Review for the Final
COMS W4115

Prof. Stephen A. Edwards
Fall 2003
Columbia University
Department of Computer Science

The Final

Like the Midterm:

70 minutes

4-5 problems

Closed book

One sheet of notes of your own devising
Comprehensive: Anything discussed in class is fair game
Little, if any, programming.

Details of ANTLR/C/Java/Prolog/ML syntax not required

Broad knowledge of languages discussed

Topics (1)

Structure of a Compiler
Scripting Languages
Scanning and Parsing
Regular Expressions
Context-Free Grammars
Top-down Parsing
Bottom-up Parsing

ASTs

Topics (2)

Name, Scope, and Bindings
Types

Control-flow constructs
Code Generation

Logic Programming: Prolog

Functional Programming: ML and the Lambda Calculus

int gcd(int a, Int b)
{
whille (a = b) {
iIT (a >b) a -= b;
else b -= a;

}

return a;

}

What the Compiler Sees

int gcd(int a, int b)
{
while (a !'=hb) {
if (a>Db) a-= b;
else b -= a;

}

return a;

1 n tsp g c d (1 n tsp a , sp 1
n tsp b)nl {nlspsp w h 1 I esp

(asp ' =sp b)sp {nl spspspsp 1
fTsp (asp >sp b)sp asp - =sp b
, Nl spspspsp e | s esp bsp - =sp
a ;nlspsp pnlspsp r e t U r nsp
a ; nl 3} nl

Text file is a sequence of characters

Lexical Analysis Gives Tok

int gcd(int a, int b)

{

while (a !'= b) {
if (a>b) a-=b;

else b -= a;

}

return a;
}

Int || gcd Int || a Int||b{|)||—1|l while|| (|l a
I=||b||) if || (>|b)]|lall-=||b]||;
else || b all: return || a || ;

A stream of tokens. Whitespace, comments removed.

Parsing Gives an AST

//func\

INt™ gcd args S
/. N\ v
arg arg while return
AT T
'\

int gcd(int a, int b) a/ b />\//—|=\\/—:\
{ i

R Y a b a b b a

else b -= a;
}
return a;

}
Abstract syntax tree built from parsing rules.

Semantic Analysis Resolve

Symbols
func
INt— gcd™ args seq
7\ v
arg arg while return

O !:/ \if !
/N |

Symbol a b >\ iy /‘:
Table: a/ b a/ b b \a
Int a }

Int b — >

Types checked; references to symbols resolved

Translation into 3-Addres

LO: sne $1, a, b
seq $0, $1, O
btrue $0, L1 % whille (a 1= b)
sl $3, b,
seq $2, $3,

o o

btrue $2, L4 % 1F (a < b)
sub a, a, b%a-=> int gcd(int a, int b)
Jmp LS {While(a!=b){
L4: sub b, b, a%b-=a if (a>D) a-=b
L5: jmp LO) |
return a;
L1: ret a }

ldealized assembly language w/ infinite registers

Generation of 80386 Asse

gcd: pushl %ebp
movl %esp,%ebp

movl 8(%ebp) ,%eax
movl 12(%ebp) ,%edx

.L8: cmpl %edx,%eax

je L3
jle L5
subl %edx,%eax
Jmp .L8

.L5: subl %eax,%edx
Jmp .L8

_L3: leave
ret

% Save frame pointer

% Load a from stack
% Load b from stack

% while (a != b)

% if (a<b)
% a -=
% b -=a

% Restore SP, BP

Scanning and Automata

Deterministic Finite Autom

A state machine with an initial state

Arcs indicate “consumed” input symbols.
States with double lines are accepting.

If the next token has an arc, follow the arc.

If the next token has no arc and the state is accepting,
return the token.

If the next token has no arc and the state is not accepting,
syntax error.

Deterministic Finite Automata &

ELSE: "else" ;
ELSEIF: "elseif" ;

Deterministic Finite Autom

IF: "i1f" ;
ID: 7a7--121 (7a7--121 I 101--19’)* ;
NUM: (707..797)+ ;

Nondeterminstic Finite A

DFAs with € arcs.
Conceptually, € arcs denote state equivalence.

e arcs add the ability to make nondeterministic
(schizophrenic) choices.

When an NFA reaches a state with an € arc, it moves into
every destination.

NFAs can be in multiple states at once.

Translating REs into N

RE to NFAS

Building an NFA for the regular expression

(wole)m(ale)n

produces

after simplification. Most € arcs disappeatr.

