MatrEL:
Matrix Entertainment Language

Rochelle Palting
rcp2122
Columbia University
COMS 4115 Fall 2008



1

Table of Contents

INEOAUCTION. ....eeiiieiiieie ettt ettt ettt et e st e e aeeesbeensaeenseens 4
1.1 Background..........cocuviiiiiiiiiece e 4
1.2 Goals Of MAtrEL ....cccuiiiiiiiiiiie et et e 4

Language TutOT1al......c..oeeiuiieeiieeieece ettt et e e e et e e e tae e s aee e s beeesnbeeenes 5
2.1 EXAMPIE ..o et en 5

Language ManuUal ...........cccuiiiiieiiiieeeeee et et erae e 7
3.1 INEEOAUCTION.....eiiiieeiiieciie ettt ettt et e esbeessaeeareens 7
3.2 LeXiCal CONVENMEIONS ......eiruiiiiiieiiieiie et eit ettt sttt st ettt et e st e e bt e saeeenaee e 7

3.2.1 COMMENLES ...ttt ettt et 7

322 Identifiers (INAIMES) ...eecvveeriieeeiieeciee et e et ere e e e eere e s e e sereeesnaeeenes 7

323 K@YWOTAS .ttt ettt et e 7

324 CONSLANTS .....eeiiitee ittt ettt et ettt e e e 7
33 WHhat’s in @ NAME?.....cccoieiiiiiiiiiecie ettt ettt ebeesaneens 8
34 COMVETSION ...ttt ettt ettt et et et s e e et esae e et e e sabeenbeesaeeenbeenee 8

34.1 Integers and SHIANGS........cocieiieeiieiieeie ettt 8
3.5 2 q o) (TS (0] 4 1SR 8

3.5.1 Primary EXPreSSIONS .......ccvieruieeiieriieeieeitie et estee et eteeeteeaeesereenseesebeeaeeeane 8

352 UNATY OPETATOTS. ....vviieeiiiiieeeeiiieeeeeieee e e et eeesetteeeeennareeeeenbaeeesensneeesnnseeeens 9

3.53 Multiplicative OPETALOTS .....eevueeeeiieiieeieeiie et eiie ettt eteeiee e seae e e 9

3.54 AddItIVE OPETALOTS. ...eeeiiieeeiieeiiieeiieeecieeeeieeeetteeetaeesaeeesareesbeeesseeessseeenns 9

3.5.5 Relational OPerators .........c.eeeieeiiieriieiieeie et 9

3.5.6 EqQUality OPeTrators ......cccvieeciiieciieeeiie ettt et e 10

3.5.7 EXPIesSION ANd EXPIESSION. .. ..eetieruiieiieriieeiiesteeteeseteeseesaeesseesneenseenseeans 10

3.5.8 EXPIESSION OF EXPIESSION ..uvvieerieeeuireerireeerreeenreeessseeessreeessseesssseessseeessseennns 10
3.6 DECIarations .......eeeeeviieciie ettt e e e e e e e e e e sraeeen 10

3.6.1 TYPC-SPECIIICTS ....eeeiiiiiieiiieciie ettt ettt et e beenaee e 10

3.6.2 INE AECIATALOTS ....ei ittt et e e e e e saee e 10

3.6.3 boolean declarators ...........ccccevierieriieienieeee e 10

3.6.4 StrNG dEClaratorS......eeuiieiiieiie et 10

3.6.5 MALTIX dECIATALOTS. ... .eiiiiiiiieeiieeiie et e 10

3.6.6 CEIl AECIATALOTS ...t e e e e e e aae e 11
3.7 STALEIMEILS ...ttt ettt 11

3.7.1 EXPression Statement ..........cccueevueeriieniieeiieiie ettt 11

3.7.2 Compound StALEMENT ........eevuveeciieriieeiierieeieeeteeree e eteeeaeesreesbeesseesnsaens 11

3.7.3 Conditional StatEMENL .........ccccuviiiiiiieeiiieeie ettt e e er e e e e eaaee e 11

3.7.4 WHhile StatemMENT .....ccuvieiiiiiieiiecie ettt e et 11

3.7.5 Return statement .........cccuvveiieiiiiiecceee e 12
3.8 SCOPE TUICS ..ottt et ee e e e aaeeeaaeeenaaees 12

3.8.1 LeXICal SCOPE ...eeneeeeneieiieeiie ettt ettt ettt ettt 12
3.9 TyPeS TEVISIEEA ..eeuvieeiiieiieeiieiie ettt ettt ete e e e e ebaesaeeenneees 12

