Nicolas Viennot 12/19/08
Daniel Benamy

COMS W4115 - Final report
C Flat / 1tc

CSib
ki)

Introduction

The C Flat language is mostly a subset of the C language. Some of the core
functionalities of C has been stripped: there is no preprocessor, no structs, no
strings, not even pointers. It's goal is purely educational.

Originally Nico and Dan were working on two separate languages. The two
projects merged, taking some features from each, and this is the resulting
language.

The ltc and C Flat language proposals are included in appendix A.

C Flat Tutorial

C Flat is easy to use for any programmer familiar with a C-like language.
The main differences from C are that there is only one type: the integer, variables
don't have to be declared before use (but there are no global variables), and
there are exceptions.

"Hello World" (outputs 1):
main() {
out(1l);
}

Recursive Fibonacci:
fib(n) {
if (n < 3) return 1;
else return fib(n-1) + fib(n-2);

}
main() {
out(fib(in()));
}
Iterative Fibonacci:
fib(n) {
if (n < 1)
throw 1;
a=1; // last fib #
b=1; // current fib #
for (i = 3; 1 <=n; i++) {
temp = b;
b += a;
a = temp;
}
return b;
}
main() {
out(fib(in()));
}

Language Manual
The LRM is included in appendix B.

Project Plan
Processes

When we merged projects, we decided to start off by implementing as
much of the ltc proposal as possible and adding features from the original c flat
proposal at the end if we had time. The ltc proposal clearly laid out the subset of
C which we would be implementing. Since we were basing the language off of an
existing one, there wasn't very much planning that had to go into figuring out
how the language would work as far as the users are concerned.

Our process for progressing through the project was to pick a feature that
wasn't implemented and think through how exactly it should work and how it
needed to be implemented. We sometimes had to compile some test C programs
and look at the assembly generated or look up instructions in the Intel x86
manuals to learn exactly how something would work. Then we'd implement the
feature and some tests for it. Sometimes we wrote the corresponding part of the
LRM at that point and sometimes we filled it in later. This normally wouldn't be a
great idea, but this language is small enough that it worked just fine.

We had an automated tester which would run a series of code snippets
through the compiler, run them, and verify that the output (or lack thereof) was
correct. The tester was an improved version of the tester Dan used last fall in
PLT. Initially we were also running the test suite that professor Edwards supplied
with microc, but we eventually migrated to only our tester. It was quicker and
easier to write tests for this tester because they all go in one file. After we did
any work on the compiler, we'd run a quick "make test" and be able to verify that
everything still worked correctly.

Programming Style Guide
For the compiler, we stuck with the style already used in microc. More or
less:
- Indentation: 2 spaces.
- Indentation level is increased when declaring a non trivial function (that is a
function with at least one argument)
- When matching, each case should be on it's own line. It also increase the
indentation level.
- Function names are in lower case with words separated by underscores.
- Structures: names and fields are lower case with works separated by
underscores.
- Types: names lowercase, possible values first letter uppercase.
- Tester uses standard python style as outlined in PEP 8 -
http://www.python.org/dev/peps/pep-0008/
- Tests: lower case variables and functions, 2 space indentation.

For example, this is a snippet from backend.ml:

let rec eval expr to eax fdecl = function

Literal(l) ->
sprintf "mov eax, %d\n" 1

| Assignop(v, o, e) ->
let assign binop binop =
eval expr to eax fdecl (Assignop(v, Assign, Binop(Id(v), binop, e))) in
(match o with

Assign -> eval expr to eax fdecl e ©
sprintf "mov [ebp+%d], eax\n" (id to offset fdecl v)
| Add assign -> assign binop Add
| Sub assign -> assign binop Sub
| Mult assign -> assign binop Mult
| Div_assign -> assign binop Div

Project Timeline
October: Proposals, automated tester.
November: Merged projects, first assembly program generated (skeleton,
functions, basic operators, 1/0, if, for, and while), LRM started.
December:
Week 1: Nothing.
Week 2: Many operators, proper argument evaluation, break, continue,
exceptions.
Week 3: Static semantic analysis, compiler completed, LRM completed.

Roles and Responsibilities
We worked together on most aspects of the project. Nico implemented a
number of language features on his own and Dan got the automated tester going.

Software Development Environment
We are both running a linux OS with its standard tools.

Kate, Vim, and Nano Source code editing

Ocaml Tool Suite Lexer, parser, static and semantic
analysis, backend, top level compiler
driver

Gcce Compiling standard library (which is

C), assembling output of the C Flat
compiler, linking object files

Python Automated tester
OpenOffice Report
Lyx LRM

GNU Make Project building

Project Log
We used git as a version control system. The project history is:

Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Daniel Benamy
Daniel Benamy
Nicolas Viennot
Daniel Benamy
Nicolas Viennot
Daniel Benamy
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot

Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot

Nicolas Viennot
Nicolas Viennot

Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot

2008-12-18 10:47:49 -0500
2008-12-18 10:45:37 -0500
2008-12-18 10:39:08 -0500
2008-12-18 10:01:23 -0500
2008-12-18 08:37:28 -0500
2008-12-18 08:34:34 -0500
2008-12-17 21:44:26 -0500
2008-12-17 18:03:25 -0500
2008-12-17 16:45:58 -0500
2008-12-17 16:44:52 -0500
2008-12-17 16:05:22 -0500
2008-12-17 16:05:00 -0500
2008-12-17 16:01:14 -0500
2008-12-17 15:54:58 -0500
2008-12-17 15:48:23 -0500
2008-12-17 15:47:16 -0500
2008-12-17 15:35:01 -0500
2008-12-16 19:51:18 -0500
2008-12-16 12:37:58 -0500
2008-12-16 12:33:02 -0500
2008-12-16 08:37:29 -0500
2008-12-15 20:45:41 -0500

2008-12-15 20:09:35 -0500
2008-12-15 20:07:04 -0500
2008-12-15 20:03:59 -0500
2008-12-15 19:44:13 -0500
2008-12-15 14:42:54 -0500
2008-12-15 14:14:57 -0500
2008-12-15 14:08:45 -0500
2008-12-15 14:06:09 -0500
2008-12-15 12:10:25 -0500
2008-12-1512:10:15 -0500
2008-12-15 12:09:25 -0500
2008-12-15 10:41:14 -0500
2008-12-15 10:38:39 -0500
2008-12-15 10:07:50 -0500
2008-12-14 20:38:40 -0500
2008-12-14 14:28:08 -0500
2008-12-14 14:14:41 -0500
2008-12-14 13:37:41 -0500
2008-12-14 12:26:43 -0500
2008-12-14 09:40:40 -0500
2008-12-14 09:13:02 -0500
2008-12-14 09:12:45 -0500
2008-12-13 16:33:28 -0500
2008-12-13 15:14:11 -0500
2008-12-13 10:03:40 -0500
2008-12-13 09:12:36 -0500
2008-12-13 07:43:56 -0500
2008-12-13 07:32:01 -0500
2008-12-13 07:00:41 -0500
2008-12-12 14:49:58 -0500
2008-12-12 09:20:40 -0500
2008-12-12 09:12:31 -0500
2008-12-12 00:08:43 -0500
2008-12-12 00:06:55 -0500
2008-12-11 23:07:12 -0500

2008-12-11 23:07:00 -0500
2008-12-11 22:04:34 -0500

2008-12-11 22:04:02 -0500
2008-12-11 20:25:43 -0500
2008-12-02 00:35:04 -0500
2008-12-02 00:21:38 -0500

style fix

style fix

style fix

Irm updated

removed dead code

not pushing esp for exception

added test for shifting negative number

removed the goto keyword

added if/else test (2)

added if/else test

Merge branch 'work'

Renamed microc to cflat.

Assign is not an assignop

Added a couple of tests for exceptions.

precedence change for < >

Print compiler errors to stderr.

unclosed comment raise exception

cleanup

asm test pretty

small asm change

added .PHONY : test/clean in Makefile

sast: checking for duplicated function, duplicated formals.
test: testing for local variable discovery and duplicates.
sast: forgot a variable check

cleanup

sast: variables are added through the context struct
cleanup

cleanup

removed test directory

removing old tests

more tests

cleanup

added test when mixing same function name/variable name
catch exception on syntax error

ast printer removed

local variables are now initialized to O

SAST added, local variables doesnt need to be declared anymore
"uncaught exception" message added

cleanup

reversing args in function call is done is assembly
precedence test added

operator precedence fixed

cleanup

sign tests added for arithmetic binops

using movzx insead of mov eax, 0

cleanup

exception implemented

basic try/catch/throw implementation

Operators implemented and tested

comment scanner fixed

arguments of a function are evaluated from left to right
cleanup

all operators added, exception added (not finished !!)
added multiline comments

reverted out() -> outputs \n and test programs are piped to xargs
Added test for double variable declarations.Whitespace fix.
Added Irm.

