4115 PROGRAMING LANGUAGES AND TRANSLATORS

Monte Carlo Simulation
Language

Final Report

DEYZ
Yunling Wang (yw2291)
Chong Zhai (cz2191)
Diego Garcia (dg2275)

Eita Shuto (es2808)

Contents

R [4 o o [T o1 { o o PSRRI 4
11 OVEIVIBW ...eiiiiiiiiiiett ettt ettt e e s bt e e e e e e s bbb et e e e e s s ab b b et e e e e s e s s bbb aeeeessas seeeeessesnnraneeeas 4
1.2 LCToT- | IO PP PP P U SUPPTUPPRPRUPOR 4

1.2.1 Y] o =1 F=do T 1 T ' 13U 4
1.2.2 Generation of random NUMDEIS. ..o 4
1.3 SIS 5
1.4 BaSIiC LANGUAEE FEATUIES ..eiviiiiiiiiiiiie ettt ettt ettt e e e e s st e e e e e s s e saabb e e e e e e s s s sabtbeeeeeessssssnanaeeeas 5
141 SEATEMENT oot e e 5
1.4.2 D L= T Y o 1T OO OO TP PO PP PPPPPPPPPPPR 5
1.4.3 RESEIVEA WOTS ..ot st e s s sme e e smre e sbeeenaeenneee s 5
144 T =T [o I TaTe IO o T=T =) o oSSR 5
1.4.5 PUNCEULION IMAIKS ...ttt et st e e s e e s b e e ne e e smneesareesneeesnnes 6
1.4.6 BUITE TN FUNCHIONS ..ttt et ettt st esbe e e st e e sbe e s beessaee e sabeesbeeebeeennnea s 6
1.4.7 User defined fUNCLIONSocueiiiiiieiie ettt et et esreesreesaeesane e 7
1.5 =10 0Y o1 S 6o o LTSS 7
1.5.1 Generate a random iNtEGEI/TIOAT......cccui ittt et e e te e e be e e steeeetaeeebeeenree s 7
1.5.2 Generate a vector of random iNtE@EErS/flOatseicuiiiiiiieie ettt et e 7

P Y oY - (U Y- { R U o o - | RS 8

2.1 T L0 o1 USRI 8
2.1 2 HEllo WOTTAD .ottt ettt b e s bt s sbe e saee st st st eesaeenanenaee 8
2.1.2 HEllo WOrTd! .. s Error! Bookmark not defined.
A U U o TSRS 9

2.2 (00T g oY oY1 1TaY =4V o I U] o o = SRR 9

R I [= {UF- T { I Y Y TU T | PRSP 10

3.1 LeXiCal CONVENTIONS. .. .eieiiiiitiieitee ettt ettt ettt et e sttt ettt e s it e e s ateesabeeesaeeesabeesabeeeabeeesabeesabeesabeeeneeesareesas senneenns 10
3.0, COMIMENTS eeiiiiiiiiiiiiiiiiieieiere ettt ettt ettt e e et et eeeteteeeeeaeeaeaaaeaaaaaeaeaeaeaesasesssesasasssssssssssssssasassananssasasansnnsresnrenereenes 10
T8 B A e 1= o1 4111 ST SUS U RPPPTRPR 10
T R T YA Vo] o RSP 10

3.2 CONSTANTS ettt e e e st e b e e e e s b e e braee e e nr e e e s arreeenas 10
A R [N 0= o =T oo) =]) AP PPPURPPPOR PPN 10

3.2.3 FIOAtING CONSTANTS ..eiueviiiiiiiiie ettt e e e et e e e e tt e e e e e bt e e e seabaeeeeastaeesanbaeeeessaeesansteeeennsenean ses 10

R B g T oo 4 1) =1 o) £ PPN 10
R D - 1 Y/ o = TP 11
3.3. 1 FUNAAMENTAI FOIM L.ttt ettt e st e bt e bt e s abe e s bt e e be e e smbeesabeesaneeesnneesnnees oe 11
3.3.2 RANAOM FOIMN ettt ettt ettt ettt ettt e s bt e st e e bt e e bt e e sabeesabeeeabeeeabeesabeesabeeebbeeabeesabeesane sabeesares 11
20 70 T U] =TSSP 11
3.4 Declaration for variables and fUNCLIONScooiiiiinien e e 11
B4, L VArIADIES e s s e sreesareeennnes 12
IR 3 (V] o [or o o L3PPSR POTTOTRR 12
oY=t o - T o TSRS 12
4.1 o] T o o 1T =PSRRI 12
4.2 o =Totdl T o111 o TSP 13
4.3 Roles and RESPONSIDIITIESccccuviieiiiiiei e e e e e e e e e e e eabe e e e e ate e e e sareeeeennees 14
4.4 Software Development ENVIFONMENT.........ccciiii ettt e e e e e e re e e e s are e e e abee e e enreeeeeaneeas 14
44.1 (O o =T o= A1 ¥ =V =Y o o [P U 14
4.4.2 (=0 1 o TP OROTRO 14
443 SUDVEISION (SVN) 1ieiiiiiie ettt ettt ettt s e et e et e e at e e s te e ebaeessaeessteesnsaesseeessseeassaesnsesasseenneens 14
444 BASH SREIL.... e e s s e sre s ne eesane e 14
F Yol oY1 Yot { U= B 1T = o TP 15
5.1 COMPONENES DIAGIAITeiiuviiiiieiiieiriee st stteerteeste e st e st e estaeesbeesbeeesbeeessteesabeesbeeessseesssesssessnsenesseenns 15
5.2 (070 0 o] oY1 1Y g 4 U o1 (¥] ST SPRRRNt 16
LTS 5 T T O PSSP PP PU PP PPPRTOURRRPRO 17
6.1 LIS = =P PP 17
6.1.1 F0eTS] B g ot SRS 17
6.1.2 FACIIICS] .ttt b et b et sh et b e she et et s sheete b 18
6.2 USING Of SCHIPT N TESTING 1.nevrieiiciiie ettt et e et e e et e e e ebb e e e esata e e e srteeeesnbteeeeantaeeesasseeaeanes 21
6.2.1 INCSLSI 1ottt b et b e bt s ae e sat e st s et sae et e eaeas 21
6.2.2 LT AR RO OSSP P TP UPRRUPRIPR 23
LESSONS LEAINEM ...einiiiieiiieeiiieeitee sttt ettt ettt ettt e st e st e s bt e e sab e e s bt e e bbe e abeesabeesabee e st e e eubee s beeente eeebteenatean 26
Y oY o T=] o Lo [PRSPt 28

1 Introduction

1.1 Overview

We are studying O'Caml when design this general purpose simulation language. The language aims to
simplify the simulation programming with Monte Carlo method, free the programmers to the
programming details about the simulation and focus on the model of particular problems. The discussion
on generality provided the theoretical base for the feasibility of this idea.

1.2 Goal

Monte Carlo Simulation Language-MCSL is a language focusing on simulation problem in many
academic areas. The theory of Monte Carlo method has become more and more subtle and is still under
development. Our goal is a language which grasps the essential of the language rather than the various
detailed implementations. GUI is not considered since this is basically used in the situation where
visualization is not kernel.

1.2.1 Sub-algorithms:
We model the work flow of this algorithm as

e generating random numbers,
e cvaluate with the sequence of random numbers in the format of vector

e aggregating the simulation results automatically (with the convergences or variational conditions
considered simultaneously)

1.2.2 Generation of random numbers
e Uniform distribution:

Mersenne twister: It is designed with Monte Carlo simulations and other statistical
simulations in mind which has long period, high order of dimensional
equidistribution and passes numerous stringent tests for statistical randomness.

e Arbitrary distribution:

Most distribution could be generated by using Uniform [0, 1] random numbers.
Algorithms are distribution depended, inverse transformation, acceptance-rejection
method, composition method and etc.

We use the GMP-Multiple Precision Arithmetic Library which provides arbitrary precision arithmetic,
operating on signed integers, rational numbers, and floating point numbers. There is no practical limit to
the precision except the ones implied by the available memory in the machine GMP runs on. It also has
a rich set of efficient functions, its support on bignum and random number provide a good opportunity to
implement a factorization algorithm shown in the example section.

1.3 Key feature

Most calculations are based on random numbers. Programmer has to do is to specify the algorithm to be
used and the type of distribution. The creating of random numbers and way of iterations is taken care of
by the language.

1.4 Basic Language Features

1.4.1 Statement

Statement represents a complete instruction. Statements can contain reserved words, operators, and
punctuation marks. Examples are shown in Sample Code section.

1.4.2 Data Types

We have defined our data type as follows:
Numeric: Integer, Float, Random Integer, Random Float, Vector
Other: String, Tuple

1.4.3 Reserved Words

The basic vocabulary of MCSL Language consists of a set of pre-defined words, which we call reserved
words. Reserved words each have a specific meaning or purpose. Mainly, Basic Reserved Words

int string float vector
randint randfloat if else
do with done

1.4.4 Expression and Operator
a) Mathematical Operators

Arithmetic Operator Meaning

+ Addition
Minus
* Multiplication
Division
% Reminder

Inner Product

b) Relational Operators

Relational Operator Meaning
< Less than
> Greater than
<= Less than or equal to

>= Greater than or equal to
= Assign

== Equal to

I= Not Equal

c) Logical Operators
Relational Operator Meaning
& Logical AND
| Logical OR

1.4.5 Punctuation Marks

There are a number of punctuation marks to establish statements, define parameters, delimit words, and
establish order of precedence.

Symbol Name Description

<< >> starts and ends with vectors.

() Parentheses Group values and forces them to be calculated first

“” Quotation Marks Defines a text string

1.4.6 Builtin functions

We have a series of Library functions called Monte-Carlo functions that are used exclusively for Monte-
Carlo simulations.

float Mcaggregate (typel func, type2 input, type3 iteration-time)
This function performs simulation for iteration-time times. It takes one element of input each time,
apply that to the simulation function func, and add the simulation result to the final return value.

int MathFactorial(int num)
This function calculates and returns the factorial of num.

int MathPower(int b, int e)
This function calculates and returns the e-th power of b.

int MathAbs(int num)
This function calculates and returns the absolute value of num.

float MathFAbs(float f)
This function calculates and returns the absolute value of f.

randFloat RandFloat(float a, float b)
This function defines randFloat type variable which range is from a to b.

randInt RandInt(int a, int b)
This function defines randInt type variable which range is from a to b.

int VectorDimension(vector v)
This function calculates and returns the number of dimensions of the vector v.

float VectorLength(vector v)
This function calculates and returns the length of the vector v.

1.4.7 User defined functions

In order to support user defined function, we defined the following means to define and declare a
function:
type name(type parameter 1, ..., type parameter n);

1.5 Sample Code

Sample code to perform operation in MCSL Language:

1.5.1 Generate a random integer/float

randFloat f:= RandFloat (3.0, 2.5)
randInt i:= RandInt (3, 2)

1.5.2 Generate a vector of random integers/floats

randInt i:= RandlInt (3, 2)
vector vi=<<i,1i,1>>

randFloat f:= RandFloat (3.0, 2.5)
vector v:=<<f, f, f>>

2 Language Tutorial

2.1 Example

2.1.1 Hello World!

Let’s begin with a simple example, “hello world”. This is a sample code that displays “hello world!”
in a command line.

string begin() := "hello world!"
Figure 1 Hello World!

They are the basic things to know to implement this tiny code.
e MCSL program should contain a begin function and runs from this function.

e MCSL does not have any explicit return statement, and functions return the value of expression
which is contained in this function.

e The returned value of the begin function should be outputted to command line.

2.1.2 Pi Calculation

Next, try Monte Carlo Simulation! This is a small example of Monte Carlo Simulation, 7 calculation.

float inCircle (randFloat x, randFloat y) :=

with
vector v = <<x, y>>
do
if VectorLength(v) <=1
then 1
else O
endif

done
randFloat domain := RandFloat(0, 1)
float begin(int iterations) :=

4 * (MCaggregate (inCircle, (domain, domain),
iterations)) / iterations

Figure 2 Pi calculation

Three built-in functions are used in this sample code.

e MCaggregate: takes three parameters, evaluation function defined in same source code,
parameters that are passed to evaluated function and recursive time. It performs evaluation
function for specified times and return accumulation of return values.

e VectorLength: returns the length of the vector.

e RandFloat: defines randomFloat, it takes range of random value.

This is the basic things to know to implement this tiny code.
e The begin function can take arguments from command line.
e Function can contain only one expression in this body.

2.1.3 Useful tips

e A if statement must have else or elseif part. This restriction guarantees that an if statement have
type and value. This means a then part and an else part must returns same type. (Auto conversion
can be adapted.)