3.9.1 FUNCHIONS ...ttt eare e e avee s 12

39.2 IMLAETICES. .ottt ettt ettt ettt ettt et st e bt et e eaee bt et e saeenbeenees 12

393 [O<] | USSR 13

3.10  Formatted OULPUL.....cccuvieeiieeeiieeeie ettt et s e s e e e e 13



4 ProJeCt PIan ...cooueiiiiiiiieee e e 14

4.1 PIOCESS ..ot 14
4.2 Programming STYLE .......ccccooiiiiiiiiiiiiiieiie ettt s 14
4.3 Project TIMEIINE.......oieiiiieeiie e e e e e e e eaaee e 14
4.4  Team ResponSibilities......ccceecieriiiiiieniiieiierie ettt 14
4.5 Software Development Environment.............ccccccveeviiieniieenieeeieeceeeeeeeen 14
4.0 PrOJECE LOZ . uiiiiiiiiieeiie ettt et et s 15

5 Architectural DeSIZN.......ccocuiiiiiiieiiie et et 16
5.1 ATCRITECTUTE. ...ttt ettt ettt ettt e ettt e sabe e bt e e saeensaesnaeenseenes 16

6 TSt PLAN (et 17
6.1 GOALS .ttt b et 17
6.2 HYPOtRESIS. ..eeeeiiieeeeee et s e e e e seree e 17
6.3 IMETROMS. ...t et 17
6.4 TOOLS ettt st 17

7 LesSONS Learned .......ccueeiieiiiiiiieiieeieeie ettt 17
LR o) 15116 - SRS 18
8.1 COAE LISHING....cecuiieiieeiieiie ettt ettt ettt e saeeteesabeenbeeseseenseas 18
8.1.1 SCANMNET.IMNL ...ttt et s 18
8.1.2 PATSET.IMLY . c..iiiiiieiieeii ettt ettt ettt et e e be et e et e et eeaaeeaeeesbeenseesnneesees 19
8.1.3 BTNttt et 21
8.1.4 TNEETPTEIET.INL ..ottt ettt e ens 22

8.1.5 D015 81 0| USSR 26



1 Introduction

The MatrEL programming language is designed to help developers implement single or
multiplayer board games. Its syntax is similar to C providing a few simple types and
board game tailored methods allowing the language to be easy to learn and use.

MatrEL is intended to be a compact language containing just enough functionality for a
developer to create a fun and challenging game without unnecessary functionality and
features that could make the language more difficult and confusing to use.

1.1 Background

The entertainment that board games have provided over generations has been and
continues to be a favorite pastime. With the ongoing technology innovations, gaming has
taken on new forms and exists on various media from internet games, handheld players,
and game consoles. MatrEL allows the developer to bring the old time favorite games
into the current times allowing the player to play these games in electronic form. The
developer can also try out his or her inventive style by creating a new and fascinating
game. In both cases, MatrEL is fun for the developer and the game player.

1.2 Goals of MatrEL

MatrEL was designed with the goals and objectives of being intuitive and optimal
performance.

Since MatrEL is designed with the basics of board game creation in mind, the
programmer will focus on the rules and dynamics of the game rather than get lost in the
language specifics.

The objects and data structures that make up MatrEL have been chosen to provide
optimal search and store functions so that developing, testing and execution of programs
do not lag in time and performance.



2 Language Tutorial

Before creating a board game using MatrEL, the developer should have a clear
understanding of the game to be developed. Specifically, the following details should be
decided:

- How many players can play the game?

- How big can the board game be?

- What are the allowable moves by each player?

- Under what conditions does a player win or lose at the game?

MatrEL uses a square matrix object to simulate the board game. The matrix consists of
rows and columns which each contain cells that represent a square on the game board. A
program is created by performing a sequence of sets and queries on these cells. Based on
the predefined win/lose rules, the game sequence continues until there is a clear win or
lose to the game.

While each game created will be unique in its own way, the basic steps that the developer
will follow to program the game will be the same:

1. Create win/lose rules.

a. Create a boolean function that takes a game board position as input and
returns true or false as to whether that new position resulted in a win or
lose situation for the player.

2. Initialize game variables: number of players and game board size.

a. In MatrEL it is required that the game board be a square matrix: the

number of rows and the number of columns must be equal.
3. Create the game sequence.

a. The program should loop through the players’ turns in actions and exit if a

win/lose condition is satisfied.

2.1 Example

The following example uses MatrEL to implement Tic-Tac-Toe.

