MARS - a music mixing language

=l

e Edit Yiew Extras Devices Help

| 3 FH|é a@e X |= e e o
GENIATO

VIRTUAL NUSIE WORKSTATION

 Initia] Timbre Initial Timbre: Initial Timbre Initial Ti Initial Timbre Initial Timbre
: v Takl T Triial Tirbre. rbre imbre
Part & Part9 part 10 Part 15 Part 16 Stereo/Cross Delay A
gt s et | g | on Tme Fesdback

ot 2] . & MmDIs mmiio mori Mot 13 I oo EDEE SEn i
Enecta Erecta Hean Hfean Hfean E EE i P~

Stereo/cCross Delay B
tetm Hets Effecs e s Efes fezs Efets Effeccs on

Time

Hecs

Panning

‘Drumidt (Drum defintion)
Level Wave

Pitch Mod.

n
_l!

|

I Overview
* What's the point?
I - A lot of music is repetitive
* Mozart

* Britney Spears
- Why not let a computer handle the repetition”?
* predefined loops
* MARS language
* Creativity

* Problem with professional software?
- too confusing!
- grad students don't have any money :(

I Overview

I e Data Structures vs Music Compositions

- Complex data structures
* Collection of primitives
* Executed in certain order or concurrently

- Complex music composition
* Collection of music tracks or parts
* Played in certain order or concurrently

Overview

* Define music entities

- Composition
e Sections
* Groups
* Tracks

* Add behaviors
- Play
- Delay
- Loop
- Mix
- VVolume control

Group

Gl

Composition

Your first composition

Everything 1s wrapped in a composition

def composition HelloOpus
track swapneel = “HelloWorld.wav”
track ritika = “Nifty.wav”

def section MainSection

swapneel .play ()

ritika.play()

mix (swapneel.play (), ritika.play())
end

playOrder (MainSection)
end

Your first composition

e def composition / end

- Defines new composition

- Each composition is its own file
* Like Javal

- Compositions have
e Sections, groups, and tracks

Your first composition

e track swapneel = “HelloWorld.wav”
- Tracks are the building block — sound files

e def section MainSection / end
- Sections are defined subdivisions of a song

- Used to represent Musical Form

* Mozart — A B A form
* Britney Spears - Intro, Bridge, Chorus

- We only have one section here
- More complex song, more repeated sections

I Your first composition

System Commands

I e play(), play(double)
- Plays a given track at that moment

- Optional parameter to only play to certain portion
e mix(track, track..)

- Mixes tracks at same time (super-impose)
* Mix on play command

* Many other advanced commands
- fadeln
- setVolume
- delay
- getLength

Your first composition

e playOrder (section...)

- Acts as a "main” for the composition
- Will play defined sections in a certain order
- Mandatory, even if there is only one section

- Sections can be repeated, common for songs

* Demo song has 4 sections, played in this order:

- Verse

- Bridge

— Chorus

- Guitar Solo

- Verse

- Bridge

— Chorus

- Rap Ending

I More advanced features
* For loops
I - The ability to loop tracks with traditional for loops
* Used to accomplish something on each iteration

- (i.e. Volume change)

* Groups
- Used to “Group” tracks
* Rhythm group consists of bass drum, cymbal, snare
— Useful for coding group once, used repeatedly

I Even More advanced features

- If statements, and If/Else statements

- Used to only play under certain conditions
* Perhaps only every other iteration?

I e Conditionals

* Scope
- Static scoping
- def / end defines scope

- Global scope
* Things not defined inside sections or groups

I Implementation

- Generate Java code from MARS (*.mars)
composition

I * First half of process

MARS music composition

:

Lexer

Parser — \Walker —| Code Generation -

I Implementation

- Generate executable Java composition

— Interface with MARS Sound API
e Abstracted version of Java Sound API

I * Second half of process

Java version of composition

'

Java Sound API

I Lessons Learned

- Had a hard time defining semantics
- Had a hard time understanding control flow

I * Unique language

e Start with small subset of language

- It is easy to overshoot features
- Start small, then add...NOT the other way!

e Start earlier
- Easy to put PLT as last priority. Not a good idea!

I Summary

- Creativity in language
— Fun to test because of sound
— Harder to test because of sound

I * Fun language

* Makes life easier
- Easy to repeat thing like sections and groups
- Easy to iterate on your composition
- Easy to see relationship between tracks/sections

* Not very practical
- Very hard to “debug” a music language
- You need a good ear and a lot of patience