Implemented proper labels for loops.

Added break and continue keywords.

Added tests.

Removed interpreter.

Implemented proper labels.Implemented in().

Changed out() to not add newline and added outln() and In().
Fixed make test.

Added .gitignore.

removed test from make clean

new test case, cleanup

new test

Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Nicolas Viennot
Daniel Benamy
Daniel Benamy

Daniel Benamy

Daniel Benamy
Daniel Benamy
Daniel Benamy
Daniel Benamy
Daniel Benamy

Daniel Benamy
Daniel Benamy
Daniel Benamy

2008-12-02 00:18:13 -0500
2008-12-02 00:15:15 -0500
2008-12-02 00:12:32 -0500
2008-12-02 00:11:25 -0500
2008-11-22 02:14:32 -0500
2008-11-22 02:11:46 -0500

2008-11-22 02:10:36 -0500

2008-11-22 02:06:49 -0500
2008-10-16 02:49:59 -0400
2008-10-16 01:24:07 -0400
2008-10-16 00:39:13 -0400
2008-10-16 00:38:26 -0400

2008-10-16 00:24:50 -0400
2008-10-16 00:09:09 -0400
2008-10-16 00:07:48 -0400

global removed

global tests removed

okey whatever

microc deleted

Added .gitignore.

Added ltc and microc.

Started on a backend for microc to produce x86 assembly.

Put some skeleton file in cflat/, moved testing code to cflat/test, and
added the very beginnings of a test file for c flat.

Fix crash when no executable is created.

Added hwl dir.

Give nice error if no test file given.

Adding test-gcc.txt.

Changed test markers to ..., added support for comments before
compilercommand, and cleanup.

Various fixes. Tester works.

Cleanup.

Importing compiler-tester.py in progress.

Architectural Design

Our translator receives a C Flat program and outputs the x86 assembly code:

Programmer
(brain)

y C Flat language

Translator (cflat)

y x86 assembly

Assembler (as)

Object file

. lib.o
Linker (1d) -

L Executable

The translator first tokenizes the character stream, parses it to generate an
AST. Then the tree is semetically checked to produce a SAST which go through
the backend to produce assembly code.

L C Flat language

Scanner

y Token stream

Parser

AST

/

Sementic analyzer

y SAST

Backend

¢ x86 assembly

A few notes about the implementation:
The sementic analyzer does the local variables
discovery so that the backend knows in
advance the stack size for local variables.
Function calls: we follow the C convention that
is: arguments are pushed in reverse order,
and the caller cleans the stack. The register
eax is used for return values.
Exceptions: we use a linked list that is built on
the stack. An element is added to the list when
the program enters a try block. When an
exception is thrown, it checks if the list is
empty; if yes uncaught exception() is called, if
not it passes control to the catch block.
Temporary values: during a complex
expression evaluation, we use the stack to
store temporary results.

Nico adapted the parser and the scanner from the
microc code and implemented the sementic analyzer.
Both Dan and Nico implemented the Backend.

Test Plan
Sample compilations

Recursive Fibonacci:

C Flat:
fib(n) {
if (n < 0) throw -1;
if (n < 3) return 1;
else return fib(n-1) + fib(n-2);
}
main() {
try {
out(fib(in()));
} catch(ex) {
out(ex);
}
}

Generated assembly:
.intel syntax noprefix
. text
.globl main
.type main, @function
main:
push ebp
mov ebp, esp
Xor eax, eax
push eax
push ecx
push edx
push ebp
push offset .L1
push dword ptr [exception ptr]
mov [exception ptr], esp
call in
add esp, 0
push eax
call fib
add esp, 4
push eax
call out
add esp, 4
mov eax, [exception ptr]
mov eax, [eax]
mov [exception ptr], eax

add esp, 12
jmp .L2
.L1:

mov [ebp+-4]1, edx
mov eax, [ebp+-4]
push eax

call out

add esp, 4

L2:

.LO:

pop edx

pop ecx
mov esp, ebp

pop ebp

ret

.globl fib

.type fib, @function
fib:

push ebp

mov ebp, esp
X0r eax, eax
push ecx

push edx

mov eax, [ebp+8]
push eax

mov eax, 0
pop ecx

xchg eax, ecx
cmp eax, ecx
setl al
movzx eax, al
test eax, eax

jz .L4
mov eax, 1
neg eax

mov edx, eax

mov ecx, [exception ptr]
test ecx, ecx

jnz .L6

push edx

call uncaught exception
.L6:

mov eax, [exception ptr]
mov eax, [eax]

mov [exception ptr], eax
lea esp, [ecx+12]

mov ebp, [ecx+8]

jmp [ecx+4]

jmp .L5

.L4:

.L5:

mov eax, [ebp+8]
push eax

mov eax, 3

pop ecx

xchg eax, ecx
cmp eax, ecx
setl al

movzx eax, al
test eax, eax

jz L7
add esp, 0O
mov eax, 1
jmp .L3

jmp .L8
.L7:

add esp, 0

mov eax, [ebp+8]

push eax

mov eax, 1

pop ecx

xchg eax, ecx
sub eax, ecx
push eax

call fib

add esp, 4
push eax

mov eax, [ebp+8]
push eax

mov eax, 2

pop ecx

xchg eax, ecx
sub eax, ecx
push eax

call fib

add esp, 4
pop ecx

xchg eax, ecx
add eax, ecx

jmp .L3

.L8:

.L3:

pop edx

pop ecx

mov esp, ebp
pop ebp

ret

.ident "C Flat compiler 0.1"

GCD:

C Flat:
gcd(a, b) {
while (a != b) {
if (a > b) a -= b;
else b -= a;
}
return a;
}
main() {
a = 1in();
b =in();
out(gcd(a, b));
}

Generated assembly:
.intel syntax noprefix
.text
.globl main
.type main, @function
main:
push ebp
mov ebp, esp
X0r eax, eax
push eax
push ecx
push edx
push ebp
push offset .L1
push dword ptr [exception ptr]
mov [exception ptr], esp
call in
add esp, 0
push eax
call fib
add esp, 4
push eax
call out
add esp, 4
mov eax, [exception ptr]
mov eax, [eax]
mov [exception ptr], eax

add esp, 12
jmp .L2
.L1:

mov [ebp+-4]1, edx
mov eax, [ebp+-4]

push eax
call out
add esp, 4
.L2:

.LO:

pop edx
pop ecx

mov esp, ebp
pop ebp

ret

.globl fib

.type fib, @function
fib:

push ebp

mov ebp, esp
Xor eax, eax
push ecx

push edx

mov eax, [ebp+8]
push eax

mov eax, 0

pop ecx

xchg eax, ecx
cmp eax, ecx
setl al

movzx eax, al
test eax, eax

jz .L4
mov eax, 1
neg eax

mov edx, eax

mov ecx, [exception ptr]
test ecx, ecx

jnz .L6

push edx

call _ uncaught exception
.L6:

mov eax, [exception ptr]
mov eax, [eax]

mov [exception ptr], eax
lea esp, [ecx+12]

mov ebp, [ecx+8]

jmp [ecx+4]

jmp .L5

.L4:

.L5:

mov eax, [ebp+8]
push eax

mov eax, 3

pop ecx

xchg eax, ecx
cmp eax, ecx
setl al

movzx eax, al
test eax, eax

jz L7
add esp, 0
mov eax, 1
jmp .L3

jmp .L8
.L7:

add esp, 0
mov eax, [ebp+8]
push eax
mov eax, 1
pop ecx

xchg eax, ecx

sub eax, ecx
push eax

call fib

add esp, 4
push eax

mov eax, [ebp+8]
push eax

mov eax, 2

pop ecx

xchg eax, ecx
sub eax, ecx
push eax

call fib

add esp, 4
pop ecx

xchg eax, ecx
add eax, ecx
jmp .L3

.L8:

.L3:

pop edx

pop ecx

mov esp, ebp
pop ebp

ret

.ident "C Flat compiler 0.1"

Test suite
Our tester is a small python program which parses a text file with a very
simple format, runs the test cases it finds, and verifies that the correct result is
produced. See appendix C for the tester code (tester.py).