# game Tic-Tac-Toe #

# initialize gameboard to a 3x3 matrix and set all cell entries to empty #
matrix gameboard = 3

gameboard[][] =~

# create the three-in-a-row winning conditions #
boolean threeInARow {matrix m, cell pos, string value}
{

if every m[pos:row][] value

{ return true }

elseif every m[][pos:column] value

{ return true }



elseif every m[\] value
{ return true }
elseif every m[/] value
{ return true }
else
{ return false}
}
# game loop #
boolean gameOver = false
string userInput = empty
string value = empty
cell userPos = 1,1
string player = empty
while —gameOver

{
printout “Enter next player number:”
getlnput stdin player
printout “Player” + player + ““: Enter selection as row,column:”
getlnput stdin userPos
printout “Enter position value (X/O):”
getlnput stdin value
gameboard[userPos] = value
if threeInARow gameboard userPos value
{ printout “Player “ + player = *“ wins!”
gameOver = true }
elseif - {any gameboard empty}
{ printout “Game tied! No more moves left!”
gameOver = true }
}

printMatrix gameboard



3 Language Manual

3.1 Introduction

MatrEL is a computer language designed for board game creation. Examples of games
that can be created are Tic-Tac-Toe, Minesweeper, and Battleship. This language
reference manual details the features of MatrEL and how one can program in this exciting
language.

3.2 Lexical conventions

In MatrEL there are six kinds of tokens: identifiers, keywords, constants, strings,
expression operators, and other separators. A sequence of one or more separators is
required in between tokens. Blanks, tabs, newlines, and comments are used as separators
and are otherwise ignored by the compiler.

3.2.1 Comments
The string of characters that begins with # and ends with # is treated as a comment.

3.2.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The
underscore, “_”, symbol may be used as part of an identifier. Identifiers are case
sensitive; uppercase and lowercase letters are considered different.

3.2.3 Keywords

The following identifiers my only be used as keywords:

int I

matrix ==

cell notEqual
string Boolean
return true

if false
elseif getlnput
else every
while any

for <=, >=, <, >
&&

3.2.4 Constants

There are two types of constants in MatrEL:

3.2.4.1 Integer constants

An integer is a sequence of one or more numbers 0-9, but the first digit cannot be
0.



3.2.4.2 Strings

A string is a sequence of zero or more characters enclosed in double quotes .
The “” denotes the empty string.

3.3 What’s in a Name?

MatrEL interprets an identifier based on its storage class and its type. The storage class
determines the location and lifetime of the storage associated with an identifier while the
type determines the meaning of the values found in the identifier’s storage.

The two declarable storage classes in MatrEL are automatic and external. Automatic
identifiers are local to each instantiation of a function and are discarded upon function
exit. External identifiers, on the other hand, exist independently of functions.

MatrEL supports two primary types of objects:
Characters: letters a-z and A-Z
Integers: sequence of numbers 0-9

In addition to the primary types MatrEL also has the following derived types:
cell: arow,column value that corresponds to an entry in a matrix
matrix: a two-dimensional array of cells
string: a sequence of characters
functions

3.4 Conversion
This section explains how operand conversion occurs in MatrEL.

3.4.1 Integers and Strings

An integer may be converted to a string representation of itself. Likewise, a string may
be converted to an integer given that the string is a string representation of a sequence of
integers.

The example,

string a = “5”

intb=a

results in b =5.

3.5 Expressions

Expressions may be grouped into sub-expressions by surrounding the sub-expression in
curly braces {expression}.

3.5.1 Primary expressions
Primary expressions involving function calls group left to right.



3.5.1.1 identifier

An identifier is a primary expression so long as it is properly declared

3.5.1.2 string

A string is a primary expression consisting of alphabetic characters.

3.5.1.3 {expression}

An expression inside curly braces is an expression whose type is the same as the
expression without curly braces.

3.5.2 Unary operators

Expressions with unary operators group right to left.

3.5.2.1 -expression

The result is the negative of the expression and has the same type. The type of the
expression must be an integer.

3.5.2.2 rowCount myMatrix

rowCount applied to a matrix returns the number of rows in that matrix.

3.5.2.3 columnCount myMatrix
columnCount applied to a matrix returns the number of columns in that matrix.

3.5.3 Multiplicative operators
The multiplication operator * group left-to-right.

3.5.3.1 expression * expression
The binary * operator indicates multiplication. Both expressions must be integers.

3.5.4 Additive operators
The additive operators + and — group left-to-right.

3.5.4.1 expression + expression
The result is the sum of the expressions. Both expressions must be integers.