A logical operator ”and” is single ampersand, not double.

Semi colon is not needed at end of expression/statement

Don’t forget termination marks of statements, such as endif and done.

2.2 Compiling and Running

Since MCSL populates Ocaml source code, not executable binary code, users have to do the following
step to run their program.

1. Write MCSL source code and save it. For example, helloworld.mcsl

2. Compile a MCSL file to create Ocaml source code, helloworld.ml
$ mclsc helloworld,mcsl

3. Compile a Ocaml source code to create a binary file. If users want to use built-in functions, they have
to link our library (libmcsl.cma).
$ ocamlc —o hello helloworld,ml

4. Run!
$ hello

3 Language Manual
3.1 Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other
separators. In general blanks, tabs, newlines, and comments as described below are ignored except as
they serve to separate tokens. At least one of these characters is required to separate otherwise adjacent
identifiers, constants, and certain operator-pairs. If the input stream has been parsed into tokens up to a
given character, the next token is taken to include the longest string of characters which could possibly
constitute a token.

3.1.1 Comments
The token /* introduces a comment, which terminates with the first occurrence of the token */.

3.1.2 Identifiers:

An identifier is a sequence of letters and digits; the first character must be alphabetic. The underscore
counts as alphabetic. Upper and lower case letters are considered different.

3.1.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int float str vector

randint randfloat tuple list
do with done while
if else

3.2 Constants

There are several kinds of constants, as follows:

3.2.1 Integer constants
An integer constant is a sequence of digits.

3.2.3 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an optionally
signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the
integer part or the fraction part (not both) may be missing; either the decimal point or the e and the
exponent (not both) may be missing. Every floating constant is taken to be double-precision. In this
language, some mathematical floating constants are referred by their conventional names in capital case,
such as: PI, E. Due to the frequency of their usage, it’s supported by the language, not math library.

3.2.3 String constants

A string is a sequence of characters surrounded by double quotes ". A string has the type array-of-
characters (see below) and refers to an area of storage initialized with the given characters. The compiler
places a null byte (\0) at the end of each string so that programs which scan the string can find its end.

10

In a string, the double quotes character " must be preceded by a backslash \ ; in addition, the same
escapes as described for character constants may be used.

3.3 DataType

The data types used in MCSL. Data types consist of three forms; a fundamental form, a random form,
and a tuple.

3.3.1 Fundamental Form

In MCSL, a fundamental form object is a member of one of the following data types: int, float, vector
and string.

int

An int type object represents a 32-bit signed integer value, —2,147,483,648 through 2,147,483,647.
int foo := 27;

float

A float type object represents a double precision floating point number.
float foo := 3.1415;

vector
A vector type object is a combination of one of more float values. A vector type is expressed by
sequence of float which is separated by a comma and enclosed by << and >>.

vector foo := << 2.0, 3.2>>;
string
A string type object represent a finite ordered sequence of characters. ASC II set are allowed as a
character. A string type is expressed by enclosing with double quotations.

string foo := "hello world!";

3.3.2 Random Form
Random form objects don't have a static value and return different values for each access. These values

are generated by pseudo-random algorithm with-its-distribution-defined-within the-declarationpart.

randomint
A randomint type object generates different int values for each access.

randomfloat
A randomfloat type object generates different float values for each access.

3.3.3 Tuples

Tuple is a predefined data structure. It is expressed by enclosing with (and), and each node must be
delimited by a comma.

3.4 Declaration for variables and functions

Declarations are used to specify the interpretation which MCSL gives to each identifier; the declarations
of variables and functions are treated differently.

11

3.4.1 Variables
All variables should be explicitly declared as below:

type-specifier declarator-assignement-expression

The type-specifier specified the datatype of the variables in the declarator-assignment-expression. The
declarator-assignment-expression specifies and a declarator and its value as explained below.
The type specifiers are:

int

float

string
vector
randomint
randomfloat
tuple

list

If the typespecifier is missing from a declaration, it is generally taken to be float.

Declarator-assignment-expression
The declarator-list is a list of declarators with following format:

declarator := value

Declarator
The declarators are names of the variables that are declared.

3.4.2 functions
The declarations of functions have the form

type function-name (parameter-list) := statement

The type is the return type of the function. The function-name is the name of the function. The
parameter-list is a list of parameters for the function. They are seperated with comma, and enclosed by
"(" and ")". The parameters list has the form

typel parameterl, type2 parameter2, type3 paratmeter3, ... typeN parameterN

The statement is defined in the section Statement.

4 Project Plan

The MCSL project is composed with project planning, project specification, project development,
project debugging and testing.

4.1

1.

Planning:
Group Leader: We elected Yunling as our group leader when we first met and it turned out to be
our best choice.

Brainstorm: We carefully thought about every single previous project showed during the class

and also did more investigations on previous projects available on the course website. We spent
quite some hours in the first two brainstorm meetings discuss the possibility, the advantage and

12

disadvantage of various ideas. We focused our attention on 4 proposals: Music composition,
Calendar Manipulation, Monte Carlo Simulation and Human Interactive simulation.

3. Making Choice: We met with our TA, and Diego met our professor during the office hour asking
about the option on these different projects. After that, we voted for the Monte Carlo simulation
language because it’s more abstract and generally used. Meanwhile it’s easy to implement and
demonstrate some algorithms. Another simulation oriented proposal was also good, but we did
not have a clear understanding at that moment.

4. Assigning duties: We assigned each member with both common homework and different ones
based on different personal preferences and background. It’s the best way to make everyone
willing to contribute and contribute in a most efficient way. At the meantime, we could learn a
lot from each other every meeting.

5. Clarify responsibility, maintain a good schedule: Our group leader made an announcement of
responsibility, assignment and corresponding deadline for group member. In the most case, the
work load was appropriate for everyone. A reminding email was sent before next meeting to
make sure the approach of entire project. It happened that some member was too busy or had
difficulty with some assignment. We made adjustment and assigned more people to cooperate
with him/her.

6. Timeline: a clear schedule no doubt is crucial for any project. We made sure that everyone has a
clear knowledge of important stages for our projects and tried our best to keep the most

important stage accomplished on time.

4.2 Project Timeline

Mon 9/8 | Team Forming
Fri 9/12 | Brain Storming
Tue 9/16 | Ask Feedback from TA and Prof
Sat 9/20 | Google code SVC created
Mon 9/22 | Topic Determined
Wed 9/24 | Proposal Submitted
Tue 9/30 | Discuss possible application
Fri 10/10 | Discuss project's documentation
Thu 10/16 | Finish Language Reference Manual
Mon 10/20 | Meeting with Professor about details issues
Tue 10/21 | LRM Submitted
Thu 10/30 | Discuss LRM Feedback, Create Wiki Pages
Thu 11/6 | First Parser and Scanner, Final Proposal Added
Tue 11/18 | Ast Add into SVN, Modified Parser and Scanner
Sat 11/22 | Discuss the details
Wed 11/26 | First Working Compiler
Sat 11/29 | Discuss the Compiler, Start SAST
Wed 12/10 | Implement Complier, SAST, Check File Started

13

Thu 12/11 | PMZ Library Added, Start Final Report
Mon 12/15 | First Stable Compiler, More Test Cases
Wed 12/17 | Built-in Functions Implemented

Fri 12/19 | Subtle Program Created and Tested
Demonstrate Project to Professor
Finish the Final Report

4.3 Roles and Responsibilities

Diego Garcia Compiler, Interpret, Major System Built-in
functions, Source Control setup, Makefile,
Eita Shuto Ast, Parser, Scanner, Sast, Scoping, Symbol Table,
Language Specification,
Yunling Wang Development Framework Setup ,Test Cases,
Random Modulus, Demo Programs
Chong Zhai Sast, Type Checking, Algorithms, LRM, Final
Presentation

4.4 Software Development Environment
All the file are develop with Object Caml, which also provides OCamlyacc.

4.4.1 Operating Systems

Our development was based on Object Caml and its GMP library (which is not easy to compile under
windows. Thus we use Linux mostly and Win32 environment sometime. Some modulus could not be
compiled under Win32 environment. There is a solution to add GMP with MinGW to use it under
windows, but most of the work is done in Linux.

4.4.2 Editor
Three of us use Vi or Vim, one uses another editor, Sakuri, None of use uses IDE.

4.4.3 Subversion (SVN)

Subversion is an open source application for revision control. We used google code as our repository
which is based on SVN.

4.4.4 Bash Shell
We use bash shell to write test cases script.

14

5 Architectural Design

5.1 Components Diagram

sSrc

bin

mesl

scanner.mll

‘-

— operator. mlilﬁ

—™ ast.mli |
A

S i
sast.mli |(_ |

A

type.mliﬁe |

check.mllﬁ<_

compile.ml

main.mlﬁ{—

mesle.ml |

! interpret.ml ||

5

! mesli.ml | |

makefile |

| libmcsl.cma

i vector.ml |

-/__3.(_)

=

rand.mlﬁ‘) gmp.mlilﬁ |
= |
math.mlﬁ | _’ﬁl |

makefile |

15

5.2 Compiler Structure

To compile a MCSL source file, it's easiest to use the mesl executable. However, this is only a front-end
script to the real translator. The compiler's main entry point is through mcslc.ml, in the src directory.
This file opens the input file, creates an output, and then sequentially calls each layer of the compilation
mechanism. First, it calls the lexical scanner, scanner.mll, passing it the source code. From it, a
sequence of tokens is returned, which is fed into parser.mly. This parser uses the definitions in
operator.mli, type.mli, and ast.mli to create an abstract syntax tree, with nodes for declarations and
expressions. The AST is fed then into check.ml through it's chk function. Using the same interfaces
than the parser, plus sast.mli, this layer scans the tree checking for proper scope of identifiers and
deducing the type of each node. This augmented tree is then passed to compile.ml, which linearly
generates corresponding OCaml code to recreate the MCSL functionality. Finally, with all declarations
printed out, main.ml is called to complete the translation. It adds code to read in arguments from the
command line, convert them to the proper types, and then call begin with them. It then prints out begin's
results.

Within MCSL there are a series of core functions available to the user. Whenever check.ml can't find a
function in its scope, it checks with builtin.ml to see if it is declared there. If so, the function's
information can be retrieved. Similarly, when compile.ml comes across a built-in, it retrieves the name
of the real function call from builtin.ml.

Functions declared in builtin.ml are defined in libmcsl.cma, which is in the lib directory. At the
moment, libmesl.cma holds rand.ml, mc.ml, vector.ml and math.ml. It also contains the external library
gmp.cma, to which rand.ml is the interface. mc.ml holds the definition of the Monte Carlo functions,
designed to easily apply the algorithm to a program. General math functions are in math.ml. In
vector.ml are utility functions for vectors. And rand.ml hold the implementations for the random
variable types. Also, rand.ml has the only built-in that is implicitly called, when a random type is
collapsed into a value.

Once the translation to OCaml is completed, the source is compiled with ocamlc, linking the object with
libmesl.cma, and the MCSL executable is generated.

16

6 Test Plan

6.1 TestCases

The test cases generally have 3 categories: basic tests (including all arithmetic operators, statements and
expression evaluations), random tests (functions that call the random module), and advanced tests
(programs that do actual simulation under a well-defined context).

Here are the two typical test cases: nest.mcsl and fac.mcsl.

6.1.1 nest.mcsl

Mostly tested the scoping rules, including the opening scoping, static scoping, nested scoping, as well as
our special scoping expression “with...do...done”.
This program actually succeeded in breaking the compiler the first time it ran.

#it nest.mcsl H#Hit
int begin() :=
with
intx:=3
do
ifx <4
then
if
with
inty:=12
do
y/x
done
then 1
else -1
endif
else
0
endif
done
nest.ml i

let rec begin' = (letx'=3 in
(if (if (float_of int x') <(float_of int4) then 1 else 0) =0 then (
0
) else (

(if(lety'=12in
(y'/x"))=0then (

(-1)
) else (

1
)
) s

let ret =begin'

17

in print_endline
(string_of int ret)

6.1.2 fac.mcsl

This program is a real simulation program under a well-defined context. It can factorialize an
nonnegative integer. This shows how our language can be used in actual simulation applications.

