SystemC1l3
COMS W@QS-OZ

Prof. Step,ﬁen A. Edwards
Fall 2002
Colunf]bia University
Department of Computer Science

Designing Big Digital S

Every system company was doing this differently

Every system company used its own si’fﬁﬂﬁtib’ﬁ"ﬁb[ary

“Throw the model over the waﬂ(approach makes it eas\y

to introduce errors /
Problems:
System designers don't Know Venlog or VHDL

Verilog or VHDL cod/rs don t understa!\system design

What Is SystemC?

Language definition is publicly available

Libraries are freely distributed T

Compiler is an expensive corprrﬁercial product

/ . .
See www.systemc.org for more information

Designing Big Digital S

Even Verilog or VHDLs behavioral modeling is not
high-level enough ——

~ ™~

People generally use C or (317’/

N

Idea of SystemC

C and C++ are being used as ad-hoc modeling language

2]

Why not formalize their use? T

Why not interpret them as haycﬁ/vare specification
languages just as Verilog @ﬁd VHDL were?

SystemC developed at my former employer Synopsys to
do just this [

Quick Overview

A SystemC program consists of module definitions plus a
top-level function that starts the smulatlorp,]

Modules contain processes (%4{ methods) and |nstahrxs
of other modules

Ports on modules define tr{elr interface
Rich set of port data typej‘é (hardware modeling, etc.)
Signals in modules convéy information between instances

Clocks are special s/ghals that run perlbc{lcally and can
trigger clocked proCesses \ \

Rich set of numerlc types (f|><e\ and arbltrary preC|5|on

numbers) \

\\‘

\“\“W
NNW

Standard Methodology

System-level designers write a C or C++ model
Written in a stylized, hardware-like form
Sometimes refined to be mo!';e/h/ardware-like

C/C++ model simulated tq,&/erify functionality

Model given to VeriIogNH/DL coders

Verilog or VHDL specnflcéltlonwntten

Models simulated to/géther to test equ@a{ence

\

Verilog/VHDL model syntheslzed

[AN

| N e
~_ -

What Is SystemC?

A subset of C++ that models/specifies synchronous digi
hardware I

~

A collection of simulation I|breyes that can be used to Tul
a SystemC program /

A compiler that translates‘,”the “synthesis subset” of
SystemC into a netlist

Modules

Hierarchical entity

\
/

/

Similar to Verilog’s module -

/
/

Actually a C++ class definitiqp/ }
Simulation involves ’,//
 Creating objects of tHfs class
e They connect themsélves{ogether

* Processes in th;a/ se objects (methods) are called by
the scheduler to perform the simulation

N

\ - | -

7¢

Modules

SC_MODULE(mymod) {
/* port definitions */
/* signal definitions */
/* clock definitions */

\
\
\
|
/
/

I* storage and state variables */ \
/* process definitions ’t‘/ - |

SC_CTOR(mymod) { \ /
/* Instances of processes and modules */

/

b s‘
}: \
Signals
Convey information between modules within a module
Directionless: module ports define direction of d:
transfer
Type may be any C++ or built-in type
// \\
— |
\/’ —~
/ \ \ /
\ /
\
/
| \
T 7*7‘— -
B 0 |
B 0 |
B 0 |
Processes B
B 0 |
B |

Only thing in SystemC that actually does anything
Procedural code with the ability to suspend and resume
Methods of each module cla

Like Verilog's initial blocks
/ \

S

/ \ \ /
\ /
\

/ \\ \
|

\
| -
\ /

/

|
|
T

Ports

Define the interface to each module

Channels through which data is communicated

Port consists of a direction
input sc.in

output sc_out “J‘/ \

bidirectional sc_inout ‘
o T |

and any C++ or SystemC type
\\ //
\\

/

Signals

SC_MODULE(mymod) {
[* ¥ ———
[* signal definitions */
sc_signal<sc_uint<32> > sl1, s2;
sc_signal<bool> re set;

/ \
I
SC_CTOR(mymod) { |
/* Instances of di‘u\les that conﬁe{to the signals|*/ /f
\ /
3 \