3.5.4.2 expression — expression
The result is the difference of the expressions. Both expressions must be integers.

3.5.5 Relational operators

The relational operators group left-to-right:
expression < expression less than
expression > expression greater than



expression <= expression less than or equal to
expression >= expression greater than or equal to
Both expressions must be integers.

3.5.6 Equality operators

expression == expression equal to

expression != expression not equal to

The expressions being compared must be of the same type. Within a comparison, the
expression types may be boolean, integer, or string. The return value will be a boolean.

3.5.7 expression and expression
The and operator groups left-to-right. Both expressions must be boolean.

3.5.8 expression or expression
The or operator groups left-to-right. Both expressions must be boolean.

3.6 Declarations

Declarations are used to give a type and value to an identifier. They have the form:
typeSpecifier identifier = value

3.6.1 Type-specifiers

The type-specifiers are:
int
boolean
string
matrix
cell

3.6.2 int declarators

int declarations have the form:
int identifier = value where value is a sequence of numbers 0-9.

3.6.3 boolean declarators

boolean declarations have the form:
boolean identifier = value where value is either true or false.

3.6.4 string declarators

string declarations have the form:

string identifier = “value” where value is a sequence of alphabet characters, including
underscore.

3.6.5 matrix declarators

matrix declarations have the form:

matrix identifier = value where value is an integer and specifies the size of the square
matrix. The matrix will have value number of rows and value number of columns.



3.6.6 cell declarators

cell declarations have the form:
cell identifier = vall,val2 where vall and val2 are integers.

3.7 Statements
Statements are executed in sequence.

3.7.1 Expression statement

Expressions have the form
expression
and are typically assignments or function calls.

3.7.2 Compound statement

Statements can be executed in order by combining them into a compound statement
which puts curly braces around the list of statements:
compound statement:
{statement-list}
statement-list:
statement

'séltement
3.7.3 Conditional statement

The three forms of the conditional statement are:
if {expression} statement

if {expression} statement
else statement

if {expression} statement
if-else {expression} statement

if-else {expression} statement

else statement
For each statement the expression must evaluate to a boolean. The statement is executed
if the expression evaluates to true. If neither of the if-expressions evaluate to true, the
else statement will be executed.

3.7.4 While statement

The while statement has the form:

while {expression} statement
The expression evaluates to a boolean. The statement is repeatedly executed while the
expression evaluates to true.



3.7.5 Return statement

A function returns to its caller by means of the return statement, which has one of the
forms:

return no value is returned

return {expression} the value of the expression is returned

3.8 Scope rules

In MatrEL, we must consider lexical scope which is the area of the program in which an
identifier is accessible.

3.8.1 Lexical scope

There are two types of lexical scope, local and global. Identifiers declared within a
function are local only to that function and may not be used otherwise. Global identifiers
which are declared outside any and all functions may be used anywhere in the program.

3.9 Types revisited

This section summaries the operations that can be performed on objects of certain types.

3.9.1 Functions

Functions have the form:
functionReturnType functionName {parameter-list}
{function-body}

The function return type can be integer, boolean, matrix, cell, string or empty if the
function will not be returning an object. The functionName is a valid identifier. The
parameter-list will be of the form {type idenl, ..., type iden2}. The function-body is an
expression that evaluates to and returns the same type as functionReturnType.

3.9.2 Matrices

A matrix can be set the following ways:
myMatrix[myRow][myColumn] = “a” Sets the matrix cell at row = myRow
and column = myColumn to the
string a. The cell value must be a

string.
myMatrix[][] = value Sets each cell value to value. Value
must be a string.
myMatrix[][myColumn] = value Sets all of the cells in matrix column
= myColumn to value.
myMatrix[myRow][] = value Sets all of the cells in matrix row
= myRow to value.
myMatrix[/] = value Sets all of the cells in matrix

diagonal (bottom left to top right
diagonal) to value.

myMatrix[\] = value Sets all of the cells in matrix
diagonal (top left to bottom right



diagonal) to value.
myMatrix[cellPos] = value Sets the cell at location cellPos
(integer, integer) in matrix to value.
In each of the above cases, the row and column values must be an integer.

A matrix cell value can be accessed the following ways:
myMatrix[rowNum][columnNum] Returns the string value located at
cell position rowNum,columnNum in
myMatrix

Matrix values can be queried using the following keywords:

every myMatrix value Returns true or false whether or not
each cell value in myMatrix equals
value

any myMatrix value Returns true or false whether or not

one or more cell’s value in myMatrix
equals value

3.9.3 Cells

Cells have the form:
cell myCell = rowNum,colNum
where rowNum and colNum correspond to a row and column position in a matrix.

