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Appendix E

RSA Asymmetric Encryption

Of all encryption algorithms, the RSA asymmetric algorithm is the easiest to understand—
mathematically inclined. It was invented by Rivest, Shamir, and Adleman in 1978 [RSA78
the following development is based in part on [Sch90]. This appendix presumes knowle
basic number theory.

Euler’s Theorem

RSA is based on Euler’s theorem from number theory. Recall that a prime number has no 
other than itself and unity, and two numbers are relatively prime if they have no common f
other than unity. For an integer , define the totient function  as the number of positive inte

gers that are less then  and are relatively prime to k, including unity.

Example…The prime factors of 10 are 2 and 5. Thus the integers less than 10 that are relatively 

prime to 10 are 1,3,7, and 9, and thus .

Euler’s theorem states that if and  are relatively prime, then .

Example…10 and 7 are relatively prime, and 

.

Finding the Keys

An asymmetric encryption algorithm needs two keys, one of which is kept secret and the other
can be made public. In the RSA algorithm, these keys are obtained by construction, starting with
two large prime numbers  and . The security of the algorithm depends on the assumption that,

although their product  is easy to calculate, the factorization of  is computationally

infeasible if  and  are large.

With ,  and  in hand, the two keys can be constructed. First, it can be shown that

. Choose any integer  that is relatively prime to . The public key

is then .

To find the secret key, let  satisfy ; that is,  is the multiplicative inverse of

, . In fact,  can be obtained directly from the public key by

, 

since then, by Euler’s theorem,

.
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The secret key is now . In principle this secret key can be obtained from the public key.

However, this requires knowing , which in turn requires the prime factors of . By assump-

tion, it is computationally infeasible to determine the factors of .

Encryption and Decryption Algorithms

A plaintext  is presumed to be a non-negative integer less than , so that . The

ciphertext (encrypted version of ) is another integer  determined by the encryption algorithm
(requiring the public key)

and the plaintext can be recovered by the decryption algorithm (requiring the secret key)

.

To verify that decryption is the inverse of encryption,

 for some ,

and by Euler (presuming that  and  are relatively prime)

,

and thus

.

Complications

 and  must be relatively prime, and thus there are “only”  accept
plaintext’s. However, the chance of choosing a forbidden plaintext is very small, since

 plaintexts out of  are forbidden—a diminishing fraction as  gets large. Thus
problem is safely ignored.

The requirement that  and  be relatively prime is more troublesome, since it requires

torization of , and hence  and , be available when the public key is cho
Fortunately, there are techniques for insuring that these factors are available by constructio

Actually computing the encryption and decryption algorithms is tricky because the num
involved are gigantic. The algorithm must be decomposed into smaller pieces using the pro
of the modulo function, such as

,

.

All the steps can be decomposed into the modulo product or sum of two integers, which i
easily handled (see exercises).

Example…Even for the simple case  the computation becomes tricky on a 

standard spreadsheet due to overflow problems. For this case,  and only 40 

out of the 55 possible messages are acceptable (because  is small). An acceptable public key is 
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(55,13), because 13 is relatively prime to 40, and the corresponding private key is (55,37). 
(You can verify that .) Now the encryption/decryption algorithm is

where the (mod 55) reduction is presumed everywhere. Now the encryption algorithm can be 

implemented by calculating , , and  successively, each term calculated by squaring 
the last and reducing the result (mod 55). Finally, taking the product (iteratively in pairs if 
necessary) and reducing the result (mod 55) yields . A similar algorithm performs the 

decryption. Using this approach, the largest number encountered is , and arithmetic over-
flow is not an issue.

Blind Signature Algorithm

A blind signature algorithm suitable for anonymous digital cash as described in "Privacy and Dig-
ital Cash" (Section 14.4.2 on page 379) can be based on RSA as follows. The consumer wants to
get the issuer to encrypt a message digest  of a digital cash token with the issuer’s se

, but without the issuer seeing . The consumer knows the issuer’s public key 

chooses a random integer , called the blinding factor. Instead of providing  t

issuer, he provides . The issuer than encrypts this with its secret key,

EQ 33

and return result  to the consumer. The consumer can simply divide by  (or more properl

tiply by the  multiplicative inverse of ) which he knows but the issuer doesn’t, to rec

the signature .

When the issuer later receives its digital cash token and signature, it can check its own si
to be sure the token is genuine. The issuer can also check the token identifier to be sure th
first spending. However, since this is the first time the issuer has seen , it can’t cross

’s to violate the privacy objective.

Exercises
EE.1. For the RSA encryption algorithm, let the public key be (7,33).

a. Find the secret key.

b. What is the range of possible messages ?

c. For , what is ?

EE.2. For the RSA encryption algorithm, let the public key be (151,323). What is the message  corre-
sponding to ?

Hint: It is recommended that you use a spreadsheet program. It provides a mod(k,n)
function that is handy. The variables in your spreadsheet program will overflow if yo
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follow a straightforward path. It is recommended that you decompose the exponents
into binary numbers and then break the problem up into the smallest pieces you can.

EE.3. Show that  when  and  are prime..

EE.4. Verify Euler’s theorem for .

EE.5. Prove the validity of the RSA blind signature algorithm.
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