Test cases
Each feature of the compiler is tested. During the developement, when we
added a feature, we wrote a test case for it to validate the implementation. At
least one test case is written for each specification of the LRM.
See appendix C for test cases (test-cflat.txt).

Automation
A simple “make test” rebuilds the compiler if needed and executes all test
cases. Making the test process very accessible is important since we use a test-
driven development

Division of Testing Work

Dan wrote the automated tester. We wrote tests as we were adding
features so we wrote a number of tests together, mainly checking things in
microc. Then when Nico implemented all the additional operators, exceptions,
and static semantic analysis, he wrote most of the tests for those.

Lessons Learned

Dan learned that Ocaml is pretty cool. Functional programming takes
getting used to, and this project was a bunch of getting-used-to-ness.

Nico learned that Ocaml is a very nice language and that compilers are not
magical anymore.

We would strongly encourage future teams to do automated testing and
add test cases for each feature before or at roughly the same time as the feature
it's testing. In addition to serving as a verification of functionality and preventing
regressions, the act of writing code in the new language helps with figuring out
how things should work and can bring up odd cases that might otherwise go
unnoticed.

We recommend that teams reuse our tester since it lowers the effort
required to add tests to about as low as possible.

Appendix A - Language proposals

Cb (C flat)

Daniel Benamy

Introduction
This is the language proposal for a new language, Cb (pronounced "see flat"). It is not
intended to be a complete language reference manual, although it may morph into one.

Cb is a toy language which I'm using to learn how to write a compiler in OCaml. It
contains a basic subset of C with some additions, including functions as first class types,
and exceptions.

Target
Will compile to C.

Whitespace

Will use python-style nesting via indentation. The start of a block will end with a ":' and
each level of nesting is indicated by indenting 4 spaces. Newlines are statement
separators. Any number of spaces, including zero, are allowed around identifiers and
punctuation.

Comments
C and C++ style comments allowed.
// I am a single line comment.
/* I am a multi-line comment. */
Multi-line comments end with the first */ found.

Control Flow
Control flow is achieved using functions, if statements, while statements, and
exceptions.

Control starts in the main function which must exist. It doesn't take any arguments and
must return an int.
int main():
return 0

Types
int, float (implemented as a double), char, bool, func.

Func is a multi-type. The types that the funtion takes and returns must be specified.
func{int; int, int} f // Declares a variable f which is a function that takes two ints and
returns an int.

Operators

This table lists the available operators and what types they take as arguments. All
operators return the same type passed to them except for the equality and inequality
operators (<, <=, >, >=, ==, |=) which return bool.

& I && I
+ - 1 *|/ | (bitwise [(bitwise | (logical | (logical | < |<=|>|>=|==|!=

and) or) and) or)
. XXX XX [X|X [X [X
int X* X |k |k X X X |k X |k kS B S

char X X

bool X X X X

func X X

arrayX . X |IX
(concatenation)

* If one argument is a float and the other is an int, the int will be promoted to a float.

Type System
Variables are statically typed. Once a variable is assigned a type, it can not be changed.

Typecasting
Int can be implicitly cast to floats when assigning to variables or passing to operators or
functions. No other automatic typecasting or promotion is done.

Anything can be converted to a string using the built in string() function.

Binding
Cb is statically bound. The compiler figures out what all identifiers mean at compile time.

Variable Creation and Use

Variables don't need to declared before use, but can be. This is only recommended for
cases where the type can't be determined automatically. They can't be used until
assigned to. Assignment is done with '='. An assignment statement can have one or
more values per side although the same number must be on each side. If more than one
is given, they are comma separated.

There are no global or static variables.

Functions
Functions are called using the () syntax. A function may be called by name, or a func
variable may be called.
add_one(inti):
returni + 1

int main():
add_one(5)
f = add one

f(4)

return 0

Functions take 0 or more arguments and return 0 or more values.
foo(int a):

or
int, char bar():
return 5, ‘a’

Arguments are passed with copy semantics.

There is no function overloading.

Functions must be declared before being used. Recursion is allowed.

Functions can only be declared at the top level of the source code. Ie, not within other
functions.

Exceptions

Functions can throw exceptions which causes cascading "returns" of the exception until a
catch is found. Exceptions are ints. If an exception is not caught, the program
terminates. If an exception is caught, the int thrown is assigned to the variable specified
in the catch statement.

foo(int x):
try:
bar(x)
return 0
catch e:
return 1

bar(int x):
throw 1

Namespace
There is one namespace for all functions, variables, and types.

I/0
Done with
out(char c), err(char c)
and
char in()
Milestones
1. Grammar for all v 1 features.
2. Automated test framework (grab from last PLT project).
3. Variables with simple types. Operators.
4. I/0.
5. Function declaration and calling.
6. func type. Calling functions via func variables.
7. Exceptions.
8. The initial implementation will not include arrays or strings. If time permits

(hah), I will add them later.

Arrays (v 2)

Array elements are accessed with []. Arrays keep track of their size and accesses are
bounds checked.

Arrays are reference counted.

What do they contain?
memory management
declaration
manipulation

Strings (v 2)
The string type is syntactic sugar for arrays of chars.

Implicit casting to string?

Nicolas Viennot

COMS W4115 - Project Proposal

ltc
less than C

09/24/08

CSabe
CU

Introduction
The ltc is a very small subset of the C language. The project consists of
creating a compiler written in ocaml that translate ltc code into assembly.

Overview
The standard GNU tools as and ld are used as assembler and linker.

Lfile.ltc

ltc Compiler

Lfile.as

x86 Assembler

file.o
Other object files

R
4>

Linker

Lexecutable

Language features

The ltc syntax is quite similar to C: statements end with “;”, blocks are
surrounded with “{ }”. the language has very limited features: arrays and
pointers are not supported and there are no variable types (only integer). The
major differences between ltc and C are described as follows:

n”

Variables
- variables can only be 32 bits signed integers
- variables don't need to be declared
- global/static variables are not allowed
- variables are accessible in the function scope

Operators
- only the aritmetic, comparison, bitwise and assignment operators are
available
- operator precedence is the same as in C.

Functions
- functions can be recursive
- arguments are passed by value
- functions always return an integer and the return value is implicitly
given by the result of the last statement
- inline functions are not available

Control

- the do..while construction is not available

- the switch keyword is not available

- labels, goto, if/else, while and for loops, behave like C

Comments
- /[* this is a comment */, they can be nested
- // this is also a comment

External calls

External functions can be called by including the right .o object files while
linking. No “extern” declaration is needed, the linker will complain if the
function doesn't exist.
To communicate with the external world, two functions are provided in the
“library”: input() and output().

Generated Assembly

The generated assembly is not optimized at all. Temporary values are
stored on the stack (not in registers), like every other variables which is very
inefficient.

Code sample

pow(a, b)
{
if (b == 0)
1; /* no return keyword */
else
a * pow(a, b-1); /* recursion */
}
main()
{

a=>b = input(); /* read from stdin */
b += 2;
for (i = 1; i <= 5; i++) {

c = pow(a, 1i);
output(2 * (c + b)); /* print to stdout */

Appendix B - LRM

Daniel Benamy - Nicolas Viennot

COMS WA4115 - C Flat Reference Manual

1 Introduction

The C Flat language is mostly a subset of the C language. Some of the core functionalities of C has been stripped:
there is no preprocessor, no structs, no strings, not even pointers. it’s goal is purely educational. Originally Nico
and Dan were working on two separate languages. The two projects merged, taking some features from each, and
this is the resulting language. This document is inspired by the C Reference Manuel by Dennis Ritchie.

2 Lexical conventions

2.1 Whitespace

A tab, a space or a new line is a whitespace. At least one of these charaters is required to separate adjacent
identifiers, constants, and certain oparator-pairs.

2.2 Comments

There are two ways to place comments: // introduces a comment which ends with a end of line. /* also introduces
a comment which ends with */, they can be nested. A // inside a /* */ comment is ignored.

2.3 Identifiers

An identifier is a sequence of letters and digits. The first charater must be alphabetic. The underscore counts as
alphabetic. An identifier is case sensitive.

2.4 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:
return break continue if else for while try catch throw

2.5 Constants

There is only one kind of constant: a 32 bits signed integer. Such a constant is a sequence of digits represented in
its decimal form.

3 Expressions

An expression evaluates to a 32 bits signed integer. The precedence of operators is described in the syntax summary.