NTaTS

fac.mcsl 1t

int isprime(int n):=
if n!=2 & n%2 ==

then 0
else
with
int checkprime(int n,int i):=
if i*1>n then 1
elseif n%i == 0 then 0
else checkprime(n, i+2)
endif
do
checkprime(n, 3)
done
endif
int ged(int a, int b):=
ifa==
then a
elseifa>Db
then ged(a-b, b)
else
gcd(b-a, a)
endif
int makeodd(int n):=
if n%2==0
then makeodd(n/2)
else
n
endif

string factorial(int n, int b, int k):=
with
string str :=""
int tmp :=n-1
randInt iran := RandInt(0,tmp-1)
inta:=
if iran <=1
then 2
else iran
endif
int power := MathPower(a, k)
int res := gcd(MathAbs((power)%n-1), n)
int change :=res > 1 & isprime(res)
intn:=

if change
then n/res
else n
endif
string str := if change then
str+" " +res

else
str
endif
do
if isprime(n)
then nt+" "+str /*print N */
elseif n==
then str
else
str+" "+factorial(n, b, k)
endif
done

string fact(int n, int b):=

with

int k := MathFactorial(b)
do

factorial(n, b, k)
done
string begin(int n):=
with

intb:=6

int n := makeodd(n)
do

if n==

then ""

elseif isprime(n)

then n

else

fact(n,b)

endif

done

) NTET)

#H fac.ml it

let rec isprime' (n') = (if (if (float of int (if (float of intn') <> (float of int (if (2 <>0) && ((n'mod 2) <> 0) then 1
else 0)) then 1 else 0)) = (float of int 0)then 1 else 0) =0 then (

(let rec checkprime' (n', i') = (if (if (float of int (i' *i')) > (float of intn') then 1 else 0) =0 then (
(if (if (float_of int(n'modi'))= (float of int 0)then 1 else 0) =0 then (

(checkprime' (n', (i'+2)))
) else (

0
)
) else (

1
) in

(checkprime' (n',3)))
) else (

0

) 5

19

let rec ged' (a', b') = (if (if (float_of inta')=(float of intb') then 1 else 0) =0 then (
(if (if (float_of inta') > (float_of intb') then 1 else 0) =0 then (
(ged'((b'-a'),a'"))

) else (

(ged' ((a'-b'),b'"))

)

) else (

a’

) 5

let rec makeodd' (n') = (if (if (float_of int (n' mod 2)) = (float_of int 0) then 1 else 0) = 0 then (
nl

) else (

(makeodd' ((n'/2)))

) 3

let rec factorial' (n', b', k') =(letstr'=""1n

lettmp'=(n'-1)in

let iran' = (Rand.intRng (0, (tmp'- 1))) in

let a' = (if (if (float of int (Rand.getRandInt iran')) <= (float of int 1) then 1 else 0) =0 then (
(Rand.getRandInt iran')

) else (

2

)) in

let power' = (Math.pow (a',k')) in

let res' = (ged' ((Math.abs (((power' modn')-1))),n'))in
let change' = (if ((if (float_of intres') > (float of int 1) then 1 else 0) <> 0) && ((isprime' (res')) <> 0) then 1 else 0)
in

let n' = (if change' = 0 then (

nl

) else (

(n'/res'")

)) in

let str' = (if change' = 0 then (

str'

) else (

((str" A" ")~ (string_of intres'))

)) in

(if (isprime' (n')) = 0 then (

(if (if (float_of intn')=(float of int 1) then I else 0) =0 then (
((st" A" ")~ (factorial' (n',b',k')))

) else (

str'

)

) else (

(((string_of intn")"" ") str')

)5

let rec fact' (n', b') = (let k' = (Math.factorial (b')) in

(factorial' (n',b',k')));;

let rec begin' (n') =(letb'=6in

let n' = (makeodd' (n')) in

(if (if (float_of intn') = (float_of int 1) then 1 else 0) = 0 then (
(if (isprime' (n')) = 0 then (

(fact' (n',b'))

) else (

(string_of intn'")

)

) else (

20

N) s

let paraml =int of string Sys.argv.(1);;
let ret=begin'

(
_paraml)

in print_endline
_ret

6.2 Using of script in Testing

Scripts are used in multiple places during testing. First, There is a script that automatically compiles the
{sourcecode}.mcsl into {sourcecode}.ml then to {sourcecode}, and executes the executable at last;
Second, there is a test script that calls the first script to compile and run the program before comparing
their outputs to the expected ones.

6.2.1 mcsl.sh
This is the first script that compile and execute the source file automatically. Parts of the codes are
shown below:

) e

#i mecsl.sh: i

#!/bin/bash

MCSL compiling script. Automates steps for converting a mcsl source file
into an executable, or an in between state.

Usage () { cat; } <<doc

Usage: $CMD [options] filename

mcsl is a frontend to mcslc and mcsli, respectively the Monte Carlo Simulation
Language's compiler and interpreter. By default, it will compile the input

file into an executable. Use the options to change its behaviour.

Options:

-C <file> Use <file> as mcsl compiler

-h Print usage and exit

-o <file> Place output into <file>

-t Only translate to ocaml, don't compile
doc
Error () {

rm -f SRMLIST &>/dev/null
echo "$CMD: ${1:-"error"}" >&2
exit ${2:-1}

H

Get compiler command and directory
CMD=§ {0##*/}
DIR=${0%/*}

Defaults
MCSLC="$DIR/../src/mcslc"

21

MCSLI="$DIR/../src/mesli"
MCLIB="$DIR/../lib"
COMPILE=true
LIBS="libmcsl.cma"
RMLIST=""

Minimal check

if [[-z$11]];

then Error "no input files";
fi

Scan arguments
while [[-n $11];
do
case $1 in
Use an alternative compiler executable
-C)
if[[-z$2]];
then Error "no file for -C option'
fi
MCSLC=$2
shift 2

99

Print usage and exit
-h)
Usage
exit 0

29

Set an output file
_0)
if [[-z$21];
then Error "no file for -o option"
fi
OUT=$2
shift 2

99

No compilation
-t)
COMPILE=
shift

29

Get input file and check for existance and extension
*)
if [-n $SRC]] ;
then Error "too many input files";
fi

SRC=$1

if [!-r$SRC] ;

then Error "can't read file: $SRC";
fi

BASE=${1%.%}
BASE=$ {BASE##+/}
EXT=$ { 1##*.}
case $EXT in

"mcesl")

*)
Error "unknown filetype: $SRC"
esac
shift
esac;
done

Translate mcsl to ml
if [[!-x SMCSLC]];
then Error "can't execute compiler”
fi
RMLIST="$RMLIST $BASE.ml"
$MCSLC $SRC
if[[$?2-ne0]];
then
Error
fi
if [[! SCOMPILE 1] ;
then
if [[-n $OUT 1] ;
then mv $BASE.ml $OUT
fi
exit 0
fi

Compile ml to executable

OCAMLC=$(which ocamlc)

if [[$?2-ne0]];

then Error "can't find ocamlc"

fi

$OCAMLC -0 ${OUT:=$BASE} -1 SMCLIB $LIBS $BASE.ml
if [[$? -ne 01]];

then Error

fi

RMLIST="$RMLIST $BASE.cmo $BASE.cmi"
rm -f SRMLIST &> /dev/null

/$OUT

6.2.2 test.sh

All the tests cases are called and evaluated by a bash script, which automatically compares the program
outputs and the expected results. The script is modified from the microc test programs by professor
Edwards on the course websites .

Part of the script is as below:

23

A

#i test.sh:

#1/bin/sh

MCSL="./mcsl"
Compare() {
generatedfiles="$generatedfiles $3"
echo diff -b §1 $2 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
H
H

Run <args>
Report the command, run it, and report any errors
Run() {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
H
H

Check() {
error=0
basename="echo $1 | sed 's/.*\VV//
s/.mesl/"
reffile="echo $1 | sed 's/.mcsl$//"
basedir=""echo $1 | sed 's/\V/["V]*$//"/."

echo -n "$basename..."

echo 1>&2
echo "###### Testing $basename" 1>&2

generatedfiles="$ {basename}.out" &&
Run "$MCSL" $1 ">" ${basename}.out &&
Compare ${basename}.out ${reffile}.out $ {basename}.out.diff

Report the status and clean up the generated files
if [$error -eq 0] ; then

if [$keep -eq 0] ; then
rm -f $generatedfiles

fi
echo "OK"
echo "###H### SUCCESS" 1>&2
else
echo "###H### FAILED" 1>&2
globalerror=$error
fi
rm -f $ {basename}

H

files="basictests/* .mcsl"

for file in $files
do

Check $file 2>> $globallog
done

25

7. Lessons Learned

Eita Shuto

First of all, this project gave me a good chance to consider programming languages. Until this project
(and this course), I had regarded the programming language as only rules, and was interested in only
“what/how”, not “why”. When we tried changing some part of current language and create new one, it
sometimes caused unexpected side effect in other place, even if it looked reasonable at first. Through
such trial and error, I understood why current languages have such syntax or semantics.

In addition, this was my first project which used a functional language. I know that there is a bunch
of bugs in the world and many software engineers are suffering from them. If functional language is a
good solution to solve this problem, it is really great, even if it is still difficult for me and writing code
with functional languages takes more than three times than writing code with other languages that are
familiar to me. Now, I begin to be interested in other functional programming languages, such as
Heskell and F#.

Finally, if I can give one advice to teams in the future, I will say that you should decrease the
number of data type. Supporting many data types is really tiring and requires many tests. If I would
define new programming language again, this language should have only one data type!

Chong Zhai

Being a first semester student without computer program background taking five courses, I think
nothing is more important than time management. A good schedule with moderate work helps a lot. In
fact, our group leader assigned each member based on the background which toke everyone’s best
potential. This is the basic principle when distributes human resources as a group leader but it is not easy.
Yunling did a good job with it. Next thing I learned is cooperation. I could say this project is still doable
individually. What distinguishes a group project with CVN student is neither the size of the project, nor
the quality of the project, but learning to work with other people who may present a large diversity of
productivity, responsibility and personality. This is one of the most important things in both academic
and nonacademic career. Another thing I learned is to be realistic. This is also the only thing my first
English teacher tells me. People tend to have big expectation on himselt/herself. In this case, quite a lot
of beautiful and useful ideas we put on our waiting lists are not implemented given the time. Even the
top implementation was cut when deadline approaches. At last, I think I learned to implement the basic
algorithm in computer science — divide and conquer in practice. It’s more often saving time to break a
big project into minuteness components and conquer them one by one. In this project, during the project
it happened that we thought something was trivial but it turned out not unless we understand each small
component. Technically, what I learned is a functional language with a functional programming style
plus the knowledge of compiler. Talking about this project, I also learned to use the abstract theory into
real implementation, more importantly, being critical whenever comes across a new language. In all, I
suggest future project groups start early, decide quickly, dream less and make small progress first.

Diego Garcia

26

Sometimes, all the planning session you have simply aren't a substitute for experience. We took very
long to get started with the code, mainly because we wanted to have all our bases covered. However,
once doing the implementation, all manner of problems completely beyond our expectations plagued us.
In hindsight, there are many things I would have done differently.

The basic concept of our language is sound, even when the implementation wasn't. Given another week
or so, I'd be tempted to rewrite the whole of the compiler from scratch, and probably a new series of
nuances would then surface.

Yunling Wang

This is really an unforgettable experience of implementing our Monte Carlo Simulation Language.
There are some interesting points that I got during this process.

First, I got to really understand the functional style of programming. We wanted to implement a hybrid
style language that has both elements from C and Ocaml, with the mainstream style as functional style.
Interestingly, as time goes on, we gradually got rid of the C elements and moved bit by bit to adopt the
Ocaml like functional language elements. At last, we came to the conclusion that it would never be
harmony to have both C and Ocaml elements in a single language, so we simply abandoned lots of C
staffs, like looping statement, variable re-evaluation. Meanwhile, we start to reconstruct our language to
make it more functional-like: changing all the branching and scoping statements as well as the function
calls to expressions, and deleting expression statement completely, leaving only the function and
variable declaration as the only types of statements. This mostly resolved our problems of failing to
evaluate the types of the statements when doing automatic type conversion.

Second, I implemented the GMP random number interface module for our language. This is a well-
written arbitrary precision arithmetic operation library that is widely used in simulation process. At first,
I was trying to figure out ways of linking the C library directly. Later, however, it turns out the Ocaml-
Gmp interface is already implemented by David Monniaux in a package called mlgmp. So the task
becomes writing a random module that calls the mlgmp interface to implement the random-number-
generation functionality. The basic design idea of the random module is to create a random number
generator that keeps all the restrictions for the number generation on its declaration, and returns an
actual random value every time this number is evaluated as an integer or float.

Third, T did all of the test cases for our language. Most of the testing error occurred in type conversions
and checkings. Basically, there are several kinds of conversions: those between int, string, float, vector
and tuple; those between random number and the rest of the tests; those occur in function argument
evaluation or return type evaluation; Second, the scoping rules are also import to test: static/dynamic,
opening/close, and those nested in branching and special scoping expressions (most of our error here
involves with the mismatch of parenthesis in generated .ml code).