Subset Construction

How to compute a DFA from an NFA.

Basic idea: each state of the DFA is a marking of the NFA

Subset Construction

An DFA can be exponentially larger than the
corresponding NFA.

n states versus 2"

Tools often try to strike a balance between the two
representations.

ANTLR uses a different technique.

Grammars and Parsing

Ambiguous Grammars

A grammar can easily be ambiguous. Consider parsing
3-4*2+5
with the grammar

e —etele—elexele/e

+ - * - +
4N SN N L
/\ AANA /\ /\
3 * * 5 34 2 5 4 + - 2
AA A
4 2 4 2 2 5 3 4

Fixing Ambiguous Gra

Original ANTLR grammar specification

expr
expr “+7 expr
expr -7 expr
expr **7 expr
expr /7 expr
NUMBER

Ambiguous: no precedence or associativity.

Assigning Precedence Levels ==

Split into multiple rules, one per level

expr I expr “+7 expr

| expr ’-7 expr
| term ;

term - term **7 term
| term */° term
| atom ;

atom : NUMBER ;

Still ambiguous: associativity not defined

Assigning Associativit

Make one side or the other the next level of precedence

expr I expr “+7 term

| expr ’-7 term
| term ;

term : term **7 atom
| term */° atom
| atom ;

atom - NUMBER ;

A Top-Down Parser

stmt : 1f” expr “then” expr
| while” expr *do” expr
| expr *:=7 expr ;

expr - NUMBER | (expr *)” ;
AST stmt() {
switch (next-token) {
case "Iif” : match("if”); expr(); match(’then”); expr();
case "while” : match("while”); expr(); match("do”); expr();
case NUMBER or "(” : expr(); match(":="); expr();
by

Writing LL(K) Gramma

Cannot have left-recursion
expr - expr ’+7 term | term ;
becomes

AST expr() —
switch (next-token) —
case NUMBER : expr(); /* Infinite Recursion */

Writing LL(1) Grammars

Cannot have common prefixes

expr - ID > expr *)”
| ID =" expr

becomes

AST expr() —
switch (next-token) —
case ID : match(ID); match(’("); expr(); match(’)’);
case ID : match(ID); match(’="); expr();

Eliminating Common P

Consolidate common prefixes:

expr
> expr +7 term
| expr -7 term
| term

becomes

expr
: expr (C+7 term | -7 term)
| term

Eliminating Left Recursi

Understand the recursion and add tail rules

expr
: expr (C+7 term | -7 term)
| term

becomes

expr : term exprt ;

exprt - “+7 term exprt
| -7 term exprt
| /* nothing */

Bottom-up Parsing

Rightmost Derivation

e—t+ e
e—t
t—Ild *t
t—Id

> s W N -

rightmost derivation for Id x Id + Id:

e Basic idea of bottom-up parsing:
t+e construct this rightmost derivation
t 4+t backward.
T+ 1d
ld [t + Id
Id % Id + Id

Handles

1: e—t+e Id «/1d + Id If

2 e—1 -_|_ ld | *

3: t—Ild xt
t+

4: t—lId - I
t +¢ }
t+e -

/
A

(&
This is a reverse rightmost derivation for Id = Id + Id.
Each highlighted section is a handle.

Taken in order, the handles build the tree from the leaves
to the root.

Shift-reduce Parsing

An oracle tells what to do

_~ 0 N =

e—t+e stack Input
! L ia
* 1d +
t—ld xt id - Id
+ Id
+ Id
t+ |d
t +id|
t -+

e

Scan input left-to-right, looking for hancy

action

shift

shift

shift
reduce (4)
reduce (3)
shift

shift
reduce (4)
reduce (2)
reduce (1)
accept

LR Parsing

_~ W N =

e—t+ e
e—t
t—Ild *xt
t—Id

action
Id + « $

goto
e t

stack input action
Id*Id+1d$ shift, goto 1

1. 1 Lgok at state on top of stack

~NOo ok oW DN - O

sl

r4 r4 s3 r4

2 s4r2 r2

sl

sl

r3r31r3 r3

rirlrl rl
acc

[/ 2
\

2. /and the next input token
—3.— to find the next action

4. In this case, shift the token
onto the stack and go to
state 1.

LR Parsing

1: e—t+e stack input action

2: e—t) Id*Id+Id$ shift, goto 1

3: t—ld xt [*Id+1d$ shift, goto 3

4: t—ld - E : Id+Id$ shift, goto 1

action goto i +1d$ reduce w/ 4

d + « $ |e ¢ O_ L_S . _

0 Is1 -5 |Action is reduce with rule 4 (t —

1 |14 r4 s3 14 Id). The right side is removed from

2 |r2s4r2 r2 the stack to reveal state 3. The

3 |sl 5 |goto table in state 3 tells us to go

4 1sd © 2 \to state 5 when we reduce a ¢:

S5 [r3r3r3 13 _ _

6 |11 11 stack iInput action

7 acc SIMEG[E] +1d$

LR Parsing

stack

1: e—=t+e
2: e—t
3: t—ld xt
4. t—Id
action goto
d + « $ |e ¢
0 |sl 7 2
1 [r4r4s3 r4d
2 |(r2s4r2 r2
3 |[sl)
4 |sl 6 2
S5 [r3r3r3 13
6 [rlrlrl rl
! acc

Id

|1

id] [
1|3
id] [=1[d
f[3]]L
id] =117
1{l3]L5
t

2
t1l+
2|4
t][*1[d
2114111
1 [F11E
2114112
ti1t1le
2| l4lls
e

7

iInput
Id *I1d +I1d $
*I1d+1d$
Id +1d $
+1d $
+1d $
+1d $
d $
$

$
$
$

action

shift, goto 1
shift, goto 3
shift, goto 1
reduce w/ 4
reduce w/ 3
shift, goto 4
shift, goto 1
reduce w/ 4
reduce w/ 2
reduce w/ 1
accept

Constructing the SLR Parse

The states are places we could be in a reverse-rightmost
derivation. Let’s represent such a place with a dot.

l1: e—t+e

2: e—t

3: t—ld xt

4. t—ld

Say we were at the beginning (-e). This corresponds to
e/ — -e The first is a placeholder. The
e —-tte second are the two possibilities
f: -.Itd . when we're just before e. The last
t — -Id two are the two possibilities when

we’re just before t.

Constructing the SLR Parsin

S7: ¢ — e-

e §

6/—>'€ n e — 1+ e
€_>.t_|_€ €—>‘t—|—€
S0: ¢ — -t s2:¢ 2t el sl sae —
t — -d x t t — -d x t
t — -ld ¢ t — -ld
lld le
|d
s1:f 19+t S6ie — t+ e
d + « $ t
[N* 0 sl 72
t — Id % -t 1 |r4dr4s3 r4
2 2s4r2 r2
S3: ¢ — -Id * t S5t — Id * t- 3l 5
t — .1d 4 |s1 62
5 r3r3r3 r3
6 ritrlrl rl
4 acc

N Table

Names, Objects, and Bindings

Names, Objects, and Bin

Activation Records

argument 2

argument 1

return address — frame pointer

old frame pointer

local variables

temporaries/arguments

«— stack pointer

| growth of stack

Activation Records

Return Address int AQ {
Frame Pointer Int x;
X BO;
A’s variables }
Return Address)
: int BO {
Frame Pointer)
int y;
| y CQO:;
B’s variables y
Return Address
Frame Pointer int CO {
y4 int z;

C’s variables 1

Nested Subroutines in Pa

procedure A;
procedure B;

procedure C;

begin .. end A

procedure D; E—

begin C end R—
begin D end

D/

procedure E; Cc—
begin B end

begin E end

Symbol Tables in Tiger

/ parent

parent int

ia string

let

var n :-= 8\ parent

function sqr(a:int) « T ——|

\X
—a* a /
) _ T~
type ia = array of int >dr
in
n = sqr(x)

Shallow vs. Deep binding

typedef 1int (Ci1func)();
1func foo() {
int a = 1;
int bar() { return a; }
return bar;

static dynamic

} shallow 1 2
int mainQ) { deep 1 1
ifunc ¥ = foo();
INnt a = 2;

return (G Q0;
+

Shallow vs. Deep binding

void a(int i, void (p)) {
void b(Q) { printf(""%d", 1);

it (i=1) a(2,b) else (*p)O:;

}

void 9O {}

int mainQ) { static
a(l,9); shallow 2

} deep 1

}

main()

a(1,9)
1=1,p=¢q
b reference

a(2,b)
1=2,p=Db

b

Layout of Records and U

Modern processors have byte-addressable memory.

0
1
2
3
4

Many data types (integers, addresses, floating-point
numbers) are wider than a byte.

