because an SBF object maps onto a functional element, we map the point-to-point communica-
tions between SBF objects onto buffer/router/buffer-tuples, as shown in Figure 7.3. The mapping of
the communication between SBF objects leads to a control hierarchy on the stream-based dataflow
architecture that consists of three levels of controllers:

1. The global controller,

2. The controller that is local to the functional unit,

3. The controller that is part of the SBF object instantiated onto a functional element.

This control hierarchy is depicted in Figure 7.6. The first level,Level 1, relates to the global
controller that we can program by means of a routing program (see Section 5.6, where we explain
the programming model of stream-based dataflow architectures). The second level,Level 2, relates
to the local controller of a functional unit. Based on theHf field of a header arriving at the opcode-
port of the functional unit, a functional element is activated from the function repertoire (i.e.F =

Construction of a Retargetable Simulator and Mapping 171

fF1;F2;F3;F4g) (see Section 5.4.8, where we modeled the local controller of a functional unit). In the
figure, the global controller has assigned a value toHf that relates to functional elementF1. An SBF
object is instantiated on each functional element and the third level,Level 3, relates to the controller
being part of that SBF object (see section 6.4, where we described the modeling of SBF objects).

The controllers at level 1 and level 2 only concern the communication between SBF objects and the
multiplexing of streams. However, the controller at level 3 is completely determined from the given
application description. The control at level 3 is invariant with respect to the architecture instances.

F
unctional E

lem
ents

F1 Length Data

Header

Level 3

Level 2

Level 1

Control
Levels

Local Controller
Functional Unit

Selection FE, based on Header value

Global Controller

Opcode Buffer

(Run-Time)

Header filled by Global Controller
(Run-Time)

F4
F3

F2
F1

Function Repertoire

Routing Program

State

f_a

f_b

Control

(Static)

(Static)

Figure 7.6 . Control Hierarchy in the stream-based dataflow architecture.

Level 1 The first level of control is at the global level where the global controller resides. The global
controller contains a routing program that describes the static routing of packets through an
architecture instance. Routers interact with the global controller to receive this routing infor-
mation (see Figure 5.16, where we showed how a router interacts with the global controller to
change the content of a header). By down-loading another routing program, we can establish
another flow of packets, causing the execution of another application.

Level 2 The second level of control is at the level of the functional units where the local controller
resides. The local controller of the functional unit selects and activates a functional element
at run-time from the function repertoireF of the functional unit, based on theHf field of the

172 7.5 The Interface Between Application and Architecture

header arriving on the opcode-buffer of the functional unit (in packet-switching mode). The
value ofHf is set at run-time by routers. The function repertoire, on the other hand, is statically
resolved when an architecture instance is defined. For example, in the architecture description
given in Figure 5.11 we devised the regular processing elementFilter with a functional unit
with two functional elements, respectivelyLowPassandHighPass.

Level 3 The third level of control is at the level where SBF objects reside, which is internal to func-
tional elements. The controller of an SBF object specifies the consumption/production pattern
of an SBF object, and thus of a functional element (see, for an example, Table 6.1, where we
show how the controller of an SBF object specifies the consumption/production pattern of the
SBF object).

In the architecture description given in Figure 5.11 the functional elementLowPassinstantiates
SBF object “Lowpass” and functional elementHighPassinstantiates SBF object “Highpass”,
both from the library of SBF objects. At this level, by selecting a particular SBF object for
the functional element to execute, we determine the grain size of a functional element, which
equals the granularity of an SBF object.

Modeling the Function Repertoire

We describe function repertoires as consisting of different functional elements. Not every functional
element is going to become a piece of hardware on its own. In practice, we combine functional
elements into one piece of hardware. In the Jacobium case (which will be discussed in Section 9.3),
we indicate how such a functional unit may look. Although we can construct a function repertoire of
very different SBF objects, it is more logical to combine SBF objects that have more similar sets of
functions (as given by Equation 6.1).

7.5 The Interface Between Application and Architecture

The SBF model describes dynamic dataflow. The workload that an application represents may change
depending on the content of the stream(s) that the application processes at run-time. In the case of
video applications, the workload that results depends on the sequence of images being processed.
MPEG [Rao and Hwang, 1997] algorithms typify such applications. Suppose such an application
describes a dynamic workload and executes on a simulator derived by ORAS, as shown in Figure 7.7.
The processing of the clown video-sequence results in a workload, for which the simulator delivers
particular performance numbers. If another sequence is chosen instead of the clown video sequence,
then another workload results for which the simulator should deliver other performance numbers.
Notice that the routing program – and thus the mapping – remains the same.

To have the simulator execute the correct dynamic workload without our having to make a large
modification to the original application description, we want to evaluate SBF objects functionally
correctly at run-time in the context of architecture instances. This implies that SBF objects should
access and process the data which flows through an architecture instance, simulating an interpreted
performance model of the architecture instance. Alternatively, SBF objects need anApplication –
Architecture interface. An SBF object interacts on this interface with the data flowing through the
architecture instance. Via the interface, the SBF object can access the data from the architecture
instance, process it, and put new results back into the architecture instance.

Construction of a Retargetable Simulator and Mapping 173

(N)

Routing
Program

Video Sequence (N)

Performance
Numbers

Simulator

Figure 7.7 . The performance numbers found by executing an application onto an architec-
ture instance is also influenced by the type of content processed.

7.5.1 The Application – Architecture Interface

When we were discussing the 2-input, 2-output functional element in Section 5.4.9, we indicated that a
functional element evaluates a function in its readprocessand executes themethodexecuteFunction22

shown in Program 5.8. This method contains the function call

(function)(sample0, sample1, &new sample0,&new sample1),

which instantaneously evaluates a standard C function call consuming two samples and producing
two samples. The disadvantage of using this scheme is that the function call cannot handlemulti-rate
effects, i.e. a function must always consume a fixed number of arguments and always produce a fixed
number of output values. One can circumvent this limitation by tagging the samples as either valid or
not valid, but this would lead to many additional control statements, because checks are needed as to
whether the data is valid or not.

Function Call Overloading

The SBF objects we introduced in Chapter 6 use an interface that can be seen as a regular C function
call (This is shown in Program 6.4), where we integrate an SBF object into a RTL process). The
interface is realized by overloading the C++ function-call operator (i.e.operator()) as explained in
Section 6.8. The integration of an SBF object into a functional element only requires that we replace
the original C function call in the read process of the functional element with the SBF object function
call

(SBF Object)(portIn[0],portIn[1],pipeline portIn[0],pipeline portIn[1]) :

174 7.5 The Interface Between Application and Architecture

The SBF object functional call accepts references to read and write ports, respectivelyportIn and
pipeline portIn , whereas the original C function call accepts samples. This way, the controller
of the SBF object becomes responsible for the readprocessof the functional element that reads a
correct, but variable amount of tokens fromportIn and writes a correct, but variable amount of
tokens topipeline port .

We show the revised program formethod executeFunction22 in Program 7.2. The read
and write ports used in the architecture modeling are different from the read and write ports used
in the application modeling. In the architecture modeling, ports are involved in header processing,
whereas in application modeling, headers do not exist. However, because of polymorphism, SBF
objects remain unaware of this difference. In Program 7.2, we pass on the input ports of the functional
element (i.e.,portIn[]) and the input ports of the pipeline (i.e.,pipeline portIn[]) to the SBF
object.

Program 7.2. EXECUTE A 2-INPUT, 2-OUTPUT SBF OBJECT

method executeFunction22 {

// Execute the SBF Object
// Pass on pointer to input and output, do not pass samples
(SBF Object)(portIn[0],portIn[1],pipeline_portIn[0],pipeline_portIn[1]);

// Calculate when these Samples are ready to leave the FE
leave_time = pam time () + (latency * initiation period);

// Pass the Execution to the sample
pipeline_portIn[0].setTime(leave_time);
pipeline_portIn[1].setTime(leave_time);

}

Passing Over the Thread-of-Control

As soon as the readprocessof a functional element passes the thread-of-control to the SBF object,
the controller of the SBF object becomes responsible for the reading and writing of tokens. Because
SBF objects have a fire-and-exit behavior (see Section 6.8, where we integrate an SBF object in a RTL
process), the readprocessof the functional element always gets back the thread-of-control when a
function has fired. Notice that when the enabled function of the SBF object tries to read from an input
buffer (e.g., via portIn[0]) and blocks, the readprocessof the functional element also blocks.

Augmenting SBF Objects with Time

Because the readprocessof the functional element always gets back the thread-of-control when a
function has fired, we can simply augment an SBF object with time by calling apam delay state-
ment each time a transition (i.e., the firing of a function) takes place. We put apam delay state-
ment in the endless loop in Program 6.4 following a call for the SBF object. In the context of the
read process of a functional element, thepam delay statement must be replaced by thepam delay
(initiation period) statement shown in Program 5.9.

We use the architecture description that we gave in Figure 5.11 to illustrate how we define func-
tional elements executing a function. In Figure 7.8, we describe one functional element on which
ORAS will instantiate the SBF objectLowPass from the library of SBF objects. This SBF object has
two parameters (i.e.,latency andinitiation period) resulting in a pipelined implementation of

Construction of a Retargetable Simulator and Mapping 175

18 stages and an initiation period of 1 sample per cycle. The initiation period of 1 is assigned to the
pam delaystatement in Program 5.9. The pipelining is handled as explained in Section 5.4.10.

FunctionalElement LowPass(1,1) {
Function { Type: LowPass(initiation period= 1,latency= 18); }
Binding {

Input (0->0);
Output (0->0);

}
}

Figure 7.8 . Definition of a functional element named LowPass in an architecture descrip-
tion, with one input and one output port.

7.5.2 Restricting Resources

An architecture instance is responsible for the handling of packets. An SBF object cannot do this,
because it is, after all, isolated by the functional unit from the notion of packets. When an architecture
instance uses an SBF object involving multi-rate effects, however, the amount of data produced by that
object changes and it is the responsibility of the architecture to decide how to manage these changes.

It can choose between combining various input packets into one new packet and sending out
smaller packets. Thus, suppose we have an architecture instance that uses a functional element on
which an SBF object is installed that describes a down-sampler with a factor of two (see, for exam-
ple, Program 6.3, describing the SBF objectDownSampling). Now, if the SBF object processes a
packet stream with a packet length of 100 samples, the local controller of the functional unit in which
the functional element resides can either produce two packets of 50 samples each or combine two
collections of 50 samples into a single output packet of 100 samples.

Although it is the responsibility of the architecture instance to handle the length of new packets,
it is convenient to add an extra method (i.e.,getNewLength) to SBF objects that provides control
over the length of new packets. We incorporated themethod getNewLength in the revised ver-
sion of method writeheader of Program 5.14, as shown in Program 7.3. Before sending out a
new header, the write port negotiates with an SBF object a new header lengthHl using themethod
getNewLength .

7.6 Construction Example

As an example of how to use ORAS to construct an architecture instance, we now construct two
architecture instances that are able to execute the Picture in Picture (PiP) application presented in
Section 6.1. Both architecture descriptions and their routing programs are given in Appendix B.

For the PiP application we defined one architecture instance with eight functional units, as shown
in Figure 7.9(a). Because it is an architecture instance, we have to specify all its parameters. For
example, we have to specify that the architecture instance employs a switch matrix and a First-Come-
First-Served (FCFS) strategy for the global controller. Furthermore, the packets produced by the
source will contain 120 samples and a request to the global controller will take 4 cycles. The input
and output are bounded FIFO buffers with a capacity of 30 and 20 samples, respectively. The functions
from Figure 6.1 mapone-to-oneonto the eight functional elements, one for each functional unit.

176 7.7 Related Work

Program 7.3. WRITE PORT METHODS

method writeHeader
{

// Each time we write a Header, we have to take it of the Queue
header = headerQueue.pop();

// Get the correct offset of the output port
header.setBase(header.getBase() + Offset);

// Get the length of the packet
old_length = header.getLength();

// Get a New length from the SBF Object
length = SBF_Object.getNewLength(old_length);

// While writing the Header, give back control to caller
pam delay (4);
output_buffer.write(header);

}

Since stream-based dataflow architectures permit sharing of functional units between different
streams, they also supportmany-to-onemappings. In that case, more than one application function
maps to one and the same functional unit. In Figure 7.9(b), we show an architecture instance that
also can execute the Picture in Picture application but shares functional units. Both the architecture
description and routing program are given in Appendix B. In this architecture instance, each functional
unit has a function repertoire of two functional elements each executing identical functions (e.g.,
sample rate conversion). Each time a context switch occurs, a function has to operate on the correct
data belonging to the correct stream. Because each function linked into these functional elements is
an object (e.g., an SBF object) encapsulating data and functions within the same entity, we only have
to switch between objects to make the activated function operate on the correct data (see the modeling
of the functional element in packet-switching mode in Section 5.4.8).

The current version of the simulator can simulate 10,000 SBF function calls (or firings) per sec-
ond instantiated on arbitrary functional elements with all metric collectors active. ORAS needs 9
minutes to functionally process a full video picture of 720�576 pixels through the 8 functional units
of Figure 7.9(a). The total implementation of ORAS required approximately 20,000 lines of C++
code.

7.7 Related Work

Very few high-level architecture simulators have been built for application-specific dataflow architec-
tures. These simulators have typically been dedicated to a specific architecture, built at a low level of
abstraction, and not, or hardly, made retargetable.

We already considered architecture simulators for general purpose processors in Chapter 3. Some
of these simulators are retargetable, like the TriMedia simulatorTmSim[Sijstermans et al., 1998] and
the DSP simulatorSupersim[Živojnović et al., 1996]. Both architecture simulators have in common
at least the use of the C programming language, mainly for reasons of performance. Nonetheless, the
C programming language does not support parallelism as required by the kind of architectures that we
are considering.

Rose and Shackleton [1997] used VHDL to perform dedicated high-level architecture simulations

Construction of a Retargetable Simulator and Mapping 177

Switch Matrix

First-come-first-served

Capacity = 20

Capacity = 30

Throughput = 1

Latency = 1

SinkSource

Service Time = 4Packet Length = 120

FIR SRC Trans Fir SRC Trans

(a) One-to-one Mapping

P
ac

ke
t L

en
gt

h
=

12
0

Source FIR SRC Trans

Switch Matrix

First-come-first-served

Throughput = 1

Capacity = 20

Capacity = 30

Latency = 1

Sink

Service Time = 4

(b) Many-to-one Mapping

Figure 7.9 . Two architecture instances for Picture in Picture (PiP); (a) the one-to-one map-
ping of PiP and (b) the many-to-one mapping of PiP.

for high-performance signal processing systems within the RASSP project [Richards et al., 1997].
VHDL offers a parallel execution model and allows the instrumentation of architecture models to ob-
tain performance numbers, but it cannot derive different architecture instances efficiently and quickly,
mainly because VHDL is a specification language and not a programming language. Furthermore, the
execution speed of VHDL is acceptable only when very high-level architecture models are used.

Witlox et al. [1998] used timed colored petri nets to construct a retargetable simulator for dataflow
architecture, which is very similar to the stream-based dataflow architecture. The Petri nets are con-
structed and simulated using the ExSpect Tool [ASPT, 1994]. Although petri nets have strong model-
ing capabilities, their evaluation time is often slow. For example, the ExSpect simulator requires one
day for processing one video frame using uninterpreted models.

The Ptolemy environment developed by Buck et al. [1992] is very useful for the specification
of algorithms for high-performance applications. It is, however, less suitable for architecture explo-
rations. Yet the Atrade tool, which was developed by Pauer and Prime [1997], makes it possible to
define architecture instances in Ptolemy. From this definition, a performance model is synthesized
within the discrete event (DE) domain. The tool also allows designers to define applications in the
SDF domain. Since a static schedule characterizes these applications, the Atrade tool only needs to
carry out an uninterpreted performance simulation and can thus very quickly obtain very accurate
results. The Atrade tool implements a kind of Y-chart environment using the Ptolemy environment.

7.8 Discussion on ORAS

We have expend considerable effort on the construction of ORAS to make it retargetable and, above
all, fast in execution speed. To quantify the execution speed of ORAS, we measured the execution
speed of derived simulators and found that they simulate on average approximately 10,000 function
calls of SBF objects (or firings) per second. To put this number in perspective, we compare this
speed with the execution speed of the architecture simulators for microprocessors given in Table 3.2.
Suppose each SBF object implements a simple RISC-like function; then ORAS would take 3.6 hours
to process a video image application having a complexity of 300 RISC-like operations per sample (i.e.,

178 7.8 Discussion on ORAS

per video pixel). Given the high level of retargetability, the complexity of the architecture instances,
and the fact that it is an interpreted performance model, ORAS is a fast retargetable simulator.

ORAS is not limited, however, to the use of RISC-like functions, but permits the use of arbitrary
coarse-grained functions. We can still execute 10,000 function calls of SBF objects while describing
a much more complex application, as shown in the Picture in Picture application example. In the PiP
case, the simulation speed ends up in the range of minutes and not hours (i.e., 9 minutes for a whole
frame), which clearly confirms that ORAS is a fast retargetable simulator.

7.8.1 Building Blocks

One reason why the execution speed of ORAS is high and at the same time still retargetable is that we
used building blocks to construct the architecture.

The building block modeling technique developed in Chapter 5 allows us to describe every pos-
sible architecture instance in the design space of a stream-based dataflow architecture. The use of
objects and high-level construction primitives of the STL library makes it very simple to describe
complex architecture instances. Secondly, the building blocks separated the structure from the behav-
ior. Because the structure of an architecture instance is resolved by the time processes are created, the
processes no longer need to decode any structural aspects of the architecture at run-time.

7.8.2 High-level Primitives

Another reason why the execution speed of ORAS is high is that we used high-level primitives to
model architectural elements and a very efficient simulation engine was available that can simulate
very fast structures using these high-level primitives.

The PAMELA method discussed in Chapter 4 provides 3 high-level primitives: processes, semaphores,
and delays. These primitives allowed us to model architectural elements at a high level of abstraction
in terms of the four components of the Performance Modeling Base. As a consequence, we move up
in the abstraction pyramid shown in Figure 3.3, while simulating the performance of an architecture
instance cycle-accurately.

The three primitives can be simulated very efficiently using the RTL process scheduler. It requires
a minimal amount of sorting, compared to other simulation engines, because of its simple structure,
as we explained in Section 4.5. In particular, we compare the RTL with a VHDL simulation engine in
Appendix C.

7.8.3 Interpreted Model

In addition to being fast and retargetable, ORAS is also able to obtain cycle-accurate performance
numbers expressing the correct dynamic behavior of both the architecture and applications. ORAS
integrates SBF objects seamlessly onto the functional elements of derived simulators, because of the
architecture – application interface. This interface hardly introduces any overhead, while the derived
simulator is able to execute an application functionally correctly.

7.8.4 Limitations

We conclude that with ORAS we have indeed succeeded in constructing a simulator that is fast and
accurate. The limitation of ORAS is that it is built for a specific architecture. Further, the RTL
works well for stream-based, data-driven kinds of architecture, but is inapplicable for control-oriented

Construction of a Retargetable Simulator and Mapping 179

architectures like load/store architectures. The RTL is less suited to describing low-level control like
polling, as we explain in Appendix C.

7.9 A Generic Approach for a Retargetable Simulator

In this chapter, we developed the retargetable simulator ORAS for stream-based dataflow architec-
tures. In our opinion, the three-step approach shown in Figure 7.1 provides a generic outline for re-
targetable simulators; therefore, we discuss each step used in ORAS and indicate the changes needed
when a retargetable simulator is needed for another architecture template.

7.9.1 Step 1: Structure

In the first step, we need to distinguish the various architectural elements used in the architecture tem-
plate. For each architectural element, we define a class describing the structure of the architectural
element. If architectural elements have alternative behaviors, we will describe the architectural ele-
ments as an architectural element type and describe this type as an abstract class. This procedure leads
to a class hierarchy similar to the one shown in Figure 5.5. Next, the structure of the architecture tem-
plate is described in terms of composition rules in BNF, as explained in Section 5.5. The BNF rules
also provide a grammar for an architecture description language. Based on this grammar, a parser can
process architecture descriptions.

To come to the first step shown in Figure 7.1, we must replace the “architectural elements” with
the newly developed class hierarchy. Furthermore, we must replace the grammar of the architecture
template and use the newly devised architecture description language.

7.9.2 Step 2: Execution Model

In the second step, the retargetable simulator adds an execution model or simulation engine to the
structure. We can again use the RTL library as simulation engine and develop new process descriptions
for each architectural element. We make a distinction between “active” and “passive” elements and
define the correct methods and processes.

Given the limitation of the RTL as described in Appendix C, we could consider other simula-
tion engines. These simulation engines furnish a more accurate execution model (i.e., lower in the
abstraction pyramid) or an execution model that fits better with the architecture.

Gupta and Liao [1997] describe an execution model namedScenic. Their simulation engine uses
lightweight threads (like the RTL does) and C++, and implements the VHDL execution model. As
pointed out by Benders [1996], VHDL has severe problems with specifyingprocess control, excep-
tionsandasynchronous communicationbetween concurrent entities while at the same time it is well
suited to specifying low-level control. By integrating threads with a clock-cycle simulation engine,
Gupta and Liao combined the power of threads to describe process behavior with the power of VHDL
to describe low-level control. Post et al. [1998] have already shown how this simulation engine can
be used together with C++ to describe ATM switches for performance evaluation. Because C++ is
used, this engine fits in very well with our building block approach. Unfortunately, no information is
available on the execution speed of the simulations.