¥ /

B 0 |
B 000 0]
Three Types of Processes s
B |

METHOD: Models combinational logic

THREAD: Models testbenches — T~
CTHREAD: Models synchronous FSMs
/ \
/ \
i |
| \
‘\// ~_ |
/ \ \ /
\ /
\

Ports

SC_MODULE(mymod) {
sc_in<bool> load, read;
sc_inout<int> data;
sc_out<bool> full;

\
|
|
|

/
/

/
I* rest of the module *//

}: c

| ~_ | _—

Instances of Modules

Each instance is a pointer to an object in the module
SC_MODULE(mod1) { ... }; .
SC_MODULE(mod2) { ... };

SC_MODULE(foo) {
mod1l* ml; Connect inst

mod2* m2; / ports to sign

/

\

~

sc_signal<int> a, b, c;
SC_CTOR(fo0) {

ml = new ;?/'r\il"); (%\)2&1, b, c);

m2 = new mod2(*"* 5 (*m2)(c, b);
3 / \
3 |

é\ce’s

als |

METHOD Processes

Triggered in response to changes on inputs
Cannot store control state between invocations

Designed to model blocks of combinational logic

METHOD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

~~ Process is simpl

void inverterQ: method of this cla

SC_CTOR(onemethod/) {

‘ \
\ Create an instance |

SC METHOD(lnverterj =
sen3|t|ve(/f) of this process
\ Trigger when in
} / changes

} ; “ N “‘ e

-

THREAD Processes

SC_MODULE(onemethod) {
sc_in<bool> in;
sc_out<bool> out;

"/

_Process a method-
of the class

/

void toggler();

SC CTOR(onemethod/) {
of the proces
sc THREAD(toggJer) / P

sensitive << in; \

3 / \\ Alernate sensitivi
/ \ L

/ \\

@
2}
=3
~B
S
2
o
=

} ; “ N “‘ e

CTHREAD Processes

SC_MODULE(onemethod) {
sc_in_clk clock;

\
\\
\\

\

Create an instance

sc_in<bool> trigger, in; Instance of this
sc_out<bool> out; // process\a‘eated
/ and relevar
void togglerQ); / clock edge
assigned

SC_CTOR(onemetho%i) {

SC_CTHREAD(toggler, clock.posQ));

METHOD Processes

Invoked once every time input “in” changes

Should not save state between irlyocatiﬁ'h’si ’\\
Runs to completion: should pp(éontain infinite loops)
Not preempted ,//

void onemethod:: in\lérter()
N / Read a value from a
bool internal;

“ ort
internal = in; / p
out = Tintern
/a1 \W avalue to an

output

THREAD Processes

Reawakened whenever an input changes

State saved between invocations
Infinite loops should contain Wait()

/
void onemethod: :toggler() {
bool last = false;
for G3) { ‘
last = ;
last =

}

}

CTHREAD Processes

Reawakened at the edge of the clock

State saved between invocations -

\
/

Infinite loops should contain a/Néit()
void onemethod: toggler()

bool last = false' ’))
for (;3) { / trigger input is 1
wait_until rlgger delayed() == true)
last = in; ou “last;
wait(Q); g\
last = n/ ut = last; AN

/

wait(Q; \ A Ny
3 \ Relmqulsh\\control unti

~the next clock cycle”

b \

Relinuish control
until the next|
change of signal
on this process’s\x\
sensitivity list |

Relinquish control
until the next clock
cycle in which the',

THREAD Processes

Triggered in response to changes on inputs
Can suspend itself and be reactivated

Method calls wait to relinquisj/control

/
Scheduler runs it again later

Designed to model just a}‘cﬁout anything

CTHREAD Processes

Triggered in response to a single clock edge
Can suspend itself and be reactivated

Method calls wait to relinquisj/control

/
Scheduler runs it again later

Designed to model clockéd digital hardware

A CTHREAD for Comple

struct conplex_mult :

}

sc_in<int> a, b, c, d
sc_out<int> x, vy;
sc_in_clk cl ock;

void do_mult() {

sc_nodul e {

Ve

G ‘ -

for (i3) { / AN
x=a*c-b*d \
wait(); /
y=a*d+b*c
wait(); [|
} — |
}
SC_CTOR(conpl e rrultx { N\ /
sc CTHREAD(do mul t, " cl ock. pos()); /