16-bit integer: 1 O
32-bitinteger: 3 2 1 O

Layout of Records and Uni

Modern memory systems read data in 32-, 64-, or 128-bit
chunks:

3 2 1 O
/ 6 5 4
11 10 9 8

Reading an aligned 32-bit value is fast: a single operation.

11 10 9

Layout of Records and Union

Slower to read an unaligned value: two reads plus shift.

SPARC prohibits unaligned accesses.
MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.

L ayout of Records and Unio

Most languages “pad” the layout of records to ensure
alignment restrictions.

struct padded {
int x; /* 4 bytes */
char z; /* 1 byte */
short y; /* 2 bytes */
char w; /* 1 byte */

};

. Added padding

Allocating Fixed-Size Ar

Local arrays with fixed size are easy to stack.

return address | «— FP

void foo() .
{

iInt a; b[O]

int b[10];

int c; .
1 9]

c — FP +12

>
o
O
Q)
[
S
«
>
=
D
=)
4
2
N
D
O

As always:
add a level of indirection

void foo(int n)
{

iInt a;

int b[n];

int c;

return address

a

b-ptr

C

b[O]

b[n-1]

— FP

Variables remain constant offset from frame pointer.

Static Semantic Analysis

Static Semantic Analysis

Lexical analysis: Make sure tokens are valid

1T 1 3 "This" /> valid */
#all23 /* 1nvalid */

Syntactic analysis: Makes sure tokens appear in correct
order

for 1 =1 to 5 do 1 + break /7* valid */
1t 13 /* 1nvalid */

Semantic analysis: Makes sure program is consistent

let v :=3 InvVv + 8 end /* valid */
let v :="f" In v(3) + vend /7* 1nvalid */

Static Semantic Analysis

Basic paradigm: recursively check AST nodes.

1 + break 1 -5
+ —_—
/ \ /\
1 break 1 5
check(+) check(-)
check(l) = int check(l) = int
check(break) = void check(5) = int
FAIL: int £ void Types match, return int

Ask yourself: at a particular node type, what must be true?

Mid-test Loops

while true do begin
readIn(line);
1T all blanks(line) then goto 100;
consume_line(line);

end;

100:

LOOP
line -= ReadlLine;

WHEN AllIBlanks(line) EXIT,;
ConsumeLine(line)

END;

Implementing multi-way br

switch (s) {

case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;

}

Obvious way:

iIfT (s ==1) { one(); }

else 1T (s == 2) { two(); }
else 1T (s == 3) { three(); }
else 1T (s == 4) { four(Q); }

Reasonable, but we can sometimes do better.

Implementing multi-way branche

If the cases are dense, a branch table is more efficient:

swtch (s) {

case 1: one(); break;
case 2: two(); break;
case 3: three(); break;
case 4: four(); break;

}

|abels I[] ={ L1, L2, L3, L4 }; /* Array of |abels */
I f (s>=1 && s<=4) goto |[s-1]; /* not legal C */

L1: one(); goto Break;

L2: two(); goto Break;

L3: three(); goto Break;

L4: four(); goto Break;

Br eak:

I 0
I 0
I 0
Applicative- and Normal-Order =S

Evaluation

int p(int 1) { printf("%d ', 1); return 1; }

void g(int a, Int b, Int c)
{

int total = a;
printf("%d ", b);
total += c;

by
What is printed by

q(p(D), 2, pB));

I 0
I 0
I 0
Applicative- and Normal-Order ===

Evaluatl()n _
int p(int i) { printf("% ", i1); returni; }
void g(int a, int b, int c)
{
int total = a;

printf("% ", b);
total += c;

}
a(p(1), 2, p(3));

Applicative: arguments evaluated before function is called.
Result: 1 3 2

Normal: arguments evaluated when used.

Result: 12 3

Most languages use applicative order.

Macro-like languages often use normal order.

#define p(x) (printf("%d ",x), X)
#define q(a,b,c) total = (a), \
printfC'%d ', (b)), \
total += (c)

q(p(D), 2, p(3));
Prints 1 2 3.

Some functional languages also use normal order
evaluation to avoid doing work. “Lazy Evaluation”

Nondeterminism

Nondeterminism is not the same as random:
Compiler usually chooses an order when generating code.

Optimization, exact expressions, or run-time values may
affect behavior.

Bottom line: don’t know what code will do, but often know
set of possibilities.

int p(int 1) { printf("%d ', 1); return 1; }
int g(int a, Int b, Int ¢) {}
aC p(D), p(2)., p(3));

Will not print 5 6 7. It will print one of
123,132,213,231,312,321

Prolog

Prolog

All Caltech graduates are nerds.
Stephen is a Caltech graduate.