Koot et al. [1997] developed another simulation engine, namedTSS, that could also be considered.
TSS is a tool developed at Philips Research for internal use. This is a very fast and modular clock-
cycle-accurate simulation engine based on the C programming language. Although TSS can describe
both synchronous and asynchronous communication, it is particularly fast for the synchronous case.

180 7.10 Conclusions

If we use another simulation engine, then to come to the second step in Figure 7.1, we must change
the way we describe processes since each simulation engine provides other primitives. The approach,
however, remains the same. We first build up the structure of an architecture instance and then add an
execution engine.

7.9.3 Step 3: Metric Collectors

In the third step, we instrument the executable architecture instance with metric collectors. The metric
collectors that we developed are generic and can be reused with little modification. To come to the
third step in Figure 7.1, we can reuse the metric collectors.

7.9.4 Mapping

A smooth mapping of applications onto an instance is only workable when the model of computation
matches the model of architecture. This implies that we need to investigate the architecture template
to determine its model of architecture. Using this information, we select the appropriate model of
computation to describe applications. If such a model does not exist, adjustments are needed in the
architecture template or in the model of computation until a match is found. We remark that the
classification of models of architectures is not an area as well developed as that of the model of
computation.

7.10 Conclusions

In this chapter we discussed the construction of the Object Oriented Retargetable Architecture Simu-
lator (ORAS). We also discussed the mapping of applications onto executable architecture instances
that were derived by ORAS from the architecture template of stream-based dataflow architectures.

We showed that ORAS uses a three-step approach to derive executable architecture instances that
deliver performance numbers. We showed how ORAS creates the structure of an architecture instance
in the first step; it adds an execution model to the structure in the second step, making it possible
to describe the behavior of an architecture instance; and activates metric collectors to harvest the
performance numbers in the third step.

In Chapter 6, we developed the SFB Model and SBF objects. In this chapter, we showed that
applications written as networks of SBF objects map indeed very smoothly onto architecture instances,
because the model of computation matches the model of architecture. Functional elements use rules
similar to the Kahn rules used in SBF objects; therefore, both SFB objects and functional elements
describe the same behavior. SBF objects thus map seamlessly onto functional elements. Because an
SBF object maps to a functional element, the communication taking place between SBF objects over
channels map onto the buffer/router/buffer-tuples, which behave like FIFO buffers. We have showed
that this communication results in a 3-level control hierarchy.

The workload that SBF objects describe can change dynamically based on the content of streams.
For an architecture instance to describe the correct workload without large modifications to the orig-
inal application, SBF objects need to execute functionally correctly within the context of an archi-
tecture instance. This requires an interface such that SBF objects can obtain data samples from an
architecture instance, process them, and put new results back into the architecture instance. We have
showed such an interface using function call overloading of the function operator in C++. The function
overloading and the fact that SBF objects have a fire-and-exit behavior resulted in a simple interface
allowing SBF objects to interact with functional elements.

BIBLIOGRAPHY 181

We showed an example in which ORAS derives an architecture instance that can execute the
Picture in Picture application. We showed that ORAS handles a one-to-one mapping and a many-to-
one mapping. We also discussed related work on high-level retargetable architecture simulators.

We compared the execution speed of ORAS with other architecture simulators. We found that
ORAS is indeed a fast simulator, while still being a retargetable one. Simulators derived by ORAS
execute 10,000 SBF object function calls (firings) per second. To process a complete video picture
of 720�576 pixels by the PiP application took 9 minutes. The reason why ORAS is fast and retar-
getable is that it uses building blocks. Architecture instances adhering to the architecture template
can be constructed by simply combining building blocks, using high-level programming constructs.
Furthermore, building blocks separate structure from behavior. As a consequence, when a process
is activated, all references between building blocks are already fixed and the process does not have
to decode any aspect of an architecture instance. In addition, the use of high-level primitives such
as processes, semaphores and delay allows us to describe the performance of architecture instances
at an abstract level, but still cycle-accurately. The process scheduler of the RTL can simulate these
high-level primitives very efficiently. The seamless integration of SBF objects onto functional ele-
ments introduces very little overhead in the functionally correct execution of an application onto an
architecture instance.

We also showed the limitations of ORAS. The main limitation is that it can only execute instances
of stream-based, data-driven architectures. It is less suitable for load/store architectures. We indicated
in Appendix C that the RTL is less suited for describing low-level control like polling.

Finally, we showed that the three steps used in ORAS provide a generic outline for other retar-
getable simulators as well. We indicated the changes required in ORAS when a retargetable simulator
must be created for another architecture template.

Bibliography

ASPT. ExSpect 5.0 User Manual. Eindhoven University of Technology, Eindhoven, the Netherlands,
1994.

Leon Benders.System Specification and Performance Analysis. PhD thesis, Eindhoven University of
Technology, 1996.

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy: A framework for
simulating and prototyping heterogeneous systems.International Journal of Computer Simulation,
1992. Special issue on Simulation Software Development.

Rajesh K. Gupta and Stan Y. Liao. Using a programming language for digital system design.IEEE
Design & Test of Computers, 14(2):72 – 80, 1997.

Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter van der Wolf. The constructionof a retargetable
simulator for an architecture template. InProceedings of 6th Int. Workshop on Hardware/Software
Codesign, Seattle, Washington, 1998.

Sjaak Koot, Arjan Versluys, and Pieter de Visser.TSS User Manual. Philips Research Laboratories,
Eindhoven, 1997.

Peter Marwedel and Gert Goossens.Code Generation for Embedded Processors, chapter 1, pages 13
– 31. Kluwer Academic Publishers, 1995.

182 BIBLIOGRAPHY

David R. Musser and Atul Saini.STL Tutorial and Reference Guide: C++ programmingwith standard
template library. Addison-Wesley Professional Computing Series, 1996.

Tom Parks.Bounded Scheduling of Process Networks. PhD thesis, University of California at Berke-
ley, 1995.

Eric K. Pauer and Jonathan B. Prime. An architectural trade capability using the Ptolemy kernel. On
Ptolemy Site http://ptolemy.eecs.berkeley.edu, 1997.

Guido Post, Andrea Muller, and Rainer Schoenen. Object-oriented design of ATM switch hardware
in a telecommunication network simulation environment. InProceedings of GI/ITG/GMM Work-
shop Methoden und Bescheibungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen, Paderborn, 1998.

R.K. Rao and J.J. Hwang.Techniques and Standards for Image, Video and Audio Coding. Prentice
Hall, 1997.

Mark A. Richards, Anthony Gadient, Geoffrey A. Frank, and Randolph Harr. The RASSP program:
Origin, concepts, and status: An introduction to the issue. InJournal of VLSI Signal Processing,
volume 15, pages 7 – 28, 1997.

Fred Rose and John Shackleton. Performance modeling of system architectures.VLSI Signal Pro-
cessing, 15(1/2):97 – 110, 1997.

F Sijstermans, E.J. Pol, B. Riemens, K Vissers, S. Rathnam, and G. Slavenburg. Design space explo-
ration for future trimedia CPUs. InICASSP’98, 1998.

Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 2nd edition, 1991.

Vojin Živojnović, Stefan Pees, Christian Schl¨ager, Markus Willems, Rainer Schoenen, and Heinrich
Meyr. DSP Processor/Compiler Co-Design: A Quantitative Approach. InProc. ISSS, 1996.

B.R.T.M Witlox, P. van der Wolf, E.H.L Aarts, and W.M.P. van der Aalst. Performance analysis of
dataflow architectures using timed coloured petri nets. InProceedings of the 19th International
Conference on Applications and Theory of Petri Nets, Lisabon, 1998.

Chapter 8

Design Space
Exploration

(Pamela/C++)
Applications

Retargetable
Simulator (ORAS)

Performance
Numbers

SBF-model

Design Space Exploration

Mapping

Arch. Model

Contents

8.1 The Acquisition of Insight . 184

8.2 Design Space Exploration . 185

8.3 Design Space Exploration Environment . 186

8.3.1 Spanning the Design Space . 186

8.3.2 Construction of the Response Surface Model. 188

8.3.3 Data Management and Data Consistency 189

8.3.4 Parameterizing the Architecture Description 189

8.4 Integrating ORAS within the Generic DSE Environment 192

8.4.1 Selecting Parameter Values . 192

8.4.2 Running the Y-chart in the DSE Environment. 192

8.4.3 Creating Response Surface Model. 193

8.5 An Example of Design Space Exploration . 194

8.6 Related Work . 195

8.7 Conclusions . 197

D
ESIGN Space exploration is the subject that we discuss in this chapter. A designer must know
what the design space of architectures looks like in order to make trade-offs related to the design.

The acquisition of this knowledge requires an exploration of the design space of architectures. In the
previous chapter we developed ORAS, which allows us to quantify the performance of an architecture
instance. We will now integrate ORAS in a generic Design Space Exploration (DSE) environment.
This environment allows us to change parameters that are presented to ORAS in systematical and
automated way to generate different architecture instances. In this way, the environment makes it
possible for us to explore part of the design space of the architecture template of stream-based dataflow
architectures automatically and systematically. At the end of an exploration, the environment presents
the relationships between parameter values and performance values as a Response Surface Model
(RSM). These RSMs enable designers to consider trade-offs in architectures.

We start in Section 8.1 by explaining what design space exploration is about, and we look at Re-
sponse Surface Models that express the relationship between parameter values and performance met-
rics. In Section 8.2, we present four problems that we have to solve in order to perform design space
exploration. We make use of a generic design space exploration environment developed at Philips
Research to perform actual design space exploration. We describe this environment and we show in

183

184 8.1 The Acquisition of Insight

Section 8.3 how the four problems identified are solved within this generic DSE environment. Given
the generic DSE environment, we show in Section 8.4 how we integrate ORAS in this environment
and we explain how to use the environment to perform design space exploration. In Section 8.5, we
put the exploration environment to work for the Picture in Picture application. Finally, in Section 8.6
we discuss related work in design space exploration.

8.1 The Acquisition of Insight

Designers need to design architectures for new products that are becoming multi-functional, multi-
standard, or both, and the systems that they create are becoming increasingly programmable. When
designing such systems, designers are given the performance that the system is required to exhibit,
i.e., the design objectives such as response times, throughput, and utilization (see the design objectives
in Table 2.2). The actual performances that can be achieved by a system depends on the composition
of the architectural elements which make up an architecture instance as well as the set of applications
that need to execute on the architecture instance.

Given a set of parameter values, a designer derives an architecture instance from the architecture
template and evaluates this architecture instance using a Y-chart environment to obtain the correspond-
ing performance values as shown in Figure 8.1. However, doing this does not solve the designer’s main
problem: he or she obtains performance metric values, not design parameter values. Somehow, the
designer must find the appropriate parameter values to find feasible designs. Hence, the designer
needs to find theinverse transformationfrom the performance back to the parameters as represented
by the “lightbulb” in Figure 8.1.

Inverse Transformation

Applications

Performance
Numbers

Mapping

Architecture
Instance

ORASParameters Performance

Figure 8.1 . The inverse transformation from the performance back to the parameters, as
represented by the “lightbulb”.

Unfortunately, in general this “inverse transformation” can not be computed analytically and is
therefore difficult to obtain. Because establishing the inverse transform is so difficult, designers cannot
simple point to a desirable performance metric, thereby identifying a suitable set of parameter values,
or “vary” a performance metric and see the effect on other performances.

The only thing the designer can do is propose a set of parameter values of what he or she hopes
will satisfy the required performance metric of the system. The actual performance metric of the
system is computed for this set of parameter values and if there is any discrepancy between computed

Design Space Exploration 185

and required performances, the designer then suggests a modified set of parameter values. Designers
repeat this cycle, often many times, before they find a suitable design, a process Spence [1974] refers
to as theAcquisition of Insight.

We already discussed this process in Chapter 3, where we explained what exploration of the de-
sign space implies. Instead of having a designer select parameter values, calculate the performance of
an architecture instance, and then make the appropriate changes, we select parameter values system-
atically such that we obtain the finite set of pointsI = fI0; I1; : : : Ing where each pointI consists of a
set of parameters valuesI = (p0; p1; : : : ; px). Each pointI leads to a different architecture instance,
for which performance numbers are obtained using the Y-chart approach.

When we plot the obtained parameter numbers for each architecture instance versus the set of
systematically changed parameter values, we obtain graphs as shown in Chapter 1 in Figure 1.5. This
simple graph is generally called aResponse Surface Model(RSM) [Friedman, 1991a]. However,
unlike the graph shown in Figure 1.5, RSMs normally describe multi-variable relationships. Using
the RSM, we are able to locate knee points, which represent the best trade-off between particular
performances and parameter values.

8.2 Design Space Exploration

We want to create an environment permitting us to explore the design space of stream-based dataflow
architectures in a systematic and automatic way. At the heart of such an environment, there must be a
model that links parameter values to performance numbers. A Y-chart environment does exactly this:
it links parameter values used to define an architecture instance to performance numbers as shown
in Figure 8.1. The Y-chart environment is realized by means of ORAS, which was developed in
Chapter 7. ORAS accepts an architecture description and derives a simulator from this description
which, when executed, delivers the performance numbers for the architecture instance. Consequently,
in a DSE environment we use ORAS to link parameter values to performance numbers.

If we want to automate the process of performing design space exploration and the construction
of RSMs, we encounter the following problems:

Spanning the Design SpaceIn the exploration of stream-based dataflow architectures, we need to
select a finite set of pointsI that span the design space. The first problem is how to select this
finite set of points. Furthermore, since the evaluation of a particular architecture instance takes
minutes to hours (recall it took the Picture in Picture application presented in Section 7.6 nine
minutes to process one video frame), we should selectI such that it contains the minimum
amount of points required to correctly span the design space.

Construction of the Response Surface ModelAfter iterating many times in the Y-chart, we end up
with a collection of performance numbers for specific performance metrics and parameter val-
ues. The problem is that we need to have some kind of model to express the relationship
between them. These expressions result in RSMs.

Data Management and ConsistencyIn each iteration, for particular parameter settings ORAS gen-
erates large amounts of performance numbers for selected performance metrics. The problem is
that we need to manage this large amount of data and keep the performance numbers consistent
with the selected parameter values.

Parameterize the Architecture Description For each tuple of parameter valuesI = (p0; p1; : : : ; px),
the problem is that we need to be able to derive an architecture description that ORAS accepts.

186 8.3 Design Space Exploration Environment

8.3 Design Space Exploration Environment

For the construction of the DSE environment, we have relied on the generic DSE environment de-
veloped by Bingley and van der Linden [1994] at Philips Research. This environment combines a
design-data management tool with a set of tools for performing dynamic and statistical analysis of the
collected data. The generic DSE environment assumes that there is a black box that takes in a file
containing a list of parameter values and subsequently delivers a file with performance numbers for
specific performance metrics, as shown in Figure 8.2.

Performance
Numbers

Parameters

Black
Box

Generic DSE ToolValues

Figure 8.2 . The generic DSE environment.

To solve the first two problems mentioned in the previous section, i.e., spanning the design space
and the construction of the RSMs, Bingley and van der Linden use mathematical theories developed
within a specific area of statistics known as theDesign of Experiments(DOE). We now introduce the
main concepts underlying DOE, without going into much detail. We explain the techniques used in
the generic DSE environment and review their relevance.

8.3.1 Spanning the Design Space

We already explained in Chapter 3 that the design space can be explored by selecting distinct values
within the range of values of each parameter systematically for all parametersp in the parameter set
P . This results in the finite setI, which spans (part of) the design space; we say set thatI represents
anexperiment. Careful planning of an experiment can save a great deal of time and effort, as we will
show.

If performance depends on just one parameter, the strategy used in an experiment is simple: mea-
sure the performance at several different values of the parameter and fit a curve to the results. However,
if there is more than one parameter involved, then the situation is somewhat more complicated. Tradi-
tionally, what is done is based on the assumption that the parameters are independent variables, so that
they can be taken into account one at a time. This approach does work, i.e., one gets an idea how the
system responds to changes in the parameters, but it is not a reliable way to go about the investigation,
because the parameters are not really independent of each other.

Design Of Experiments (DOE)

A better way to study the effects of parameter changes on a system is calledDesign of Experiments
(DOE) or statistical experimental design. It is largely the result of work begun by an English statis-
tician, Sir Ronald Fisher, in the 1920s and 1930s. He worked at an agricultural experimental station,
and his job was to aid in the study of different fertilizers and such on the yields of different crops. He
introduced and advanced the important concept offactorial design[Logothetis and Wynn, 1989]. The

Design Space Exploration 187

statistical techniques that he developed have been expanded, mainly due to Taguchi, and are in use in
many different industries.

In DOE, an experiment consists of a number oftrial runs. In each trial run the relationships
between parameters, calledfactorsin DOE parlance, and the response from a model are determined.
A reliable experimentis obtained when the response of a model can be determined accurately for two
factors even though other factors vary [Logothetis and Wynn, 1989].

Full Factorial Experiment

To obtain a reliable experiment, a model should be evaluated for distinct combinations of parameters
in the setP , which determinesk factors. Thesek factors have ranges of conceded values and by
selectingl distinct values, namedlevelsin DOE parlance, for each of them one achieves afull factorial
experiment. Such a reliable experiment would thus requireslk trial runs. The geometric interpretation
of a full factorial experiment is that thek-dimensional design space is uniformly filled withlk points.

As an example, suppose we want to set up a full factorial experiment in which 7 parameters are
changed at 2 distinct levels. This would lead to

27 = 128 trial runs. (8.1)

The problem with a full factorial experiment is that the number of trial runs grows exponentially
with the number of factors. Since each trial run corresponds with one evaluation round in the Y-
chart, which takes minutes to hours of simulation time, the evaluating time of the experiment quickly
becomes exorbitantly large, making the method unsuitable in practice.

Fractional Factorial Experiment

Instead, afractional factorial experimentcan be performed, in which statistically techniques are used
to remove redundant trial runs. The result is a reliable experiment with almost the same amount of
information as with a full factorial experiment, but with fewer trial runs being required [Logothetis
and Wynn, 1989].

In a fractional factorial experiment, a certain fractional subset of the full factorial set of experi-
ments is carefully selected such that orthogonality is maintained among the various factors. Orthog-
onality allows estimation of the average effects of factors without the risk that the results are being
distorted by effects of other factors [Lochner and Matar, 1990]. Orthogonality thus allows for in-
dependent estimation of responses from factors of the entire set of trial runs, resulting in reliable
experiments while dramatically reducing effort, expense, and time compared to full factorial experi-
ments.

The fractional orthogonal subsets are derived usingorthogonal arrays[Bush, 1952] that describe
basic combinatorial structures. In orthogonal arrays, the columns are mutually orthogonal; that is,
for any pair of columns, all combinations of levels occur, and they occur an equal number of times.
Therefore, orthogonal arrays provide a method for selecting an intelligent subset of the parameter,
significantly reducing the number of trial runs required within an experiment.

Using orthogonal arrayOA8(2
7) [Owen, 1991], we repeat the full factorial experiment in which

we studied the 7 factors at 2-level as a fractional factorial experiment requiring only 8 trials. This
is 1

16 th-fractional design of the full factorial design normally requiring 128 trials. This shows that
a fractional factorial experiment indeed dramatically reduces the number of experiments, and thus
evaluation time, allowing us to evaluate more architecture designs in less time.

188 8.3 Design Space Exploration Environment

Spanning the Design Space

We use orthogonal arrays to span the design space and we selectl distinct values in the range of
parameter values for allk parameters. This results in the experiment given by setI, where each point
I is a trial run.

Notice that we said that the set of parametersP determinesk factors. The setP , however, often
contains too many parameters. We can limit the number of parameters either by sampling the space
coarsely, i.e., carrying out fewer trial runs in an experiment, or by reducing the number of parameters
that we vary, i.e., using a subset ofP . This subset determine thek factors.

8.3.2 Construction of the Response Surface Model

Given the performance numbers gathered from an experiment, we must establish the relationship
between parameters and the obtained performances; thus we need some kind of model. One model,
which is based on the assumption that the relationship is a functionf , approximates this function as
f̂ .

The functionf can rely on many variables, depending on the number of factorsk used in the
experiment. Thus we must relate the response variabley, a performance metric, to one or more
distinct values of the factorsx0; x1; : : : ; xk that span the domainS. The result is the approximation
f̂ , which expresses the relationship between parameter values and performance and which represents
the RSM we want to obtain

y = f̂(x0; x1; : : : ; xk): (8.2)

Multivariate Adaptive Regression Splines

To construct̂f , Bingley and van der Linden used a multivariate regression modeling technique, in par-
ticular, Multivariate Adaptive Regression Splines(MARS) developed by Friedman [1991a]. MARS
uses two techniques to constructf̂ : recursive partitioningand spline fitting. The basic rationale behind
MARS is to approximatef with several simple functions, each defined over a different subsection of
domainS. These simple functions areqth order splines that are described as

(x� t)q+ =

(
0; if x� t < 0

(x� t)q; if x� t � 0
: (8.3)

The splines are truncated such that the function returns either the value of zero for negative arguments
or the spline value(x� t)q. In the DSE environment, only first order splines (i.e.,q = 1), also known
asbasic splines, are used. A basic spline is zero for negative values, and it behaves as a straight line
otherwise. The basic spline can have an offsett, called theknot, as show in Equation 8.3. Using a set
of these knots, MARS divides the domainS up into several subsections. A picture of a basic spline is
shown in Figure 8.3.