3.1 identifier

An identifier evaluates to the value of the corresponding variable.

3.2 literal

A decimal number is an expression.

3.3 (expression)

A parenthesized expression evaluates to the parenthesized expression.

3.4 identifier (expression-list,,)

A function call is an expression. The arguments are optional and separated with a comma. They are evaluated
from left to right before the call (applicative order). The value returned by the function is the value the callee
returns with a return statement.

3.5 -expression

The result is the negative of the expression.

3.6 +expression

The result is the expression itself.

3.7 lexpression

The result of the logical negation operator ! is 1 if the value of the expression is 0, 0 if the value of the expression
is non-zero.

3.8 ~expression

The ~ operator yields the one’s complement of its operand.

3.9 identifier++

The referred variable is incremented when evaluated. The expression evalutaes to the value of the variable before
the increment.

Note that the statement “{a = 0; b = 0; b = a++ + a++; }” sets the value of a to 2, and b to 1.

3.10 identifier--

The referred variable is decremented when evaluated. The expression evaluates to the value of the variable before
the decrement.

3.11 ++identifier

The referred variable is incremented when evaluated. The expression evaluates to the value of the variable after
the increment.

3.12 --identifier

The referred variable is decremented when evaluated. The expression evaluates to the value of the variable after
the decrement.

3.13 expression * expression

The binary * operator indicates multiplication.

3.14 expression / expression

The binary /operator indicates division.

3.15 expression J expression

The binary % operator yields the remainder from the division of the first expression by the second. The remainder
has the same sign as the dividend.

3.16 expression + expression

The result is the sum of the expressions.

3.17 expression - expression

The result is the difference of the expressions.

3.18 expression >> expression
expression << expression

The value of the right hand side operand should be non-negative and less than 32, if not the result is undefined.
The value of “E1 >> E2” is E1 arithmetically right-shifted by E2 bit positions. Vacated bits are filled by a copy of
the sign bit of the first expression.

The value of “E1 << E2” is R1 left-shifted by E2 bit positions. Vacated bits are 0-filled.

3.19 expression < expression
expression > expression
expression <= expression
expression >= expression
The operators < (less than), > (greater than), <= (less than or equal to), >= (greater than or equal to) all yield 0 if

the specified relation is false and 1 if it is true.

3.20 expression == expression
expression != expression

The operators == (equal to) and the '= (not equal to) yield 0 if the specified relation is false, 1 if it is true.

3.21 expression & expression

The & operator yield the bitwise and function of the operands.

3.22 expression " expression

The & operator yield the bitwise exclusive or function of the operands.

3.23 expression | expression

The | operator yield the bitwise inclusive or function of the operands.

3.24 expression && expression

The && operator returns 1 if both operands are non-zero, 0 otherwise. Both operands are always evaluated.

3.25 expression || expression

The || operator returns 1 if either of its operands is non-zero, 0 otherwise. Both operands are always evaluated.

3.26 identifier = expression

The value of the referred variable is replaced by the value of the expression.

3.27 identifier += expression
identifier -= expression
identifier *= expression
identifier /= expression
identifier %= expression
identifier >>= expression
identifier <<= expression
identifier &= expression
identifier "= expression
identifier |= expression

An expression of the form “id op= expr” is equivalent to “id = id op expr”.

4 Statements

Statements are executed in sequence.

4.1 Expression statement

Most statement are expression statements, which have the form
expression ;

4.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-listops +
statement-list:

statement

statement statement-list

4.3 Conditional statement

The two forms of the conditional statement are
if (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the second case
the second substatement is executed if the expression is 0. As usual the “else” ambiguity is resolved by connecting
an else with the last encountered elseless if.

4.4 While statement

The while statement has the form
while (expression) statement
The substatement is executed repeatedly so long as the value of the expression remains non-zero. The test takes

place before each execution of the statement.

4.5 For statement

The for statement has the form
for (expression-lope ; expression-2p¢ ; expression-3op¢) statement

This statement is equivalent to
expression-1;
while (expression-2) {
statement
expression-3;

3

Any or all the expression may be dropped. A missing expression-2 makes the implied while clause equivalent
to “while(1)”. Other missing expressions are simply dropped from the expansion above.

4.6 Break statement

The statement
break;
casuses termination of the smallest enclosing while or for statement; control passes to the statement following the

terminated statement.

4.7 Continue statement
The statement
continue;
causes control to pass to the loop-continuation portion of the smallest enclosing while or for statement; that is to

the end of the loop. In case of a for loop of the form “for(el;e2;e3) {...}”, e3 is evaluated before checking e2.

4.8 Return statement

A function returns to its caller by means of the return statement
return expression ;

The value of the expression is returned to the caller of the function.

4.9 Null statement

The null statement has the form

A null statement is useful to supply a null body to a looping statement such as while.

4.10 Try-catch statement

The two form of the try-catch statement are
try { statement-listop, tcatch (identifier) { statement-listop:
try { statement-listop; }catch { statement-listop, F

The statments enclosed in the try block are executed until an exception is thrown. In case no exception is thrown,
the statments enclosed in the catch block are not executed. The first form of the try-catch statement allows to
assign the value of the exception to a variable. Try-catch statement dynamically nest across function calls.

4.11 Throw statement

The throw statement has the form
throw expression ;

Throwing an exception causes control to pass to the catch block of the nearest dynamically-enclosing try-catch
statement. If none is found, it causes the program to terminate with an error. The given expression is the value of
the thrown exception.

5 Program definition
A ltc program consists of a sequence of function definition.
program:

function-definition

function-definition program

function-definition:

identifier (parameter-listop:) { statement-listope F

parameter-list:

identifier

identifier , parameter-list

the same identifier cannot be used more than once in the parameter list. Within the same program, A function
cannot be defined twice (name wise).

All functions return a integer value. A function can return to the caller without an explicit return statement, in
this case the return value is undefined.

A simple example of a complete function definition:
max (a, b, c) {
if (a > b) m = a; else m = b;
if (m > c¢) return m; else return c;

3

6 Scope rules

There are no global variables, but only local variables which are statically binded. The scope of a local variable is
the whole function where the variable is used. The scope of function parameters is the whole function.
Function scope is the entire program.

7 Declarations

Variables don’t need to be declared, they are initialized to 0.
A function call can be made whether or not the function actually exists, the program will simply not link if a call
to a non-existing function is made.

8 Namespace

Variables and function use different namespaces. Therefore such a function is correct: “f() {f=1; return f; }”

9 Syntax Summary

9.1 Expressions

expression:

identifier

literal

(expression)

identifier (expression-listopt)
—expression

+expression

lexpression

~expression

++identifier

—--identifier

identifier++

identifier--

expression binop expression

identifier asgnop expression

expression-list:

expression

expression , expression-list

The unary operators - + ! ~ have higher priority than binary operator.
Binary operators all group left to right and have priority decreasing as indicated:

binop:

* /%

Assignment operator all have the same priority, and all group right to left.

asgnop:

9.2 Statements

statement:

expression ;

{ statement-listop;

if (expression) statement

if (expression) statement else statement

while (expression) statement

for (expressiongp; ; expressiongp; ; expressiongp) statement
break;

continue;

return expression;

try { statement-listop: Fcatch { statement-listop,

try { statement-listop, }catch (identifier) { statement-listop:

throw expression;

)

statement-list:

statement

statement statement-list

9.3 Program definition

program:

function-definition

function-definition program

function-definition:

identifier (parameter-listop;) { statement-listop +

parameter-list:

identifier

identifier , parameter-list

Appendix C - source

Makefile

0BJS = parser.cmo scanner.cmo backend.cmo sast.cmo cflat.cmo
CFLAGS="-m32"

cflat : 0BJS) lib.o
ocamlc -o cflat 0BJS

.PHONY: test
test : cflat tester.py test-cflat.txt
./tester.py test-cflat.txt

scanner.ml scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

.cmo .ml
ocamlc -c 9<

.cmi .mli
ocamlc -c <

.PHONY : clean
clean
rm -f cflat parser.ml parser.mli scanner.ml testall.log
.S test