Row and column values can be extracted from a cell by using:
myCell:row returns the row number
myCell:column returns the column number

3.10 Formatted Output

The following output functions are made available in MatrEL:
printOut someString prints the string someString to the console
printMatrix myMatrix “pretty prints” the matrix myMatrix to the console



4 Project Plan
4.1 Process

The process for completing this project is as follows: complete the project proposal,
language reference manual, scanner, and parser. The abstract syntax tree and interpreter
will be worked on in parallel to unit testing and completing the final report.

4.2 Programming Style
The following programming style will be adhered to during this project.

Naming conventions
- the names of variables and functions will be short and meaningful
- comments: will be inside (* comment *) and will clarify parts of the program that
may be unclear

Indentation and spacing will be used to distinguish the different levels of scope to make

the code more readable.

4.3 Project Timeline
This project will be driven by the following schedule:

9-24-2008 Language proposal, main language features defined
10-22-2008 Language reference manual, grammar complete
10-22-2008 Scanner and parser complete (version 1)

11-7-2008 Ast, interpreter, printer complete (version 1)
12/5/2008 Code freeze, project feature complete.

4.4 Team Responsibilities

Since this is a one person team, all work for this MatrEL project will be done by Rochelle
Palting. The responsibilities that will be taken on are coding, testing and debugging all
project code. Additional tasks are architecture, grammar, parser, compiler and testing.

4.5 Software Development Environment

This project will be developed on a Windows computer. The MatrEL language will be
created using the Objective Caml programming language, version 3.10.2. Source code
and project documents (proposal, language reference manual, and final report) will be
controlled using CVS.




4.6 Project Log

The following table lists concrete dates of major project milestones:

9-10-2008 Project began

9-24-2008 Language proposal complete

10-22-2008 Submitted Language reference manual, first draft
11-5-2008 Code scanner and parser

11-19-2008 Code ast and interpreter

12-12-2008 Final Report, final version




5 Architectural Design

5.1 Architecture

The main components of the MatrEL architecture are the scanner, parser, interpreter,
abstract syntax tree (ast), and printer. The scanner lists and describes the tokens of the
MatrEL language. The parser builds the abstract syntax tree from the parsing rules and
provides the context-free grammar. The abstract syntax tree lists the main object groups
of the language. The interpreter interprets the abstract syntax tree. The printer defines
methods to easily print out the main object groups found in the abstract syntax tree.
Below is a diagram illustrating the main components of the MatrEL compiler.

Scanner Parser

A 4

Interpreter AST Printer

A 4
A

MatrEL Architecture Diagram



6 Test Plan

6.1 Goals

The goal of testing will be to verify that a basic and typical use case of the language by a
developer will be doable. Specifically, the MatrEL types shall be constructed and used as
expected. The function declarations and scoping rules should be accurate.

6.2 Hypothesis

Upon completion of each unit test, the feature being tested should provide a pass or fail
result. If the result is a fail, more work may need to be done to correct the failure.

6.3 Methods

Testing will be completed in three phases.

Phase 1: Phase 1 testing will be conducted in parallel to developing the skeleton of all
the main components (scanner, parser, ast, interpreter and printer). The interfaces to each
object will be created and tested for functionality. Each item will be added individually
to the scanner, parser, ast, interpreter and then printer. Compilation of each file should
result in a success before moving on to modifying the next file. The interface should then
be tested again.

Phase 2: In Phase 2 testing consists of testing the best case scenario of the environment
in which the objects receive all valid data.

Phase 3: In Phase 3 testing, we input invalid values to verify that the environment
handles these values correctly and as expected.

6.4 Tools
I plan to use Shell scripts for testing.

7 Lessons Learned

The primary recommendation from me would be to start the project as early as possible.
There is a learning curve to learning a new programming language (OCaml) in addition
to the learning curve to creating your own language.