The objective of MARS is to divide domainS recursively into a good set of subsections by se-
lecting a set of knotsv dynamically. At the same time, for each subsection it also finds the coefficient
of the basic spline that makes it possible to derive a good approximation off in that subsection. The
model forf̂ resulting from using MARS [Friedman, 1991a] is

f̂(x0; x1; : : : ; xk) = a0 +
MX
m=1

am

LY
l=1

[slm:(xv(l;m) � tlm]+, (8.4)

Design Space Exploration 189

Y

t X

Figure 8.3 . A basic spline.

which is a summation ofM partial products ofL functions (i.e., basic splines) each expressed in one
particular factork to account for univariate functionsf(xi) (i.e., l=1), bivariate functionsf(xi; xj)
(i.e. l=2), or, in general, multi-variate functions (i.e.1 � l � L). The model also uses the function
s that is either equal to +1 or -1. Thus, the functionf̂ that is obtained is apiecewise linear model
expressed in the parameters which were changed in the experiment, i.e., thek factors. Within the
generic DSE environment the cross product is limited to be of maximal orderLmax = 2, i.e., bivariate
functions.

To specify a RSM, which describes the relationship between parameters and a particular perfor-
mance metric, we assume that the relationship is a functionf , which we approximate aŝf . We are,
however, thoroughly aware that the relationship we want to describe does not need to be a function at
all, but might be some wildly varying relationship. Therefore, when inspecting approximations like
f̂ , we should be careful when drawing conclusions. Nevertheless, the assumption that the relation is
a function has proven to be very useful for the cases we have considered so far.

8.3.3 Data Management and Data Consistency

During DSE, we produce enormous amounts of data and we need to manage the consistencies between
all this data. For each trial run of an experiment, performance numbers are created for performance
metrics for a particular set of parameter values. If we had used a simple file system, we would not
have preserved this kind of relationship. The generic DSE environment is therefore built on top of
the Nelsisdesign data management tool developed by ten Bosch et al. [1991] at Delft University
of Technology. The Nelsis system provides for the simple encapsulation and integration of design
tools. It manages the large amount of data produced by the encapsulated tools and it preserves the
relationships between the data offered to and produced by these tools.

Nelsis also has a visual interface as shown in Figure 8.4. The boxes in the figure represent tools
and the directed lines between boxes represent relationships between tools. The boxes together with
the lines define a particulardesign flowand the case shown by Figure 8.4 represents the design flow
of the generic DSE environment. We explain the tool that each box represents in detail in Section 8.4.

The oval balloons connected to the lines represent design data that is exchanged between tools and
managed by Nelsis. In Nelsis, a box can only execute when all its relationships with other boxes have
been satisfied. Nelsis uses different colors for boxes and different thicknesses for lines to visualize
the status of a box, including whether it can execute or not.

8.3.4 Parameterizing the Architecture Description

Given a set of parameter values, we need to create different textual architecture descriptions. We use
the versatile scripting languagePerl [Wall and Schwartz, 1992] for that purpose. This very powerful

190 8.3 Design Space Exploration Environment

Orthogonal Arrays

MARS

Set of Parameters

Factors

Select Performance

Perl Script interfacing

Numbers

to ORAS

Visualize the
relationship found

Figure 8.4 . The design space exploration flow in Nelsis.

scripting language provides high-level programming constructs likeassociative arrays, making the
construction of different textual architecture descriptions very simple.

Associative Arrays

Suppose that we have a set of parameter values as given in Table 8.1 (how we obtain this table will
be explained in Section 8.4). In this table, each parameter has aname(columnParameter Name)
and has adopted a particularvaluethat is either a numerical value or a string from an enumerated set
(columnSelected Value). Perl establishes a link between the name of a parameter and its value, using
the associative variable$var as follows;

$var f’name’ g = value

When we write an architecture description we use associative arrays to retrieve values from a set of
parameters as given in Table 8.1. The description of a processor element as part of the architecture
description is given in Program 8.1. This description is based on the architecture description given
in Figure 5.11, but we replaced all parameterized options with associative arrays$var . We did not
replace the options for the type of buffers used. This shows that not every option needs to be parame-
terized; some can have default values. Because this option is fixed in Program 8.1, it does not appear
in the set of parameters given in Table 8.1. The name between brackets indicates which parameter we
will include in the final description of the architecture.

Design Space Exploration 191

Parameter Name Selected Value Range

buffersize 50 1 – 100
router FCFS f FCFS, TDM, RoundRobing
switching Packet f Packet, Sampleg
function1 LowPass f HighPass, LowPass, Filterg
func1 initiation period 1 1 – 10
func1 latency 18 1 – 20

Table 8.1 . Set of Parameters.

Program 8.1. AN EXAMPLE OF THE INTEGRATION OFPERL VARIABLES IN AN ARCHITECTURE
DESCRIPTION

ProcessingElement Filter(2,2) {
InputBuffer { Type: BoundedFifo($var { ’bufferSize’ }); }
OutputBuffer { Type: BoundedFifo($var { ’bufferSize’ }); }
Router { Type: $var { ’router’ }; }
FunctionalUnit {

Type: $var { ’switching’ };
FunctionalElement LowPass(1,1) {

Function { Type: $var { ’function1’ } (initiation period= $var { ’func1 initiation period’ },
latency= $var { ’func1 latency’ }; }

Binding {
Input (0->0);
Output (0->0);
}

}
}

}

An architecture description has three different levels of parameterization, as explained in Sec-
tion 5.5.2. The first level represents structural parameters of an architecture instance (e.g., the number
of processing elements used). The second level represents behavioral parameters of an architectural
element type (e.g., select a bounded FIFO buffer behavior or unbounded FIFO buffer behavior). The
third level represents functional parameters for architectural elements (e.g., the size of a FIFO buffer,
throughput and latency values, or an array of filter coefficients).

In the example given in Program 8.1, we included two levels of parameterization, respectively the
second level (e.g.,$var f‘router’ g, $var f‘switching’ g, and$var f‘function1’ g) and the
third level (e.g.,$var f‘bufferSize’ g, $var f‘func1 initiation period’ g, and
$var f‘func1 latency’ g).

Program 8.2. LEVEL ONE PARAMETERIZATION IN ARCHITECTUREDESCRIPTIONS

for ($i=1, $i< $varf’number of pes’g , $i++)
{ include the code shown in Program 8.1 }

}

We cannot use only associative arrays to describe the first level of parameterization. We require
control statements likefor loops andif-then-else statements as well. These requirements do
not pose a problem, because Perl is a fully-fledged scripting language and hence provides these state-

192 8.4 Integrating ORAS within the Generic DSE Environment

ments. In Program 8.2, we show, for example, how we parameterized the number of processing
elements present ($var f‘number of pes’ g) in an architecture description.

8.4 Integrating ORAS within the Generic DSE Environment

The design flow used in the generic DSE environment is depicted in Figure 8.4. It consists of three
different parts. In one part, the environment selects parameter values representing different points in
the design space of stream-based dataflow architectures. In the second part, the environment executes
the Y-chart using ORAS for architecture instances represented by the parameter values selected. In
the third part, the environment creates RSMs. We discuss the three parts and explain which tool is
encapsulated by the various boxes shown in Figure 8.4.

8.4.1 Selecting Parameter Values

In box ed param we define the setP of parameters in which each parameterp is given a default
value. In boxed batch, we define thek factors that we want to use in an experiment. We define a
range of values for each factor. In this manner, we obtain the table given in Table 8.1. Ined batch
we also indicate how many trial runs, given byx, an experiment should consist of.

Then toolrun batch selects the appropriate orthogonal array based on the number of factorsk
and the number of trial runsx. It selects the appropriate orthogonal array from a standardized family
of orthogonal arrays that is generated using software developed by Owen [1994]. Then, based on the
selected orthogonal array,run batch sets up an experiment by selecting values for each factor within
its range. The experiment is the setI = fI0; I1; : : : Ixg. In this set eachI = (p0; p1; : : : ; pn). Then
parameters containn � k default values andk values selected byrun batch. Examples of selected
values are given in Table 8.1.

8.4.2 Running the Y-chart in the DSE Environment

The generic DSE environment considers thesimulate box to be a black box as depicted in 8.2. The
DSE environment provides thesimulate box with a file containing a set of parameter values repre-
senting pointI . It will do this for each element of setI. The file containingn parameter values
represents a particular architecture instance for which we want to determine performance numbers
using a Y-chart environment. The boxsimulate should produce a file containing the resulting perfor-
mance numbers.

A Perl script runs inside thesimulate box, as illustrated in Figure 8.5. We again see the file
containing the parameter values and the file containing the resulting performance numbers. The Perl
script that is run is as given in Program 8.3. It starts by generating an architecture description from
the list of parameters using associate arrays shown in Program 8.1 and Program 8.2. Then, the Perl
script generates a routing program (see, for example, Table 5.5) for the architecture description, for
each application in the set.

If the performance of the application does not depend on the content of the stream that it processes,
then the Perl script runs ORAS for each application only once. If the performance of an application
does depend on the content of the stream (see, for example, Figure 7.7), then the Perl script runs ORAS
for each application with different streams containing other content, e.g., another video sequence.

When all applications of the set have executed, the Perl script collects all performance numbers
of the various runs and combines them into one file, performing post-processing. This is required to
obtain performance numbers for not merely one application, but the whole set of applications. As

Design Space Exploration 193

Text
Input

ORAS

Script Language PERL

Text

Output

Results

Nelsis Box

Parameters

Architecture

Simulate

Performance
Numbers

Routing
Programs

Values

Description

Figure 8.5 . The realization of the simulate box, which interacts with the generic DSE en-
vironment using an input file containing parameter values and an output file containing
performance numbers.

indicated in Chapter 3, this is essential to obtaining architecture instances that are able to execute a
set of applications and obey set-wide design objectives.

Lastly, the Perl script writes out the performance numbers in the format of which an excerpt is
shown in Table 7.2.

Program 8.3. PERL SCRIPT USED WITH THE GENERICDSE ENVIRONMENT

read File containing parameter values representing an architecture instance
create the correct architecture description for the architecture instance
foreach application in the set

create correct routing program
if application is a dynamic applications,

foreach stream with different content
execute ORAS using the routing program and architecture description

else
execute ORAS using the routing program and architecture description

endif combine found performance numbers
perform post processing if need
write File containing performance numbers

8.4.3 Creating Response Surface Model

All the performance numbers that are generated by thesimulate box are stored in a database which
is part of Nelsis. This database contains the performance numbers as well as the parameter values
used to obtain these performance numbers. In boxed quant we can select a few performance met-
rics, for which boxcalc model constructs the approximation̂f using the MARS model as given in
Equation 8.4. Toolcalc model extracts the parameter values (p0; p1; : : : ; pn) from the database as
well as the performance numbery measured for the selected performance metric.Calc model uses
the software developed by Friedman [1991b] to construct the approximationf̂ .

At last, theovervui box visualizes the approximation̂f as a 3-dimensional figure, as shown in
Figure 8.6(a) and Figure 8.6(b). Notice that these 3-dimensional figures represent ak-dimensional

194 8.5 An Example of Design Space Exploration

function. The otherk � 2 parameters are thus considered to have fixed values.

8.5 An Example of Design Space Exploration

All ingredients are now available to perform a design space exploration of the stream-based dataflow
architecture. As an example, we look into a design trade-off of the stream-based dataflow architec-
ture. Although the architecture consists of processing elements operating in parallel, it uses a single
centralized controller, the global controller. This controller might potentially become a bottleneck in
the architecture.

Per packet, a router issues a request to the global controller. The longer the packets, the fewer
requests a router issues in a given amount of time. The number of requests that the global controller
can handle in a given time depends on the service time of the controller. We now want to investigate
the effect thepacket lengthand theservice timeof the global controller have on the level ofparallelism
achieved in an architecture, using the DSE environment developed in this chapter.

The architecture and the Picture in Picture application that we study in this exploration were
already discussed in Section 7.6. We set up an experiment which consists of 25 trial runs and we have
two factors: the parameterpacket lengthwith the range off5::200g samples and the parameterservice
timewith the range off1::20g cycles. In each trial run, we construct a different architecture instance
and we measure the performance metricachieved parallelismandutilizationof the global controller
for that instance. We measure the performance while an architecture instance executes the Picture in
Picture application for two small video frames consisting of 14,400 video samples per frame.

At the end of the experiment, we establish the RSMf̂p for achieved parallelism;

Achieved Parallelism= f̂p(packetlength; servicetime); (8.5)

and we establish the RSM̂fu for the utilization of the global controller;

Utilization global controller= f̂u(packetlength; servicetime): (8.6)

In Figure 8.6(a) we visualize the Response Surface Modelf̂p and in Figure 8.6(b) we visualize the
Response Surface Model̂fu. Moreover, we show the piecewise linear approximation functionf̂p
in Figure 8.7. This piecewise linear function consists of four univariate functions and two bivariate
functions. In this function, thePP represents the truncated basic spline function given in Equation 8.3
for q equal to one.

Looking at the RSMs, we conclude that the service time of the global controller indeed has a
significant influence on the level of parallelism acquired. At points where the parallelism is low,
we notice that the architecture uses the global controller for almost 100%, indicating that the global
controller is indeed the bottleneck in those cases.

A knee in Figure 8.6(a) indicates that a trade-off is present. From an engineering point of view,
such knees are of interest, as was explained in Chapter 1. In Figure 8.6(a) a knee is present between
packet length and service time. For a very fast global controller, with a service time of, say, five
cycles, the knee value is close to a packet length of 80 samples. If we select a parameter value at the
left-hand side of the knee (i.e., a value smaller than 80 samples), parallelism drops, whereas if we
select a parameter value at the right-hand side (i.e., a value larger than 80 samples) parallelism hardly
improves. Moreover, the longer packets influence the flexibility of the architecture in a negative
way. A functional unit can switch less often between streams in time when longer packets are used.
Consequently, a designer should select values close to the knee point of a packet length of 80 samples.

Design Space Exploration 195

(a) Achieved Parallelism in Operations per Cycle
for Packet Length versus Service Time

(b) Utilization of the global controller in Percent-
age for Packet Length versus Service Time

Figure 8.6 . (a) the Response Surface Model for achieved parallelism and (b) the Response
Surface Model for the utilization of the global controller.

8.786
+ 1.142*PP((packet_length/1.0E+02-.7000))
- 10.47*PP(-(packet_length/1.0E+02-.7000))
- 2.541*PP((packet_length/1.0E+02-1.350))
- 4.127*PP((service_time/1.0E+01-.5000))
+ 2.905*PP((packet_length/1.0E+02-.7000))*PP((service_time/1.0E+01-.3000))
+ 6.124*PP(-(packet_length/1.0E+02-.7000))*PP((service_time/1.0E+01-.9000))

Figure 8.7 . The piecewise approximated function for achieved parallelism. In the function,
the PP represents the truncated basic spline function.

The pictures presented in Figure 8.6(a) and Figure 8.6(b) show approximations based on a few
data points and therefore should be interpreted with care. In Figure 8.8, we show the utilization of the
global controller again for different packet lengths and for various service times. In this figure, we see
artifacts of the approximation for the utilization of the global controller: values are produced that are
larger than 100% and smaller than 0%. Furthermore, the RSMs need not be as smooth as they appear
to be in the figures. It is just as possible that the utilization is not even a function at all. To increase the
accuracy of the value that is expected to be optimal, at least one new experiment should be performed
with parameter values in the range closer to the selected values (e.g., the knee point).

8.6 Related Work

The generic DSE environment presented in this chapter gives us the opportunity to compare many
different architecture instances automatically and systematically, which makes it possible for us to

196 8.6 Related Work

-20

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200

U
til

iz
at

io
n

(%
)

Packet Length

st=1

st=5
st=10

st=15

st=20

Figure 8.8 . Utilization of the global controller as piecewise approximated function in Per-
centage versus Packet Length for various Service Times (st).

make good trade-offs to optimize a complete system. Currently, we optimize a system by investigating
the obtained results visually. In the example previously presented, we only changed two parameters:
packet length and service time. Normally, however, many (e.g., 5 to 10) parameters are changed, and
finding some kind of optimum is then a very difficult multi-variable problem. Simple 3-D graphs as
shown in Figure 8.6(a) and Figure 8.6(b) do not help us very much since they present a relationship
under the assumption that other parameters are kept at a specific fixed value. In that manner, they do
not reveal the relationship between all parameters at once.

Instead of optimizing using visual techniques, we can resort to standard analytical optimization
techniques for multi-variables. Nevertheless, these techniques assume a smooth function, an assump-
tion that is not applicable very often.

The presentation of multi-dimensional performance numbers is a problem in itself. This visualiza-
tion problem is discussed in Pancake et al. [1995], as are interesting representation techniques. One
of these techniques is aScatter-plot Matrix[Reed et al., 1995], which contains an x-y scatter-plot for
each parameter/performance metric pair. When the technique ofgraphical brushingis used within
such a scatter-plot matrix, a cluster of points is brushed and all brushed points are automatically high-
lighted in all other scatter-plots. By modifying the brushing of clusters of points, one can observe
interactively the effect that the clusters of points have on other performances.

Spence et al. [1995] have come up with many innovative ways of looking at optimization of
systems and making effective trade-offs based on only visual representations: from designing robust
electric circuits up to selecting houses from a database. Using special visualization techniques like
the Interactive Histogram[Tweedie et al., 1994], theInfluence Explorer[Tweedie et al., 1996] and
theProsection Matrix[Dawkes et al., 1995], they are able to present the multi-variable optimization
problem in an intuitive way. These techniques reconstruct the RSM without assuming a function as
model, as we did when using MARS. Furthermore, they span the design space by randomly picking
points from the design space, instead of using statistical techniques as we have done. They assume that
when they pick enough points (i.e., in the range of thousands of points), they obtain a good filling of

Design Space Exploration 197

the design space. This involves many iterations in the Y-chart, each of which takes minutes to hours
to evaluate. The total evaluation time becomes exorbitantly large, making the present techniques
unattractive.

Teich et al. [1997] useGenetic Algorithmsto optimize architectures. This approach is more robust
since it does not demand smooth functions, as analytical techniques do. Also, the view presented in
Figure 8.2 makes the optimization of architectures directly applicable for genetic algorithms. The set
of parameters matches directly with the notion of the “gene”, the basic entity in genetic algorithms.
However, genetic algorithms require many evaluations in order to reach an optimum. Since each
iteration in the Y-chart takes minutes to hours, the evaluation time becomes prohibitively large, making
genetic algorithms unattractive.

8.7 Conclusions

In this chapter we have showed how we perform design space exploration of stream-based dataflow
architectures systematically and automatically, using a Y-chart environment and a generic DSE envi-
ronment. We explained that design space exploration involves finding the inverse transformation from
the performance back to the parameters. Because this inverse is in general difficult to determine, we
construct response surface models to help us do it. We used a generic DSE environment to perform
design space exploration.

To perform design space exploration, we had to carry out the following four steps: select pa-
rameter values in the design space efficiently, construct the Response Surface Models, manage the
enormous amounts of data produced in running an experiment, and describe architecture descriptions
in a parameterized way.

For the selection of parameter values in the design space, the generic DSE environment sets up an
experiment as a fractional factorial experiment. It employs orthogonal arrays to span a design space
using a minimal amount of trial runs; an important step since each execution of ORAS might take
minutes to hours.

The generic DSE environment uses a multivariate regression modeling technique called Multivari-
ate Adaptive Regression Splines (MARS), to construct the RSMs. The generic DSE environment uses
MARS to approximate the relationship between parameter values and a specific performance metric
by f̂ . This environment can visualizêf , representing the RSM.

So that it can manage the large amount of data produced in experiments, the generic DSE envi-
ronment is built on top of the Nelsis design data management tool. One task of this tool is to manage
the storage and retrieval of data; its main function, however, is to manage the relationship between
data offered to and produced by tools.

We used the versatile scripting language Perl to describe architecture descriptions in a parame-
terized way. This very powerful scripting language provides high-level programming constructs like
associative arrays, making the construction of different textual architecture descriptions very simple.
Moreover, it acts like a UNIX shell script, which we use to activate various steps needed to evaluate
an architecture instance for a set of applications using ORAS.

Using the generic DSE environment, we showed an example of design space exploration. For
the Picture in Picture application, we set up an experiment in which we constructed 25 different
architecture instances and measured the achieved parallelism in the architecture instance as well as
the utilization of the global controller. We performed the exploration and showed the RSMf̂p for
achieved parallelism and the RSM̂fu for the utilization of the global controller. The exploration
showed that the amount of achieved parallelism in the architecture instance very much depends on

198 BIBLIOGRAPHY

the relationship between the service time of the global controller and the packet length. Inf̂p, we
identified a knee that represents a trade-off between the service time and packet length.