Generated by ocamldep *.ml *.mli

backend.cmo: ast.cmi

backend.cmx: ast.cmi

cflat.cmo: scanner.cmo sast.cmo parser.cmi backend.cmo
cflat.cmx: scanner.cmx sast.cmx parser.cmx backend.cmx
parser.cmo: ast.cmi parser.cmi

parser.cmx: ast.cmi parser.cmi

sast.cmo: ast.cmi

sast.cmx: ast.cmi

scanner.cmo: parser.cmi

scanner.cmx: parser.cmx

parser.cmi: ast.cmi

.Cmo

.cmi

scanner.mll

{ open Parser }

let newline
let whitespace
let digit

let integer
let alpha

let alphanum
let identifier

[]
[0-"97]
digit+

[- -2
alpha | digit

alpha alphanum*

| newline

rule token = parse

whitespace { token lexbuf }
| /7" { comment double slash lexbuf }
| "/*" { comment slash star 0 lexbuf }
(* arithmetic operators *)
| " { INC }
| " { DEC }
| "-=" { MINUS_ASSIGN }
| "+=" { PLUS ASSIGN }
| k=" { TIMES ASSIGN }
| /=" { DIVIDE ASSIGN }
| "%=" { MODULO ASSIGN }
| { MINUS }
| { PLUS }
| { TIMES }
| { DIVIDE }
| { mMoDULO }
(* must be before the "|" and "&" *)
| "&&" { AND }
I { OR }

(* bitwise operators *)

| "<<=" { LSHIFT ASSIGN }
| ">>=" { RSHIFT ASSIGN }
| "&=" { BW_AND ASSIGN }
| "]=" { BW_OR_ASSIGN }
| =" { BW XOR ASSIGN }
| "<<" { LSHIFT }

| ">>" { RSHIFT }

| "~" { BW_NOT }

| "&" { BW AND }

E { BW_OR }

| "~ { BW _XOR }

(* logic operators *)

(* done before

| "&&" { AND }

| 1" { OR }

*)

| <=t { LEQ }

| =" { GEQ }

| = { NEQ }

| M= { EQ }

| "t { NOT }

| { LT}

| { GT }

(* punctuation *)

| { ASSIGN }

| { LPAREN }

| { RPAREN }

| { LBRACE }

| { RBRACE }

| { SEMI }

| { COMMA }

(* keywords *)

| "for" { FOR }

| "while" { WHILE }

| "if" { IF }

| "else" { ELSE }

| "return” { RETURN }

| "break" { BREAK }

| "continue" { CONTINUE }

| "try" { TRY }

| "catch" { CATCH }

| "throw" { THROW }

| integer as lit { LITERAL(int of string lit) }

| identifier as id { ID(id) }

| eof { EOF }

| _as char { raise (Failure("illegal character " ~ Char.escaped
char)) }

and comment slash star level = parse
VA { if level = 0 then token lexbuf
else comment slash star (level-1) lexbuf }
| "/*" { comment slash star (level+l) lexbuf }
| eof { raise (Failure("Comment not closed")) }
| { comment_slash star level lexbuf }

and comment double slash = parse
newline { token lexbuf }
| { comment double slash lexbuf}

parser.mly
%{ open Ast %}

%stoken INC DEC MINUS ASSIGN PLUS ASSIGN TIMES ASSIGN DIVIDE ASSIGN MODULO ASSIGN
%token MINUS PLUS TIMES DIVIDE MODULO

%stoken LSHIFT ASSIGN RSHIFT ASSIGN BW AND ASSIGN BW OR ASSIGN BW XOR ASSIGN
%token LSHIFT RSHIFT BW NOT BW AND BW OR BW XOR

%token LEQ GEQ NEQ EQ NOT AND OR LT GT

%token ASSIGN LPAREN RPAREN LBRACE RBRACE SEMI COMMA

%token FOR WHILE IF ELSE RETURN BREAK CONTINUE TRY CATCH THROW

%token <int> LITERAL

%token <string> ID

%token EOF

%snonassoc NOELSE
%nonassoc ELSE

sright BW _AND ASSIGN BW XOR ASSIGN BW OR ASSIGN LSHIFT ASSIGN RSHIFT ASSIGN
TIMES ASSIGN DIVIDE ASSIGN MODULO ASSIGN PLUS ASSIGN MINUS ASSIGN ASSIGN

%sleft OR

%sleft AND

%sleft BW OR

%sleft BW_XOR

%sleft BW_AND

%sleft EQ NEQ

%sleft GT GEQ LT LEQ

%sleft LSHIFT RSHIFT

%sleft PLUS MINUS

%sleft TIMES DIVIDE MODULO

ssnonassoc NOT BW NOT U PLUS U MINUS

%sstart program
stype <Ast.program> program

[
676

program:
/* nothing */ { [] }
| program fdecl { $2 :: $1 }

fdecl:
ID LPAREN formals opt RPAREN LBRACE stmt list RBRACE
{ { fname = $1;
~formals = $3;
_body = List.rev $6 } }

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal list:

ID { [$1]1 }
| formal list COMMA ID { $3 :: $1 }

stmt_list:
/* nothing */ { [] }

| stmt list stmt { $2 :: $1 }

stmt:
expr SEMI { Expr($1) }
| SEMI { Expr(Noexpr) }
| RETURN expr SEMI { Return($2) }
| LBRACE stmt list RBRACE { Block(List.rev $2) }
| IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }
| IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }
| FOR LPAREN expr opt SEMI expr opt SEMI expr opt RPAREN stmt
{ For($3, $5, $7, $9) }
| WHILE LPAREN expr RPAREN stmt { While($3, $5) }
| BREAK SEMI { Break }
| CONTINUE SEMI { Continue }
| TRY LBRACE stmt 1ist RBRACE CATCH LBRACE stmt list RBRACE
{ Try catch(Block(List.rev $3), "", Block(List.rev $7)) }
| TRY LBRACE stmt list RBRACE CATCH LPAREN ID RPAREN LBRACE stmt list RBRACE
{ Try catch(Block(List.rev $3), $7, Block(List.rev $10)) }
| THROW expr SEMI { Throw($2) }

expr_opt:

/* nothing */ { Noexpr }

| expr {$1}
expr:

LITERAL { Literal($1l) }
| ID { Id($1) }
| expr OR expr { Binop($1l, Or, $3) }
| expr AND expr { Binop($1l, And, $3) }
| expr BW OR expr { Binop($1l, Bw or, $3) }
| expr BW_AND expr { Binop($1l, Bw and, $3) }
| expr BW XOR expr { Binop($1l, Bw xor, $3) }
| expr LSHIFT expr { Binop($1l, Lshift, $3) }
| expr RSHIFT expr { Binop($1l, Rshift, $3) }
| expr PLUS expr { Binop($1l, Add, $3) }
| expr MINUS expr { Binop($1l, Sub, $3) }
| expr TIMES expr { Binop($1l, Mult, $3) }
| expr DIVIDE expr { Binop($1l, Div, $3) }
| expr MODULO expr { Binop($l, Modulo, $3) }
| expr EQ expr { Binop($1, Equal, $3) }
| expr NEQ expr { Binop($1l, Neq, $3) }
| expr LT expr { Binop($1l, Less, $3) }
| expr LEQ expr { Binop($1l, Leq, $3) }
| expr GT expr { Binop($1l, Greater, $3) }
| expr GEQ expr { Binop($1l, Geq, $3) }

NOT expr { Unop(Not, $2) }

BW NOT expr { Unop(Bw_not, $2) }

PLUS expr %sprec U PLUS { Unop(Plus, $2) }

MINUS expr %prec U MINUS { Unop(Minus, $2) }

INC ID { Incop(Pre _inc, $2) }
DEC ID { Incop(Pre dec, $2) }
ID INC { Incop(Post inc, $1) }
ID DEC { Incop(Post dec, $1) }

| ID BW AND ASSIGN expr { Assignop($l, Bw and assign, $3) }
| ID BW OR ASSIGN expr { Assignop($l, Bw or _assign, $3) }

ID BW XOR ASSIGN
ID LSHIFT ASSIGN
ID RSHIFT ASSIGN
ID TIMES ASSIGN
DIVIDE ASSIGN
ID MODULO ASSIGN
ID PLUS ASSIGN

ID MINUS ASSIGN
ID ASSIGN expr

|
|
|
|
| ID
|
|
|
|

| ID

expr
expr
expr
expr
expr
expr
expr
expr

P Y Y e S S S,

Assignop (
Assignop(
Assignop (
Assignop (
Assignop (
Assignop(
Assignop(
Assignop (
Assignop(

| LPAREN expr RPAREN { $2 }

actuals opt:

/* nothing */ { [] }
{ List.rev $1 }

| actuals list

actuals list:

expr

| actuals list COMMA expr { $3 ::

