
 Copyright 1998, Morgan Kaufmann Publishers. All rights reserved.

for the
], and
dge of

factors
actors
-

Appendix E

RSA Asymmetric Encryption

Of all encryption algorithms, the RSA asymmetric algorithm is the easiest to understand—
mathematically inclined. It was invented by Rivest, Shamir, and Adleman in 1978 [RSA78
the following development is based in part on [Sch90]. This appendix presumes knowle
basic number theory.

Euler’s Theorem

RSA is based on Euler’s theorem from number theory. Recall that a prime number has no
other than itself and unity, and two numbers are relatively prime if they have no common f
other than unity. For an integer , define the totient function as the number of positive inte

gers that are less then and are relatively prime to k, including unity.

Example…The prime factors of 10 are 2 and 5. Thus the integers less than 10 that are relatively

prime to 10 are 1,3,7, and 9, and thus .

Euler’s theorem states that if and are relatively prime, then .

Example…10 and 7 are relatively prime, and

.

Finding the Keys

An asymmetric encryption algorithm needs two keys, one of which is kept secret and the other
can be made public. In the RSA algorithm, these keys are obtained by construction, starting with
two large prime numbers and . The security of the algorithm depends on the assumption that,

although their product is easy to calculate, the factorization of is computationally

infeasible if and are large.

With , and in hand, the two keys can be constructed. First, it can be shown that

. Choose any integer that is relatively prime to . The public key

is then .

To find the secret key, let satisfy ; that is, is the multiplicative inverse of

, . In fact, can be obtained directly from the public key by

,

since then, by Euler’s theorem,

.

k φ k()
k

φ 10() 4=

n m m
φ n()

 mod n 1=

7
φ 10()

 mod 10 7
4
 mod 10 = 2401 mod 10 = 1 =

p q

n p q•= n

p q

p q n

φ n() p 1–() q 1–()•= s φ n()
n s,()

t s t mod φ n()• 1= t

s modulo φ n() t

t s
φ φ n()() 1–

 mod φ n()=

t s• s
φ φ n()()

 mod φ n() 1= =
Page 566 3/29/99

 Copyright 1998, Morgan Kaufmann Publishers. All rights reserved.

able
 only
, this

 a fac-

sen.
n.

bers
perties

s more
The secret key is now . In principle this secret key can be obtained from the public key.

However, this requires knowing , which in turn requires the prime factors of . By assump-

tion, it is computationally infeasible to determine the factors of .

Encryption and Decryption Algorithms

A plaintext is presumed to be a non-negative integer less than , so that . The

ciphertext (encrypted version of) is another integer determined by the encryption algorithm
(requiring the public key)

and the plaintext can be recovered by the decryption algorithm (requiring the secret key)

.

To verify that decryption is the inverse of encryption,

 for some ,

and by Euler (presuming that and are relatively prime)

,

and thus

.

Complications

 and must be relatively prime, and thus there are “only” accept
plaintext’s. However, the chance of choosing a forbidden plaintext is very small, since

 plaintexts out of are forbidden—a diminishing fraction as gets large. Thus
problem is safely ignored.

The requirement that and be relatively prime is more troublesome, since it requires

torization of , and hence and , be available when the public key is cho
Fortunately, there are techniques for insuring that these factors are available by constructio

Actually computing the encryption and decryption algorithms is tricky because the num
involved are gigantic. The algorithm must be decomposed into smaller pieces using the pro
of the modulo function, such as

,

.

All the steps can be decomposed into the modulo product or sum of two integers, which i
easily handled (see exercises).

Example…Even for the simple case the computation becomes tricky on a

standard spreadsheet due to overflow problems. For this case, and only 40

out of the 55 possible messages are acceptable (because is small). An acceptable public key is

n t,()
φ n() n

n

P n P mod n P=

P C

C P
s
 mod n=

P C
t
 mod n=

C
t
 mod n P

st
 mod n P

φ n() k 1+•
 mod n= = k

P n

P
φ n()

 mod n 1=

C
t
 mod n P mod n P= =

P n φ n() p 1–() q 1–()•=

p q 1–+ p q• n

s φ n()
φ n() p 1–() q 1–()

i k mod n • i mod n() k mod n() mod n•=

P
i k•

 mod n P
i
 mod n()

k
 mod n=

n 5 11⋅ 55= =

φ 55() 4 10⋅ 40= =

n

Page 567 3/29/99

 Copyright 1998, Morgan Kaufmann Publishers. All rights reserved.

cret key

 and

o the

y mul-

over

gnature
is is the
match

u

(55,13), because 13 is relatively prime to 40, and the corresponding private key is (55,37).
(You can verify that .) Now the encryption/decryption algorithm is

where the (mod 55) reduction is presumed everywhere. Now the encryption algorithm can be

implemented by calculating , , and successively, each term calculated by squaring
the last and reducing the result (mod 55). Finally, taking the product (iteratively in pairs if
necessary) and reducing the result (mod 55) yields . A similar algorithm performs the

decryption. Using this approach, the largest number encountered is , and arithmetic over-
flow is not an issue.

Blind Signature Algorithm

A blind signature algorithm suitable for anonymous digital cash as described in "Privacy and Dig-
ital Cash" (Section 14.4.2 on page 379) can be based on RSA as follows. The consumer wants to
get the issuer to encrypt a message digest of a digital cash token with the issuer’s se

, but without the issuer seeing . The consumer knows the issuer’s public key

chooses a random integer , called the blinding factor. Instead of providing t

issuer, he provides . The issuer than encrypts this with its secret key,

EQ 33

and return result to the consumer. The consumer can simply divide by (or more properl

tiply by the multiplicative inverse of) which he knows but the issuer doesn’t, to rec

the signature .

When the issuer later receives its digital cash token and signature, it can check its own si
to be sure the token is genuine. The issuer can also check the token identifier to be sure th
first spending. However, since this is the first time the issuer has seen , it can’t cross

’s to violate the privacy objective.

Exercises
EE.1. For the RSA encryption algorithm, let the public key be (7,33).

a. Find the secret key.

b. What is the range of possible messages ?

c. For , what is ?

EE.2. For the RSA encryption algorithm, let the public key be (151,323). What is the message corre-
sponding to ?

Hint: It is recommended that you use a spreadsheet program. It provides a mod(k,n)
function that is handy. The variables in your spreadsheet program will overflow if yo

13 37⋅() mod 40 = 1

C P
13

P
1 4 8+ +

P P
4

P
8⋅ ⋅= = =

P C
37

C C
4

C
32⋅ ⋅= =

P
2

P
4

P
8

C

54
2

MD

n t,() MD n s,()
0 B n< < MD

B
s

MD mod n⋅

B
s

MD⋅() mod n()
t
 mod n B MD

t⋅() mod n=

B

mod n B

MD
t
 mod n

MD

MD

M

E 20= M

M
E 215=
Page 568 3/29/99

 Copyright 1998, Morgan Kaufmann Publishers. All rights reserved.
follow a straightforward path. It is recommended that you decompose the exponents
into binary numbers and then break the problem up into the smallest pieces you can.

EE.3. Show that when and are prime..

EE.4. Verify Euler’s theorem for .

EE.5. Prove the validity of the RSA blind signature algorithm.

φ p q•() p 1–() q 1–()•= p q

n 16 M, 3= =
Page 569 3/29/99