The RSMs presented are approximations. We showed the artifacts resulting from this approxima-
tion and indicated clearly that these Response Surface Models need to be interpreted with care.

As last, we discussed related work on design space exploration.

Bibliography

Peter Bingley and Wim van der Linden. Application of framework technology in system simulation
environments. InProceedings of the Seminar ‘Database Systems and Applications for the Nineties’.
Delft University of Technology, 1994.

K.A. Bush. Orthogonal arrays of index unity.Annals of Mathematical Statistics, 23:426 – 434, 1952.

Huw Dawkes, Lisa Tweedie, and Bob Spence. VICKI - the visualisationconstruction kit. InAdvanced
Visual Interfaces, Gubbio, Italy, 1995.

Jerome H. Friedman. Multivariate adaptive regression splines.Annals of Statistics, 19(1):1 – 141,
1991a.

Jerome H. Friedman. Multivariate adaptive regression splines (MARS modeling) software. Software
can be obtained from http://stat.stanford.edu/software/software.html, 1991b. Version 3.5.

Robert H. Lochner and Joseph E. Matar.Designing for Quality: An introduction to the best of Taguchi
and western methods of statistical experimental design. Chapman and Hall, 1990.

N. Logothetis and H.P. Wynn.Quality through design; experimental design, off-line quality control
and Taguchi’s contributions, volume 7 ofOxford series on advanced manufacturing. Clarendon,
Oxford, 1989.

Art Owen. Orthogonal arrays for computer experiments, integration, and visualization. Technical
report, Dept. of Statistics, Stanford University, 1991.

Art Owen. Orthogonal array design software. Software can be obtained from:
http://stat.stanford.edu/software/software.html, 1994.

Cherri M. Pancake, Margaret L. Simmons, and Jerry C. Yan. Guest editors’ introduction: Performance
evaluation tools for parallel and distributed systems.IEEE Computer, 28(11):16 – 20, 1995. Theme
Feature.

Daniel A. Reed, Keith A. Shields, Will H. Scullin, Luis F. Tavera, and Christopher L. Elford. Virtual
reality and parallel systems performance analysis.IEEE Computer, 28(11):57 – 67, 1995.

R. Spence. MINNIE, a new direction in circuit design.Electronics Weekly, 1974. Issue 3.

R. Spence, L. Tweedie, H. Dawkes, and H Su. Visualisation for functional design. InProceedings
Information Visualization’95, pages 4 – 10, 1995.

J. Teich, T. Blickle, and L. Thiele. An evolutionaryapproach to system-level synthesis. InProceedings
of the Fifth Int. Workshop on Hardware/Software Codesign, pages 167 – 171, 1997.

BIBLIOGRAPHY 199

K.O. ten Bosch, P. Bingley, and P. van der Wolf. Design flow management in the NELSIS CAD frame-
work. In Proc. 28th ACM/IEEE Design Automation Conference, pages 711–716, San Francisco,
1991.

Lisa Tweedie, Robert Spence, Huw Dawkes, and Hua Su. Externalising abstract mathematical models.
In Proceedings of CHI’96, Vancouver, Canada, 1996. ACM Press.

Lisa Tweedie, Robert Spence, David Williams, and Ravinder Bhoghal. The attribute explorer. In
Video Proceedings and Conference Companion, CHI’94, pages 435 – 436, Boston, 1994. ACM
Press.

Larry Wall and Randal L. Schwartz.Programming Perl. O’Reilly & Associates, Inc., 1992.

200 BIBLIOGRAPHY

Chapter 9

Design Cases

Contents

9.1 Motivation . 202
9.1.1 Application Characteristics . 202

9.2 Case 1: The Prophid Architecture (Philips Research) 203
9.2.1 Prophid Architecture. 203

9.2.2 Prophid Benchmark. 203

9.2.3 The Use of the Y-chart in the Prophid Case. 204

9.2.4 Issues in Modeling the Prophid Architecture. 206

9.2.5 Results . 208

9.2.6 Conclusions . 210

9.3 Case 2: The Jacobium Processor (Delft University of Technology). 210
9.3.1 The Jacobium Processor Architecture . 211

9.3.2 Jacobium Applications . 213

9.3.3 The Use of the Y-chart Approach in the Jacobium Processor Case 214

9.3.4 Deriving a Network of SBF Objects from a Dependence Graph 216

9.3.5 Results . 219

9.3.6 Conclusions . 221

T
HE Y-chart environment described in this thesis was used in two projects for the design of pro-
grammable architectures. In this chapter we describe these two projects and present results.

One design case we consider is theProphidvideo-processor architecture [Leijten et al., 1997; Lei-
jten, 1998] for high-performance video applications. The other design case is theJacobiumprocessor
architecture [Rijpkema et al., 1997] for array signal processing applications.

In Section 9.1, we illustrate the emphasis ofeach of the design projects: In the Prophid case it is on
architecture modeling, whereas in the Jacobium case it is on application modeling. In Section 9.2, we
explain the Prophid architecture and the benchmark application. We consider the Y-chart environment
and the consequence it has for describing instances of the Prophid architecture and the benchmark.
Following this, we present a design space exploration of the Prophid architecture executing the bench-
mark and we draw some conclusions. In Section 9.3, we look at the Jacobium processor architecture
that executes Jacobi algorithms of which we give an example. We explain how we use the Y-chart
environment and even how we extended it with additional tools. Using the SBF model, we describe
Jacobi algorithms at different levels of granularity and show how this affects the development of the
Jacobium architecture. Finally, we present conclusions.

201

202 9.1 Motivation

9.1 Motivation

In this chapter, we discuss two different design cases of programmable architectures. Both archi-
tectures are similar to stream-based dataflow architectures, but the applications belong to different
application domains. The purpose of this chapter is to show how the use of the Y-chart approach and
Y-chart environment effect real design cases. It also serve to shows that the techniques developed in
this thesis are indeed useful and capable of describing realistic design cases.

9.1.1 Application Characteristics

The Prophid and Jacobium architectures are similar to the stream-based dataflow architecture tem-
plate presented in Chapter 2. For the Prophid architecture, this is not surprising since its architecture
template was in principle taken as model for the development of the class of stream-based dataflow
architectures. The Jacobium architecture template is a result of further development of previous archi-
tectures [van Dijk et al., 1993] and was inspired by developments in wireless communication archi-
tectures [Jain, 1997]. The designers of the Jacobium architecture knew about the Prophid architecture
and were influenced by it.

However, the two architectures execute applications with different characteristics. This becomes
clear when we look at the dependence graphs (DG) of two applications. The DG representation of
video applications used in the Prophid case looks like a sequence of predominantly coarse-grained
operators operating in a pipeline fashion. See, for example, the description of the Picture in Pic-
ture application in Figure 6.1. In contrast, array signal processing applications used in the Jacobium
case must exploit correlation of data received from, for example, various antennas. Therefore, their
DG representation consists of more fine-grained operators that are much more interrelated. See, for
example, the dependence graph in Figure 9.10.

Application Descriptions

The use of the Y-chart environment in both cases requires that applications be available and described
as networks of SBF objects. We experienced severe difficulties in finding realistic applications in both
the Prophid and the Jacobium case. If applications were specified at all, the specification was not in
the format of networks of SBF objects or in a format from which a networks of SBF objects can easily
be derived. The specifications were given in the C-programming language or in Matlab, using global
variables and data structures of the wrong type (i.e. matrices or lines) and in such a way that they hid
any form of parallelism, due to the inherent sequential ordering of the imperative languages (see for
more information Chapter 6, where we explain how we model applications).

The acquisition of applications was somewhat less troublesome in the Jacobium case. In that
project, the Jacobium processor executes algorithms which belong to the class of Jacobi-type algo-
rithms [Golub and Loan, 1989]. For this class, many algorithms have already been specified as nested-
loop programs. Moreover, tools are available that can help to manually transform these nested-loop
programs into the suitable format [Held, 1996], albeit with difficulty.

A consequence of not having a well-defined set of applications, especially in the Prophid case, is
that design space exploration is performed using one application instead of a set of applications. Syn-
thetic application descriptions have been considered, but the derivation of realistic synthetic bench-
marks is a complex problem in its own right [Dick et al., 1998].

We do not intend to give a complete description of the design cases and their results. Instead,
we want to show that techniques developed in this thesis are indeed useful and capable of modeling

Design Cases 203

problems appearing in both cases.
In the Prophid case, we focus on whether we can describe an industrially relevant application as

well as instances of the Prophid architecture and map the application onto these architecture instances.
In the Jacobium case, we focus on the application development. We examine how we can describe
Jacobi-type algorithms using the SBF model at different levels of granularity. To that end, we augment
the Y-chart with additional tools, providing a trajectory allowing us to execute Matlab applications
written as nested-loop programs on instances of the Jacobium architecture.

9.2 Case 1: The Prophid Architecture (Philips Research)

The objective of the Prophid case [Leijten et al., 1997; Leijten, 1998] at Philips Research is to make
a weakly programmable video-processor for use in consumer video systems. It must be suitable
for performing in real-time video applications like quality enhancement, frame resizing, and color
adjustment.

We modelled an industrially relevant video application, referred to as thebenchmark, using the
application model approach developed in Chapter 6. We are interested in whether we can obtain per-
formance numbers for instances of the Prophid architecture created using the architecture modeling
approach developed in Chapter 5. In particular, we are interested in the trade-offs between communi-
cation strategy, packet length and buffer size.

We first explain the Prophid architecture and the benchmark. Then we look at the Y-chart en-
vironment used and at what consequence this has for describing the architecture instance and the
benchmark. Following this, we look at a design space exploration of the Prophid architecture execut-
ing the benchmark. In this case we focus more on architecture modeling, which we represented in
Figure 3.2 with the arrow with the lightbulb pointing to the boxarchitecture instance.

9.2.1 Prophid Architecture

The architecture template of the Prophid video-processor architecture is shown in Figure 9.1. The
Prophid architecture consists of a number ofco-processorsthat operate concurrently on streams of
data. The co-processors are divided further intoworkspaceswhere the actual signal processing takes
place and they communicate streams with each other using input and output FIFO buffers and a switch
matrix. The Prophid architecture employs a Time Division Multiplex (TDM) communication strategy,
as explained in Chapter 2. The communication capacity of the switch matrix is thus divided into time
slots and the global controller ensures that a stream coming from an output buffer is directed to the
correct input buffer in the correct time slot. The global controller therefore connects directly to the
switch matrix and, furthermore, it usesterminalswhich are simple 1:N and N:1 switches at the input
buffer or output buffer side, respectively.

9.2.2 Prophid Benchmark

We want to execute the benchmark described by Witlox [1997], which is is an industrially relevant
benchmark imposing a realistic workload on the Prophid architecture. The dependence graph of the
benchmark is shown in Figure 9.2. The benchmark consists of three parts, indicated byPathI, PathII,
andPathIII. In the benchmark, the four gray nodes (e.g.,A, B, C andD) represent memory and the
ten white nodes represent coarse-grained functions. In addition, two nodes at the head of the chain
represent sources and one node at the tail represents a sink. The purpose of the benchmark is to
combine two video signals into a single multi-window video signal. The two different input sources

204 9.2 Case 1: The Prophid Architecture (Philips Research)

g
lo

b
al co

n
tro

ller

switch matrix

terminals

co-processors

routers

terminals

output buffers

input buffers

work spaces

Figure 9.1 . The architecture of the Prophid video-processor.

produce streams of samples that are processed by a number of coarse-grained functions such as frame
resizing and quality enhancement, after which the two streams are combined into a single output
stream. Other coarse-grained functions such as color adjustments and more quality enhancement are
performed on the combined stream. Finally, the sink node consumes the stream.

input 2

input 1
memory

output

memory memory

memory
merge

Path I

Path II

Path III

A B C

D

Figure 9.2 . The Prophid benchmark.

9.2.3 The Use of the Y-chart in the Prophid Case

We used the Y-chart environment developed in Chapter 7 in this case and thus we need to describe
the benchmark as a network of SBF objects using the modeling approach developed in Chapter 6. We
also need to describe instances of the Prophid architecture using the modeling approach developed in
Chapter 5. We discuss these two aspects in more detail.

Modeling the Prophid Benchmark as a Network of SBF Objects

The benchmark was not specified functionally correctly; only consumption/production patterns were
specified for each node in Figure 9.2. The benchmark therefore describes a static application and it

Design Cases 205

Performance
Numbers

Mapping

Retargetable
Simulator (ORAS)

Prophid
Architecture Benchmark

Prophid

Figure 9.3 . The Y-chart used in the Prophid case.

suffices to describe the nodes of the benchmark with SBF objects that use dummy functions. These
dummy functionsonly consume and produce tokens using a particular pattern.

We constructed an SBF object for each node in the benchmark, including the memory nodes
(we say more about modeling memory as SBF objects later). For these SBF objects, we specified
the transition function and binding function (see Section 6.4) to capture the consumption/production
pattern of each node in Figure 9.2.

Because the benchmark was not specified functionally correctly, it cannot describe a dynamic ap-
plication. It can describe, for example, a frame resizing factor, which is a fixed number resulting in a
fixed consumption/production pattern. We remark here that ORAS is, however, capable of executing
fully functionally applications – thus including their dynamic behavior – in the context of an archi-
tecture instance. If applications become more dynamic – and they will – we will be able to describe
these applications and simulate them correctly. The PiP case mentioned in Appendix B, for example,
exhibits dynamic behavior (resizing of the image) and can be simulated by ORAS.

Modeling the Prophid Architecture

We had to describe the Prophid architecture in terms of the stream-based dataflow architecture tem-
plate. This implies that we must be able to specify an instance of the Prophid architecture in terms of
the architecture description language discussed in Section 5.5.

We described the Prophid co-processors as functional units and the workspaces as functional
elements. Since the Prophid architecture uses a Time Division Multiplexed (TDM) communication
structure, the functional units operate in a sample-switching mode (see Section 2.1). This means that
the switching between workspaces on a co-processor takes place on a sample basis. To describe the
TDM communication, we define the global controller as a TDM controller and the routers as TDM
routers, which are both described in Appendix C. We do not have to describe the terminals shown in
Figure 9.1 explicitly, because the global controller passes on an explicit reference to routers. Such a
reference indicates to which input buffer a router has to write (see Section 5.6, where we explain the
programming model of stream-based dataflow architectures).

The SBF objects of the benchmark map to functional elements, including SBF objects modeling
memory. We assign alatencyand aninitiationperiodto each functional element to describe the timing
characteristics of the functional elements (see Figure 7.8, where we showed how a functional element
and it timing characteristics are specified in the architecture description language). The assigned
values are initially obtained from designers when they are developing the co-processors.

206 9.2 Case 1: The Prophid Architecture (Philips Research)

9.2.4 Issues in Modeling the Prophid Architecture

We came to three modeling issues that we want to highlight in more detail. These modeling issues
are typically encounted when modeling realistic applications and architecture instances. The three
modeling issues are the modeling of memory in the Prophid architecture, the modeling of TV signals,
and the modeling of the merging of two streams. These issues are discussed below.

Modeling Memory in the Prophid Architecture

In principle, modeling memory is a problem in a dataflow architecture because memory does not
adhere to the data-driven execution scheme. A processing element activates solely based on the avail-
ability of data (see Section 2.1.3). Memory, however, can produce stored tokens even though no data
is available to write into memory; therefore it does not operate in a data-driven fashion. Even so,
we can still model memory as a functional element like any other functional element in the case of
stream-based dataflow architectures.

We model memory as a functional element containing an asynchronous pipeline the size of the
memory capacity. Unlike an ordinary asynchronous pipeline, we initialize the pipeline with data.
Because a functional element has a readprocessand writeprocesswhich are uncoupled when an
asynchronous pipeline is used (see Section 5.4.10), the writeprocesscan send out tokens present in
the pipeline before new data is read into the pipeline by the readprocess.

Notice that a functional element also contains an SBF object which can perform very complex
reordering schemes in memory. The transition function of an SBF object is responsible for generating
the appropriate read and write addresses for memory. An example of an SBF object that models
memory was already given with thetranspose functions in the Picture in Picture example described
in Section 6.1. In that case, the transition function of the SBF object implements a particular sequence
of read and write addresses that causes the transposition of an image.

Modeling a TV signal

A TV signal contains video pixels, but they have a particular shape in time, i.e. atime shapeas shown
in Figure 9.4. This figure shows a TV signal consisting of three components: aline blanking, afield
blanking, andvideo data. The first two components are control signals included to give the electron
beam inside a TV tube enough time to start writing new video pixels at the correct position on the
screen. The line blanking delays new video pixels so the electron beam can start at the beginning of a
new line. The field blanking delays new video data so the electron beam can start again at the top left
position.

Video Data Time

Field BlankingLine Blanking

Figure 9.4 . a TV signal consists of three components: a line blanking, a field blanking, and
video data (the gray blocks).

The two most commonly used standards for TV signals are PAL and NTSC. As explained in
Section 1.2, a TV field has a number of video lines whereby each line consists of video pixels. The

Design Cases 207

number of lines and video pixels involved in the two standards are listed in Table 9.1. During a line
blanking a functional element could process other streams instead of being idle while waiting for the
end of a blanking. Even more time is available for processing during field blanking. This indicates an
important opportunity for further improvement of the efficiency of a Prophid architecture. Hence, it
is important that we can correctly model the time shapes given in Figure 9.4.

Video Data Line Blanking Video Blanking
Standard Video Pixels Video Lines (equivalent video pixels) (equivalent video pixels)
PAL 832 281 193 31935
NTSC 832 241 193 27839

Table 9.1 . Time Shape of TV Signals.

We model the time shape of TV signals using the controller of an SBF object. The SBF object
obtained describes either nodeinput1 or nodeinput2 of the benchmark and maps to a functional
element describing the source forpathI andpathII, respectively.

A source functional unit uses only output buffers, to which it writes. By using functions in SBF
objects with no inputs or outputs, we modeled the line and field blanking periods accurately of the
standard TV signals given in Table 9.1. Due to the fire-and-exit behavior of SBF objects (see Sec-
tion 6.8), a transition always takes a number of cycles equal to the initiation period when instantiated
on a functional element (see Section 7.5.1, where we explain how to augment SBF objects with time).
Regardless of whether a function of an SBF object produces output at all, a transition always takes
place; after all, a function with no inputs and outputs fires instantaneously. Therefore, a functional
element is delayed a number of cycles equal to the initiation periodeach time a transition takes place.
By calling a sequence of functions with no inputs or outputs as described by the controller (e.g., the
binding and transition functions), we describe the time shape of TV signals cycle-accurately.

Modeling the Merging of Two Streams

The merging of the streams is not functionally specified for nodemerge. As a consequence, we
can describe it only using a non-deterministic behavior. SBF objects, however, cannot describe non-
deterministic behavior.

In the benchmark of Figure 9.2, the two streams ofpathI andpathII come together in themerge
to form a single new stream forpathIII. Since this merging is not functionally specified, the merging
takes place in a non-deterministic way. In general, non-determinism is used to leave open the precise
implementation of something like a merge. On the final Prophid architecture the implemented merge
will definitely be a deterministic merge.

SBF objects cannot describe non-deterministic behavior, because of the blocking reads. The same
property formulated differently: an SBF object describes a Kahn process and, as such, always de-
scribes a deterministic behavior. We remark that a CSP process would be able to describe a non-
deterministic merge (see the discussion in related work on model of computations in Section 6.7).

Yet, to describe a non-deterministic merge using ORAS, we replaced themerge node in the
description of the benchmark by three new nodes: two new sink nodes and one new source node. In
that case,pathI andpathII end up in two new sinks. A new source produces a stream forpathIII. In
this way, all three paths are uncoupled and describe a non-deterministic behavior.

Another approach to describing a non-deterministic merge is to relate the stream ofpathI with
the stream ofpathIII. In this case,pathI describes the ‘master’ stream to which the stream forpathIII

208 9.2 Case 1: The Prophid Architecture (Philips Research)

synchronizes. We then model themerge as a memory element. The stream inpathII ends up in a
sink and is thereby uncoupled frompathI andpathIII.

9.2.5 Results

Given the fact that we realized a Y-chart environment for the Prophid architecture, we now use this
Y-chart environment (see Figure 9.3) and the DSE presented in Chapter 8 to investigate which com-
munication strategy works best: a time-division-multiplex (TDM) or a first-come-first-served (FCFS)
communication strategy. For the TDM communication strategy, we also investigate the trade-off be-
tween the length of packets (i.e., the packet length) and the number of cycles making up the length of
a time slot (i.e., the slot length).

For the Prophid architecture, we define a many-to-one mapping of the nodes of the benchmark
to an architecture instance. In this many-to-one mapping, we define, for example, that two memories
(the gray nodesA an B in the benchmark) map on one functional unit and the other two memories
(the gray nodesC andD) map onto another functional unit. In the architecture instance, we fixed
all options except for thepacket length, service timeof the controller, thebuffer sizeof the buffers,
and the communication strategy. If a TDM communication strategy is selected, we also define the
parameterslot length. Table 9.2 shows the parameters with their ranges. Using these parameters we
set up two experiments of 100 trial runs each. One experiment uses the TDM communication strategy
and one experiment uses the FCFS communication strategy.