{ [$1]1 }
$1 }

, Bw _xor_assign,
, Lshift assign,
, Rshift assign,

, Mult assign,
, Div_assign,

, Modulo_assign,

, Add assign,
, Sub_assign,
, Assign,

LPAREN actuals opt RPAREN { Call($1l, $3) }

$3
$3
$3
$3
$3
$3
$3
$3
$3

~— S — — —

e e e e e e e

ast.mli

type binop =
Add | Sub | Mult | Div | Modulo
| Or | And | Bw or | Bw and | Bw xor | Lshift | Rshift
| Equal | Neq | Less | Leq | Greater | Geq

type assignop =
Assign | Add assign | Sub _assign | Mult assign | Div_assign | Modulo assign
| Bw or assign | Bw and assign | Bw xor assign | Lshift assign | Rshift assign

type unop =
Not | Bw not | Plus | Minus
type incop =
Pre inc | Post inc | Pre dec | Post dec
type expr =
Literal of int
| Id of string
| Unop of unop * expr
| Incop of incop * string
| Binop of expr * binop * expr
| Assignop of string * assignop * expr
| Call of string * expr list
| Noexpr
type stmt =
Block of stmt list
| Expr of expr
| Return of expr
| If of expr * stmt * stmt
| For of expr * expr * expr * stmt
| While of expr * stmt
| Break
| Continue
| Try catch of stmt * string * stmt
| Throw of expr

type func decl = {

__fname : string;
_formals : string list;
_body : ostmt list;

}
type program = func decl list

type func decl detail = {

fname : string;
formals : string list;
locals : string list;
body : ostmt list;

}

type program detail = func _decl detail list

sast.ml

open Ast
open Printf

type context = {
in loop : bool;
variables : string list ref;

}

(* returns 11 - 12 *)
let rec diff list 11 = function
[T -> 11
| hd2 :: t12 ->
let rec diff hd2 = function
[1 -> []
| hdl :: t11 ->
if hdl = hd2 then diff hd2 t11
else hdl :: diff hd2 tl1 in
diff list (diff hd2 11) t12

(* add v to the context.variables list if not in the list *)
let add variable context v =
let rec add unique v = function
[1 -> [v]
| hd :: tl ->
if hd = v then hd :: tl
else hd :: add unique v tl in
context.variables := add unique v !(context.variables)

let rec check expr fdecl context = function

Literal() -> ()
| Id(v) -> add_variable context v
| Unop(, e) -> check expr fdecl context e
| Incop(, V) -> add variable context v
| Binop(el, , e2) -> check expr fdecl context el;
check expr fdecl context e2
| Assignop(v, , e) -> add variable context v;
check expr fdecl context e
| Call(, el) -> List.iter (check expr fdecl context) el
| Noexpr -> ()

let rec check stmt fdecl context = function

Block(sl) -> List.iter (check stmt fdecl context) sl
| Expr(e) -> check expr fdecl context e
| Return(e) -> check expr fdecl context e
| If(e, s1, s2) -> check expr fdecl context e;

check stmt fdecl context s1;
check stmt fdecl context s2
| For(el, e2, e3, s) ->

let context' = { context with in loop = true } in
check expr fdecl context' el;
check expr fdecl context' e2;
check expr fdecl context' e3;
check stmt fdecl context' s

| While(e, s) -> check stmt fdecl context (For(Noexpr, e, Noexpr, s))

| Break -> if not context.in_loop then

raise (Failure("break keyword used outside a loop"))
| Continue -> if not context.in loop then
raise (Failure("continue keyword used outside a
Loop"))
| Try catch(sl, v, s2) -> check stmt fdecl context sl;
add variable context v;
check stmt fdecl context s2
| Throw(e) -> check expr fdecl context e

(* check a func decl and returns a func decl detail *)
let check func fdecl =

(* first check that each formal is only declared once *)

let rec check formal unique formal list formal =

(match formal list with
[1 -> [formal]
| hd :: tl ->
if hd = formal then
raise (Failure("formal " ~ formal ~ " is declared more than once" *
" in function " ~ fdecl. fname))

else
hd :: check formal unique tl formal) in
let = List.fold left check formal unique [] fdecl. formals in

let context = { in loop = false; variables = ref [] } in
check stmt fdecl context (Block(fdecl. body));
{ fname = fdecl. fname;
formals = fdecl. formals;
locals = diff list !(context.variables) fdecl. formals;
body = fdecl. body }

(* check a program and returns a program detail *)
let check program funcs =

(* first we check that a function is only declared once *)

let rec check funcs unique fname list fdecl =

(match fname list with
[1 -> [fdecl. fname]
| hd :: tl ->
if hd = fdecl. fname then
raise (Failure("function " ~ fdecl. fname *
" is declared more than once"))

else
hd :: check funcs unique tl fdecl) in
let = List.fold left check funcs unique [] funcs in

List.map check func funcs

backend.ml

open Ast
open Printf

type context = {

label count : int ref;
break label : string option;
continue label : string option;
return label : string option;
function try level : int;
loop try level : int;

}

let get new label context =
let 1 = !(context.label count) in
context.label count := 1 + 1;

".L" ~ (string of int 1)

let get = function
Some(x) -> x
| None _> nn

let rec index of item n = function
[1-> -1
| hd::tl -> if hd = item then n else (index of item (n+1) t1)

let id to offset fdecl id =
let n = index of id 0 fdecl.formals in
if n >= 0 then
4 * (n+2)
else
let n = index of id 0 fdecl.locals in
if n >= 0 then
-4 * (n+l)
else
(* should never happen (SAST is doing its job) *)
raise (Failure("undefined identifier " ~ id))

(*

an exception looks like this:
struct exception {

struct exception *next;

void *catch address;

int old ebp;

}i

*)

let exception context size = 3*4

let stack exception catch label =
"push ebp\n" *
sprintf "push offset %s\n" catch label ©
“push dword ptr [exception ptr]\n" ~
"mov [exception ptr], esp\n"

let unstack exception n =

sprintf "add esp, %d

let rec unwind exception = function

O -> "
| n -> "mov eax, [exception ptr]\n" *
"mov eax, [eax]\n" *
"mov [exception ptr], eax\n" *

unwind exception (n-1)

let
Literal(l) ->
sprintf "mov eax, %d\n" 1

| Id(s) ->
sprintf "mov eax, [ebp+%d]
| Unop(ol e) ->
eval expr to eax fdecl e ©
(match o with

Not -> "test eax, eax\n"
"setz al\n"
"movzx eax, al\n"
| Bw_not -> "not eax\n"
| Plus -> "
| Minus -> "neg eax\n")

| Incop(o, v) ->
let asm = function

Pre _inc | Post _inc ->
sprintf "inc dword ptr [ebp+%d]
| Pre dec | Post dec->
sprintf "dec dword ptr [ebp+%d]
(match o with
Pre inc | Pre_dec

rec eval expr to eax fdecl = function

" (exception context size * n)

" (id to offset fdecl s)

" (id _to offset fdecl v)

" (id_to offset fdecl v) in

-> asm o ~ eval expr to eax fdecl (Id(v))

| Post inc | Post dec -> eval expr to eax fdecl (Id(v)) ~ asm o)

| Binop(el, o, e2) ->
eval expr to eax fdecl el ©

"push eax\n" *
eval expr to eax fdecl e2 ©
Ilpop eCX n N

noA

"xchg eax, ecx
(* eax contains el,

(match o with

Equal | Neq | Less | Leq | Greater

"cmp eax, ecx
I _> Illl) N

(match o with

Add -> "add eax, ecx\n"
| Sub -> "sub eax, ecx\n"
| Mult -> "imul eax, ecx\n"
| Div -> "cdg\n" ~
"idiv ecx\n"

| Modulo -> "cdg\n" ©
"idiv ecx\n" ~*
"mov eax, edx\n"

ecx contains e2 *)

| Geq ->

| Or -> "or eax, ecx
"setnz al\n"

| And -> "test eax, eax\n"
"setnz al\n" *
"test ecx, ecx\n"
"setnz cl\n" *
"and al, cl\n"

| Bw or -> "or eax, ecx\n"

| Bw and -> "and eax, ecx\n"

| Bw xor -> "xor eax, ecx\n"

| Lshift -> "sal eax, cl\n"

| Rshift -> "sar eax, cl\n"

| Equal -> "sete al\n"

| Neq -> "setne al\n"

| Less -> "setl al\n"

| Leq -> "setle al\n"

| Greater -> "setg al\n"

| Geq -> "setge al\n") ©

(match o with

Or | And | Equal | Neq | Less | Leq | Greater | Geq ->

"movzx eax,

>

al

| Assignop(v, o, e) ->

let assign binop binop =
eval expr to eax fdecl (Assignop(v, Assign, Binop(Id(v), binop, e))) in