8 Appendix

8.1 Code Listing

8.1.1 scanner.ml
{ open Parser }

let digit = ['0'-"9"]
let lwrAlpha = ['a'-'"'z"']
let uprAlpha = ['A'-"Z"]
let idString = ['a'-'z' 'A'-'Z']['a'-"z"
l]*
rule token = parse
['" " "\t'" "\r'" '"\n'] { token lexbuf }
A { comment lexbuf }
T { LPAREN }
") { RPAREN }
' { LBRACE }
"} { RBRACE }
' { SEMI }
', { COMMA }
v { DQUOTE }
U { PLUS }
'- { MINUS }
vt { TIMES }
A { DIVIDE }
=" { ASSIGN }
"=t { EQ }
" =" { NEQ }
<! { LT }
<= { LEQ }
n">n { GT }
"= { GEQ }
"&&" { AND }
"y { OR }
"every" { EVERY }
"any" { ANY }
"if" { IF }
"else" { ELSE }
"for" { FOR }
"while" { WHILE }
"return" { RETURN }
"int" { INT }
"string" { STRING }
"boolean"{ BOOLEAN }
"matrix" { MATRIX }



"cell" { CELL }

digit+ as 1xm { LITERAL(int of string 1lxm) }

idString as 1xm { ID(1lxm) }

T ['a'_'Z' IAI_IZI lOl_l9l l_l]* T as lxm { STR(le)

"true" |"false" as lxm { BOOL (1lxm) }
idString '[' digit* ']'" '[' digit* ']'
| 1idString " [upDiag]"
| idString " [dnDiag]" as 1lxm { MAT(lxm) }
| digit "," digit as 1xm { MATCELL (lxm) }
| eof { EOF }
| _as char { raise (Failure("illegal character "
Char.escaped char)) 1}

—_— e e — —

A

and comment = parse
""" { token lexbuf }
| { comment lexbuf }

8.1.2 parser.mly
%{ open Ast %}

stoken SEMI LPAREN RPAREN LBRACE RBRACE COMMA DQUOTE
stoken PLUS MINUS TIMES DIVIDE ASSIGN

%token EQ NEQ LT LEQ GT GEQ AND OR EVERY ANY

3token RETURN IF ELSE FOR WHILE INT STRING BOOLEAN MATRIX
CELL

%$token <int> LITERAL

stoken <string> ID

$token <string> STR

$token <string> BOOL

stoken <string> MAT

stoken <string> MATCELL

stoken EOF

$nonassoc NOELSE
$nonassoc ELSE

%left ASSIGN

¥left EQ NEQ AND OR

$left LT GT LEQ GEQ EVERY ANY
%left PLUS MINUS

3left TIMES DIVIDE

%¥start program
stype <Ast.program> program



o\°
o\

program:

/* nothing */ { [1, []1 }
| program vdecl { ($2 :: fst $1), snd $1 }
| program fdecl { fst $1, ($2 :: snd $1) }
fdecl:

ID LPAREN formals opt RPAREN LBRACE vdecl list stmt list
RBRACE
{ { fname = $1;
formals = $3;
locals = List.rev $6;
body = List.rev $7 } }

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal list:
ID { [S1] }
| formal list COMMA ID { $3 :: $1 }

vdecl list:

/* nothing */ {11}
| vdecl list vdecl { $2 :: $1 }
vdecl:

INT ID SEMI { $2 }

| STRING ID SEMI { $2 }
| BOOLEAN ID SEMI { $2 }
| MATRIX ID SEMI { $2 }

| CELL ID SEMI { $2 }

stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: $1 }
stmt:

expr SEMI { Expr(S$1l) }
| RETURN expr SEMI { Return($2) }
| LBRACE stmt list RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt $prec NOELSE { If($3, S5,
Block ([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { I£($3, $5,
)
|

}
WHILE LPAREN expr RPAREN stmt { While ($3, $5) }

$7



| FOR LPAREN expr opt SEMI expr opt SEMI expr opt RPAREN
stmt

{ For($3,

expr opt:
/* nothing */ { Noexpr }

| expr

LITERAL
ID

BOOL
MAT
MATCELL

expr
expr
expr
expr
expr
expr

expr
expr
expr
expr
expr
expr
expr

PLU

S

MINUS
TIMES
DIVIDE

EQ
NEQ
LT
LEQ
GT
GEQ
AND
OR

EVERY

ANY

$5, $7,

{ $1 1}

$9)

}

{ Literal(S$1l) }

{ Id(S1)
DQUOTE STR DQUOTE { Str($2

{

expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {
expr {

{

ID ASSIGN expr

|
|
|
|
|
|
|
|
|
|
|
| expr
|
|
|
|
|
|
|
|
|
|

(
}
)
Bool ($1)

Mat ($1) }

{ Cell($S1) }

Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop ($1,
Binop (S1,

N~~~ o~~~ o~ o~~~ o~

Assign ($1,
ID LPAREN actuals opt RPAREN ({ Call (%1,

LPAREN expr RPAREN { $2 }

actuals opt:

/* nothing */ {
| actuals list

actuals list:

expr

| actuals_list COMMA expr { $3

8.1.3 ast.mli
type op = Add |
| Greater | Geq

[]

Sub |
| And

}

{ List.rev $1 }

Add,
Sub,
Mult,
Div,
Equal,
Neq,
Less,
Leq,
Greater
Geq,
And,
Or, S
Every,
Any,
$3) '}

{ [$1] }
: S1 )
Mult | Div | Equal
| Or | Every | Any

’

$3)
$3)
3)

$

}
}
}
}
}
}
}
}
3)
}

}

}

$3)

$3)

}

}

$3)

Neq

}

Less

Leg



type expr =
Literal of int

| Id of string

| Str of string

| Bool of string

| Mat of string

| Cell of string

| Binop of expr * op * expr

| Assign of string * expr

| Call of string * expr list

| Noexpr

type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt

type func decl = {

fname : string;
formals : string list;
locals : string list;

body : stmt 1list;
}

type program = string list * func decl list

8.1.4 interpreter.ml
open Ast

(* NameMap has type=string and value=int ¥*)
module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare xX Yy
end)

exception ReturnkException of int * int NameMap.t

(* StringMap has type=string and value=String *)
(*
module StringMap = Map.Make (struct
type t = string
let compare x y = Pervasives.compare x Yy
end)



exception ReturnkException of string * string StringMap.t

*)
(* Main entry point: run a program *)

let run (vars, funcs) =
(* Put function declarations in a symbol table ¥*)
let func decls = List.fold left
(fun funcs fdecl -> NameMap.add fdecl.fname fdecl
funcs)
NameMap.empty funcs
in

(* Invoke a function and return an updated global symbol
table *)
let rec call fdecl actuals globals =

(* Evaluate an expression and return (value=int,
updated environment) *)
let rec eval env = function
Literal (i) -> i, env
| Noexpr -> 1, env (* must be non-zero for the for
loop predicate *)
| Id(var) ->
let locals, globals = env in
if NameMap.mem var locals then
(NameMap.find var locals), env
else if NameMap.mem var globals then
(NameMap.find var globals), env
else raise (Failure ("undeclared identifier " *
var) )
| Str(word) -> 1 (*word*), env (* how do we return a
string when int value is required? *) (* example string:
"myString" *)
| Bool(b) -> (* how to return bool when int wvalue is
required? *) (* example bool: true *)
if b="true" then 1, env
else if b="false" then 0, env
else raise (Failure ("invalid boolean "
b))
| Mat(m) -> 1 (* m *), env (* how to return matrix
when int value is required? *)
| Cell(pos) -> 1 (* pos *), env (* how to return
cell when int value is required? *) (* example cell: 1,2
*)
| Binop(el, op, e2) —->
let vl, env = eval env el in



let v2, env = eval env e2 in

let boolean 1 = if i1 then 1 else 0 in
let orFun = function
| x 2y 2 [] —>

if x = 1 then 1
else 1if y = 1 then 1
else O
| ->0
in
(match op with
Add -> vl + v2
Sub -> vl - v2
Mult -> vl * v2
Div -> vl / v2
Equal -> boolean (vl = v2)
Neqg -> boolean (vl != v2)
Less —-> boolean (vl < v2)
Leq -> boolean (vl <= v2)
Greater -> boolean (vl > v2)

|
|
|
|
|
|
|
|
| Geg -> boolean (vl >= v2)
|

And -> boolean( boolean(vl = 1) = v2)
(* returns 1 if vl = v2 = 1 ; else returns 0 *)
| Or => orFun(vl :: v2 :: []) (* returns 1 if vl
=1 or v2 =1 ; else returns 0 *)
| Every -> 1 (* temporary return value *) (*
example: every "x" gameMatrix ¥*)

(* vl=string, v2=matrix *)

(* if every element in matrix v2=vl, return true,
else return false *)

| Any -> 1 (* temporary return value until I know

what to do here *) (* vl=string, v2=matrix ¥*)

(* vl=string, v2=matrix *)

(* if any element in matrix v2=vl, return true,
else return false *)

), env
| Assign(var, e) —->
let v, (locals, globals) = eval env e in

if NameMap.mem var locals then
v, (NameMap.add var v locals, globals)
else 1f NameMap.mem var globals then
v, (locals, NameMap.add var v globals)
else raise (Failure ("undeclared identifier "™
var))
| Call ("print", [e]) ->
let v, env = eval env e in
print endline (string of int v);