In each trial run, a scaled video sequence of 14,400 pixels is processed by the benchmark. The line
and field blanking are scaled accordingly. We use the merge in whichpathI andpathIII are related.
Each experiment of 100 trial runs, took 1.2 hours to execute.

Parameter Range

packet length f 10 : : : 100g
slot length f 10 : : : 100g
buffer size f 10 : : : 100g
service time f 1 : : : 20g
communication strategy f TDM, FCFSg

Table 9.2 . Parameters used in the design space exploration of the Prophid architecture.

In Figure 9.5 we show the level of parallelism achieved when either a TDM (a) or a FCFS (b)
communication strategy is used to execute the benchmark. We have chosen the slot length in Fig-
ure 9.5(a) to be 55 and the buffer size in cases (a) and (b) to equal 55. On the basis of the response
surface models (RSMs), we concluded that both strategies realize the same level of parallelism. When
the global controller has a service time shorter than 10 cycles per request and architecture instances
use a packet length larger than 40 samples, the global controller is not a bottleneck and the highest
level of parallelism is obtained.

Since we look at real-time applications, a more important performance metric is the achieved
throughput for the inputs (i.e.input1 and input2) and the output (i.e.output) of the benchmark
application of Figure 9.2. The RSMs that we present only relate to the experiment in which we used
a TDM communication strategy. Furthermore, we look only at nodesoutput and input1 when we
consider throughput.

In the benchmark, nodeinput1 has a throughput constraint of 13.5 Msamples/sec and nodeoutput
has a throughput constraint of 27 Msamples/sec. Thus,output produces a video stream at twice the

Design Cases 209

(a) TDM Communication Strategy (b) FCFS Communication Strategy

Figure 9.5 . The response surface model (RSM) for achieved parallelism with either a time-
division-multiplex (TDM) communication strategy (a) or a first-come-first-served (FCFS)
communication strategy (b).

speed at which a video stream entersinput1. For the way we set up the benchmark this means that
input1 should realize an initiation period of 12 cycles and thatoutput should realize an initiation
period of 6 cycles1. In Figure 9.6, we show the initiation period realized forinput1 (a) andouput
(b). In these figures, the service time is equal to 4 cycles and the buffer size is equal to 55 samples.
Note that the initiation period is not exactly 6 cycles, since we measure the average initiation period.

On the basis of the RSM in Figure 9.6(a), we conclude that if a packet length of 40 samples or
more is selected, and the slot length has any value,input1 is able to satisfy an initiation period of 12
cycles. On the basis of the RSM in Figure 9.6(b), we conclude that if a slot length of 30 cycles or
less is selected, and the packet length has any value,output is able to satisfy an initiation period of 6
cycles. By combining the results of both figures, we were able to conclude that a Prophid architecture
satisfies the imposed real-time constraints of the benchmark when it employs a slot length of 30 cycles
or less and a packet length of 40 cycles or more.

We want to realize an architecture instance of Prophid that uses the smallest possible buffers,
since buffers take up silicon area. In Figure 9.7(a), we show the RSM expressing the initiation period
realized byoutput for various buffer sizes and slot lengths. On the basis of this RSM, we concluded
that buffers should have a capacity of at least 35 samples, irrespective of the slot length chosen.

Finally, we show the relationship between slot length and packet length and the achieved level
of parallelism in Figure 9.7(b). Based on the RSM, we conclude that the achieved parallelism is
completely dominated by the packet length when a slot length is selected shorter than 80 cycles.
Therefore, to maximize the level of parallelism satisfying the real-time constraints, a large packet
length should be selected.

To summarize: a Prophid architecture that executes the benchmark should use a large packet
length, for example 100 samples per packet, a slot length shorter than 30 cycles, and should implement

1Recall that the initiation period is the reciprocal of throughput

210 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

(a) input1 (b) output

Figure 9.6 . The initiation period realized for input1 (a) and output (b) of the benchmark as
a function of the packet length and slot length.

buffers having a capacity of 35 samples. Note, however, that these numbers only apply when a global
controller is used requiring 4 cycles per request, i.e., when the service time is 4 cycles.

9.2.6 Conclusions

For the Prophid design, we showed that we can set up a Y-chart environment and we used this en-
vironment to perform a design space exploration. Although the results found in this exploration will
not be used directly by Philips in further development of the Prophid architecture, they clearly show
the potential of the Y-chart approach. We performed a design space exploration of the Prophid archi-
tecture and made various trade-offs explicit by evaluating 100 different architecture instances in 1.2
hours. Using these trade-offs, we showed that we could select parameter values leading to a feasible
architecture instance.

In setting up the Y-chart environment, we showed that the SBF model is able to describe the
benchmark. We also showed that we can specify instances of the Prophid architecture using the
architecture description language discussed in Chapter 5. In describing an architecture instance, we
encounter three difficult modeling issues: modeling memory, modeling the time shape of TV-signal,
and modeling non-deterministic merging of streams. We showed that we could model all three issues.

9.3 Case 2: The Jacobium Processor (Delft University of Technology)

The objective of the Jacobium project [Rijpkema et al., 1997] at the Delft University of Technology
is to make a weakly programmable and scalable processor, theJacobium Processor, tailored to array
signal processing applications in which so calledJacobi-type algorithmsplay a dominant role. The
signal processing applicationsdetect, recover or separate signals, or estimate system model parameters
and are used in array processing [Justice et al., 1985] and time series analysis [Porat, 1993]. A char-

Design Cases 211

(a) Initiation Period (b) Parallelism

Figure 9.7 . (a) The RSM for initiation period of output as a function of buffer size and slot
length. (b) the RSM for parallelism as a function of slot length versus packet length.

acteristic and common feature of these applications is that they perform matrix computations [Golub
and Loan, 1989], which typically account for a heavy computational payload. Examples of such ma-
trix computations include theQR andSVDmatrix decompositions [Golub and Loan, 1989]. Both
decompositions can be implemented by means of Jacobi-type algorithms. Jacobi-type algorithms use
trigonometric computing techniques and have in common the use of plane rotations2. These plane
rotations compute efficiently using aCordic [Volder, 1959], which is the main – but not the only –
computing element used in the Jacobium processor.

In the following, we first show the Jacobium processor architecture, followed by an example
of a Jacobi algorithm in Matlab, namely the QR algorithm. Then we explain how we use the Y-
chart environment and how we extended this Y-chart environment with additional tools allowing us
to execute Jacobi algorithms described in Matlab on instances of the Jacobium architecture. We
examine how we can describe Jacobi algorithms using the SBF model at different levels of granularity
and how this effects the development of the Jacobium architecture. In this case we focus more on the
application model, which we represented in Figure 3.2 as an arrow with the lightbulb pointing to the
boxapplications.

9.3.1 The Jacobium Processor Architecture

The architecture of the Jacobium processor is shown in Figure 9.8. It consists ofProcessing Elements
(PEs) that operate in parallel and that communicate streams of data to each other via acommunication
network, under the supervision of aglobal controller. Each processing element consists of arouter,
a local controller, a compound node, and alocal memory, as can be seen in the inset in Figure 9.8.
The Jacobium processor employs Cordics in the compound node as the basis computational elements
to execute very efficiently thevectorizationandrotationoperations typically used in the Jacobi-type

2Plane rotations are also referred to as “Givens” rotations

212 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

algorithms. Besides a Cordic, the compound node may contain other hardware to compute particular
functions, for example, multipliers and adders, as well as functions of large granularity. Compound
nodes have a small instructionset that the local controller uses to put the compound node in a particular
mode executing a particular function. The local memory is used to store tokens temporarily or to re-
order tokens in streams. The local memory has a small instruction set [see, for example, Looye et al.,
1998] that the local controller uses to obtain samples in a particular order from the local memory.
These samples are consumed by the compound node, which produces new samples. The router routes
these new samples through the architecture, under the supervision of the local controller.

r
u
o
s

c
e

n
k

i
s

u
f

b
u
f

b
u
f

b

Router

Memory

Comp. Node

lo
ca

l c
o

n
tr

o
lle

r

communication network

Global

controller
PE PE PEA B C

Figure 9.8 . The architecture of the Jacobium processor.

Especially at the top level, the architecture template is very similar to the architecture template
of stream-based dataflow architectures, yet the PEs differ from the PEs of the stream-based dataflow
architecture. Nonetheless, we can model the operations of the PEs of the Jacobium architecture by
means of the PEs of the stream-based dataflow architecture.

To realize this modeling, we rely on the special structure of an SBF object. Given a processing
element, we can describe this processing element by means of a single SBF object. We model its
local controller by the controller of an SBF object, its local memory by the state of an SBF object,
and its compound node by the set of functions of an SBF object. This SBF object is instantiated onto
a functional element. The router of the PE of the stream-based dataflow architecture containing the
functional element models the router of the Jacobium PE. The output buffer of the functional unit in
which the functional element resides models the output buffer of the PE. The modeling of a Jacobium
PE by means of a stream-based dataflow PE is illustrated in Figure 9.9.

Because of this modeling, we can use SBF objects to describe processing elements, abstracting
from the internals of the processing elements. This gives us the opportunity to reason on the design
of Jacobium architectures at a higher level of abstraction, as we will show.

Design Cases 213

b

f
u

Jacobium Processor

F
q

F
p

State

f_a

f_b

Controller

Router

Memory

Comp. Node

lo
ca

l c
o

n
tr

o
lle

r

F
u

n
ct

io
n

al
 E

le
m

en
ts

R
o

u
te

rs

Stream-based Dataflow Architecture
Processing Element

SBF object

Processing Element

Figure 9.9 . Modeling a processing element of the Jacobium architecture as a processing
element of stream-based dataflow architectures.

9.3.2 Jacobium Applications

An example of a Jacobi-type algorithm is theQR matrix decompositionthat can be found in adaptive
beam-forming applications [Van Veen and Buckley, 1988]. Matlab code for a QR decomposition
program is shown in Program 9.1. The program’s loop boundsK andN are parameters. Two inner-
loop iteratorsj and i form a triangular-shaped index space of sizeN. This triangular shaped space
describes a singleQR update. The outer-loop iteratork indicates which iteration of the QR update
is currently taking place. Notice that the QR decomposition program in Program 9.1 uses matricesR

andX and has a lexicographical sequential index ordering as dictated by thefor loops. The structure
of the QR algorithm is referred to as aNested Loop Program[Held, 1996].

Program 9.1. QR ALGORITHM

for k = 1 : 1 : K,
for j = 1 : 1 : N,

[R(j,j),X(k,j),theta(j)] = Vectorize(R(j,j),X(k,j));
for i = j+1 : 1 : N,

[R(j,i),X(k,i)] = Rotate(R(j,i),X(k,i),theta(j));
end

end
end

The QR algorithm of Program 9.1 has a dependence graph representation as depicted in Fig-
ure 9.10. Instead of showing the complete dependence graph of the QR algorithm, we show only
onek-plane, representing a single QR update. The complete DG would consist ofK of these planes.
Each and everyk-plane depends on its predecessor. Each node in the DG represents a function from
the QR algorithm: a gray node represents the functionVectorize and a white node represents the

214 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

functionRotate . At the side of the triangle at the top of the figure, data (i.e., theX data) is arriving
from external sources – say sensors of anN-antenna array (in this caseN=6) – that propagates down-
wards through the plane. The values of 21r variables (i.e., elements of theR matrix in Program 9.1)
produced by the previous plane are updated using the functionsRotate andVectorize . To rotate,
eachRotate function needs to have an angletheta calculated by the functionVectorize on the
diagonal of the triangle.

Antenna Signals

i

j

k

theta

Vectorize
Rotate

rk�1

xk

Figure 9.10 . Dependence Graph Representation of one QR update k-plane of the QR-
algorithm.

The dependence graph representation of the QR algorithm reveals features like regularity and
locality. Unlike the description given in Program 9.1, it also reveals a high level of concurrency.
These features – regularity, locality, and concurrency – are typical for all Jacobi-type algorithms.

9.3.3 The Use of the Y-chart Approach in the Jacobium Processor Case

We want to use the Y-chart approach to assist us in the design of the Jacobium architecture. For that
purpose, we developed the environment shown in Figure 9.11. The core of the design environment
consists of the Y-chart environment developed in Chapter 7. Thus, we again use ORAS as the retar-
getable simulator and we describe applications as a network of SBF objects, using the SBF model
developed in Chapter 6. We augment the original Y-chart environment with additional elements to
support the conversion from nested loop programs described in Matlab into networks of SBF objects.
The added elements in the figure are:

� theApplications in Matlab box

� theAlgorithmic Transformations box

� theTranslation box

� theValidation boxes

Furthermore, we include theLibrary of SBF objects and the simulatorSBFsim in the environ-
ment. Both elements are presented in Chapter 6, where we described the implementation of the SBF
model.

Design Cases 215

Translate

Performance
Numbers

Networks of

Transformations
Algorithmic

Validation

Validation

Validation

SBFsim

Retargetable
Simulator (ORAS)

Applications
in Matlab

Architecture
Instance

Library of SBF Objects

SBF Objects

Y-chart Environment

Mapping

Figure 9.11 . The extended Y-chart environment used in the Jacobium Processor case.

Applications in Matlab and Algorithmic Transformations

The environment is based on the assumption that we start from Jacobi applications written as nested
loop programs in Matlab. These applications can be transformed to change characteristics of the
original Jacobi application [see van Dijk et al., 1993].

Translation

Both the original and transformed Matlab specifications are, however, built on data types from the
matrix algebra: that is, matrices and vectors. The translation of these types into streams of scalars is
required. Moreover, the strict serial ordering of operations has to be removed to reveal the high degree
of concurrency present in almost all Jacobi-type algorithms.

Thus, somehow, we need to translate the original imperative Matlab descriptions into a network of
SBF objects. For that purpose, we rely on the toolHiPars [Held, 1996], developed originally as part
of the HiFi project [Dewilde et al., 1989]. It converts static algorithms, described as parameterized
nested loop programs, into a dependence graph representation. Part of such a DG description is
already shown in Figure 9.10. In the resulting DG representation, the full concurrency present in the
application is revealed and only scalar variables are communicated over the edges of the DG.

We can go from such a DG representation to a network of SBF objects. We will explain this
translation in detail for the QR algorithm in Program 9.1. We can use predefined SBF objects from
the library or we can create new SBF objects to represent the DG as a network of SBF objects. By
storing these new objects in the library, we promote reuse of SBF objects.

216 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

Validation

The translation of a Matlab program describing a nested loop program to a network of SFB objects
is not trivial and is not yet automated. For these reasons, we included a validation trajectory to check
whether both the Matlab program and the SBF network have the same input/output behavior. Thus
we verify thetranslation steps by providing the same input data to both the Matlab applications and
the network of SBF objects and then comparing the output data.

We can map a network of SBF objects onto an architecture instance and use ORAS to obtain the
performance numbers. Because ORAS also performs a full functional simulation, we can also validate
the behavior at this level: ORAS should produce for the same input data the same output data as that
produced by SBFsim or Matlab. This way we can check if the mapping was performed correctly.

9.3.4 Deriving a Network of SBF Objects from a Dependence Graph

We will show a very simple case in this section in which we express the QR algorithm of Program 9.1
as a collection of different SBF objects, each with (very) different characteristics. We will use the
extended Y-chart environment to provide feedback on the different SBF objects realized.

Using the HiPars tool, we attain a DG representation of a nested-loop Matlab program. We ought
to derive SBF objects from the DG representation that we can combine to model the original Matlab
application as a network of SBF objects. This means, in the first place, that we have topartition the
DG into smaller pieces, in which each piece makes up an SBF object with a particular set of functions.
In the second place, for each identified SBF object we have to specify the controller functions, i.e.,
the transition function and the binding function.

Partitioning a Dependence Graph

Given a singlek-plane of the QR algorithm as a DG representation, there are many ways we can
construct a network of SBF objects executing the same QR application. Different partitions result in
different grain sizes of the SBF objects, as was explained in Section 6.6. In Figure 9.12, we show
three different partitions,each leading to different SBF objects with different grain sizes. The number
of functions that an SBF object includes determines the grain size of that SBF object if we assume
that the functionsVectorize andRotate both requirex RISC-like operations.

We now illustrate three possible partitions (a, b, and c) to describe the samek-plane of the QR
algorithm. In specifying these partitions, we distinguishregionswhich describe a regular part of a DG
containing the same kind of functions. Although two regions can describe the same function, they can
differ as to where functions get their data from and where they write output data to. In that case we
havevariantsof the same function (see Section 6.6).

case (a): In this partitioning, we assume thateach node of the DG defines an SBF object by it-
self. This results in two SBF objects:SBFVectorize, containing the functionVectorize , and
SBFRotate, containing the functionRotate . Since both SBF objects contain only one func-
tion, the objects distinguish only one region. Both SBFVectorize and SBFRotate have a grain
size of1x. To cover the DG we would need 6 instances of SBFVectorize and 15 instances of
SBFRotate.

case (b): In this partitioning, we assume thateach horizontal chain of nodes (j-line) in the DG defines
an SBF objectSBFline. SBFline contains two functions:Rotate andVectorize . Eachj-line
consists of two regions: regionI and regionII. The functionVectorize is active in regionI,

Design Cases 217

and the functionRotate is active in regionII. The variabletheta is kept internal to SBFline
and hence it is stored in the state of SBFline. SBFline has a grain size of6x because the longest
line includes 6 functions. To cover the DG we would require six instances of SBFline.

case (c): In this partitioning,we assume that the complete triangular graph defines a single SBF object
SBFplane. It contains the functionsRotate andVectorize but each in two different variants,
variant 1 and variant 2. SBFplane contains four different regions. In regionsI, II, III, andIV the
functionsVectorize 1, Rotate 1, Vectorize 2, andRotate 2, respectively, are active.
The functionRotate differs in RegionsII andIV as to whether a function reads external data
(e.g. from the sensors of anN -antenna array) or internal data. The same applies to the function
Vectorize . In Region IV variablestheta andX are kept inside the SBF object. Variable
theta requires a single place to store its value, whereas variableX requires a FIFO structure of
size 5. SBFplane has a grain size of21x because it includes 21 functions. To cover the DG we
would require one instance of SBFplane.

Although the different SBF objects have different granularities, the set of functions always con-
sists of the same functionRotate andVectorize . Because an SBF object describes a processing
element, the compound node has to execute the set of functions defined by the SBF object. Since the
three different SBF objects only use sets of functions consisting ofRotate andVectorize , the use
of a Cordic as the basic element of a compound node is a logical choice.

We want to remark that the SBF Network for the partitioning and assignment discussed in case (a)
is intrinsically more parallel than the network discussed in case (c), as was explained in Section 6.6.

j

i
k

Region I

(a) SBFVectorize & SBFRotate

j

i
k

Region II

Region I

(b) SBFLine

Region III

Region IIRegion I

R
eg

io
n

IV

j

i
k

0 1 2

8 10

12 14

15 17

18 19

20

16

13

97

11

6

3 4 5

(c) SBFplane

Figure 9.12 . The dependence graph representation of the QR-algorithm partitioned in dif-
ferent ways, leading to SBF objects with different grain sizes.

Deriving the Controller Functions of an SBF object

Each SBF object covers a distinct part of a DG. For each part, we need to resolve an ordering of the
function invocation that leads to the binding function� and the transition function! for the controller
of each SBF object. We obtain the ordering by scheduling the nodes in the part of the DG covered
by an SBF object. One – arbitrary – ordering is the ordering overlaid on the graph in Figure 9.12(c).
Thus, each node has been assigned a number indicating its position in the execution order in which
SBFplane will process nodes.

218 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

Given the ordering of Figure 9.12(c), we can derive the binding functions� as

�(s) =

8>>>>><
>>>>>:

Vectorize1; if s = 0

Rotate1; if s = 1; 2; 3; 4; 5

Vectorize2; if s = 6; 11; 15; 18; 20

Rotate2; if s = 7; 8; 9; 10; 12; 13; 14; 16; 17; 19

(9.1)

and the transition function! as

!(s) = s+ 1 (mod 20): (9.2)

The presented controller functions are defined for ak-plane DG havingN = 6. We could also
have defined the controller functions in a parameterized form, expressed in parameterN .

Given the three possible partitions, we need to decide which partition results in the best architec-
ture given the set of Jacobi-type algorithms. The SBF objects shown in Figure 9.12(a) can easily be
reused since the functionsVectorize andRotate are used in most Jacobi-type algorithms. How-
ever, the price that is paid for this reusability is a large amount of communication of single scalar
variables over the communication structure. The SBF objects presented in Figure 9.12(b) and Fig-
ure 9.12(c) keep some variables internal, reducing the amount of data that needs to be transported.
This increases the complexity of the local controller and may cause an increase in the amount of local
memory needed in a PE. As the SBF objects become more coarse-grained, tokens can very effectively
be taken together into a packet, leading to a more efficient transportation of tokens. For example,
theR values needed from a previous QR update are very effectively transported using packets. In
addition, coarse-grained SBF objects can perform very complex operations, including the reordering
of data streams [Garcea, 1998].