}

Watching

A CTHREAD process can be given reset-like behavior

Limited version of Esterel's abort

SC_MODULE (onemethod)
sc_in_clk clock; /
sc_in<bool> reset, in;

void toggler(); “

SC_CTOR(onemethod) { :
SC_CTHREAD(toggler, clocms());

watching(reset._delayed() == \true)'
’ Xm
}; “ Process be restartqd from tbe/

beginning wherrreseustrue

\ /

SystemC Types

SystemC programs may qee any C++ type along with an

of the built-in ones for m(\ideling systems

* Floating-point numbers

B 0 |
B 0000 |
Fixed and Floating Point Types======
B |

Less precise T
Better approximation to ?ﬁ\umbers
Good for modeling con/tfnuous behavior
Manipulation is slow ahd expensive

* Fixed-point numbers““

Worst of both worlds
Used in many signal h{ocessing applications
,/ \

Local Watching
It's hard, but the SystemC designers managed to put a
more flexible version of abort in the language

Ugly syntax because they hyo/ iive with C++

Like Esterel’s abort

Only for SC_.CTHREAD pl‘bcesses \

SystemC Built-in Types

B 0 |
B 0000 |
Integers, Floating-point, Fixed-poifit====s
B]

meger| [[[[[[]]

Fixed-point| | | |.|/| | | | | \

Floating-point D/. N\D:Ij ° /;‘

/// \\\

c_bit, sc_logic
Two- and four-valued single bit
sc.int, sc_unint

1 to 64-bit signed and /u@ed integers

sc_bigint, sc_biguint “,/'/ \
arbitrary (fixed) Wldﬂ"l 5|gned and unsigned integers |
sc._bv, sc_lv e ‘

arbitrary width w@ and four- valued ctors ,/“
\ /

scfixed, sc_ uﬁxed \
signed and Lfn5|gned flxsgglnt number?

7

~ ™~

/ \\‘

|
\

Local Watching

void mymodule::myprocess() {

W_BEGIN T

watching(reset.d%d() == true);
W_DO y
/* do something */ /

W_ESCAPE [
[* code to handle th\e reset */
W_END /\ N
//
} /

Numeric Types

* Integers

Precise

Manipulation is fast anc:?ép
Poor for modeling contj uous real-world behavior

High-level models usually use floating-point for
convenience o

\
/

Fixed-point usually used in t?dv/vare implementation
because they are much cheaper

/
Problem: the behavior of the two are different

How do you make sure ybur algorithm still works after it

has been converted from\ ﬂeatrng pomt to fixed-point?

SystemC'’s fixed- poyl/number classes facilitate simulatin

algorithms with flxed pomt*{bers \
‘\‘) |

~_ ‘ -

\ /

1 is the number of bits to the left of the decimal point
SC_RND defines rounding behavior
SC_SAT defines saturatiqé behavior \\

\
T
] /4 [TTTTT /
f"

\
\

\\
e
O eee—
O eee—
SC_RND_ZERO e
O eee—
O —
Round toward zero —_ —
Less error accumulation T
— —
. —

SC_SAT

Saturate
Sometimes desired T

Rounding

What happens when your result doesn't land exactly on
representable number? o

Q

Rounding mode makes the choice

\ ~ |
\
\\

SC_TRN

Truncate _

Easiest to understand | ——

SC_SAT_ZERO

Set to zero —_
Odd Behavior

e
o —
o ———
o —
o —
SC_RND
o —
T
Round up at 0.5 -
What you expect? JEE——
— o
- [—

Overflow

What happens if the result is too positive or too negative

to fit in the result? o
Saturation? Wrap-around?