Is Stephen a nerd?

nerd(X) :- techer(X).
t echer (st ephen).

?- nerd(stephen).
yes

Structures and Functors

A structure consists of a functor followed by an open
parenthesis, a list of comma-separated terms, and a close
parenthesis:

“Functor”
paren must follow immediately
bin_tree(foo, bin_tree(bar, glarch))
What'’s a structure? Whatever you like.

A predicate nerd(stephen)
A relationship teaches(edwards, cs4115)
A data structure bin(+, bin(-, 1, 3), 4)

Unification

Part of the search procedure that matches patterns.

The search attempts to match a goal with a rule in the
database by unifying them.

Recursive rules:
e A constant only unifies with itself

e Two structures unify if they have the same functor, the
same number of arguments, and the corresponding
arguments unify

e A variable unifies with anything but forces an
equivalence

Unification Examples

The = operator checks whether two structures unify:

| ?- a = a.
yes

| ?- a = Dh.
no

| ?- 5.3 = a.
no

| ?- 5.3 = X
X = 5. 37?;
no

| ?- foo(a, X)) =

no

| ?- foo(a, X)) =

X = a?;
no

X
Y
no
| ?- foo(X a, X
no

a
b?:

| ?- foo(X b) =

foo(X, b).

foo(X a).

foo(a,Y).

% Constant unifi es with itself
% Mismatched constants
% Mismatched constants

% Variables unify

% X=a required, but inconsistent

0% X=a is consistent

% X=a, then b=Y

= foo(b,a,c).

% X=Db required, but inconsistent

The Searching Algorith

search(goal g, variables ¢)
for each clause h --t1,...,t, In the database
e = unify(g, h, €)
If successful,
for eachterm tq,...,tn,
e = search(ty, e)
If all successful, return e

return no

edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, Y) :
path(X, 2), edge(Z, Y).

pat h(X, X).
Consider the query

?- path(a, a).

Like LL(K) grammars.

path(a,a)
I .
path(a,a)=path(X,Y) < Unify
|

Subgoal X=a Y=a < implies
7~ N\
path(a,z) edge(Z,a)

I
path(a,Z)=path(X,Y)
I

X=aY=Z
VN
path(a,2) edge(Z,a)

|
path(a,Z)=path(X,Y)
|
X=aY=Z

Functional Programming

Simple functional programming I -
ML

A function that squares numbers:

% sml

Standard ML of New Jersey, Version 110.0.7
- fun square X = X * X;

val square = fn - Int -> Int

- square 5;

val 1t = 25 - Int

Currying

Functions are first-class objects that can be manipulated
with abandon and treated just like numbers.

- fun max a b = 1f a > b then a else b;
val max = fn :© Int -> Int -> Int

- val max5 = max 5;

val max5 = fn - Int -> Int

- max5 4,

val 1t = 5 - Int

- max5 6;

val 1t = 6 - Int

Recursion

ML doesn’t have variables in the traditional sense, so you
can’t write programs with loops.

SO0 use recursion:

- fun sum n =
= iIT n =0 then 0 else sum(n-1) + n;
val sum = fn : Int -> Int

- sum 2;
val 1t = 3 - Int
- sum 3;
val 1t = 6 - Int
- sum 4;

val 1t = 10 - 1Int

More recursive fun

- fun map (f, 1) =

= if null 1 then nil

= else T (hd) :: map(f, tl I);

val map = fn - (Ca -> ’b) * "a list -> b list

— fun add5 x = x + 5;
val add5 = fn - 1nt -> Int

- map(add5, [10,11,12]);
val 1t = [15,16,17] - 1Int list

Reduce

Another popular functional language construct:

fun reduce (f, z, nil) = z
| reduce (f, z, h::t) = f(h, reduce(f, z, t))

If £is “—", reduce(f,z,a::b::c)isa— (b— (c— z))

- reduce(fn (x,y) => x - vy, 0, [1,5]D);
val 1t = 74 : Int

- reduce(fn (x,y) => x - vy, 2, [10,2,1]);
val 1t = 7 - 1Int

But why always name fun

- map(fn x => x + 5, [10,11,12]);
val 1t = [15,16,17] : Int list

This is called a lambda expression: it's simply an
unnamed function.