Pipelining

The SBF objects described in Figure 9.12 are executed on a compound node. A compound node typi-
cally uses a Cordic in the case of the Jacobium architecture. This Cordic is deeply pipelined [Hekstra
and Deprettere, 1993] – 18 stages deep – to perform the trigonometric computations at a high through-
put. Pipelining seriously affects the final performance of the Jacobium architecture, especially when
long pipelines are used. The local data dependencies between nodes, as shown in the DGs of Jacobi-
type algorithms, make it a very challenging task to obtain a high utilization of Jacobium architectures
while maintaining a high throughput.

When we consider the Matlab description in Program 9.1, we notice that the functions are not
pipelined at all. However, in the extended Y-chart environment they are, which makes it possible to
obtain quick quantitative feedback on the utilization of an instance executed on a Jacobium architec-
ture. By installing an SBF object (like the ones given in Figure 9.12) on a functional element (see
Figure 7.8) and specifying a particularinitiation period and latency, we can specify that the SBF
object have a pipelined behavior. Furthermore, different processing elements in the Jacobium archi-
tecture can execute differentk planes. As a consequence, pipelining takes place inside PEs as well as
between PEs.

By measuring the performance of an architecture instance, we can investigate the effect of the
levels of pipelining. When this is known, we can start to apply purposeful algorithmic transformations
to alter Matlab programs, for example to change the shape of the DGs such that a higher utilization
results [van Dijk and Deprettere, 1995].

Design Cases 219

9.3.5 Results

For the Jacobium case, we used the extended Y-chart environment given in Figures 9.11 to quantify
the performance of the three partitions shown in Figure 9.12. We constructed three different architec-
ture instances of the Jacobium architecture, each being able to execute the QR algorithm as given in
Program 9.1 for 4 antenna signals. One architecture consists of 10 processing elements that execute
the SBF objects of case (a), one architecture consists of 4 processing elements that execute the SBF
objects of case (b), and one architecture consists of 1 processing element that executes the SBF object
of case (c). We execute 1000k-planes of the QR algorithm on each of these architectures and thus
process 4000 antenna signals in total.

We determined the following performance metrics for the three architecture instances: the total
execution time to process 4000 antenna signals, the level of parallelism achieved, the number of
samples communicated in parallel over the communication structure, the average utilization of the
processing elements, and the overall throughput realized by an architecture instance. In Table 9.3, we
assume that the Cordics are not pipelined and that communicating a sample over the communication
structure takes 1 cycle. In Table 9.4, we assume that Cordics are pipelined 18 stages deep. In Table 9.5,
we further assume that the handling of packets by routers takes an additional 4 cycles per header and
that the global controller has aservice timeof 1 cycle and acapacityof one request at a time (see
Section 5.4.5, where we model the global controller).

Case Total Execution Parallelism Communication Utilization PEs Throughput
Time (cycles) Oper/Cycle Samples/Cycle (max/avg) (%) samples/cycle

A 2009 5.98 24/16 54 2.0
B 2509 3.31 9/6 84 1.60
C 44022 1.43 5/3 91 0.10

Table 9.3 . Performance metrics for 3 Jacobium architectures with no pipelined Cordics.

Case Total Execution Parallelism Communication Utilization PEs Throughput
Time (cycles) Oper/Cycle Samples/Cycle (max/avg) (%) samples/cycle

A 19111 0.60 24/10 5.5 0.21
B 19057 0.46 9/6 11.7 0.20
C 44022 1.36 5/3 90.9 0.10

Table 9.4 . Performance metrics for 3 Jacobium architectures with Cordics pipelined 18
stages deep.

Based on the numbers found, we can draw the following conclusions. Table 9.3, illustrates that the
use of fine-grained processing elements, i.e., PEs on which we mapped the SBF objectsSBFVectorize
andSBFRotate, result in a large amount of global communication (16 samples/cycle) and a high level
of parallelism (5.98 oper/cycle). In contrast, the use of coarse-grained processing elements, i.e., PEs
on which we mapped SBF objectSBFplaneresult in less global communication (3 samples/cycle) and
a lower level of parallelism (1.43 oper/cycle).

We have included the pipelining of Cordics in Table 9.4. It shows that architectures (a) and (b)
are seriously affected by the pipelining. The performance of architecture (a), for example, drops from

220 9.3 Case 2: The Jacobium Processor (Delft University of Technology)

Case Total Execution Parallelism Communication Utilization PEs Throughput
Time (cycles) Oper/Cycle Samples/Cycle (max/avg) (%) samples/cycle

A 47326 0.25 17/11 2.4 0.08
B 45241 0.19 9/6 4.9 0.09
C 108944 0.55 5/2 36.7 0.04

Table 9.5 . Performance metrics for 3 Jacobium architectures with Cordics pipelined 18
stages deep, with a global controller that has a service time of 1 cycle and a capacity of
one request at a time, and with routers that require an additional 4 cycles per header to
handle a packet.

5.98 to 0.60 operations per cycle. Architecture (c), on the other hand, is hardly affected by pipelining.
Based on this table, we conclude that pipelining should not be neglected and that the extended Y-chart
environment is useful and enables us to quickly investigate the effects of pipelining.

The results in Table 9.5 are based on the fact that communicating headers takes 4 cycles per header
and that one router at a time can access the global controller. This affects the overall performance of
all three architectures and the values for parallelism, utilization and throughput are about 60% lower
than the values in Table 9.4. Although architecture (c) can use longer packets than architecture (a) or
(b), its overall performance dropped 60%. Thus, packets longer that 21 samples are needed to reduce
the influence of the headers. In absolute numbers, however, architectures (a) and (b) realize a higher
throughput, but architecture (c) uses its resources most efficiently.

We also performed a design space exploration of the Jacobium processor in which we looked
at architecture instances that useN coarse-grained processing elements to execute 1000k-planes of
the QR algorithm. We mapped the SBF objectSBFplanethat processesM antenna signals on each
of these processing elements. We also changed the level of pipelining of the Cordics used in the
processing elements and the size of the FIFO buffers. In the architecture instances, we assumed that
it takes 1 cycle to communicate a sample over the communication structure and that a header requires
an additional 4 cycles per packet. Table 9.6 shows the parameters of the exploration along with their
ranges. We set up an experiment of 100 trial runs with these parameters. The experiment of 100 trial
runs, took 50 minutes to execute. Notice that we did not include the packet length as parameter. In
case of the Jacobi-algorithms, it depends on the number of antenna signals (M) used.

Parameter Range

Bufffer Size f 4 : : : 100g
Cordics (N) f 1 : : : 7 g
Problem Size (M) f 4 : : : 12g
Pipeline Depth f 1 : : : 20g

Table 9.6 . Parameters used in the design space exploration of the Jacobium architecture.

Figures 9.13 shows the initiation period realized for a processing element (a) and the total execu-
tion time required by an architecture instance to process 1000k planes (b) when a buffer size of 100
and a pipeline depth of 18 are selected. The initiation period reported is not equal to the throughput
reported in Table 9.3 to Table 9.5; it gives the throughput that an individual processing element can
realize. From figure (a), we concluded that processing elements operate with maximum throughput

Design Cases 221

(e.g. 1 sample/cycle) on a stream of samples when a small problem size is used (M � 7). When
a larger problem size is used, an architecture can maintain a throughput of 1 sample/cycle per pro-
cessing element by using more processing elements. This works until a problem size larger than 9 is
selected.

From figure (b), we concluded that when a small problem size is executed (e.g. 4� M � 7),
adding extra processing elements is not efficient because the total execution time hardly decreases.
When a large problem size is used (e.g.M � 8), additional processing elements are used more
efficiently, especially when between 3 and 5 processing elements. Using more that 6 extra processing
elements hardly improves the total execution time.

(a) Initiation Period of Processing Element (b) Total Execution Time

Figure 9.13 . The response surface model for the initiation period achieved for one process-
ing element (a) or the response surface model for total execution time required to process
1000 k-planes (b) as a function of processing elements N and problem size M .

In Figure 9.14, we show the utilization of a processing element (a) and the achieved level of par-
allelism of architecture instances for different levels of pipelining and buffer sizes. In both figures,
the problem size is equal to 12 and the architecture instances use 4 processing elements. From figure
(a), we concluded that the processing elements are used most efficiently when a buffer size of approx-
imately 70 samples is used, irrespective of the level of pipelining. From figure (b), we conclude that
the level of pipelining influences very much the level of parallelism realized. For a problem size of 12
and 4 processing elements, the maximum level of parallelism is obtained when a pipeline depth of 5
stages is used. Furthermore, the deeper the pipeline, the lower the level of parallelism.

9.3.6 Conclusions

The Jacobium project is still running, but we can draw the following preliminary conclusions regard-
ing it. We were able to use the Y-chart environment developed in this thesis to model the architecture
of the Jacobium processor in terms of the architecture template of stream-based dataflow architec-
tures. We extended this Y-chart environment, which allowed us to execute applications written in
Matlab as a network of SBF objects on an architecture instance and determine how these networks

222 BIBLIOGRAPHY

(a) Utilization (b) Parallelism

Figure 9.14 . The response surface model for utilization of a processing element (a) or the
response surface model for realized level of parallelism (b) as a function of level of pipelining
and buffer sizes.

performed on architecture instances. We used the extended Y-chart to quantify characteristics of three
different partitions that executes one and the same QR algorithm, but with different granularity. We
also quantified the effects of pipelining and global communication. For one partition, we performed
a design space exploration and showed the we were able to derive relationships between architecture
parameters and performance metrics.

Bibliography

P.M. Dewilde, A.A.J de Lange, A.J van der Hoeven, and E.F. Deprettere. HiFi: An object oriented
system for the structural synthesis of signal processing algorithms and the VLSI compilation of
signal-flow graphs. InIFIP Int. Workshop on Applied Formal Methods for Correct VLSI Design,
1989.

Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: Task graphs for free. InProceedings of
6th Int. Workshop on Hardware/Software Codesign, Seattle, Washington, 1998.

Giuseppe Garcea. Derivation of dataflow networks for a specific domain of applications. Master’s
thesis, Delft University of Technology, Circuits & Systems Group, 1998.

G.H. Golub and C.F. Van Loan.Matrix Computations, (2nd ed.). John Hopkins University Press,
1989.

Gerben J. Hekstra and Ed F. Deprettere. Floating point Cordic. InProceedings ARITH 11, pages
130–137, Windsor, Ontario, 1993.

Peter Held.Functional Design of Dataflow Networks. PhD thesis, Delft University of Technology,
1996.

BIBLIOGRAPHY 223

R. Jain. Personal Communication with Ed Deprettere, 1997.

J.H. Justice, N.L Owsley, J.L Jen, and A.C. Kak.Array Signal Processing. Prentice-Hall, 1985.

Jeroen Leijten.Real-Time Constrained Reconfigurable Communication between Embedded Proces-
sors. PhD thesis, Eindhoven University of Technology, 1998.

Jeroen A.J. Leijten, Jef L. van Meerbergen, Adwin H. Timmer, and Jochen A.G. Jess. Prophid: A
heterogeneous multi-processor architecture for multimedia. InProceedings of ICCD’97, 1997.

A. Looye, G. Hekstra, and E. Deprettere. Multiport memory and floating point cordic pipeline in
Jacobium processing elements. InProceedings of the IEEE Workshop on Signal Processing Systems
(SiPS’98), Boston, USA, 1998.

Boaz Porat.Digital Processing of Random Signals. Prentice-Hall, 1993.

Edwin Rijpkema, Gerben Hekstra, Ed Deprettere, and Ju Ma. A strategy for determining a Jacobi spe-
cific dataflow processor. InProceedings of 11th Int. Conference of Applications-specific Systems,
Architectures and Processors (ASAP’97), pages 53 – 64, Zurich, Switzerland, 1997.

H.W. van Dijk and E.F. Deprettere. Transformational reasoning on time-adaptive Jacobi type algo-
rithms. In M. Moonen and B. De Moor, editors,SVD and Signal Processing, III, pages 277–286.
Kluwer Academic Publishers, Dordrecht, 1995.

Hylke van Dijk, Gerben Hekstra, and Ed Deprettere. On the systematic exploration of the space of
Jacobi algorithms. Technical Report ET/NT/Fact-2, Dept. Electrical Engineering, Delft University
of Technology, 1993.

B. Van Veen and K. Buckley. Beam forming: A versatile approach to spatial filtering.IEEE ASSP
Magazine, 5(2):4–24, 1988.

J.E. Volder. The Cordic trigonometric computing technique.IRE Trans. Electronic Computers, EC-8
(3):330–340, 1959.

Bob Witlox. Performance analysis of dataflow architectures using petri nets. Master’s thesis, Eind-
hoven University of Technology, Department of Mathematics and Computing Science, 1997.

224 BIBLIOGRAPHY

Chapter 10

Summary & Conclusions

T
HERE is a trend toward increasingly programmable application-specific architectures. These
architectures are becoming increasingly programmable to support multi-functional and multi-

standard products. In the design of these architectures, it is no longer the performance of a single
application that matters, but the performance of a set of applications. We have observed that general
and structured approaches are lacking for the design of these increasingly programmable application-
specific architectures.

We presented the stream-based dataflow architectures as an example of programmable application-
specific architectures. We showed that this class of architectures fits into the category of dataflow
architectures and that they represent interesting programmable architectures for high-performance,
stream-based applications that are found in many multi-media applications.

In the design of stream-based dataflow architectures many architectural choices are involved, each
leading to a particular architecture with a specific behavior and performance. For designers, it be-
comes increasingly complex to find feasible architectures, given the many choices involved and the
required programmability.

We structured the many design choices by means of an architecture template which describes a
class of architectures in a parameterized way and which has a well-defined design space. We con-
sidered the central problem in this thesis to be to provide a method to help designers find parameter
values of the architecture template that result in a feasible design, given an architecture template, a
set of applications, and design objectives like throughput and utilization as well as power and silicon
area.

The methodology that we presented in this thesis is the Y-chart approach shown in Figure 10.1.
It is a methodology in which designers make decisions and motivate particular design choices based
on quantitative data. We showed that the Y-chart approach leads to a Y-chart environment which
allows designers to quantify design choices for a particular architecture. By using such a Y-chart
environment and changing design choices in a systematic way, designers explore the design space of a
given architecture template for a set of applications. Furthermore, designers narrow down the design
space of an architecture template in a stepwise fashion by using a stack of Y-chart environments, each
at a different level of abstraction.

By exploring the design space at different abstraction levels, designers gain insight into the re-
lationship between parameter values and the performance that is achieved. Based on this insight,
designers make trade-offs between the many parameters leading to a feasible design. Therefore, the
Y-chart approach results in better-engineered architectures in less time. These engineered architec-
tures satisfy the imposed design objectives for the complete set of applications. Moreover, they use

225

226 10.1 Discussion of the Y-chart Approach

Applications

Retargetable

Performance
Numbers

Design Space Exploration

Mapping

Architecture
Modeling Modeling

Simulator

(Chapter 5)

(Chapter 7)

(Chapter 6)

(Chapter 7)

(Chapter 8)

(Chapter 4)

Figure 10.1 . The Y-chart environment developed in this thesis

their resources more efficiently, resulting in a less expensive design in terms of the amount of silicon
used.

In this thesis we realized a Y-chart environment for the class of stream-based dataflow architec-
tures at a cycle-accurate level. We implemented the six components constituting a Y-chart environ-
ment. This included the use of a high-level performance analysis method, an architecture modeling
approach, an application modeling approach, the construction of a retargetable simulator and a map-
ping approach, and the use of a design space exploration environment.

We used the Y-chart environment in two design cases and showed that designers can indeed com-
pare alternatives in a quantitative way. The two design cases also showed that designers can indeed
perform design space exploration, permitting them to consider trade-offs between parameter values
and performance. Although the results found in the two cases will not directly affect the further
development of the two designs, they clearly showed that we gained insight into the complex trade-
off present. Similar results are very difficult to obtain using current design approaches. Finally, the
two design cases showed that it was possible to analyze and change architectures at a high level of
abstraction.

10.1 Discussion of the Y-chart Approach

Based on our use of the Y-chart environment in two design cases, we draw the following conclusions.
First, we conclude that setting up a Y-chart requires significant effort. Secondly, we conclude that the
Y-chart approach exhibits interesting general characteristics. Thirdly, we conclude that the Y-chart
approach structures the design process of application-specific programmable architectures. Fourthly,
we conclude that the Y-chart approach requires multi-disciplinary teams that challenge current design
approaches.

10.1.1 Significant Effort

The Y-chart environments used in both the Jacobium and the Prophid cases are a direct result of a
significant amount of time spent on modeling and developing of software. To realize the Y-chart
environment, we developed the toolsSBFsimandORAS, which consist of a total of respectively 3,000
and 20,000 lines of C++, not taking into account the modeling of applications.

Although setting up a Y-chart environment requires significant effort, we were able to realize the
complete Y-chart environment in slightly more than one and a half years because we (re)used existing

Summary & Conclusions 227

tools. We used the PAMELA Run-time Library, which provided us with high-level primitives that
made it possible for us to model stream-based dataflow architectures at a high level of abstraction.
Another existing tool that we used was the generic DSE environment. This environment took care
of setting up experiments efficiently, data management, and visualization of results, e.g., drawing the
response surface models.

10.1.2 Characteristics of the Y-chart Approach

We conclude that the Y-chart exhibits general characteristics that are invariant with respect to the
architecture or application researched. We summarize the characteristics as:

1. The Y-chart approach permits designers to quantify architectural choices, providing a sound
basis on which design choices can be made.

2. The Y-chart approach permits designers to explore the design space of an architecture template
not only for a single application, but for the whole set of applications.

3. The Y-chart approach allows designers to consider trade-offs and to balance between pro-
grammability and efficiency, finding an architecture instance that obeys set-wide design ob-
jectives.

4. The Y-chart approach takes into account the complete system – architecture, the set of applica-
tions, and the mapping of these applications – thus optimizing the complete system instead of
only the architecture.

5. The Y-chart approach is invariant for a specific level of detail at which designers need to specify
architecture instances when evaluating the architecture instance to render performance numbers.

6. The Y-chart approach requires that the architecture template be made explicit and thus that
architecture templates can be reused in other design projects.

10.1.3 Structuring the Design Process

We conclude that the Y-chart approach structures the design process of programmable application-
specific architectures. It stipulates the requirements that need to be satisfied in order to perform
design space exploration of architectures.

In both the Jacobium and Prophid cases, we conclude that too much focus was placed on the
architectural design. As a consequence, we experienced severe problems in obtaining specifications of
applications in the appropriate format. The main reason these problems occurred was that developing
applications in the correct format was not an integral part of the design case of either the Prophid or
the Jacobium architectures.

In further development of programmable architectures, much more attention must be given to de-
veloping applications in a suitable format, for example, by making the release of applications in the
appropriate format a clear deliverable within design processes. The development of libraries contain-
ing high-quality applications descriptions should be considered. This implies that applications should
be documented, well-structured (for example, by using code reviews), and released and maintained
over time by a person having the responsibility for particular applications.

A problem similar to the applications problem is mapping. Again, in both the Jacobium and the
Prophid cases, mapping was not addressed properly since it was not an integral part of the design case.

228 10.2 Further Research

The Y-chart approach, however, clearly states that designing programmable architectures requires that
the architecture, the set of applications, and the mapping be addressed before any exploration takes
place.

The Y-chart approach has already made an impact within Philips Research. There are design
projects in which the Y-chart approach is used as the basis to structure the design process of new
programmable architectures. In these design projects, the availability of benchmark applications and
mapping were included from the beginning. In the near future, we expect that Y-chart environments
will be realized for these design projects. For CPU design, and the Philips TriMedia processor in
particular, the exploration has already been performed. For hardware/software codesign that includes
CPUs and coprocessors, exploration will soon take place.

10.1.4 Multi-Disciplinary Teams

As shown in Figure 10.1, the Y-chart approach consists of six components, each of which represents a
discipline on its own. The Y-chart approach brings these disciplines together from the very beginning
of the design of a programmable architecture. Moreover, the Y-chart does not consider these disci-
plines in isolation, but clearly indicates how the various disciplines depend on each other and how
they operate concurrently within the same design.

Setting up a Y-chart for a programmable architecture therefore requires that all six disciplines be
mastered. This thesis shows that it is possible to integrate all these disciplines by constructing a Y-
chart environment for stream-based dataflow architectures at the cycle-accurate level of abstraction.
It also shows how one component representing a particular discipline influences the development
of other components. For example, SBF Objects used in application modeling are designed in such a
way that they can seamlessly integrate with functional elements to realize fully functional simulations.
Therefore, we combined architecture modeling with application modeling.

Currently, the design of new general purpose processors require very large multi-disciplinary
teams. It is not unusual in this area to have design teams of 100 to 300 people [Wilson, 1998] rep-
resenting many different disciplines that interact with each other at different levels of abstraction at
the same time or at least at overlapping times. Managing these interactions is becoming increasingly
important and more difficult as designs become more complex [Hennessy and Heinrich, 1996]. In
addition, less time is available for new designs because of time-to-market considerations. Similar
observations will apply to the use of the Y-chart. Therefore, we have to establish clearly defined inter-
faces between the various components of a Y-chart environment as well as between components used
in a stack of Y-chart environments.