At last, as the team leader, I learnt a lot about how to organize the whole developing process of the team.
I tried my best in assigning tasks to cater for the specialties and skills of the team members, and in
setting periodic goals to ensure progress of the development of the project.

27

8. Appendix

(***ﬂ

(* sr¢/: Main compiler implementation *)
(***ﬂ

(**)

(* src/scanner.mll: Token scanner *)
(**)
{ open Parser}

let digit = ['0'-'9"]

rule token = parse
["\t'"\r' "\n'] { token lexbuf }
| "/*" {comment lexbuf }

|'(" {LPAREN}
") {RPAREN }
|'{" {LBRACE}
'Y {RBRACE}
'l {LLIST}
[{RLIST}
| "<<" {LVECTOR}
| ">>" {RVECTOR }
[{SEMI}
| {COMMA}
[' {NOT}
| '+ {PLUS}
[{MINUS}
| ™ {TIMES}
'/ {DIVIDE}
|'%' {REMIND }
['& {LAND}
' {LOR}
"' {INNERP}
" {QuoT}
"=" {ASSIGN }
"==" {EQ}
"= {NEQ}
< {LT}
"<=" {LEQ)
"t {GT}
"= {GEQ}
"if {IF}

I

I

I

I

I

I

I

I

I

I

I

| "else" {ELSE}
| "elseif" { ELSEIF }

| "endif" { ENDIF}

| "with" {WITH}

| "do" {DO}

| "done" {DONE }

| "then" {THEN}

| "float" { FLOAT }

| "int" {INT}

| "vector" { VECTOR}
| "string" {STR}

| "randint" {RINT}

28

| "randFloat" {RFLOAT }

| "list" {LIST}

| digit+ as Ixm { LINT(int_of_string Ixm) }

| digit+ (".' digit*)? (['e' 'E'] ['+' '-']? digit+)? as Ixm { LFLOAT(float_of_string (Ixm)) }
| [Ial_IZI IAI_IZ'][IaI_IZI IAI_IZI IOI_I9I I_I]* as Ixm { ID(le) }

["™ ([~"™']* as Ixm) "™ { LSTR(Ixm) }

| eof {EOF}

| _ as char { raise (Failure("illegal character " A Char.escaped char)) }

and comment = parse

"*/" { token lexbuf }
| _ {comment lexbuf }

(**)

(* src/parser.mly: Parser. Returns AST tree. *)
(**)
%{ open Ast %}

%{ open Operator %}

%{ open Type %}

%token SEMI LPAREN RPAREN LBRACE RBRACE LLIST RLIST LVECTOR RVECTOR COMMA
%token MINUS NOT

%token PLUS MINUS TIMES DIVIDE ASSIGN INNERP REMIND
%token EQ NEQ LT LEQ GT GEQ LAND LOR

%token IF THEN ELSE ELSEIF ENDIF WITH DO DONE

%token INT FLOAT VECTOR LIST RINT RFLOAT STR QUOT
%token <int> LINT

%token <float> LFLOAT

%token <string> 1D

%token <string> LSTR

%token EOF

%left NOT

%left EQ NEQ

%left LAND LOR

%left LT GT LEQ GEQ

%left PLUS MINUS

%left TIMES DIVIDE INNERP REMIND

%start program
%type <Ast.program> program

%%

program:
/* nothing */ {[]}
| delr program { (51 ::$2) }

formals_opt:
LPAREN RPAREN {[] }
| LPAREN formal_list RPAREN { List.rev $2 }

formal_list:
formal {[$1]}
| formal_list COMMA formal { $3 :: 51}

formal:

29

tp ID{ (51, $2) }

stmt_list:

stmt {[$1]}
| stmt_list stmt { S1@[$2] }

dclr:
tp ID formals_opt ASSIGN expr { FDcIr($1, $2, $3, $5) }
| tp ID ASSIGN expr { VDclIr(S1, $2, $4) }

stmt:
delr {$1}

else_list:
ELSE expr{$2}
| ELSEIF expr THEN expr else_list { If($2, $4, $5) }

expr:
LINT {Lint($1) }
| LFLOAT { LFloat($1) }
| LBRACE expr_list RBRACE { LList($2) }
| LVECTOR expr_list RVECTOR {LVctr($2) }
| LPAREN expr_tuple RPAREN {LTple($2)}
| LSTR { LString($1) }
| ID {1d(s1) }
| MINUS expr ~ { Uop(Minus, $2) }
| NOT expr {Uop(Not, $2) }
| expr PLUS expr { Binop($1, Add, $3)}
| expr MINUS expr { Binop($1, Sub, $3)}
| expr TIMES expr { Binop($1, Mult, $3)}
| expr DIVIDE expr { Binop($1, Div, $3)}
| expr REMIND expr { Binop($1, Rmndr, $3) }
| expr INNERP expr { Binop($1, Innrp, $3) }
| expr LAND expr { Binop($1, Land, $3)}
| expr LOR expr { Binop($1, Lor, $3)}
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop(51, Neq, $3)}
| expr LT expr { Binop($1, Less, $3)}
| expr LEQ expr { Binop($1, Leq, $3)}
| expr GT expr { Binop($1, Greater, $3)}
| expr GEQ expr { Binop($1, Geq, $3)}
| ID LPAREN actuals_opt RPAREN { Call($1, $3) }
| LPAREN expr RPAREN { $2 }
| ID LLIST expr RLIST { Elmt($1, $3) }
| IF expr THEN expr else_list ENDIF { If($2, $4, $5) }
| WITH stmt_list DO expr DONE { Scope($2, $4) }

expr_list:
expr {[$1]}
| expr_list COMMA expr {$3:: 51}

expr_tuple:
expr COMMA expr { $3::[$1] }
| expr_tuple COMMA expr { $3 :: $1}

actuals_opt:
/* nothing */ {1}

30

| actuals_list {List.rev $1}

actuals_list:
expr {[s1]}
| actuals_list COMMA expr{$3:: 51}

tp:
FLOAT { Float}
| INT {Int}
| VECTOR { Vector(0) }
| RINT {Rint}
| RFLOAT { RFloat }
| LIST {List}
| STR {Str}

(**)

(* src/ast.mli: AST tree definition. *)
(**)
open Type

open Operator

type expr =
| Lint of int
| LFloat of float
| LList of expr list
| LVctr of expr list
| LTple of expr list
| LString of string
| Uop of uop * expr
| Id of string
| Binop of expr * binop * expr
| Call of string * expr list
| EImt of string * expr
| If of expr * expr * expr
| Scope of stmt list * expr
(*] Noexpr*)

and stmt =
| FDclr of tp * string * (tp * string) list * expr
| VDclr of tp * string * expr
| While of stmt list * expr

type program = stmt list

(**)

(* src/operator.mli: Operator types definition. *)
(**)

type binop = Add | Sub | Mult | Div | Rmndr | Innrp | Equal | Neq | Less | Leq |
Greater | Geq | Land | Lor

type uop = Minus | Not

(**)

(* src/types.mli: Variable types definition. *)
(**)

31

type tp =
| Float
| Int
| Vector of int
| RInt
| RFloat
| List
| Str
| Tuple
| Func

(**)

(* src/check.ml: AST to SAST converter. Checks types and scope. *)
(**)
open Sast

open Ast

open Type

open Operator

module SymTbl = Map.Make(struct

type t = string

let compare x y = Pervasives.compare x y
end)

(* (from type, to type) *)
let rec checkType types = match types with
| (, Int) >
(match types with
| (Int, _)|(Float, _)|(RInt, _)|(RFloat,_) -> Int
| (_,) ->failwith "Type Convert Mismatch (Int)"
)
| (_, Float) ->
(match types with
| (Int, _)|(Float, _)|(RInt, _)|(RFloat,_) -> Float
| (_,_) ->failwith "Type Convert Mismatch (Float)"
)
| (_, RInt) ->
(match types with
| (RInt, _) ->RInt
| (L, _) ->failwith "Type Convert Mismatch (RInt)"
)
| (_, RFloat) ->
(match types with
| (RFloat, _) -> RFloat
| (L, _) ->failwith "Type Convert Mismatch (RFloat)"
)
| (_, Tuple) -> Tuple
| (, Str)->
(match types with
| (Str, _)|(Int, _)|(Float, _)|(RInt, _)|(RFloat,_)|(Vector 0,_) -> Str
| (L, _) ->failwith "Type Convert Mismatch (Str)"
)
| (Vector 0, Vector 0) -> Vector 0
| (_, Func)-> Func
| (L,) ->failwith "Type Convert Mismatch"

32

”

let rec canConversion types = match types with
| (Int,)| (RInt, _) ->
(match types with
| (, Int)|(_, RInt) -> Int
| (_, Float)|(_, RFloat) -> Float
| (, Str) ->Str
| (_,_) ->failwith "If/Else Mismatch (Int/RInt)"
)
| (Float, _)|(RFloat, _) ->
(match types with
| (, Int)|(_, RInt) -> Float
| (_, Float)|(_, RFloat) -> Float
| (_, Str) -> Str
| (_,) ->failwith "If/Else Mismatch (Float)"
)
| (Str,) ->
(match types with
| (, Str)|(, Int)|(_, RInt)|(_, Float)|(_, RFloat)|(_, Vector 0) -> Str
| (,_) ->failwith "If/Else Mismatch (Str)"
)
| (Vector 0, Vector 0) -> Vector O
| (Vector O, Str) -> Str
| (Tuple, Tuple) -> Tuple
| (_, _) -> failwith "Cannot convert"

”

let convert_arg_type to_args from_args =
let (v, typ) = from_args in (from_args, (checkType (typ, to_args)))

”

(* find function and return a return type *)
let rec findfun id = function
10->
if Builtin.exists id
then Builtin.get_ret_type id
else failwith ("Undeclared Function:" ~ id)
| loc::scp ->
let (vars,funs) = loc in
if SymTbl.mem id funs
then
let (typ, arg_typ) = SymTbl.find id funs
in typ
else findfun id scp

”

(* find a function from name and return argument types *)
let rec findfunargs id = function
[1]->
if Builtin.exists id
then Builtin.get_arg_types id
else failwith ("Undeclared Function:" * id)
| loc::scp ->
let (vars,funs) = locin
if SymTbl.mem id funs
then
let (typ, arg_typ) = SymTbl.find id funs

inarg_typ
else findfunargs id scp

(* find a function and return variable types *)
let rec findvar id = function
| []-> failwith ("Undeclared Variable:" id)
| loc::scp ->
let (vars,funs) = loc in
if SymTbl.mem id vars
then SymTbl.find id vars
else if SymTbl.mem id funs
then let (typ, args) = SymTbl.find id funs
in Func (* typ *) (* TODO:a type of function variables may be function... *)
else findvar id scp

’”

let chk ast =
let rec expr env = function
Ast.LInt e -> Sast.LInt e, Int
| Ast.LFloat e -> Sast.LFloat e, Float
| Ast.Binop(el, op, e2) ->
let el = expr env el
and e2 = expr env e2 in
let _,tl=el
and _,t2=e2
in (match op with
| Add -> (match (t1,t2) with
| (Int, _) | (RInt, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt) ->Sast.Binop(el, op, e2), Int
| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (_, Str) -> Sast.Binop(el, op, e2), Str
| () -> failwith "Unsupported Add")

| (Float, _) | (RFloat, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt)|(_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (, Str) ->Sast.Binop(el, op, e2), Str

| () -> failwith "Unsupported Add")
| (Vector a, _) -> (match (t1,t2) with
| (_, Vector b) -> Sast.Binop(el, op, e2), Vector a
| (_, Str) -> Sast.Binop(el, op, e2), Str
1 () -> failwith "Unsupported Add")
| (Str, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt)|(_, Float) | (_, RFloat)|(_, Str)|(_, Vector 0) -> Sast.Binop(el, op, e2), Str
| () -> failwith "Unsupported Add")
| (, _) ->failwith "Unsupported Add/Sub")

| Sub ->(match (t1,t2) with

| (Int, _) | (RInt, _) -> (match (t1,t2) with
| (L Int) | (L, RInt) ->Sast.Binop(el, op, e2), Int
| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| () -> failwith "Unsupported Sub")

| (Float, _) | (RFloat, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt)|(_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (L) -> failwith "Unsupported Sub")

| (Vector a, _) -> (match (t1,t2) with
| (_, Vector b) -> Sast.Binop(el, op, e€2), Vector a
| (L) -> failwith "Unsupported Sub")