The fun operator is similar to a lambda expression:

- val add5 = fn X => X + 5;
val add5 = fn - Int -> Int
- add5 10;

val 1t = 15 : Int

Pattern Matching

Functions are often defined over ranges

x fx >0
—x otherwise.

) ={

Functions in ML are no different. How to cleverly avoid
writing if-then:

fun map (f.[1) = [
| map (F,1) = F (hd 1) :: map(f,tl I);

Pattern matching is order-sensitive. This gives an error.

fun map (F,1) = ¥ (hd 1) :: map(F,tl 1)
| map (F,[1) = [1;

Pattern Matching

More fancy binding

fun map (_.[D = [
| map (Ff,h - ©) = f h -: map(f,t);

“ " matches anything

h -: tmatchs alist, binding h to the head and t to the
tail.

The Lambda Calculus

The Lambda Calculus

Fancy name for rules about how to represent and evaluate
expressions with unnamed functions.

Theoretical underpinning of functional languages.
Side-effect free.

Very different from the Turing model of a store with
evolving state.

ML: The Lambda Calculus:
fn x => 2 * x; AT.*x 2 x
English:

“the function of x that returns the product of two and x”

Pure lambda calculus has no built-in functions: we’ll be
impure.

To evaluate (4 (x 5 6) (x 8 3)), we can’t start with +
because it only operates on numbers.

There are two reducible expressions: (x 5 6) and (x 8 3).
We can reduce either one first. For example:

(+ (+ 56) (* 83))

30 (x &8 3
(+ (+ 83)) Looks like deriving a
(+ 30 24) sentence from a grammar.
54

Evaluating Lambda EXx

We need a reduction rule to handle)\s:

(Ax.* 2x)4
(x 2 4)
8

This is called G-reduction.
The formal parameter may be used several times:
(Ax. 4+ zx)4

(+ 4 4)
8

Reduction Order

The order in which you reduce things can matter.
Az Ay.y) ((Az.z 2) (Az.z2 2))

We could choose to reduce one of two things, either
(Az.z 2) (Az.z 2)

or the whole thing

Az y.y) ((Az.z 2) (A\z.z2 2))

Reduction Order

Reducing (Az.z z) (Az.z z) effectively does nothing
because (\z.z z) is the function that calls its first
argument on its first argument. The expression reduces to
itself:

(Az.z z) (Az.z 2)
So always reducing it does not terminate.

However, reducing the outermost function does terminate
because it ignores its (nasty) argument:

Az y.y) ((Az.z 2) (A\z.z2 2))
AY.Y

Reduction Order

The redex Is a sub-expression that can be reduced.

The leftmost redex is the one whose) is to the left of all
other redexes. You can guess which is the rightmost.

The outermost redex is not contained in any other.
The innermost redex does not contain any other.
For Az \y.y) ((Az.z z) (Az.z2 2)),

(Az.z z2) (Az.z z) is the leftmost innermost and

(Az. A y.y) ((Az.z 2) (Az.z z)) is the leftmost outermost.

Applicative vs. Normal Or

Applicative order reduction: Always reduce the leftmost
Innermost redex.

Normative order reduction: Always reduce the leftmost
outermost redex.

For (A\x.A\y.y) ((Az.z z) (Az.z z)), applicative order
reduction never terminated but normative order did.

Applicative vs. Normal Ord

Applicative: reduce leftmost innermost
“evaluate arguments before the function itself”

eager evaluation, call-by-value, usually more efficient

Normative: reduce leftmost outermost
“evaluate the function before its arguments”

lazy evaluation, call-by-name, more costly to implement,
accepts a larger class of programs

Normal Form

A lambda expression that cannot be reduced further is in
normal form.

Thus,
AY.Y
IS the normal form of

Az y.y) ((Az.z 2) (A\z.z2 2))

Normal Form

Not everything has a normal form

(Az.z 2) (Az.z 2)

can only be reduced to itself, so it never produces an
non-reducible expression.

“Infinite loop.”

The Church-Rosser Theor

If 1 <— FE5 (are interconvertable), then there exists an E
such that £1 — E and Ey — E.

“Reduction in any way can eventually produce the same
result.”

If 1 — FE5, and E5 is I1s normal form, then there is a
normal-order reduction of F; to E>.

“Normal-order reduction will always produce a normal
form, if one exists.”

Church-Rosser

Amazing result:

Any way you choose to evaluate a lambda expression will
produce the same result.

Each program means exactly one thing: its normal form.
The lambda calculus is deterministic w.r.t. the final result.

Normal order reduction is the most general.