Finally, we remark that, in our opinion, the way application-specific programmable architectures
are designed should change radically. As pointed out above, the Y-chart approach combines dif-
ferent disciplines. Therefore, to get the full benefit of the Y-chart approach, such that we obtain
better-engineered architectures, tightly integrated multi-disciplinary teams are required instead of the
different teams of different disciplines as happens currently. An excellent example of how such tightly
integrated multi-disciplinary teams should operate is described by Conklin [1996], who describes the
design process of the DEC Alpha general purpose processor.

10.2 Further Research

We see many opportunities for further research, including:

Summary & Conclusions 229

More heterogeneous architecturesWe developed the Y-chart environment for stream-based dataflow
architectures. An interesting line of research would be to investigate how techniques developed
within this thesis can be used or be extended for more heterogeneous architectures that contain
both dataflow and control concepts, possibly with different performance constraints (see, for
example, Figure 1.3). Lieverse et al. [1998] have already shown that such extentions are possi-
ble. They used again the PAMELA run-time library for application modeling, but additionally,
they used TSS (see Section 7.9) for architecture modeling.

Generalizing architecture modeling conceptsWe used the run-time library primitives and the build-
ing block approach to construct architecture instances that perform simulations quickly and effi-
ciently. However, the run-time library works very well for stream-based dataflow architectures,
but lacks the capability to describepolling efficiently (as indicated in Appendix C). Further
research could determine how the run-time library could be extended such that it can describe
polling, while remaining fast and efficient. Some suggestions for this research were presented
in Section 7.9.

Presentation of multi-dimensional relationships The response surface models generated by the generic
DSE environment presents 3-D graphs, while the response surface models actually represent
higher-dimensional relationships. Further research could involve investigating how to present
higher-dimensional relationships such that designers can more effectively make trade-offs. In
Section 8.6, we already indicated thatscatter-plotsare an option.

Optimization Designers themselves inspect the Response Surface Models generated by the design
space exploration. Further research might involve replacing visual inspection by integrated
optimization tools within the generic DSE environment (i.e., replacing the “lightbulb” in Fig-
ure 8.1). These optimization tools would have to find feasible architectures using a minimum
number of iterations, since each iteration in a Y-chart environment generally takes a consider-
able amount of time.

Use of the Y-chart approach in a real design by real designersThe Y-chart environment used in
the two cases proved the correctness of concept of the Y-chart approach. However, actual
designers have not used it. Further research might include working with real designers using
Y-chart environments and studying what kind of questions or difficulties arise at which levels.

Translation from Matlab to the SBF model In the Jacobium case, the translation from a Matlab
application into a description in terms of the SBF model is not yet automated. Further research
could be to automate the steps involved in the translation. This way a large pool of benchmark
applications could easily be created, because many applications are already specified in Matlab.
Rijpkema et al. [1998] have already identified the steps involved in automating this translation
for piecewise regular algorithms. The partition of applications (see, for example, Figure 9.12)
should also be automated by providing tools that create the correct SBF objects for a given
partition.

10.3 Availability of Software

The source code of the software developed in this thesis, i.e., SBFsim and ORAS are freely available
for further use. The software can be obtained by accessing address.

http://cas.et.tudelft.nl/research/hse.html :

http://cas.et.tudelft.nl/research/hse.html

230 BIBLIOGRAPHY

Bibliography

Peter F. Conklin. Enrollment management: Managing the Alpha AXP program.IEEE Software, 13
(4):53 – 64, 1996. Reprint from Digital Technical Journal, 1992.

John Hennessy and Mark Heinrich. Hardware/software codesign of processors: Concepts and ex-
amples. In Giovanni De Micheli and Mariagiovanna Sami, editors,Hardware/Software Codesign,
volume 310 ofSeries E: Applied Sciences, pages 29 – 44. NATO ASI Series, 1996.

Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees Vissers. Methodology for architecture
exploration of heterogeneous systems. InProceedings of the ProRISC/IEEE Workshop on Circuits,
Systems and Signal Processing, 1998.

Edwin Rijpkema, Bart Kienhuis, and Ed Deprettere. From piecewise regular algorithms to process
networks. InProceedings of the ProRISC/IEEE Workshop on Circuits, Systems and Signal Pro-
cessing, 1998.

Janet Wilson. Challenges and trends in processor design.IEEE Computer, 31(1):39 – 48, 1998.

Appendix A

Architecture Template in BNF

T
O describe the Architecture Template of Stream-based Dataflow architectures, we use compo-
sition rules that state which Architectural Element Types are allowed to connect witheach

other and to which extend. To describe these composition rules we use the Backus-Naur Form
(BNF) [Backus and Naur, 1959]. The complete Architecture Template is given below. See Section 5.5
for more information on describing an Architecture Template using composition rules in BNF.

configuration : ARCHITECTURE ID ’{’
controller
communication
peList
’}’

;

controller : CONTROLLER ’{’ TYPE ’:’ FCFS ’(’ NUM ’,’ NUM ’)’ ’;’ ’}’
| CONTROLLER ’{’ TYPE ’:’ PHASE ’(’ NUM ’,’ NUM ’,’ ID ’)’ ’;’ ’}’
| CONTROLLER ’{’ TYPE ’:’ ROUNDROBIN ’(’ NUM ’,’ NUM ’)’ ’;’ ’}’
;

communication : COMMUNICATION ’{’ TYPE ’:’ SWITCH ’(’ NUM ’)’ ’;’ ’}’
;

peList : aProcessingElement
| peList aProcessingElement
;

aProcessingElement: PE ID ’(’ NUM ’,’ NUM ’)’
’{’ body ’}’

;

body : inputBuffers
outputBuffers
router
functionalUnit

;

inputBuffers :
| INPUTBUFFER ’{’ inputBody ’}’
;

231

232 Architecture Template in BNF

inputBody : TYPE ’:’ BOUNDEDFIFO ’(’ NUM ’)’ ’;’
| TYPE ’:’ UNBOUNDEDFIFO ’;’
;

outputBuffers :
| OUTPUTBUFFER ’{’ outputBody ’}’
;

outputBody : TYPE ’:’ BOUNDEDFIFO ’(’ NUM ’)’ ’;’
| TYPE ’:’ UNBOUNDEDFIFO ’;’
;

router :
| ROUTER ’{’ TYPE ’:’ FCFS ’;’ ’}’
| ROUTER ’{’ TYPE ’:’ PHASE ’;’ ’}’
| ROUTER ’{’ TYPE ’:’ ROUNDROBIN ’;’ ’}’
;

functionalUnit : fuItem feList ’}’
;

fuItem : FU ’{’ TYPE ’:’ PACKET ’;’
| FU ’{’ TYPE ’:’ SAMPLE ’;’
| SOURCE ’{’ TYPE ’:’ BURST identifier ’;’
| SOURCE ’{’ TYPE ’:’ STREAM identifier ’;’
| SINK ’{’ TYPE ’:’ BURST identifier ’;’
| SINK ’{’ TYPE ’:’ STREAM identifier ’;’
;

feList : functionalElement
| feList functionalElement
| error
;

functionalElement: FE ID ’(’ NUM ’,’ NUM ’)’ ’[’ NUM ’]’
’{’ feBody feType binding ’}’

| error
;

feBody :
| TYPE ’:’ SYNCHRONE ’;’
| TYPE ’:’ ASYNCHRONE ’;’
| TYPE ’:’ MEMORY identifier ’;’
| error
;

feType : FUNCTION ’{’ TYPE ’:’ ID ’;’ ’}’
| FUNCTION ’{’ TYPE ’:’ ID identifier ’;’ ’}’
;

binding : BINDING
;

bindingRelations: bindingInputs bindingOutputs
;

bindingInputs :

Architecture Template in BNF 233

| INPUT ’(’ inRelationList ’)’ ’;’
;

bindingOutputs :
| OUTPUT ’(’ outRelationList ’)’ ’;’
;

inRelationList : inRelation
| inRelationList ’,’ inRelation
;

inRelation : NUM ARROW NUM
;

outRelationList : outRelation
| outRelationList ’,’ outRelation
;

outRelation : NUM ARROW NUM
;

identifier :
| ’(’ parameterList ’)’
;

parameterList : parameterItem
| parameterList ’,’ parameterItem
;

parameterItem : ID ’=’ NUM
| ID ’=’ ID
;

234 Architecture Template in BNF

Appendix B

Picture in Picture Example

A
N example of a Stream-based video application used in modern high-end TV-sets is shown in
Figure B.1. It describes thePicture in Picture(PiP) algorithm which reduces a picture to half its

size in both horizontal and vertical direction and places the reduced picture onto a full screen picture
showing two images on a TV screen [Janssen et al., 1997]. The Picture in Picture application is
discussed in Chapter 6.

Sink

Vertical Lines

Horizontal Lines

1 2 3

4 5 6 7

Source FIR_H SRC_H

FIR_V SRC_V Transpose
-1

Transpose

Figure B.1 . The Picture in Picture Application

In the PiP example, aSource produces an infinite stream of video samples that are filtered by
an N-taps Finite Impulse Response (FIRH) Filter. Then the stream is passed through a Sample-rate
Converter (SRCH) that performs a down sampling of a factor two. Next, video images are trans-
posed (Transpose): re-ordering samples in such a way that two consecutive samples belong to two
different video lines. The stream then passes again through an N-taps FIR filter (FIRV) and a SRC
(SRCV), this time to perform a vertical down sampling of a factor two. On the stream that results, the
second transpose function (Transpose�1) performs a re-ordering such that consecutive samples now
belonging to the same video line. Finally, theSink consumes the samples.

B.1 One-to-one Architecture Instance

The architecture instance is given in this section. The Architecture Instance is able to execute the
Picture in Picture (PiP) application shown in Figure B.1. We defined an architecture instance with
eight Functional Units, as shown in Figure B.2. The eight Functional Units have aone-to-onemapping
of a function from Figure 6.1 to its function repertoire such that function repertoire of each Functional
Unit consists of one function.

235

236 B.1 One-to-one Architecture Instance

Switch Matrix

First-come-first-served

Capacity = 20

Capacity = 30

Throughput = 1

Latency = 1

SinkSource

Service Time = 4Packet Length = 120

FIR SRC Trans Fir SRC Trans

Figure B.2 . The Architecture Instance for a One-to-one Mapping of the Picture in Picture
application

B.1.1 Architecture Description

Architecture Dataflow {

GlobalControl {
PacketLength = 120 ;

}

Controller { Type: Fcfs(1, 4); }
Communication { Type: SwitchMatrix(8); }

ProcessingElement Source(0,1) {
OutputBuffer { Type: BoundedFifo(30); }
Router { Type: Fcfs; }
SourceUnit {

Type: Burst(packets=760,base=1);
FunctionalElement Source(0,1)[1] {

Function { Type: PGMsource(initiation_period=2,latency=2); }
Binding {

Output (0->0);
}

}
}

}
ProcessingElement FIR_H(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement FIR_H(1,1)[1] {

Type: Synchrone;

Picture in Picture Example 237

Function { Type: FirFilter(initiation_period=1,latency=18); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement SRC_H(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement SRC_H(1,1)[1] {

Type: Synchrone;
Function { Type: DownSample(initiation_period=1,latency=1,factor=2); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement TRANSPOSE(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement TRANSPOSE(1,1)[1] {

Type: Asynchrone;
Function { Type: Transpose(initiation_period=1,latency=1,line=60); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement FIR_V(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement FIR_V(1,1)[1] {

Type: Synchrone;
Function { Type: FirFilter(initiation_period=1,latency=18); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement SRC_V(1,1) {

238 B.1 One-to-one Architecture Instance

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement SRC_V(1,1)[1] {

Type: Synchrone;
Function { Type: DownSample(initiation_period=1,latency=1,factor=2); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement TRANSPOSE_INV(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement TRANSPOSE_INV(1,1)[1] {

Type: Asynchrone;
Function { Type: TransposeInv(initiation_period=1,latency=1,step=5,line=60); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement Sink(1,0) {

InputBuffer { Type: BoundedFifo(30); }
SinkUnit {

Type: Burst(packets=120);
FunctionalElement Sink(1,0)[1] {

Function { Type: PGMsink(initiation_period=2,latency=2,height=60,width=60); }
Binding {

Input (0->0);
}

}
}

}
}

B.1.2 Mapping

}
Mapping test {

1: 2, 0, FIR_H_inBuffer_0;
2: 3, 0, SRC_H_inBuffer_0;
3: 4, 0, TRANSPOSE_inBuffer_0;
4: 5, 0, FIR_V_inBuffer_0;
5: 6, 0, SRC_V_inBuffer_0;
6: 7, 0, TRANSPOSE_inBuffer_0;

Picture in Picture Example 239

7: -1, 0, Sink_inBuffer_0; /* Dummy Buffer */
}

B.2 Many-to-one Architecture Instance

The Stream-based Dataflow architecture also permits the sharing of Functional Units between differ-
ent streams:many-to-onemappings. More than one application function can map to a Functional Unit.
In Figure B.3, we show an architecture instance that also can execute the Picture in Picture application
of Figure B.1 but uses sharing of Functional Units. In this architecture instance, each Functional Unit
has a function repertoire of two Functional Elements each executing identical functions (e.g., Sample
Rate Conversion (SRCH) and (SRCV)).

P
ac

ke
t L

en
gt

h
=

12
0

Source FIR SRC Trans

Switch Matrix

First-come-first-served

Throughput = 1

Capacity = 20

Capacity = 30

Latency = 1

Sink

Service Time = 4

Figure B.3 . The Architecture Instance for a Many-to-one Mapping of the Picture in Picture
application

B.2.1 Architecture Description

Architecture Dataflow {

GlobalControl {
PacketLength = 120 ;

}

Controller { Type: Fcfs(1, 4); }
Communication { Type: SwitchMatrix(8); }

ProcessingElement Source(0,1) {
OutputBuffer { Type: BoundedFifo(30); }
Router { Type: Fcfs; }
SourceUnit {

Type: Burst(packets=760,base=1);

240 B.2 Many-to-one Architecture Instance

FunctionalElement Source(0,1)[1] {
Function { Type: PGMsource(initiation_period=2,latency=2); }
Binding {

Output (0->0);
}

}
}

}
ProcessingElement FIR(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement FIR_H(1,1)[1] {

Type: Synchrone;
Function { Type: FirFilter(initiation_period=1,latency=18); }
Binding {

Input (0->0);
Output (0->0);

}
}
FunctionalElement FIR_V(1,1)[1] {

Type: Synchrone;
Function { Type: FirFilter(initiation_period=1,latency=18); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement SRC(1,1) {

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement SRC_H(1,1)[1] {

Type: Synchrone;
Function { Type: DownSample(initiation_period=1,latency=1,factor=2); }
Binding {

Input (0->0);
Output (0->0);

}
}
FunctionalElement SRC_V(1,1)[1] {

Type: Synchrone;
Function { Type: DownSample(initiation_period=1,latency=1,factor=2); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement TRANSPOSE(1,1) {

BIBLIOGRAPHY 241

InputBuffer { Type: BoundedFifo(30); }
OutputBuffer { Type: BoundedFifo(20); }
Router { Type: Fcfs; }
FunctionalUnit {

Type: Packet;
FunctionalElement TRANSPOSE(1,1)[1] {

Type: Asynchrone;
Function { Type: Transpose(initiation_period=1,latency=1,line=60); }
Binding {

Input (0->0);
Output (0->0);

}
}

FunctionalElement TRANSPOSE_INV(1,1)[1] {
Type: Asynchrone;
Function { Type: Transpose(initiation_period=1,latency=1,step=5,line=60); }
Binding {

Input (0->0);
Output (0->0);

}
}

}
}
ProcessingElement Sink(1,0) {

InputBuffer { Type: BoundedFifo(30); }
SinkUnit {

Type: Burst(packets=120);
FunctionalElement Sink(1,0)[1] {

Function { Type: PGMsink(initiation_period=2,latency=2,height=60,width=60); }
Binding {

Input (0->0);
}

}
}

}
}

B.2.2 Mapping

}
Mapping test {

1: 2, 0, FIR_inBuffer_0;
2: 3, 0, SRC_inBuffer_0;
3: 4, 0, TRANSPOSE_inBuffer_0;
4: 5, 1, FIR_inBuffer_0;
5: 6, 1, SRC_inBuffer_0;
6: 7, 1, TRANSPOSE_inBuffer_0;
7: -1, 0, Sink_inBuffer_0; /* Dummy Buffer */

}

Bibliography

Johan G.W.M. Janssen, Jeroen H. Stessen, and Peter H.N. de With. An advanced sampling rate

242 BIBLIOGRAPHY

conversion algorithm for video and graphics signals. InIEE Sixth International Conference on
Image Processing and its Applications, Dublin, 1997.

Appendix C

Limitations of the RTL

T
HE RTL describes asynchronous communication between processes very efficiently. It is, how-
ever, less efficient when describing synchronouscommunication and control behavior likepolling,

which potentially limits the usability of the RTL. The reason why the RTL cannot describe polling
efficiently is that it lacks the notion of thestate of the system.

C.1 State of the System

When we use the RTL, we cannot determine the state of the system at a particular time instance. In
Figure 4.7, the process shown is running at time instance t=5 and it observes the system while there
are still processes in the RPQ that need to execute at the same time. One of these processes could
change the value of a variable at t=5. Hence, when the running process observes a variable in another
process without making use ofpam P andpam V (i.e, when it does not explicitly synchronize with
that process), it is not able to determine whether the observed variable still holds the old value or
whether it has already acquired a new value.

C.1.1 Polling

When the notion of the state of the system is lacking, it is difficult to describepolling. In polling, a
process checks a condition and performs a particular action based on this condition. When polling
is used, a process controls the progress of another process without synchronization. Therefore, one
process cannot make another process block.

The need for polling arises when we want to describe, for example, the time division multiplexed
policy of the communication structure (see Section 2.1.3 where we explain the behavior of a TDM
communication protocol). The communication structure divides the bandwidth of each channel into
N time slots ofx cycles. All routers are pre-assigned a time slot on a channel that they can use to send
a packet or part of a packet to input buffers of functional units. The global controller is responsible
for routers being enabled when their time slot is available.

To describe this enabling process, we model the global controller as an active element instead
of a passive element as is done in Program 5.3. The global controller could usepam V to activate
the appropriate routers for a time slot, but when it wants to reclaim control because the time slot has
finished, it cannot simply usepam P. A router that is blocked, for example, because it wanted to
read a token from an empty output buffer, also causes the global controller to block and the global

243

244 C.2 Implementing Polling in the RTL

controller cannot reclaim control of all routers at a predetermined time instance. Therefore, the global
controller resorts to polling to control the routers.

C.1.2 Priority Scheduling

To circumvent the limitation of not having a state of the system, the RTL process scheduler should
schedule processes based onpriority. It should takes processes with the same time stamp from the
RPQ starting at the highest priority down to the lowest priority. Using priority, we can establish a
dependency relation between processes within the same time instance, without using semaphores.
Using priorities, we can instruct the process scheduler that it should execute process B before process
A, by giving process B a higher priority than process A.

The current implementation of the RTL does not provide priority-based scheduling. If we need
some kind of priority scheduling, we can make use of the fact the RTL represents time as a real number
instead of an integer. By running some processes only on integer time instances, i.e.,t = f1; 2; 3; : : :g
while other processes run at time instancest = f1:5; 2:5; 3:5; : : :g, a simple 2-level priority scheduling
mechanism is realized within the RTL. Although it is not a very elegant method, it does provide a level
of priority scheduling. This priority scheduling mechanism is used in ORAS to describe the behavior
of the TDM global controller and router.

C.2 Implementing Polling in the RTL

By adding three new PAMELA-statements to the RTL, we have made it possible to describe polling in
the RTL by using semaphores. In Program C.1, we show the three statementspam set, pam resetand
pam test. The first two statements set or reset abinary semaphore, giving the semaphore respectively
the valuetrueor false. The last statement,pam test, performs a blocking test on the condition: if the
condition is false the process blocks, otherwise the process proceeds.

Program C.1. EXTENSIONS TO THERTL TO SUPPORTPOLLING

void pam_test(pam_sema* aSem)
{

pam P (aSem);
pam V (aSem);

/* Sync the Timing, to realize 2-level priority scheduling mechanism */
if (pam_root->time != ((int) pam_root->time)) { pam delay (0.5);}

}
void pam_set(pam_sema* aSem)
{

if (pam T (aSem) != 1)
pam V (aSem);

}
void pam_reset(pam_sema* aSem)
{

if (pam T (aSem) == 1) {
pam P (aSem);

}
}

Thepam test statement first executes apam P on semaphoreaSem, which is followed immedi-
ately by executing apam V on that same semaphore. Thus if the condition is set, the process can
proceed without altering the condition. If the condition is not set, the process blocks on thepam P

Limitations of the RTL 245

statement. We will explain the function of the conditional time delay in statementpam test when we
explain the behavior of the TDM global controller in Section C.3.