34

| (_,) ->failwith "Unsupported Add/Sub")

| Equal|Neq|Greater|Geq|Leq|Less|Land]|Lor ->
(* use Int instead of boolean *)
(match (t1,t2) with
| (Int, _) | (RInt, _)]| (Float, _) | (RFloat, _) -> (match (t1,t2) with
| (L, Int) | (L, RInt)| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, €2), Int
| (_, _)->failwith "Unsupported Compare")
| (_, _)->failwith "Unsupported Compare")

| Mult -> (match (t1, t2) with
| (Int, _) | (RInt, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt) ->Sast.Binop(el, op, e2), Int
| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (_, Vector a) -> Sast.Binop(el, op, e2), Vector a
| () -> failwith "Unsupported Mult")
| (Float, _) | (RFloat, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt)|(_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (L) -> failwith "Unsupported Mult")
| (_, Vector a) -> Sast.Binop(el, op, e2), Vector a
| (L, _) -> failwith "Unsupported Mult")

| Div -> (match (t1, t2) with

| (Int,) | (RInt, _) -> (match (t1,t2) with
| (_, Int)] (_, RInt) ->Sast.Binop(el, op, e2), Int
| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| (L) -> failwith "Unsupported Div")

| (Float, _) | (RFloat, _) -> (match (t1,t2) with
| (L, Int)] (_, RInt) ->Sast.Binop(el, op, e2), Float
| (_, Float) | (_, RFloat) -> Sast.Binop(el, op, e2), Float
| () -> failwith "Unsupported Div")

| (, _)->failwith "Unsupported Div")

| Rmndr -> (match (t1, t2) with
| (Int, _) | (RInt, _) -> (match (t1,t2) with
| (L, Int) | (_, RInt) ->Sast.Binop(el, op, e2), Int
| (L) -> failwith "Unsupported Reminder")
| (_, _) -> failwith "Unsupported Reminder")

| Innrp -> (match (t1,t2) with
| (Vector a, Vector b) -> Sast.Binop(el, op, e2), Float
| (_, _) -> failwith "Unsupported Innrp")

)

| Ast.Uop(op, e) ->
lete=exprenvein
let_,t=ein
(match op with
| Minus -> (match t with
| Int|Float|RInt|RFloat|(Vector _) -> Sast.Uop(op, e), t
| _ ->failwith "Unsupported Minus")

(* Right now, Not could be operated on any type
* Everything could be regarded as boolean 1 expect 0%)
| Not -> Sast.Uop(op, e), t)
| Ast.LString str -> Sast.LString str, Str
| Ast.LList e ->
Sast.LList (List.fold_left (fun Is ex -> (expr env ex)::Is)

[1e), List

| Ast.LVctr e -> Sast.LVctr (List.fold_left (fun Is ex -> (expr env ex)::ls)
[1e), Vector (List.length e)

| Ast.LTple e -> Sast.LTple (List.fold_left (fun Is ex -> (expr env ex)::ls)
[1e), Tuple

| Ast.Elmt (s, e) ->
let e = expr env e in Sast.EImt (s, e), Int

| Ast.ld e -> Sast.Id e, (findvar e env)

| Ast.Call (func_name, args) ->
let sast_args = List.fold_left(fun Is ex -> Is@[(expr env ex)]) [] args in (* Types and value in call *)
let fun_args = (findfunargs func_name env) in (* Types in decrlation *)
let cnvt_new_args = (List.map2 convert_arg_type fun_args sast_args) in
Sast.Call(func_name, cnvt_new_args), findfun func_name env

| Ast.If(e, el, e2) ->
let e =exprenvein
let ,t=ein
(match t with
| Int ->
let (eif, tpif) = (expr env el) in
let (eelse, tpelse) = (expr env e2) in
let typ = canConversion(tpif, tpelse) in
Sast.If(e, (eif, tpif), (eelse, tpelse)), typ
| _ -> failwith "Predicate of if must be integer"

)

| Ast.Scope (inits, body) ->
let env = (SymTbl.empty, SymTbl.empty)::env

in
let (s1', env)=
List.fold_left
(fun (st, env') s ->
let (stmt, env) = (stmt env's)
in
(st@[stmt], env)
)
(1, env) inits
in
let (body, typ) = (expr env body)
in

Sast.Scope (s1', (body, typ)), typ

stmt env = function

| Ast.VDclr(t, str, e) -> (match env with
[1-> failwith "empty scope in FDclIr"
| (Ivars, Ifuns)::globals ->
let Ivars = SymTbl.add str t Ivars in
let env = (lvars, Ifuns)::globals in (
Sast.VDclr(t, str, expr env e), env))
| Ast.While (s, e) -> failwith "While is not supported!"
| Ast.FDclr (t1, str, args, e) -> (match env with
[1-> failwith "empty scope in FDclr"
| (Ivars, Ifuns)::globals ->
let args_types = List.fold_left (fun acc (typ, id) -> acc@[typ]) [] args in
let Ifuns = SymTbl.add str (t1, args_types) Ifuns in

let lvars_new = List.fold_left (fun scope' (typ, var) -> (SymTbl.add var typ scope')) SymTbl.empty args in
let env = [(lvars_new, SymTbl.empty); (lvars, [funs)]@globals in (
Sast.FDclr(t1, str, args, expr env €), env))
in

let emptyScope = [(SymTbl.empty, SymTbl.empty)] in

fst (List.fold_left (fun (prog, env) st -> let stmt' = (stmt env st) in prog@|(fst stmt')], snd(stmt')) ([], emptyScope) ast)

(**)

(* src/sast.mli: SAST definition. Uses same types and operators as AST. *)
(**)
open Type

open Operator

type expr_detail =
| Lint of int
| LFloat of float
| LList of expr list
| LVctr of expr list
| LTple of expr list
| LString of string
| Uop of uop * expr
| 1d of string
| Binop of expr * binop * expr
| Call of string * (expr * tp) list
| Elmt of string * expr
| If of expr * expr * expr
| Scope of stmt list * expr
(*| Noexpr *)

and expr = expr_detail * tp
and stmt =
| FDclr of tp * string * (tp * string) list * expr

| VDclr of tp * string * expr

and program = stmt list

(**)

(* src/compile.ml: Translator. Takes SAST and genrates OCaml code. *)
(**)
open Sast

open Type

open Operator
exception Bug of string (* For "impossible" situations *)

(* Main entry point: run a program *)
let translate prog out =
(* Printing functions *)
let put str = output_string out (str " ") in
let typestr = function
| Float -> "float"

37

| Int ->"integer"
| Vector _ -> "vector"
| RInt -> "randInt"
| RFloat -> "randFloat"
| List -> "list"
| Str->"string"
| Tuple -> "tuple"
| Func -> "function"
in

(* Conversion functions: wrap converters around expressions *)
let rec extotp ex = function

| Float -> extofloat ex

| Int -> extoint ex

| Str -> extostring ex

| _->eval ex

and extoint ex =
let ,tp=-exin
match tp with
| Int -> eval ex
| Float -> put "(int_of_float"; eval ex; put")"
| RInt -> defrand ex
| RFloat -> put "(int_of float "; defrand ex; put ")"
| _->raise (Bug ("Tried to convert "A(typestr tp)*" to integer"))

and extofloat ex =
let _, tp=-exin
match tp with
| Int -> put "(float_of_int"; eval ex; put ")"
| Float -> eval ex
| RInt -> put "(float_of_int "; defrand ex; put ")"
| RFloat -> defrand ex
| _->raise (Bug ("Tried to convert "A(typestr tp)*" to float"))

and extostring ex =
let ,tp=-exin
match tp with
| Str-> eval ex
| Int -> put "(string_of_int"; eval ex; put ")"
| Float -> put "(string_of_float"; eval ex; put ")"
| RInt -> put "(string_of_int "; defrand ex; put ")"
| RFloat -> put "(string_of_float "; defrand ex; put ")"
| Vector _ -> (
put "(let arr ="; eval ex;
put ("in (\"<\" A string_of_float arr.(0) » " »
"(Array.fold_left (fun o f->(o”\",\"~(string_of_float f)))" »
"\"\" (Array.sub arr 1 (Array.length arr - 1)))A\">\"))")
)

| _ ->raise (Bug ("Tried to convert "A(typestr tp)*" to string"))

and defrand ex =
let _, tp=exin
match tp with
| RInt -> put "(Rand.getRandInt "; eval ex; put ")"
| RFloat -> put "(Rand.getRandFloat "; eval ex; put ")"
| _->raise (Bug ("Tried to define a " » (typestr tp)))

38

(* Evaluate an expression *)
and eval = function

(* Literals *)

| Lint(i), _ -> put (string_of_int i)

| LFloat(f), _ -> put (string_of_float f)

| LList(l), tp -> (
put "([";
List.iter (fun ex -> (eval ex; put ";")) I;
put "1)")

| Lvctr(l), _-> ((* Vectors are arrays of floats *)
put "([1";
List.iter (fun ex -> extofloat ex; put ";") I;
put "[1)")

| LTple(l), _-> (* Tuples are tuples: have at least 2 elements *)

(match | with

| [1-> raise (Bug "Empty tuple")

| hd::tl ->
put "(*;
eval hd;
List.iter (fun ex -> put ","; eval ex) tl;
put")")

| LString(s), _-> put ("\"" A5 A "\"")

(* Identifiers. Original names preserved with single quote *)
| Id(var), _->put (var~"")

(* Array indices *)
| ElImt(arr, pos), _ ->(
put (arr A "'.(");
let ,tp=posin
(match tp with
| Int -> eval pos;
| Float -> (
put "int_of_float ";
eval pos)

| _->raise (Bug "Non-scalar array index"));
put |I)ll)

(* Unary operators *)
| Uop(op, ex), tp -> (
put "(";
(match op with
| Minus -> (
match tp with
| Float -> (put "-."; extofloat ex)
| Int -> (put "-"; extoint ex)

(* Create a fresh array with inverted elements *)
| Vector n->(
(* We need to evaluate the vector first, then create
* the inverted copy based off it *)
put "let arr = (";
eval ex;
put (") in Array.init " A string_of_int n
A (funi->-. (arr.(i))")
| _->raise (Bug "Unary '-' expression is non-numeric")

)

39

| Not ->(
put "if ";
let _, stp=exin
(match stp with
| Int -> eval ex
| Float -> (put "(int_of_float"; eval ex; put ")")
| _->raise (Bug "Unary '!" applied to non-scalar"));
put "=0 then 1 else 0")
);
put")")

(* Binary operators. This is big and (mostly) boring. *)
| Binop(el, op, €2), tp -> (

let _,tpl=elin

put "(";

(match tp with

(* Integer result *)
| Int->(
match op with

(* Arithmetic *)

| Add -> (extoint el; put "+"; extoint e2)

| Sub -> (extoint el1; put "-"; extoint e2)

| Mult -> (extoint e1; put "*"; extoint e2)

| Div -> (extoint el1; put "/"; extoint e2)

| Rmndr -> (extoint el; put "mod"; extoint e2)

(* Comparison *)

| Equal -> (put "if"; extofloat el; put "="; extofloat e2; put "then 1 else 0")

| Neq -> (put "if"; extofloat el; put "<>"; extofloat e2; put "then 1 else 0")

| Less -> (put "if"; extofloat el; put "<"; extofloat e2; put "then 1 else 0")

| Leq -> (put "if"; extofloat el1; put "<="; extofloat e2; put "then 1 else 0")

| Greater -> (put "if"; extofloat e1; put ">"; extofloat e2; put "then 1 else 0")
| Geq -> (put "if"; extofloat el; put ">="; extofloat e2; put "then 1 else 0")

(* Logical *)

| Land -> (put "if ("; extoint e1; put "<>0) && (";
extoint e2; put "<>0) then 1 else 0")

| Lor -> (put "if ("; extoint el; put "= 0) && (";
extoint e2; put "= 0) then 0 else 1")

| _ ->raise (Bug "Non-integer operator has integer type")

)

(* Float result *)
| Float -> (
match op with

(* Arithmetic: 2 scalar operands *)
| Add -> (extofloat e1; put "+."; extofloat e2)
| Sub -> (extofloat e1; put "-."; extofloat e2)

| Mult -> (extofloat el; put "*."; extofloat e2)
| Div -> (extofloat el; put "/."; extofloat e2)

(* Dot product *)
| Innrp ->(
put "\nlet arrl ="; eval e1; put "in";

40

put "\nlet arr2 ="; eval e2; put "in";

put "\nlet len1 = Array.length arrl in";

put ("\nlet rec dot r = function -1->r" #

"| n->dot (r+.arrl.(n)*.arr2.(n)) (n-1) in dot 0.0 (len1-1)")
)

| _->raise (Bug "Non-float operator has float type")

)