(match o with
Assign

Add assign
Sub _assign

Div_assign

Mult assign

Modulo assign

->

->
->
->
->
->
->

eval _expr_to_

sprintf "mov
assign binop
assign binop
assign binop
assign binop
assign binop

Bw_or assign

Bw and assign
Bw xor_assign
Lshift assign
Rshift assign

| Call(f, el) ->
let push func args

->
->
->

assign binop
assign binop
assign binop
assign binop
assign binop

let prepare arg e =
eval expr to eax fdecl e ©

"push eax

in

eax fdecl e ©
[ebp+%d], eax
Add

Sub

Mult

Div

Modulo

Bw or

Bw and

Bw xor

Lshift
Rshift)

" (id _to offset fdecl v)

N

String.concat "" (List.map prepare _arg el)
let swap two args i j =

sprintf "mov eax, [esp+%d]\n" (4 * i) *
sprintf "xchg eax, [esp+%d]\n" (4 * j) ©
sprintf "mov [esp+%d], eax\n" (4 * i) in
let rec reverse all args i j =
if i < j then
swap_two args i j ©
reverse all args (i+l) (j-1)

else in
reverse all args 0 (List.length el - 1) in
push func_args *

sprintf "call %s\n" f ©
sprintf "add esp, %d\n" (4 * (List.length el))

| Noexpr -> ""

let rec string of stmt context fdecl = function
Block(stmts) ->

String.concat "" (List.map (string of stmt context fdecl) stmts)

| Expr(expr) -> eval expr to eax fdecl expr

| Return(expr) ->
unwind exception context.function try level ©
unstack exception context.function try level *
eval expr to eax fdecl expr ©
sprintf "jmp %s\n" (get context.return label)

| If(e, s1, s2) ->
let else label get new label context
and exit if label = get new label context in
eval expr to eax fdecl e ©

"test eax, eax\n" ©
sprintf "jz %s\n" else label ©
string of stmt context fdecl sl ©
sprintf "jmp %s\n" exit if label *
sprintf "%s:\n" else label ©
string of stmt context fdecl s2 ©
sprintf "%s:\n" exit if label

| For(el, e2, e3, s) ->

let loop begin label = get new label context

and loop label = get new label context
and loop exit label = get new label context in
let context' = { context with continue label

break label
loop_try level

eval expr to eax fdecl el ©
sprintf "jmp %s\n" loop begin label "

sprintf "%s:\n" loop label ©
eval expr to eax fdecl e3 ©
sprintf "%s:\n" loop begin label *
(match e2 with
Noexpr -> ""
| -> eval expr to eax fdecl e2 ©
"test eax, eax\n"
sprintf "jz %s\n" loop exit label) *

string of stmt context' fdecl s ©
sprintf "jmp %s\n" loop label ~
sprintf "%s:\n" loop_exit label

| While(e, s) ->

Some loop label;
Some loop exit label;
0 } in

string of stmt context fdecl (For(Noexpr, e, Noexpr, s))

| Break ->
unwind exception context.loop try level ©
unstack exception context.loop try level ©
sprintf "jmp %s\n" (get context.break label)

| Continue ->
unwind exception context.loop try level ©
unstack exception context.loop try level ©
sprintf "jmp %s\n" (get context.continue label)

| Try catch(sl, v, s2) ->

let catch_label = get new label context
and exit label = get new label context in
let context' = { context with

function try level
loop _try level
stack exception catch label ©
string of stmt context' fdecl sl ©
unwind exception 1 ©
unstack exception 1 ©

context.function try level + 1;
context.loop try level + 1} in

sprintf "jmp %s\n" exit label ~
sprintf "%s:\n" catch label *
(match v with

nn _> nn

| -> sprintf "mov [ebp+%d], edx
string of stmt context fdecl s2 ©
sprintf "%s:\n" exit label

" (id to offset fdecl v)) ©

| Throw(e) ->
let caught exception = get new label context in
eval expr to eax fdecl e ©

"mov edx, eax\n" "
"mov ecx, [exception ptr]\n" *
"test ecx, ecx\n" ©
sprintf "jnz %s\n" caught exception ©
“push edx\n" ~
"call _ uncaught exception\n" *
sprintf "%s:\n" caught exception *
unwind exception 1 *
"lea esp, [ecx+12]\n" ~ (* exception is unstacked *)
"mov ebp, [ecx+8]\n" ~

"jmp [ecx+4]\n"

let string of fdecl context fdecl =

let context' = { context with return label = Some (get new label context) } in
sprintf ".globl %s\n" fdecl.fname *

sprintf ".type %s, @function\n" fdecl.fname *

sprintf "%s:\n" fdecl.fname *

(* creating frame *)

"push ebp\n" ~

"mov ebp, esp\n"

(* instead of "sub esp, 4*num locals", we "push 0" num locals times,
this way, the local variables are cleared on the fly *)

"Xor eax, eax\n" ~
String.concat "" (List.map (fun _ -> "push eax\n") fdecl.locals) *
"push ecx\n" *
"push edx\n" ~
string of stmt context' fdecl (Block(fdecl.body)) *
sprintf "%s:\n" (get context'.return label) *
"pop edx\n" ~
"pop ecx\n" ~*
"mov esp, ebp\n" ~

"pOp ebp noA

n I"et n

let generate asm funcs =

let context = { label count = ref 0;
continue label = None;
break label = None;
return_label = None;
function try level = 0;
loop try level =0} in
".intel syntax noprefix\n" *
"Ltext\n" 7©
String.concat "" (List.map (string of fdecl context) funcs) *

".ident C Flat compiler 0.1 !

cflat.ml

let =
try
let lexbuf = Lexing.from channel stdin in
let program = Parser.program Scanner.token lexbuf in
let program detail = Sast.check program program in
print string (Backend.generate asm program detail); exit 0
with
Failure(s) -> prerr_endline ("Error: " ™ s); exit 1
| Parsing.Parse error -> prerr_endline ("Syntax error"); exit 1

1ib.c

#include <stdio.h>
#include <stdlib.h>

#define asmlinkage attribute ((regparm(0)))

asmlinkage int in(void) {

int 1i;
scanf("%d", &i);
return i;

}

asmlinkage void out(int val) {
printf("% ", val);

}

asmlinkage void uncaught exception(int ex) {
printf("uncaught exception: %d\n", ex);
exit(1l);

}

void * exception ptr;

tester. py

#!/usr/bin/env python

commands
0s
sys
popen2 Popen4

def compile and run(compiler, code):
"""Returns (compile status, output).
compile status is 'OK' or 'BAD'.
If compile fails, output has compiler output. If compile succeeds, it has
the output of the program run.

proc = Popend(compiler)
proc.tochild.write(code)
proc.tochild.close()
if proc.wait() != 0:

return ('BAD', proc.fromchild.read())
proc = Popend('./test | xargs')
return ('OK', proc.fromchild.read().strip())

def print indented(message):
for line in message.splitlines():
print " ", line

def run_test(compiler, code, correct result):
"""Returns True if the test passes, otherwise False."""
status, output = compile and run(compiler, code)
if correct result == 'BAD':
if status == 'BAD':
print "PASS"
return True
elif status == 'OK':
print "FAIL: Bad code compiled. Code:"
print_indented(code)
return False
elif correct result == 'OK':
if status == 'BAD':
print "FAIL: Good code didn't compile. Code:"
print indented(code)
print "Compiler output:"
print indented(output)
return False
elif status == 'OK':
print "PASS"
return True
else:
if status == 'BAD':
print "FAIL: Good code didn't compile. Code:"
print_indented(code)
print "Compiler output:"
print indented(output)
return False
elif correct result == output:

print "PASS"
return True
else:

print "FAIL: Incorrect output from execution.

print_indented(code)

print "Executed code output:"
print indented(output)

print "Correct output:"

print indented(correct result)
return False

if len(sys.argv) < 2:
print "You must specify a test file."
exit(1)
test file name = sys.argv[1l]
test file = open(test file name)
print "Loading test file '%s'." % test file name
compiler = '#'
while compiler.startswith('#'):
compiler = test file.readline().strip()
print "Using compile command '%s'." % compiler
test count = 0
pass_count = 0
code = ""
for line in test file:
if line == "...\n":
code = "*"
elif line.startswith("... "):
test count += 1
correct result = line.strip("\n")[4:]
if (run test(compiler, code, correct result)):
pass_count += 1
else:
code += line
test file.close()
print "%d / %d tests passed." % (pass count, test count)

Code:"

test-cflat.txt

The first line that doesn't start with a '#' should be the compiler command.
It should read source code from stdin and produce an executable named

'test'.

bash -c '(./cflat > test.s && gcc -m32 -c test.s -o test.o && gcc -m32 test.o
lib.o -o test)'

After the compiler command, anything not within a test case (surrounded by ...)
is ignored.