0, env
| Call(f, actuals) ->
let fdecl =

try NameMap.find f func decls

with Not found -> raise (Failure ("undefined

function " ~ f))
in
let actuals, env = List.fold left
(fun (actuals, wvalues) actual ->

let v, env = eval env actual in

v :: actuals, values) ([], env) actuals
in
let (locals, globals) = env in
try

let globals = call fdecl actuals globals in O,
(locals, globals)
with ReturnException (v, globals) -> v, (locals,
globals)
in

(* Execute a statement and return an updated
environment *)

let rec exec env = function

Block(stmts) -> List.fold left exec env stmts
| Expr(e) -> let , env = eval env e in env
| If(e, sl, s2) ->
let v, env = eval env e in
exec env (1f v !'= 0 then sl else s2)

| While(e, s) ->
let rec loop env =

let v, env = eval env e in
if v !'= 0 then loop (exec env s) else env
in loop env
| For(el, e2, e3, s) ->
let , env = eval env el in
let rec loop env =
let v, env = eval env e2 in
if v !'= 0 then
let , env = eval (exec env s) e3 in
loop env
else
env

in loop env
| Return(e) ->
let v, (locals, globals) = eval env e in
raise (ReturnException (v, globals))
in



(* Enter the function: bind actual values to formal
arguments *)
let locals =
try List.fold left?2
(fun locals formal actual -> NameMap.add formal
actual locals)
NameMap.empty fdecl.formals actuals

with Invalid argument( ) ->
raise (Failure ("wrong number of arguments passed to "
~ fdecl.fname))
in

(* Initialize local variables to 0 *)
let locals = List.fold left
(fun locals local -> NameMap.add local 0 locals)

locals fdecl.locals

in

(* Execute each statement in sequence, return updated
global symbol table *)

snd (List.fold left exec (locals, globals) fdecl.body)

(* Run a program: initialize global variables to 0, find
and run "main" *)

in let globals = List.fold left

(fun globals vdecl -> NameMap.add vdecl 0 globals)

NameMap.empty vars

in try

call (NameMap.find "main" func decls) [] globals

with Not found -> raise (Failure ("did not find the

main () function"))

8.1.5 printer.ml
open Ast

let rec string of expr = function
Literal(l) -> string of int 1
| Id(s) -> s
| Str(s)-> s
| Bool(s)-> s
| Mat(s)-> s
| Cell(s)-> s
| Binop(el, o, e2) ->

string of expr el ~ " " 7
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
| And -> "&&" | Or -> "|"

| Every -> "every" | Any -> "any"



| Equal -> "==" | Neqg -> "!="

| Less —-> "<" | Leqgq -> "<=" | Greater -> ">" | Geqg ->
muomy A momoA
string of expr eZ2
| Assign(v, e) -> v ~ " =" " string of expr e
| Call(f, el) ->
£~ "(" *~ String.concat ", " (List.map string of expr

el) A ")"
| Noexpr —-> ""

let rec string of stmt = function
Block(stmts) ->
"{\n" ©~ String.concat "" (List.map string of stmt

stmts) ~ "}\n"
| Expr(expr) -> string of expr expr ~ ";\n";
| Return (expr) -> "return " © string of expr expr

A

" : \nn;

| If(e, s, Block([])) -> "if (" ~ string of expr e ”
")\n" ~ string of stmt s

| If(e, sl1, s2) -> "if (" 7~ string of expr e * ")\n" *

A

string of stmt sl
| For(el, e2, e3, s) —->

"else\n" ” string of stmt s2

"for (" ”~ string of expr el ~ " ; " * string of expr
ez ~ " ;" A
string of expr e3 ~ ") " 7 string of stmt s
| While(e, s) -> "while (" 7~ string of expr e ~ ") " *

string of stmt s

let string of vdecl id = "int " ~ id ~ ";\n"

let string of vdec2 id "string " ~ id ~ ";\n"

let string of fdecl fdecl =

fdecl.fname ~ " (" ~ String.concat ", " fdecl.formals *
")\n{\n" A
String.concat "" (List.map string of vdecl fdecl.locals)
String.concat "" (List.map string of vdec2 fdecl.locals)
String.concat "" (List.map string of stmt fdecl.body) *
" } \n"
let string of program (vars, funcs) =
String.concat "" (List.map string of vdecl vars) ~ "\n" *
String.concat "" (List.map string of vdec2 vars) ~ "\n" *

String.concat "\n" (List.map string of fdecl funcs)