(* Vector operators *)
| Vector _-> (
(* We'll evaluate the vectors first, then apply the operator to
* the elements. *)
(match tp1 with
| Vector _ -> (put "\nlet arr1 ="; eval e1; put " in"
| _->(put "\nlet flt1 = "; extofloat el; put " in"
);
put "\nlet arr2 ="; eval €2; put " in";
put "\nlet lenl = Array.length arrlin";
(* Check sizes? OCaml does it for me *)
match op with

(* Arithmetic: 2 vector operands *)
| Add -> put "\nArray.init len1 (fun i-> arrl.(i)+.arr2.(i))"
| Sub -> put "\nArray.init len1 (fun i-> arrl.(i)-.arr2.(i))"

| Mult ->
(match tpl with
(* Cross product. Only valid for 3 dimension vectors *)
| Vector _ ->
put ("\n[] arrl.(1)*.arr2.(2) -. arrl.(2)*.arr2.(1); "
A'arrl.(2)*.arr2.(0) -. arrl.(0)*.arr2.(2) ; "
A'arrl.(0)*.arr2.(1) -. arrl.(1)*.arr2.(0) |1")

(* Vector Scaling, or 1x1 * 1xn matrix multiplication *)
| _->put "\nArray.init len1 (fun i-> flt1*.arr2.(i))"
)

| _->raise (Bug "Non-vector operator has vector type")

)

(* List operators *)
| List -> failwith "Lists not yet implemented"

(* String operators *)
| Str->(
match op with

(* Concatenation *)
| Add -> (extostring el; put "A"; extostring e2)

| _->raise (Bug "Non-string operator has string type")

)

| _->raise (Bug ("Binary operation on " A typestr tp))
);

put I|)Il

)

(* Function calls *)
| Call(f, actuals), tp -> (
let fname =
if Builtin.exists f then
Builtin.get_name f
else
(Frm)

put ("(" A fname);
(match actuals with
[1->0
| (ex,tp)::tl->
put "("; extotp ex tp;
List.iter (fun (ex,tp) -> put ",";
extotp ex tp) tl;
put ")");
put ")’)

(* If expression *)
| If(cond, truebody, falsebody), tp -> (
put "(if";
extoint cond;
put "= 0 then (\n";
extotp falsebody tp;
put "\n) else (\n";
extotp truebody tp;
put "\n))")

(* With expression *)
| Scope(init, body), tp -> ((* first run a declaration block, then body *)
put "(*;
List.iter (fun stmt -> (dclr stmt; put "in\n")) init;
extotp body tp;
put")")

(* Print declarations *)
and dclr = function
| FDclr(tp, Iname, formals, body) -> (
put ("let rec" A Iname A "'"');
(match formals with
[1->()
| (_name)::tl ->
put ("("Anamen""");
List.iter (fun (_,name) -> put ",";
put (name”"")) tl;put ")");
put "=";
extotp body tp)
| VDclr(tp, Iname, actual) -> (
put ("let" A lname A "' =");
extotp actual tp)
in

(* Kickstart translation with a statement block, and keep an eye out for
* "begin" (we need its type and its arguments'). *)

let rec kick = function

| [1-> raise (Bug "No begin function")

| stmt::tl-> (

42

dclr stmt;
put ";;\n";
(match stmt with
| FDclr(beg_tp, name, arg_ls, _) ->
if name = "begin" then
(* Anything after begin can't be reached, anyway *)
beg_tp, List.fold_left (fun | (t,_)->t::I) [] arg_ls
else
kick tl
| _->kicktl)
)
in kick prog

(**)

(* src/mceslc.ml: Compiler entry point. Calls other layers in sequence. *)
(**)
try

(* get input file and program arguments *)

let cmd, file = match Array.to_list Sys.argv with

[1 -> failwith ("Check for sanity")

| _::[] -> failwith ("No input file")

| ciofii_>c, f

in

(* open code file *)
let input =

try open_in file with

Sys_error(_) -> failwith ("Couldn't open file: " A file)
in

(* create output buffer *)
let output =
let outname = (
let base = Filename.basename file in
try Filename.chop_extension base with
Invalid_argument(_) -> base) A ".ml"
in
try open_out outname with
Sys_error(_) ->
failwith ("Couldn't open output file: " A outname)
in

(* scan, parse, "compile" *)
let lexbuf = Lexing.from_channel input in
let ast = Parser.program Scanner.token lexbuf in
let sast = Check.chk ast in
let ret_tp, param_tp = Compile.translate sast output in
Main.prt output ret_tp param_tp
with
Failure(str) -> print_endline ("Error: " A str); exit 1

(**)

(* src/main.ml: After translation, adds code to control program execution. *)
(**)

open Sast
open Type

43

(* print out the kickoff program *)
let prt output rtype ptypel =
(* formatting for debug *)
let put str = output_string output (str*"\n") in
let _=put"in
let pcount = List.length ptypel in

(* convert parameters *)
let rec get_val i = function
10->0)
| tp::tl ->
let var = ("_param" A (string_of_int i)) in
let _ = match tp with
| Float -> put ("let "Avar?" = float_of_string " A
"Sys.argv.(" A (string_of _inti)~");;")
| Int -> put ("let "Avar?" = int_of_string " A
"Sys.argv.(" A (string_of _inti) ~");;")
(* TODO *)
| Vector _
| Tuple
| RInt
| RFloat
| List -> failwith "Unimplemented begin argument"
| Str-> put ("let "AvarA" =" A
"Sys.argv.(" A (string_of_inti) A ");;")
| Func -> failwith "Function type argument in begin"
in
get_val (i+1) tl
in
(* print begin' parameters *)
(* letrecbegin_argi=
if i < pcount
then (
put ("_param" A (string_of_inti) A ",");
begin_arg (i+1))
else if i == pcount
then (
put ("_param" A (string_of_inti));
begin_arg (i+1))
else ()
*)
let rec begin_argi=
if i < pcount
then (
if(i == 1) then put("(");
put ("_param" A (string_of_int i) ~ ",");
begin_arg (i+1))
else if i == pcount
then (
if(i == 1) then put("(");
put ("_param" A (string_of_inti) A ")");
begin_arg (i+1))
else ()

in (
get_val 1 ptypel;
put "let _ret = begin"";

44

begin_arg 1;

put " in print_endline";

(match rtype with

| Int -> put "(string_of_int _ret)"

| Float -> put "(string_of_float _ret)"

| Vector _ -> put ("(\"<\" » string_of_float _ret.(0) »" *
"(Array.fold_left (fun o f->(o”\",\"?(string_of_float f)))" A
"\"\" (Array.sub _ret 1 (Array.length _ret - 1)))A\">\")")

| Str->put"_ret"

(* TODO *)

| Tuple

| RInt

| RFloat

| List -> failwith "Unimplemented begin return"

| Func -> failwith "Function type return for begin"

);

exit 0

(**)

(* src/builtin.ml: Definition of builtin functions. *)
(**)

open Type

module FMap = Map.Make(struct

type t = string

let compare x y = Pervasives.compare x y
end)

let Is = FMap.empty

(* Builtin Function Declaration Format:

* letls = FMap.add MCSL_fname (MCSL_ret_tp, MCSL_arg_tp, OCaml_fname) Is
* Where:

* @MCSL_fname (string): MCSL name of builtin function.

* @MCSL_ret_tp (tp): MCSL return type.

* @MCSL_arg_tp (tp list): List of MCSL argument types.

* @O0Caml_fname (strung): Name of Ocaml function to call.

*

* Basically, the MCSL function call will get replaced with call

* to the OCaml equivalent. The evaluated arguments will be passed.
* e.g. if the MCSL function was called with a Vector(3), the OCaml

* function will be called with an Array of size 3.

*)

(*** Begining of builtin fuction declarations ***)

let Is = FMap.add "VectorLength" (Float, [Vector 0], "Vector.length") Is

let Is = FMap.add "VectorDimension" (Int, [Vector 0], "Vector.dimension") Is

let Is = FMap.add "MCaggregate" (Float, [Func;Tuple;Int], "Mc.aggregate") Is (* FIXME: correct types *)
let Is = FMap.add "MClist" (Float, [Str;Int], "Mc.list") Is (* FIXME: correct types *)
let Is = FMap.add "MathFactorial" (Int, [Int], "Math.factorial") Is

let Is = FMap.add "MathAbs" (Int, [Int], "Math.abs") Is

let Is = FMap.add "MathFAbs" (Float, [Float], "Math.fabs") Is

let Is = FMap.add "MathPower" (Int, [Int;Int], "Math.pow") Is

let Is = FMap.add "RandFloat" (RFloat, [Float;Float], "Rand.floatRng") Is

let Is = FMap.add "RandInt" (RInt, [Int;Int], "Rand.intRng") Is

(*** End of builtin fuction declarations ***)

45

let exists fname = FMap.mem fname Is

let get_types fname = let ret_tp, arg_tp, _ = FMap.find fname Is in ret_tp, arg_tp
let get_ret_type fname = let ret_tp, _, _ = FMap.find fname Is in ret_tp

let get_arg_types fname =let _, arg_tp, _ = FMap.find fname Is in arg_tp

let get_name fname =let _, _, name = FMap.find fname Is in name

(**)

(* src/makefile: Ummm... the makefile. *)
(**)

COMMOBIJ=scanner.cmo parser.cmo

COMPOBIJ=builtin.cmo check.cmo compile.cmo main.cmo
INTPOBJ=interpret.cmo

HEADERS=type.cmi operator.cmi sast.cmi ast.cmi parser.cmi
BUILDS=mcsli mcslc

all: mcslc

mcslc: mesle.ml S(HEADERS) $(COMMOBJ) $(COMPOBJ)
ocamlc -0 $@ $(COMMOBIJ) $(COMPOBJ) mcslc.ml

mcsli: mcsli.ml $(HEADERS) $(COMMOBJ) $(INTPOBJ)
ocamlc -0 $@ $S(COMMOBJ) S(INTPOBJ) mcsli.ml

Borland won't accept "%.cmo: %.ml" type targets, uses old fashioned suffix

targets
.ml.cmo:

ocamlc -c $<
.mli.cmi:

ocamlc -c $<
.mly.mli:

ocamlyacc $<
.mly.ml:

ocamlyacc $<
.mll.ml:

ocamllex S<
clean:

-rm -f *.cm? $(BUILDS) parser.ml parser.mli scanner.ml

SUFFIXES: .ml.mll .mly .mli .cmi.cmo

(**)

(* src/interpret.ml: Before the compiler, we wrote this basic interpreter. *)
(**)

open Sast

module NameMap = Map.Make(struct
type t = string
let compare x y = Pervasives.compare x y
end)

46

exception ReturnException of int
exception Bug of string (* For "impossible" situations *)

(* Main entry point: run a program *)
let run prog args =
(* Find and return symbols from scope *)
let rec getvar id = function
[1-> raise (Failure ("undeclared identifier " ~ id))
| loc::scp ->
let (vars,funs) = loc in
if NameMap.mem id vars then
NameMap.find id vars
else
getvar id scp
in
let rec getfun id = function
[1-> raise (Failure ("undefined function " ~ id))
| loc::scp ->
let (vars,funs) = locin
if NameMap.mem id funs then
NameMap.find id funs
else
getfun id scp
in

(* Evaluate an expression and return value *)
let rec eval scope = function
Literal(i) -> i
| Noexpr -> 1 (* must be non-zero for the for loop predicate *)
| 1d(var) -> getvar var scope
| Uop (op, e) ->
let v = eval scope e in
let booleani=ifithen1else 0in
(match uop with
Not -> boolean(!v)
| Minus -> -v
| Binop(el, op, €2) ->
let vl = eval scope el in
let v2 = eval scope €2 in
let boolean i =if ithen 1 else O in
(match op with
Add ->v1 +v2
| Sub ->v1-v2
| Mult ->v1 * v2
| Div->v1/v2
| Equal -> boolean (v1 =v2)
| Neq -> boolean (v1 !=v2)
| Less -> boolean (v1 < v2)
| Leq -> boolean (v1 <= v2)
| Greater -> boolean (v1 > v2)
| Geq -> boolean (vl >=v2))
| Call(f, actuals) ->
let fdecl = getfun f scope in
let actuals = List.fold_left
(fun actuals actual ->
let v = eval scope actual in v :: actuals) [] actuals
in
try call fdecl actuals scope

with ReturnException(v) -> v

(* Invoke a function and return value *)
and call fdecl actuals globals =
(* Enter the function: bind actual values to formal arguments *)
let (fform, fbody) = fdecl in
let Ivars =
try List.fold_left2
(fun locals formal actual ->
let _, name = formal in
NameMap.add name actual locals)
NameMap.empty fform actuals
with Invalid_argument(_) ->
raise (Failure ("wrong number of arguments passed to function"))
in
(* Execute function body, return returned value, ignore scope *)
let ret, _ = exec ((Ilvars,NameMap.empty)::globals) foody in ret