The closing ... should be followed by a space and then the desired result of the
test:

* 0K if the code should compile,

* BAD if the code shouldn't compile, or

* Any other single line string which the code, when run, should produce.
Whitespace may be trimmed from the front or back.

k* Compiling *

main() {
}
... 0K

main() {
bad
}

. BAD

***x Comments ***

main() { }
/*
... BAD

main() {
out(1l);
/* out(2); /* out(3); */ // */
/* garbage */
out(4); // out(5); garbage
out(6);

. 146

***% Variables **x*

f(a, b) {
out(a);
out(b);

}
main() {
out(a); /* a should be initialized to 0 */
a 1;
b a;

out(b);
out(a+b);
f(2, 3);

}
.01223

);.variable can have the same name as a function */
f(f) {

out(f);
}
main() {

f=2;

f(f);
}
el 2

};-local variable discovery */
dummy(a) { }

a() {v; 1}

b() { !'v; }

c() { v++; }

d() { v+0; }

e() { O+v; }

f() { v+=0; }

g() { v=0; }

h() { dummy(v); }
i() { {v; } 1}

j() { return v; }
k() { if (v); }
() { for(v;;); }
m() { for(;v;); }
n() { for(;;v); }
o() { while (v); }
p() { try {} catch(v) {} }
g() { throw v; }
main() { }

... 0K

*** QOperators correctness ***

main() {

/* Unop */

out(-3);

out(+ - + - + - + 4);
out('0);
out(!'2);
out(!!'2);
out(~10);
out(~~10);

. -3-4101 -11 10

main() {
/* increment and decrement */

out(a++);
out(a);
out(a--);
out(a);

out (++a);
out(a);
out(--a);
out(a);

out (a+++a++);
out(a);
out(a--+a--);
out(a);

.011011001230

main() {
/* Arithmetic binops */
out(3+1);
out (3+-1);
out(-2+-2);
out(3-1);
out(3- -1);
out(-1- -2);
out(3*2);
out (-2*3);
out(-1*-1);
out(12/4);
out(6/-2);
out(-5/-5);
out (10%4);
out(10%-4);
out(-10%4);
out(-10%-4);

.42 -42416 -613-3122-2-2

main() {

/* Bitwise binops */
out(3<<2);
out(-1<<l);
out(12>>2);
out(-1>>1);
out(1]4);

out (3&5);

out(375);

12 -23 -1516

main() {
/* Assign binops */

a=20; a+= 2; out(a);
a=20; a-=2; out(a);
a=2; a *= 3; out(a);
a=06; a/=2; out(a);
a=7; a% 4; out(a);

3; a <<= 2; out(
12; a >>= 2; out
; a |= 4; out(a
3; a &= 5; out(a
a ™= 5; out(a

);
a);

QoYY oYY
I mmnu
=

a
(
);
);
);

’
’
’

N
1
N

633123516

main() {
/* Logic binops */
out(-2>-1);
out(0>-1);
out(0>0);
out(1>0);

out(-2>=-1);
out (0>=-1);
out(0>=0);
out(1>=0);

out(-1<-2);
out(-2<0);
out(1l<l);
out(0<1);

out(-1<=-2);
out(-2<=0);
out(l<=1);
out(0<=1);

out(l==1);
out(1==0);
out(1'=1);
out(1'=0);
out (0&&1);
out (1&&0) ;
out (1&&3) ;
out (0&&0) ;

out(0]1]0);
out(1]]0);
out(0]]1);
out(1]]3);

.0101011101010111100100100111

¥* Operator precedence *

65iexpr, wanted, not wanted) {

out((expr == wanted) && (wanted != not wanted));
}
main() {

/* left assoc test */

out(2) * out(3) * out(4);

/* precedence test */

op(~2*3, (~2)*3, ~(2%3));
op(1+2*3, 1+(2*3), (142)%*3);
op(l<<2+43, 1<<(2+3), (1l<<2)+3);
op(1<2+3, 1<(243), (1<2)+3);
op(l==2<1, ==(2<1), (1==2)<1);
op(2&2==2, 2&(2==2), (2&2)==2);
op(172&3, 1~ (2&2), (172)&2);
op(312°3, 3](2°2), (3]2)"2);
op(0&&2|1, 0&8(2]1), (0&&2)]|1);
op(1l]|2&80, 1]](2&&0), (1]]2)&&0);

/* right assoc test */
a=1;, b=2; c=3;
a=b=c;

out(a); out(b); out(c);

.2341111111111333

*** Function test ***

/* should compile, number of argument are not checked */
f(a,b,c) { }
main() { f(a); }

.. OK

/* duplicate function */
() {}

O {}

main() {}

... BAD

/* duplicate formals */
f(a,b,a) {}

main() {}

... BAD

/* Function call evaluation order */
f(a, b, ¢) { out(a); out(b); out(c); }
g(a, b, ¢) {}
main() {

f(1, 2, 3);

g(out(4), out(5), out(6));

. 123456

/* Recursive call test */
fib(x) {

if (x < 3) return 1;

return fib(x-1) + fib(x-2);
}

main() {

out(fib(10));
. 55
main() {
f(); /7* will fail at linking stage */
}

. BAD

***x jf/else **x*

main() {
if (1) out(1l);
else out(2);

if (0) out(3);
else out(4);

if (0) out(5);
else if (1) out(6);
else out(7);
if (1)
if (0) out(8);
else out(9);
else out(10);

if (1) out(11);
if (0) out(12);
else out(13);

. 146911 13

*** Simple loop test ***

main() {
sum = 0;
for (1 =0; i <= 10; i++)
sum += 1i;
out(sum);
}
... 55

func(a) {
return a-1;
}
main() {
a = 10;
while(func(a)
a = func(a);
out(a);
}
e 1

/* empty condition */
main() {
for (;;) break;
for (;;i++) {
if (i == 3)
break;
out(i);
}

}
.. 012

main() {
while () { }
}

. BAD
*** Nested for/while ***

main() {
for (1 =0; 1 < 2; i++) {
while (0) { }
for (j = 0; j < 2; j++)
out (i + j);

. 0112

*** break/continue tests ***
main() {
if (1) {
break;
}

}
... BAD

main() {
continue;
}

. BAD

/* multi level break/continue */
main() {

for (1 =0; 1 <

for (j =0; j

if (j == 1)

continue;

else if (j == 3)
break;
out(i);
out(j);

5; i++) {
< 5; j++) {

}
if (1 == 2)

break;
.000210122022

***x Exceptions ***

/* nested try/catch across functions */

g() {
throw 4;
}

() {
try {
g();

} catch (b) {
out(b);
throw b-1;

}

}
main() {
out(1)
try {
f(O);
out(2);

} catch (a) {
out(a);

}

out(5);

’

}
. 1435

/* exceptions in recursive functions caught outside */
f(x) {

if (x == 0) {
throw -1;

} else {
out(x);
f(x-1);

}

}
main() {
try {
f(3);

} catch(e) {

out(e);

}
321 -1

}

/* exceptions in recursive functions caught inside */
f(x) |
try {
if (x == 0) {
throw -1;
} else {

out(x);
f(x-1);
}
} catch(e) {
out(e);
}
}
main() {
f(3);
}

. 321-1

/* continue/break in a loop */
main() {
for (i=0; i < 5; i++) {
try {
try {
if (i == 4)
throw 2;
} catch {
break;

if (i == 2)
continue;
} catch { }
out(i);
}
out(-1);

}
. 013 -1

/* return within a try */
f() {
try {
return 0;
} catch {
}
}

main() {
try {
f(O);
throw 1;
} catch (a) {
out(a);
}
out(2);
}
..o 12

/* not catching an exception */
main() {

throw 1;
}

. uncaught exception: 1

	Cb.pdf
	Cb (C flat)

