

G!
A programming language for 2D games

Rachit Parikh rnp2102@columbia.edu
Divya Arora da2254@columbia.edu

Steve Lianoglou sl2585@columbia.edu
Amortya Ray ar2566@columbia.edu

mailto:rnp2102@columbia.edu
mailto:da2254@columbia.edu
mailto:sl2585@columbia.edu
mailto:ar2566@columbia.edu

Introduction

 Game Development – Tedious and
complicated affair

 Lots of repetitive code and bookkeeping
to ensure a proper functionality

 For example: check when 2 objects
collide, check when a key is pressed,
handle an event, …

Motivation

 Hence G!
 Specifically for 2D games
 Allow the developer to focus on game

play and target
 Bookkeeping handled at the backend
 Intuitive commands, minimal keywords,

high flexibility

Implementation

 Based on the GTGE Library
 Library takes care of a lot of basic

gaming functionality but it’s still Java –
lengthy, redundant code

 Compiler Structure:

Implementation
 G! Walker

 Phase 1: Initializing symbol tables and
other data structures

 Phase 2: Type checking expressions,
forward declarations of variables and
functions

 G! Translator
 Code Generation
 Invoke javac compiler

G! v/s its Java Equivalent

 G! is free form, Java is not
 G! programs involve:

 variable declarations and assignments
 function definitions
 if-else statements
 while and for loops
 an asynchronous statement type “when”

Its Java Equivalent
 Game class that includes:

 Class level declarations
 Initializations and setting the gamefield withing

initResources()
 An update method : the asynchronous event

checks
 A render method
 Main method that launches game
 Classes to handle collisions

Compiler Goals
 Find the collection of different

statement types in the program
 Preserve the scope of each of these

collections.
 Know what to do with each of these

objects in the collection types
 Static/ semantic analysis of the program
 Generate a java equivalent

Our solution

 Block

 GbScopeContainer

Function When if for

Lessons Learnt
 Language development requires careful

planning and analysis
 Before using any library, be sure to

study it inside out
 Deal with the harder things first. Keep

the simple stuff for later.
 Better time management to avoid the

sleepless nights before submission!