(* Run through a list of statements. Return value of last statement and
* modified scope. This is used in enough places to justify a separate
* function for it. *)
and stmtBlock scp statlist =
List.fold_left (fun ret stmt ->
let _,scp'=retin exec scp' stmt) (0, scp) statlist

(* Execute a statement and return a value and updated scope *)
and exec scope = function
Block(stmts) ->
let ret, _ = stmtBlock scope stmts in ret, scope
| Expr(e) -> eval scope e, scope
| FDclr(tp, Iname, formals, body) -> (match scope with
[1-> raise (Bug ("empty scope in FDclr"))
| (lvars, Ifuns)::globals ->
let Ifuns = NameMap.add Iname (formals,body) Ifuns in
0, ((lvars, Ifuns)::globals))
| VDclr(tp, Iname, actual) -> (match scope with
[1-> raise (Bug ("empty scope in VDclr"))
| (Ivars, Ifuns)::globals ->
let value, _ = exec scope actual in
let Ivars = NameMap.add Iname value Ivars in
value, (lvars, Ifuns)::globals)
| If(cond, truebody, falsebody) ->
letret, _=
if (eval scope cond) =0
then exec scope falsebody
else exec scope truebody
in ret, scope
| Scope(init, body) -> (* first run a statement block, then body *)
let _, scope' = stmtBlock scope init in
let ret, _ = exec scope' body in
ret, scope
| While(body, cond) ->
let rec loop scp =
let value, scp' = stmtBlock scp body in
match eval scp' cond with
0 -> value, scope
| _->loop scp'
in loop scope

48

in

(* Run a program: start with an empty scope and run through program.
* Then find and call "begin", and print it's result *)

let _, scope = stmtBlock [(NameMap.empty,NameMap.empty)] prog in
try call (getfun "begin" scope) args scope

with Failure(s) -> raise (Failure s)(*("did not find the begin() function"))*)

(**)

(* src/mcsli.ml: Entry point for interpreter. *)
(**)

let print = false in

(* get input file and program arguments *)
let cmd, file, args = match Array.to_list Sys.argv with
[1-> raise (Failure "Check for sanity")
| _::[] -> raise (Failure "No input file")
| cafi[l->¢, 1, (]
| c:fi:a-> ¢, f, List.fold_left (funle ->
(int_of_string e)::l) [1 a
in

(* open code file *)
let code = open_in file

(*try open_in file with

Sys_error -> raise (Failure "Couldn't open file: " » file)*)
in

(* scan, parse, interpret *)
let lexbuf = Lexing.from_channel code in
let program = Parser.program Scanner.token lexbuf in
if print then
print_string "No printer yet"
else
let ret = Interpret.run program args in
print_endline (string_of_int ret)

(***ﬂ

(* lib/: Holds the source for the MCSL builtin functions. *)
(***ﬂ

(**)

(* lib/mc.ml: Monte Carlo algorithm functions. We intended to create variants. *)
(**)
let aggregate (func, args, times) =
let rec aggregate_helper = function
| 0->0.0
| 1->funcargs
| n->
letp=n/2in
letg=n-pin
(aggregate_helper p +. aggregate_helper q)
in aggregate_helper times

49

(* The reason why | do not use List.length is that it may take some time to execute, but | am not sure. *)
let list (func, args, times) =
let rec list_helper n acc =
if n >=times
then acc
else list_helper (n+1) ((func args)::acc)
in
list_helper O[]

(**)

(* lib/math.ml: Main math library. *)
(**)
(* This function does not check overflow. If argument is too large, this function will return 0. *)
let rec factorial n =
let rec factorial_helper x acc =
if (x<=1)
then acc
else (factorial_helper (x-1) (acc * x))
in
factorial_helper n 1

letabsi=ifi<0then-ielsei;;
let fabsi=ifi<0.then-.ielsei;;

let rec pow (b, e) =

if e <0 then
failwith "pow: invalid argument"
else
let rec aux res = function
| 0->res
| n->aux (res*b) (n-1)
inauxle

(**)

(* lib/vector.ml: Vector operations. *)
(**)

let length arr =
let sum = Array.fold_left
(fun sum elem -> sum +. elem *. elem)
0.0 arr
in sqrt sum

let dimension arr =
Array.length arr

(**)

(* lib/rand.ml: Random variable implementation and interface to GMP library. *)
(**)

open Gmp

type frng = FltRng of float * float;;

50

type irng = IntRng of int * int;;

let floatRng (a, b) = FItRng(a,b);;
let intRng (a, b) = IntRng(a,b);;
let randInit = RNG.default;;
let state = randInit;;
let getRandInt = function
| IntRng(lo,hi) ->
let boundary = hi-lo
in
let zboundary = Z.of__int boundary
in
let ¢ = Z.urandomm state zboundary
in
let res =Z.to_int c
in
res+lo
let getRandFloat = function
| FItRng(lo,hi) ->
let precision =7

in

let b = F.urandomb state precision
in

let res = F.to_float b

in

res*.(hi-.lo)+.lo

(**)

(* lib/makefile: Makefile for libmcsl.cma *)
(**)

OBJS=vector.cmo mc.cmo math.cmo rand.cmo
LIBS=libmcsl.cma

all: $(LIBS)

libmcsl.cma: S(OBJS)
ocamlc -0 $@ -a gmp.cma $(OBJS)

Borland won't accept "%.cmo: %.ml" type targets, uses old fashioned suffix
targets

rand.cmo: gmp.cmi rand.ml
ocamlc -c rand.ml

.ml.cmo:

ocamlc -c $<
.mli.cmi:

ocamlc -c $<
.mly.mli:

ocamlyacc $<
.mly.ml:

ocamlyacc $<

.mll.ml:

ocamllex S<

clean:
-rm -f *.cmo *.cmi $(LIBS)

SUFFIXES: .ml .mll .mly .mli .cmi.cmo

(***ﬂ

(* bin/: Executables were to go here. We ended with a single one. *)
(***ﬂ

(**)

(* bin/mcsl: Bash script to translate and compile mcsl files into executables. *)
(**)

#!/bin/bash

MCSL compiling script. Automates steps for converting a mcsl source file
into an executable, or an in between state.

Usage () { cat; } <<doc

Usage: SCMD [options] filename

mcsl is a frontend to mcslc and mcsli, respectively the Monte Carlo Simulation
Language's compiler and interpreter. By default, it will compile the input

file into an executable. Use the options to change its behaviour.

Options:

-C <file> Use <file> as mcsl compiler

-h Print usage and exit

-o <file> Place output into <file>

-t Only translate to ocaml, don't compile
doc
Error () {

rm -f SRMLIST &>/dev/null
echo "S$CMD: ${1:-"error"}" >&2
exit ${2:-1}

}

Get compiler command and directory
CMD=${0##*/}
DIR=5{0%/*}

Defaults
MCSLC="S$DIR/../src/mcslc"
MCSLI="SDIR/../src/mcsli"
MCLIB="SDIR/../lib"
COMPILE=true
LIBS="libmcsl.cma"
RMLIST=""

Minimal check

if [[-2$11]];

then Error "no input files";
fi

Scan arguments
while [[-n$1]];

52

do

case $1in
Use an alternative compiler executable

Q)
if[[-z$211;

then Error "no file for -C option'
fi

MCSLC=S52

shift 2

”

Print usage and exit

-h)
Usage
exit 0

”

Set an output file

-0)
if[[-z5211;

then Error "no file for -o option'
fi

0uUT=$2

shift 2

”

No compilation

Get input file and check for existance and extension

esac;
done

-t)
COMPILE=
shift

”

*)

if [[-n SSRC];

then Error "too many input files";
fi

SRC=S$1

if [[!-rSSRC1];

then Error "can't read file: SSRC";
fi

BASE=${1%.*}
BASE=S${BASE##*/}
EXT=${1##*.}
case SEXT in
|ImCSIII)
)
Error "unknown filetype: SSRC"

”

esac
shift

”

53

Translate mcsl to ml
echo "Translating..."
if [[!-x SMCSLC]] ;
then Error "can't execute compiler"
fi
RMLIST="SRMLIST SBASE.ml"
SMCSLC SSRC
if[[$?-ne0]];
then
Error
fi
if [[! SCOMPILE |] ;
then
if [-n SOUT]];
then mv SBASE.ml SOUT
fi
exit 0
fi

Compile ml to executable

echo "Compiling..."

OCAMLC=$(which ocamic)

if [[$?-ne0]];

then Error "can't find ocamic"

fi

SOCAMLC -0 ${OUT:=SBASE} -| SMCLIB SLIBS SBASE.ml
if [[$?-ne0]];

then Error

fi

RMLIST="SRMLIST $SBASE.cmo SBASE.cmi"
rm -f SRMLIST &> /dev/null

(***ﬂ

(* tests/: Various test files and scripts to find bugs and show off. *)
(***ﬂ

(**)

(* tests/test: Main test script. Compiles and runs test sources and checks output.*)
(**)

#!/bin/sh
MCSL="./mcsl"

Set time limit for all operations
ulimit -t 30

globallog=testlog
rm -f $globallog
error=0
globalerror=0

keep=0
Usage() {

echo "Usage: testall.sh [options] [.mcsl files]"
echo "-k Keep intermediate files"

54

echo "-h Print this help"
exit 1

}

SignalError() {
if [Serror -eq 0] ; then

echo "FAILED"
error=1

fi

echo" $1"

}

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to difffile
Compare() {
generatedfiles="$generatedfiles $3"
echo diff -b $1 82 ">" $3 1>&2
diff -b "$1" "$2" > "$3" 2>&1 | | {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2
}
}

Run <args>
Report the command, run it, and report any errors
Run() {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
}
}

Check() {
error=0
basename="echo $1 | sed 's/.*\\///
s/.mcsl//"
reffile="echo $1 | sed 's/.mcslS//"
basedir=""echo $1 | sed 's/\/[*\/]*$//"/."

echo -n "Sbasename..."

echo 1>&2
echo "##t##H## Testing Sbasename" 1>&2

generatedfiles="${basename}.out" &&
Run "SMCSL" $1 ">" ${basename}.out &&
Compare ${basename}.out ${reffile}.out S{basename}.out.diff

Report the status and clean up the generated files

if [Serror-eq 0] ; then
if [Skeep -eq 0] ; then
rm -f Sgeneratedfiles
fi
echo "OK"
echo "#i#### SUCCESS" 1>&2
else

55

echo "#iHt###H FAILED" 1>&2
globalerror=Serror

fi

rm -f ${basename}

}

Check2() {
error=0
basename="echo $1 | sed 's/.*\\///
s/.mcsl//"

echo -n "Sbasename..."

echo 1>&2
echo "#i#### Testing Sbasename" 1>&2

Run "SMCSL" 1 &&
Report the status and clean up the generated files
echo "OK" &&

echo "###H### SUCCESS" 1>&2
rm -f ${basename}

while getopts kdpsh c; do

case Scin
k) # Keep intermediate files
keep=1
h) # Help
Usage
esac
done

shift “expr SOPTIND - 1°

echo

echo"
echo "basic tests"
echo"

files="basictests/*.mcsl"

for file in Sfiles
do

Check Sfile 2>> Sgloballog
done

echo
echo"
echo "random tests"
echo"
echo
files="randtests/*.mcsl"

for file in Sfiles

56

do
Check?2 Sfile 2>> Sgloballog
done

exit Sglobalerror

(**)

(* tests/check: Translate a single file. *)
(**)

#! /bin/bash

./mcsl basictests/S1.mcsl -t
ocamlc -1 ../lib/ S1.ml

(**)

(* tests/mcsl: Version of compiler script tweaked for testing purposes. *)
(**)

#!/bin/bash

MCSL compiling script. Automates steps for converting a mcsl source file
into an executable, or an in between state.

Usage () { cat; } <<doc

Usage: SCMD [options] filename

mcsl is a frontend to mcslc and mcsli, respectively the Monte Carlo Simulation
Language's compiler and interpreter. By default, it will compile the input

file into an executable. Use the options to change its behaviour.