The only way to change the status of a condition is by using thepam setandpam reset state-
ments. These statements set and reset the condition while avoiding a process block. For that purpose,
we conditionally set or reset the binary semaphore involving thepam T statement to test the status of
the semaphore (whether or not the semaphore is blocking).

C.3 Modeling the TDM global controller

We used the three new statements to describe the TDM behavior of the global controller. Besides
a routing program, the TDM global controller also contains atime slot assignmenttable as given in
Table C.1. This table shows in which time slot (i.e. time slot 1, 2 or 3) which router out of the six
is allowed to send data over the communication structure. Since only two routers are active within a
time slot, a communication structure with two channels would suffice.

Time Slot Router0 Router1 Router2 Router3 Router4 Router5
1 off on on off off off
2 off off off on on off
3 on off off off off on

Table C.1 . Example of a time slot assignment with 3 time slots to control 6 routers

We model the TDM global controller as an active element (as described in Program C.2) while
it still uses the passive method described in Program 5.3. In theprocessdescription of the TDM
controller, we use the arraytdmTable containing the binary semaphores that the TDM controller
needs to activate in a particular time slot as given in Table C.1. These semaphores connect to the
routers given in Table C.1.

In Program C.2, theprocessof the global controller activates for each time slot all the routers
that need to be activated in a time slot by deactivating the routers from the previous time slot. Then
theprocessgives the routersslotLength cycles of time to transport data over the communication
structure.

Program C.2. THE TDM GLOBAL CONTROLLER ASPROCESS

process TDM_Global_Controller {

// Activate the correct Routers
foreach binary semaphore 2 tdmTable[timeSlot] {

pam_set(binary semaphore);
}

// Deactivate the Routers of the previous Time Slot
timeSlot = (++timeSlot)%numberOfTimeSlots;
foreach binary semaphore 2 tdmTable[timeSlot] {

pam_reset(binary semaphore);
}

// Each time slot takes slotLength cycles
pam_delay(slotLength);

}

246 C.4 How VHDL differs from the RTL

To cause theprocessto always execute after all other processes have finished at a particular time
instance, we use the 2-level priority scheduling mechanism previously explained in Section C.1.2.
The processonly runs at time instancest+0.5 whereas all other processes execute ont. Hence,
when the global controllerprocessexecutes, it observes the correct state of the system. Because
the TDM controller sets and resets the semaphore on time steps that are non-integer values, these
values propagate to the process running on the integer time steps. To prevent this from happening, we
synchronize processes that use thepam test statement in such a way that they run again on integer
time steps. To do this, we extended thepam test statement with a special conditional statement as
given in Program C.1. If the time of a process is not an integer, the process is delayed 0.5 cycles.
Notice however, that such tests seriously affect the execution speed in a negative way.

C.3.1 TDM Controlled Routers

A TDM controlled router can send data over the communication structure only when it is activated
by the TDM controller. This requires a small adjustment with respect to the First-Come-First-Served
router program given in Program C.3. The program for the TDM router given in Program 5.5 does not
show the complete code, but only the part where data is written into the input bufferbufferOut of
a functional unit. In the new program description, eachwrite statement is preceded by apam test
statement, which tests the condition of the semaphore set by the TDM controller. If the condition is
set, the routerprocessfalls through the check without changing the condition. If the condition is not
set, the routerprocessblocks on the check until the TDM controller sets the condition.

Program C.3. PART OF THE PROCESS OF ATDM ROUTER

// Send out the New Header
pam test (semaphore);
bufferOut.write(header);
pam delay (4);
// Determine how many Samples are in a Packet
numberOfSamples = header.getlength();
// Read the rest of the packet!
for numberOfSamples do {

aSample = bufferIn.read();
pam delay (1);
pam test (semaphore);
bufferOut.write(aSample);

}

C.4 How VHDL differs from the RTL

The hardware description language VHDL [1993] is often used to describe hardware. It is particularly
suited to describing low-level control statements, which makes it a popular language. VHDL supports
control behavior like polling. We therefore investigate in what way the VHDL simulator engine differs
from the RTL simulation engine.

A VHDL simulator implements a simulation cycle which consists of two phases [Pick, 1995]:
an action phaseand areaction phase. In the action phase, the scheduler evaluates processes, thus
creating new events. These new events cause the VHDL scheduler to evaluate processes that react
on these events in the reaction phase. Before the reaction phase starts, all variables in the processes

BIBLIOGRAPHY 247

have adopted new values reflecting the new state of the system. Hence, VHDL describes polling very
effectively.

The VHDL simulation engine uses three different queues: atime-ordered queue, a signal-event-
monitoringqueue, and aprocess-pending queue. The scheduler, which is part of the VHDL simulation
engine, starts by evaluating processes with the same time-stamp in the time-ordered queue. Signals
change during the execution of processes, causing events on the event-monitoring queue. The sched-
uler continues to evaluate processes until all processes with the same time-stamp have evaluated. At
that time, all variables in the system have adopted new values reflecting the new state of the system.
Next the VHDL scheduler wakes up processes that should react on events stored in the signal-event-
monitoring queue. The awoken processes are stored in the process-pending queue. Next, the scheduler
starts the reaction phase by executing all processes in the process-pending queue. These processes ob-
serve a system in which all variables reflect the new state of the system. Processes that execute in the
second phase can cause new events to occur. Therefore the scheduler has to iterate a number of times,
which is referred to as the VHDL�-mechanism [Pick, 1995]. After no more events take place and all
processes have executed, the reaction phase has finished and a new simulation cycle starts.

A VHDL simulation engine must perform a large amount of bookkeeping and sorting to imple-
ment the two-phase simulation cycle. This provides a large amount of flexibility, but at the expense
of a considerable amount of time being spent on these activities. The RTL scheduler, on the other
hand, executes a process as soon as an event (i.e. apam P, pam V, or pam delay) takes place, dra-
matically reducing the amount of bookkeeping and sorting needed. As a consequence, although it
is difficult to describe polling, the RTL has an excellent simulation speed compared to the speed of
VHDL simulations.

Bibliography

Joseph Pick. VHDL, Techniques, Experiments, and Caveats. Series on Computer Engineering.
McGraw-Hill, 1995. pages 11 – 44.

VHDL. IEEE Standard VHDL Language Reference Manual. IEEE Computer Service, 445 Hoes
Lane, P.O. Box 1331, Piscataway, New Jersey, 08855-1331, 1993. IEEE Std 1076-1993.

Index

abstract classes, 98
abstract executable models, 47
Abstraction Pyramid, 47
accuracy, 66
Acquisition of Insight, 185
active building block, 85
active object, 78
active primitives, 68
actors, 150
Application – Architecture interface, 172
Application State Transition, 152
architectural choices, 31
Architectural Element , 93
Architectural Element Type, 94
architecture

efficiency, 24
flexibility, 24

Architecture Description Language, 123
Architecture Instance, 32
Architecture Template, 32
Architectures, 93
associative arrays, 190

back-of-the-envelope models, 47
Backus-Naur Form, 121
balance equations, 151
bandwidth, 3
base, 129
basic splines, 188
behavior, 78
benchmark, 203
benchmarks, 2
binary semaphore, 244
binding function, 145
block diagrams, 92
blocked process, 68
Blocked Processes Queue, 86
blocking-read, 142
BNF, 121

bubbles, 118
Building Block , 85
burst mode, 29
bus, 28

Channels, 142
channels, 22
class of stream-based dataflow architectures, 31
Communicating Sequential Processes, 151
communication network, 211
communication structure, 22
composition rules, 121, 231
compound node, 211
computational power, 3
Condition Synchronization, 65, 70
Conditional Control Flow, 65, 70
container, 99
context, 81
context switching, 81
coordination language, 153
Cordic, 211
current state, 143
Cycle, 94
cycle, 22, 145
Cycle-Accurate Model, 94
cycle-accurate models, 47
Cyclo-static Dataflow, 151

data dependencies, 67
data type, 53
Dataflow Architecture, 23
dataflow architecture

data-driven, 23
demand-driven, 23
dynamic, 23
static, 23
tag, 23

Dataflow Process Network, 152
deadlock, 38

248

INDEX 249

design flow, 189
design objectives, 32
Design of Experiments, 186
design space, 32
design trajectory, 51
deterministic order, 142
discrete event, 73
DOE, 186
Domain-specific Dataflow Architectures, 35
dummy functions, 205
dynamic application, 138
Dynamic Dataflow, 151

Enabled Function, 144
estimation models, 47
event, 73
Execution Time, 65, 70
experiment, 186
Exploration , 46
exploring, 8

factorial design, 186
factors, 187
Feasible Design, 32
field blanking, 206
Fire-and-Exit behavior, 145, 155
fired, 150
First-Come-First-Served, 28, 30
First-In-First-Out, 19
fractional factorial experiment, 187
full factorial experiment, 187
function execution, 22
Function Firing, 144
Function Repertoire, 17
functional element, 21
functional performance model, 71
functional unit, 20

Gantt Chart, 74
global controller, 22, 211
Golden Point Design, 33
golden point design, 51
Grain Size, 17
grain size

coarse-grained, 17
fine-grained, 17
medium-grained, 17

grammar, 123

grants, 30
Granularity of an SBF Object , 147

HiPars, 215
Homogeneous Dataflow, 150
host language, 153

idle cycle, 28
inheritance, 98
initiation period, 22
inverse transformation, 184

Jacobi-type algorithms, 210
Jacobium Processor, 210

Kahn Process Network, 142, 151
keywords, 124
knot, 188

late binding, 98
latency, 22
levels, 187
library, 156
lightweight processes, 81
line blanking, 206
local controller, 211
local memory, 211
localized references, 84

Machine-oriented Modeling, 68
Mapping

Many-to-One, 176
One-to-One, 175

MARS, 188
matching units, 35
Material-oriented Modeling, 68
metric collectors, 163, 166
Model of Architecture , 53
Model of Computation, 53
multi-functional, 3
multi-rate, 147, 173
multi-standard, 3
multiple resources possession, 71
multithreading, 81
Multithreading Architectures, 35
Multivariate Adaptive Regression Splines, 188
Mutual Exclusion, 65, 70

Nelsis, 189

250 INDEX

Nested Loop Program, 213
network, 127
non-blocking write, 142
non-preemptive, 87

object, 78
class description, 78
constructor, 78
data, 78
implementation, 80
instantiated, 78
interface, 78
methods, 78

object oriented, 77
Object Oriented Retargetable Simulator, 163
Offset, 131
one-to-one, 133
opcode buffer, 25
ORAS, 163
orthogonal arrays, 187
over-designed, 33

Packet, 17
packet, 19

data part, 19
header part, 19

packet-switching, 26
PAMELA Modeling, 67

delay, 67
process, 67
semaphore, 67
time units, 67

paper architectures, 33
Parameters

Behavioral, 126
Functional, 126
Structural, 126

partition, 216
passive building block, 85
passive object, 78
passive primitives, 68
performance analysis, 9, 64
performance evaluation, 64
performance metrics, 2
performance model, 65
performance modeling, 64

interpreted, 71

uninterpreted, 71
Performance Modeling Basis, 65
performance models, 2
Perl, 189
Petri Nets, 87
Picture in Picture, 138, 235
piecewise linear model, 189
PiP, 138, 235
pipeline depth, 22
pipelined, 22
polling, 243
polymorphism, 98
priority scheduling, 244
Problem Statement, 33
procedural oriented, 77
process, 142
process function, 82
process scheduler, 81, 85
processing element, 19
Processing Elements, 211
programmable, 1
programming model, 127
pseudo C, 68

QR matrix decomposition, 213
QR update, 213
quantitative, 2
quantitative data, 44
Queuing Theory, 87

r, 24
rate, 22
real-time, 3
regions, 216
reliable experiment, 187
reprogram, 18
request, 30
residence time, 114
resource conflict arbitration, 74
resource modeling, 101
resources, 64
Response Surface Model, 185
Retargetable Architecture Simulator, 162
Round Robin, 30
router, 211
Routing Program, 18
routing program, 104

INDEX 251

RSM, 185
RTL, 81

delays, 81
process, 81
semaphores, 81

Run-Time Library, 76, 81
runnable process, 85
Runnable Processes Queue, 85

sample-switching, 26
SBF object

controller, 142
set of functions, 142
state, 142

SBFsim, 153
self-contained, 85
sequential firing rules, 152
sequential order, 143
sequential ordering, 139
service capacity, 30
service time, 30
set of applications, 3
sharing, 24
sharing factor, 24
simulation tools, 87
speed-up, 24
Standard Template Library, 165
state of the system, 243
static network, 138
Stream, 17
stream mode, 29
Stream-Based Application, 138
Stream-Based Dataflow Architecture, 2
Stream-based Dataflow Architectures, 18
Stream-Based Function Objects, 142
Stream-Based Functions, 142
structure, 78
switch matrix, 28
Synchronous Dataflow, 151
synthesizable VHDL models, 47
system, 64

tagged-token dataflow architectures, 35
tags, 35
task graph, 67
terminals, 203
thread-of-execution, 81

throughput, 22
Time Division Multiplex, 30
time division multiplexed, 28
time shape, 206
time slot assignment, 245
time stamp, 85
token, 23
total execution time, 75
trade-offs, 8
transition, 143
transition function, 144
trial runs, 187

under-designed, 33
utilization, 75

Variant of a Function, 147
variants, 216
VHDL

action phase, 246
queues, 247
reaction phase, 246

Video
fields, 5
frames, 5
lines, 5
pixels, 5

video data, 206
video signal processing, 35

Weakly Programmable Processing Element,
17

workload, 64
workload modeling, 101
workspaces, 203

Y-chart
stack, 49

Y-chart Approach , 44
Y-chart Environment , 49

252 INDEX

Acknowledgments

ThisPh.D. thesis is theresult of research conducted mainly at PhilipsResearch Laboratories in Eind-
hoven. As a Ph.D. student from the group Circuits & Systems at Delft University of Technology, I
considered it aprivilegeto work in thisinspiring research institute. I wasexposed to both industrially
relevant problemsand to an excellent academic environment.

For thisopportunity I am indebted to many people. I want to thank my promotor Patrick Dewilde
for giving me the opportunity to pursue a Ph.D. within the group Circuits & Systems, an excellent
group of which I am aproud member. I also want to thank Eric van Utteren en Cees Niessen, who, as
group leadersof thegroup VLSI Design Automation and Testing, gavemetheopportunity to work in
their group. Finally, thepartial support of PhilipsResearch and theMinistry of Economic affairs, the
Netherlands, ishereby greatly acknowledged.

I was able to work within a team that consisted of people of which I have learned at lot: Ed
Deprettere, Kees Vissers and Pieter van der Wolf. I want to thank Ed Deprettere for his support as
copromotor and his relentless enthusiasm to learn and understand new things; Kees Vissers for his
open mind, his insights, and his standards in research; and Pieter van der Wolf for structuring my
work and keeping me with both feet on the ground. I enjoyed working with the three of them and
want to thank them for being excellent mentors.

During my promotion, I had theopportunity to interact with many peoplethat I want to acknowl-
edge. There were from many groups, both from Delf t and Philips Research. First of all I want to
thank all personsof thegroup Circuits& Systemswith whom I have worked and in particular I want
to thank Paul Lieverse and Daniel van Loenen from Delft, and GiuseppeGarcea from the University
of Florence, Italy, who all have done agreat job during their Masters assignment. I want to thank
Neil Smith from UC Berkeley for his extensions to SBFsim and I want to thank Edwin Rijpkema
for the discussions we had on the Jacobium Project. I also want to thank Arjan van Gemund from
the CARDIT group for his help on the use of PAMELA and the PAMELA Run-time Library. From
PhilipsResearch, I want to thank my colleaguesand in particular Gerben Essink, Erwin deKock, and
Wim Smits. I also want to

thank the people involved in the Prophid project: Jeroen Leijten, Adwin Timmer, and Jef van
Meerbergen. Peter Bingely and Wim van der Linden helped me with the generic DSE environment,
and I want to thank them for their help. I also want to thank Andre van der Avoird for the many
discussions we had on our work and about working at Philips Research. I also want to thank Laurel
Beecher for editing my thesis.

I want to acknowledgethe fellow Ph.D. studentsat Philipswith whom I have shared room 4.085:
Hansvan Gageldonk, Paul Lieverse, Bob Witlox, Robert Arendsen, and Ramon Clout.

253

254 INDEX

Finally, I want to thank my family and my friends for supporting me in my Ph.D. and for contin-
uously showing interest in my work. Special thanks are for my wife-to-be Karien, who supported me
all those years, in particular, by reading work I had written and by showing understanding when again
some deadline had to be met.

Bart Kienhuis,
26 November 1998,
Amsterdam.

Samenvatting

Er is momenteel een trend waarneembaar dat applicatie specifieke architecturen steeds meer pro-
grammeerbaar worden, om multifunctionele en multistandaard produkten te kunnen ondersteunen.
Het kenmerk van deze nieuwe architecturen is dat ze een set van applicaties kunnen ondersteunen
in plaats van ´eén enkele applicatie. We hebben echter ondervonden dat goede, algemeen toepasbare
ontwerp methoden niet voorhanden zijn voor dit soort architecturen.

Als voorbeeld van z’n programmeerbare architectuur, laten wij in dit proefschrift destroom
gebaseerde dataflow architectuurzien. Deze architectuur past in de categorie van dataflow archi-
tecturen en is zeer geschikt voor stroom gebaseerde, hoge prestatie applicaties die gevonden worden
in bijvoorbeeld real-time multimedia toepassingen.

Bij het ontwerp van deze stroom gebaseerde dataflow architecturen moeten erg veel keuzen gemaakt
worden, waarbij elke keuze leidt tot een andere architectuur, met een eigen specifiek gedrag en
prestatie. Nu wordt het voor ontwerpers steeds moeilijker om die keuzen te maken zodat de steeds
complexer wordende architectuur nog voldoet aan alle ontwerp eisen, waaronder programeerbaarheid.

Wij hebben de vele ontwerp keuzen gestructureerd met behulp van eenarchitectuur template.
Deze beschrijft de totale klasse van stroom gebaseerde architecturen met behulp van parameters en
heeft dus een duidelijk begrensde ontwerp ruimte. De probleem stelling van dit proefschrift is om
een methode te ontwikkelen die ontwerpers helpt bij het vinden van de parameter waarden van een
architectuur template, zodanig dat een haalbare architectuur gevonden wordt in de ontwerp ruimte.
Een haalbare architectuur voldoet aan de opgelegde ontwerp eisen waaronder: doorzet en utilisatie,
maar ook gebruikt vermogen en silicium oppervlakte.

In dit proefschrift presenteren wij als methodiek deY-chart aanpak, waarmee ontwerpers keuzen
kunnen kwantificeren. De Y-chart aanpak genereert een objectieve basis voor het motiveren en maken
van keuzen. De Y-chart aanpak leidt tot eenY-chart omgevingen wij presenteren in dit proefschrift
z’n Y-chart omgeving voor de klasse van stroom gebaseerde dataflow architecturen. Een Y-chart
omgeving bestaat uit 6 componenten en elke component wordt besproken. Zo bespreken we een hoog
niveau methode waarmee prestatie analyse gedaan kan worden, een architectuur modelerings aanpak,
een applicatie modelerings aanpak, een aanpak voor het construeren van een retargetable simulator,
en een aanpak om applicaties af te beelden op een specifiek instantie van de architectuur template.
Tenslotte bespreken we ook hoe we de ontwerp ruimte van architecturen op een systematische manier
kunnen exploreren.

We hebben de ontwikkelde Y-chart omgeving gebruikt in twee ontwerp cases. Daaruit blijkt dat de
Y-chart omgeving inderdaad ontwerp keuzen kwantificeert. Bovendien laten de twee ontwerp cases
zien dan we de ontwerp ruimte van architecturen snel kunnen exploreren, op een hoog niveau van
abstractie. De getallen die gepresenteerd worden, zullen niet direct tot de verdere ontwikkeling van
de twee architecturen leiden, maar geven wel duidelijk aan waartoe de methode in staat is. Het geeft
ontwerpers inzicht in de vele complexe afwegingen tussen parameter waarden en prestatie getallen die
aanwezig zijn in dit soort programmeerbare architecturen. Soortgelijke resultaten zijnzeer moeilijk

255

256 INDEX

te verkrijgen met de hedendaagse ontwerp methodes; en als ze te verkrijgen zijn heeft dat veel meer
ontwerp- en simulatie tijd gekost.

Curriculum Vitae

Bart Kienhuis was born on August 9, 1968 in Vleuten, The Netherlands. After finishing his HAVO
degree at the “St Gregorius” Community School in 1986, he received his VWO degree from Commu-
nity School “De Klop” in 1987. In that same year, he started his study Electrical Engineering at Delft
University of Technology. As a student from the Circuits & Systems group, he did his M.Sc thesis on
theHiPars compiler that converts nested loop programs into parallel programs. After he graduated
in 1994, he started to work towards his Ph.D., again as a student of the Circuits & Systems group
and spent almost all of his research time at Philips Research Laboratories in Eindhoven, working on a
joint project.

From February 1st, 1999, Bart has accepted a Post-Doc position at UC Berkeley within the group
of Professor Edward A. Lee.

257

EDDDD
and Submicron Technology

IDD EM SI
Delft Institute of Microelectronics