Different behavior appropriate for different applications

\\ U
\ /
\ /
O ee——
O ee——
SC_WRAP e
O ee——
O —
Wraparound —
Easiest to.implement T

SystemC Semantics

Cycle-based simulation semantics

Resembles Verilog, but does not aJJow the modeling of

delays /
Designed to simulate quick}fl/ and resemble most
synchronous digital logic

SystemC 1.0 Scheduler

Assign clocks new values

Repeat until stable _ ~

.

e Update the outputs of trlgg{ered SC_CTHREAD
processes / \

* Run all SC| METHOD'and SC_THREAD processes \
whose inputs have cpanged “

Execute all triggered SC CTHREAD me\hods Their
outputs are saved ;mtll next time

Implementing SystemC

Main trick is implementing SC_THREAD and
SC_CTHREAD's ability to call wait()

~

Implementations use a Iightw;igﬁt threads package h

/ \
Instructs thread package to save \
I5 . *% current processor state (register, \
- / stack, PC,rete:),sq this method |
waitQ); A Y /
can-be resumed later. /

1. % // \ \)

,/ \ \

Clocks

The only thing in SystemC that has a notion of real time

Only interesting part is relative sequencmg among\
multiple clocks /

Triggers SC_.CTHREAD prqéesses or others if they N\
decided to become sensitive to clocks

Scheduling

Clock updates outputs of SC_CTHREADs

SC_METHODs and SC_THREADs respond to this change
and settle down

Bodies of SC_CTHREADs compute the next state

! N

ihill

Implementing SystemC

Other trick is wait_until()
waituntil(continue. delaye;d() true)\,
Expression builds an object tpét can check the condltlc}r

/
Instead of context switching back to the process, \
scheduler calls this object and only runs the process if the |
condition holds | |

Clocks

sc_clock clockl("myclock™, 20, 0.5, 2, false);

2 05020 AN

Why Clock Outputs?

Why not allow Mealy-machine-like behavior in FSMs?
Difficult to build large, fast systems predictably
Easier when timing worries a;e/per-FSM

/
Synthesis tool assumes all'inputs arrive at the beginning
of the clock period and do not have to be ready

Alternative would require{ knowledge of inter-FSM timing |

Determinism in System

Easy to write deterministic programs in SystemC
* Don't share variables among processes
* Communicate through signél/s
e Don't try to store state’j’/n/ SC_METHODs \
Possible to introduce nondeterminism

* Share variables among SC_CTHREADs: They are
executed in nonde;ei*mmlstlc order

¢ Hide state in SC METHODs No control over how
many times they are mvoked \ /

e Use nondetqrmlnlstlc feahes\ of C/C++ ‘ P

B 00000 |
B 00000 |
B 0000 |
Synthesis Subset of SystemC ===
At least two
“Behavioral” Subset T
* Implicit state machines pe iited \
* Resource sharing, bingnng, and allocation done \
automatically / \\

* System determines how many adders you have |

Register-transfer-level Subset

\ \ /
\\\ \ // .

* You write a “+”, you get%ﬁ;ﬂer
* State machilfles must be listed explicitly \ -

\

* More like Veril/
/

Conclusions

SC_METHOD
« Designed for modeling purely functional behavior
* Sensitive to changes on inputs
* Does not save state b/e/iween invocations

SC_THREAD

“‘ \
* Designed to model anything

L \
* Sensitive to changes /
/ \ \ /

* May save variable, contwte between invocations

e

\ - | _

Do People Use System

Not as many as use Verilog or VHDL
Growing in popularity _— ~_
People recognize advantage of being able to share

models / \
Most companies were dos‘iﬁg something like it already

Use someone else’s free“ libraries? Why not?

A

B 00
B
- B
Conclusions B
B
B

SC_CTHREAD

o Models clocked digital logic

* Sensitive to clock edges

. / . .
* May save variable, coptrol state between invocations

Conclusions

C++ dialect for modeling digital systems

Provides a simple form of concurrency:
Cooperative multitasking

Modules / \
Instances of other modulés

Processes

Conclusions

Perhaps even more flawed than Verilog

Verilog was a hardware modeling language forced into
specifying hardware h/

SystemC forces C++, a software specification language,
into modeling and specify_ihg hardware \

SystemC 2.0 quite a chaﬁge: moved to a more flexible, |

event-driven modeling sg“‘/,le;Modeling, not synthesis the w‘

- -
main focus. / \ \ /
/

Will it work? Time will tell. \