Options:

-C <file> Use <file> as mcsl compiler

-h Print usage and exit

-o <file> Place output into <file>

-t Only translate to ocaml, don't compile
doc
Error () {

rm -f SRMLIST &>/dev/null
echo "$CMD: ${1:-"error"}" >&2
exit ${2:-1}

}

Get compiler command and directory
CMD=S{0##*/}
DIR=${0%/*}

Defaults
MCSLC="S$DIR/../src/mcslc"
MCSLI="SDIR/../src/mcsli"
MCLIB="SDIR/../lib"
COMPILE=true
LIBS="libmcsl.cma"
RMLIST=""

Minimal check

if [[-z$11]];

then Error "no input files";
fi

57

Scan arguments
while [[-n $11];

do

case $1in
Use an alternative compiler executable

-C)

if[[-2$211;

then Error "no file for -C option'
fi

MCSLC=$2

shift 2

”

Print usage and exit

-h)
Usage
exit 0

”

Set an output file

-0)
if [[-2$21];

then Error "no file for -o option'
fi

0OUT=$2

shift

”

No compilation

Get input file and check for existance and extension

-t)
COMPILE=
shift

’”

*)

if [[-n SSRC1];

then Error "too many input files";
fi

SRC=S$1

if [[1-rSSRC]1;

then Error "can't read file: SSRC";
fi

BASE=${1%.*}
BASE=${BASE##*/}
EXT=${1##*.}
case SEXT in
|ImCSI|I)
9
Error "unknown filetype: SSRC"

esac
shift

58

esac;
done

Translate mcsl to ml
if [[!-x SMCSLC]];
then Error "can't execute compiler"
fi
RMLIST="SRMLIST SBASE.ml"
SMCSLC $SRC
if [[$?-ne0]];
then
Error
fi
if [[| SCOMPILE 1] ;
then
if [-n SOUT]];
then mv SBASE.ml SOUT
fi
exit 0
fi

Compile ml to executable
OCAMLC=$(which ocamic)

if [[$?-ne0]];

then Error "can't find ocamic"

fi

SOCAMLC -0 ${OUT:=SBASE} -I SMCLIB SLIBS SBASE.ml
if [[$?-ne0]];

then Error

fi

RMLIST="SRMLIST SBASE.cmo SBASE.cmi"
rm -f SRMLIST &> /dev/null

JSOUT

##basictests/addf.mcsl
float begin():=
10.345+2

##basictests/addf.out
12.345

##tbasictests/addi.mcsl
int begin():=
10+2

##tbasictests/addi.out
12

#itbasictests/addstring.mcsl
string begin():=
32+"hihi"

#itbasictests/addstring.out
32hihi

##tbasictests/addvec.mcsl
vector begin():=

with
vector a:=<<1, 2>>
vector b:=<<2, 3>>
do
a+b
done

##tbasictests/addvec.out
<3.5.>

#itbasictests/aggregate.mcsl
float twice (float x, floaty) :=2 * x
float begin() := MCaggregate (twice, (1.0, 2.0), 100)

#itbasictests/aggregate.out
200

##tbasictests/and.mcsl
int begin():=
1&0

##tbasictests/and.out

0
##tbasictests/answer.mcsl
int begin() := 42
##tbasictests/answer.out

42

##tbasictests/arithvec.mcsl
vector begin():=

with
vector a:=<<1, 2, 3>>
vector b:=<<2, 3, 4>>
vector c:=<<1, 3, 4>>
vectord:=c

do
a-b+d

done

##tbasictests/arithvec.out
<0.,2.,3.>

#itbasictests/comment.mcsl
/* gdsagdsgsdagdsagdsgdsgsdagsdgsdagasdgdsagsdagsdagsdgsdagasdgasdg*/
int begin():=

/* aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa */

0

60

/*dsakjfkdsjkkdsjgiujewohrjweqirnwmgqrcowy4ryn4idskjferyr84yncifhyvksdlks*/
##tbasictests/comment.out

0

##tbasictests/crossvec.mcsl
vector begin():=

with
vector a:=<<1, 2, 3>>
vector b:=<<2, 3, 4>>
do
a*b
done

##tbasictests/crossvec.out
<-1.,2.-1>

##tbasictests/dec.mcsl

int begin():=
with
inta:=3
inta:=a+3
do
a
done

##tbasictests/dec.out
666666

##tbasictests/dividef.mcsl
float begin():=
55.55/5

##tbasictests/dividef.out
11.11

##tbasictests/dividei.mcsl
int begin():=
50/5

##tbasictests/dividei.out
10

##basictests/fundec.mcsl
float func(float a):=
a*2

float begin():=
with

floata:=12.12
do

func(a)

done

##basictests/fundec.out
24.24

##basictests/if.mcsl
float begin() :=
with
floata:=3.5
do
ifa<1
then 1
else
a
endif
done

##tbasictests/if.out
3.5

##tbasictests/ifelse.mcsl

int begin() :=
with
inta:=50
do
ifa<1
then 1
elseif a > 100
then 100
elseif a ==50
then 0
else
a
endif
done

##tbasictests/ifelse.out
0

##basictests/mathabs.mcsl
int begin():=
MathAbs(-9)-MathAbs(9)

#i#tbasictests/mathabs.out

0

##tbasictests/mathfabs.mcsl
float begin():=

MathFabs(-1.3456)+MathFabs(1.1)

##basictests/mathfabs.out
2.4456

62

##tbasictests/mathfac.mcsl
int begin():=
MathFactorial(6)

##tbasictests/mathfac.out
720

#i#tbasictests/mathpower.mcsl

int begin():=
MathPower(2,10)

#i#tbasictests/mathpower.out
1024

##tbasictests/minusf.mcsl
float begin():=
212-12.0001

##tbasictests/minusf.out
199.9999

##tbasictests/minusi.mcsl
int begin():=
212-12

##tbasictests/minusi.out
200

##basictests/mod.mcsl
int begin():=
4%3

##basictests/mod.out
1

#itbasictests/multiplef.mcsl
float begin():=3*22.22

##tbasictests/multiplef.out
66.66

##tbasictests/multiplei.mcsl
int begin():=
22*3

##tbasictests/multiplei.out
66

##tbasictests/nest.mcsl
int begin() :=
with

63

intx:=3

do
ifx<4
then
if
with
do
done
then 1
else -1
endif
else
0
endif
done

#itbasictests/nest.out
1

#itbasictests/or.mcsl
int begin():=
0]1

#i#tbasictests/or.out
1

#itbasictests/paren.mcsl
float begin() :=
(10 + 2*(3.4-2.4)+5)/2+5

##tbasictests/paren.out
13.5

##tbasictests/rec.mcsl
int longlong(int a):=
ifa<1

then a
else

longlong(a-1)
endif

int begin() :=
longlong(1000)

##tbasictests/rec.out
0

##tbasictests/scalarvec.mcsl
float begin():=
with
vector a:=<<1, 2, 3>>
vector b:=<<2, 3, 4>>

inty:=12

y/x

64

do
a.b
done

##tbasictests/scalarvec.out
20.

#i#tbasictests/scopel.mcsl

int begin() :=
with
inta:=3
do
with
inta:=4
do
a*a
done
*a
done

#itbasictests/scopel.out
48

#itbasictests/scope2.mcsl

int dup():=
with
inta:=5
do
a*a
done
int begin() :=
with
inta:=3
do
with
inta:=4
do
dup()
done
*a
done

#itbasictests/scope2.out
75

#itbasictests/string.mcsl|
str begin():=
"hello word a @ @##%% MM &&()' t "

#i#tbasictests/string.out
hello word a @ @##%% " &&()'t'

#itbasictests/stringdec.mcsl

string s(string a, int b):=
a+b

string begin():=

with

inta:=21

intb:=12
do

s(a,b)
done

#itbasictests/stringdec.out
2112

##tbasictests/vecdec.mcsl
inta:=1
float b:=2.2
vector v := <<a,b,3>>
vector begin() :=

v

##basictests/vecdec.out
<1,2.2,3.>

#itbasictests/vecdim.mcsl
vector v:=<<3,4>>

int begin():=
VectorLength(v)

##tbasictests/vecdim.out
5

#itbasictests/veclength.mcsl
vector v:=<<1,2,3,4,5>>

int begin():=
VectorDimension(v)

#itbasictests/veclength.out
5

##tbasictests/withdo.mcsl
float begin() :=
with
inta:=3
float b:=4
do
a*2+b
done

##tbasictests/withdo.out
10.

66

##randtests/addf.mcsl
float begin():=

with

randFloat domain := RandFloat(0.0, 1.0)
do

domain + 1.2
done

##trandtests/addi.mcsl

int begin():=
with
randint domain := RandInt(0.0, 1.0)
do
domain +2
done

##trandtests/arg.mcsl

randFloat domain := RandFloat(0.0, 1.0)
float s(randFloat f):=

f+1

float begin():=

s(domain)
##randtests/arith.mcsl
float begin():=
with
randFloat f := RandFloat(4.0, 20.0)
randInt i := RandInt(4, 20)
floats:=f
do
(f+i)*s
done

#itrandtests/dec.mcsl
randFloat domain := RandFloat(0.0, 1.0)

float begin():=
domain

##randtests/randvec.mcsl

randFloat domain := RandFloat(0.0, 1.0)
vector s(randFloat f):=

<<f,f+1>>

vector begin():=
s(domain)

##adtests/fac.mcsl
int isprime(int n):=
ifn1=2 & n%2==0

67

then 0

else
with
int checkprime(int n,int i):=
ifi*i>nthen1l
elseif n%i == 0then 0
else checkprime(n, i+2)
endif
do
checkprime(n, 3)
done
endif

int gcd(int a, int b):=

ifa==

then a
elseifa>b

then gcd(a-b, b)
else

gcd(b-a, a)
endif

int makeodd(int n):=
if N%2==0

then makeodd(n/2)
else

endif

string factorial(int n, int b, int k):=

with
string str:=""
inttmp :=n-1
randInt iran := RandInt(0,tmp-1)
inta:=
ifiran<=1
then 2
else iran
endif
int power := MathPower(a, k)
int res := gcd(MathAbs((power)%n-1), n)
int change :=res > 1 & isprime(res)
intn:=
if change
then n/res
else n
endif
string str := if change then
str+" " +res
else
str
endif
do
if isprime(n)
then n+" "+str /*print N */
elseif n==1

then str
else

str+" "+factorial(n, b, k)
endif

done

string fact(int n, int b):=

with

int k := MathFactorial(b)
do

factorial(n, b, k)
done

string begin(int n):=
with
intb:=6
int n := makeodd(n)
do
if n==1
then ""
elseif isprime(n)
thenn
else
fact(n,b)
endif
done

##tadtests/pi.mcsl
float inCircle (randFloat x, randFloat y) :=

with
vector v := <x, y>>
do
if VectorLength(v) <=1
then 1
else 0
endif
done

randFloat domain := RandFloat(0, 1)

float begin(int iterations) :=
4 * (MCaggregate (inCircle, (domain, domain), iterations)) / iterations

#itadtests/points.mcsl

randFloat domain := RandFloat(-100,100)
string point(randFloat rf) := <<rf,rf,rf>> + "\n"
string begin(int num) :=

with
string out :=""
string aux(string str, int num) :=
if num == 0 then
str
else
aux (str + point(domain), num-1)
endif
do

aux(out, num)

69

done

70

	1 Introduction
	1.1 Overview
	1.2 Goal
	1.2.1 Sub-algorithms:
	1.2.2 Generation of random numbers

	1.3 Key feature
	1.4 Basic Language Features
	1.4.1 Statement
	1.4.2 Data Types
	1.4.3 Reserved Words
	1.4.4 Expression and Operator
	1.4.5 Punctuation Marks
	1.4.6 Built in functions
	1.4.7 User defined functions

	1.5 Sample Code
	1.5.1 Generate a random integer/float
	1.5.2 Generate a vector of random integers/floats

	2 Language Tutorial
	2.1 Example
	2.1.1 Hello World!
	2.1.2 Pi Calculation
	2.1.3 Useful tips

	2.2 Compiling and Running

	3 Language Manual
	3.1 Lexical conventions
	3.1.1 Comments
	3.1.2 Identifiers:
	3.1.3 Keywords

	3.2 Constants
	3.2.1 Integer constants
	3.2.3 Floating constants
	3.2.3 String constants

	3.3 DataType
	3.3.1 Fundamental Form
	3.3.2 Random Form
	3.3.3 Tuples

	3.4 Declaration for variables and functions
	3.4.1 Variables
	3.4.2 functions

	4.1 Planning:
	4.2 Project Timeline
	4.3 Roles and Responsibilities
	4.4 Software Development Environment
	4.4.1 Operating Systems
	4.4.2 Editor
	4.4.3 Subversion (SVN)
	4.4.4 Bash Shell

	5 Architectural Design
	5.1 Components Diagram
	5.2 Compiler Structure

	6 Test Plan
	6.1 Test Cases
	6.1.1 nest.mcsl
	6.1.2 fac.mcsl

	6.2 Using of script in Testing
	6.2.1 mcsl.sh
	6.2.2 test.sh

	7. Lessons Learned
	8. Appendix

