Examination Generation Grading Language (EGGL)
Language Reference Manual

Gordon Hew (CVN) (gh2242@columbia.edu)

COMS W4115: Programming Languages and Translators
Fall 2010, Professor Stephen Edwards

Table of Contents

INETOUCTION. ...ttt et e et e e e et e e e e ttaeeeeeaaeeeeeeaaeeeeeeaaeeeeeeaseeeeenanseeeann
LeX1Cal COMVEILION.uvuveiiiiiiiiiieiiiieeieeeeeeeeetttee et e e e e e e e satee et e e e e e sessataeeeeesessessssaarreeseeseesenrsrareeeeeees
COMMTICIIEStvvrereeeeeeeeeectite et e e e eeeee et be e e e e eeeeeeeaarreeeeeeeeeesastasseseaeeeeeaasssssaeeeeeeeessassrsseeeseseennninnes
| (6 <3 085 1 TR
COMSLAIES.eeeieiireeeeee e ee ettt e e e e eeeeee e e e e e eeeeetaareeeeeeeeeesattaaaeeeeeeeeasassssseseeeeeeeessasrreeeeeseesannnes
ReESEIVEd KEYWOTAS. ... uiiieiiieeiieeeiie ettt et e et e e ae e e taeeetaeeenseeessseeennseees
SEPATALOTS. ..ottt ettt ettt et e et e e bt ee et e e s bt e e e bt e e sabt e e e bt e e bt e e eabeeenneas
W TS PACES. .. eeeeeeieeeiiie ettt ee ettt e ettt e et e e et e e sabeeessbeeessseeessseeensseeessseeasseeesnsaeensseeensseesnnseeans

L0 0t o 0 0TS 110 £ PSP UPUPRRSRRSR
ATTERMELIC OPETALOTS. ..cueeiiiieiieeiiieiie et esite et et e et e st e e teesaeeesbeesseeebeesseeenseesseesseesnseenseesnsesseens
ReE1ational OPEIAtOTS.....cccuvieeiieieiiieeiieeeieeeeieeeetee et e esteeetaeestaeesteeessseeessseeessseeessseeessseesnsseennns
EQUALILY OPETatOrS. ...cocuiiiiieiieeiieeiie ettt ettt ettt et et e bt e sseeeabeesseeenbeesssesnseenseeenseennns
0T e 1o 1 W 0 o) 210 USRS
250 (S 1011 USRI PSR
PrimMary EXPIE@SSIONS. ...ccccuiiiitiiiiiieeetieesiteeeeite ettt eesteeesaeeeeaeeetaeeeseeessseeessseeessseeessseeessseesnsseennns
UNATY EXPIESSIONS. .. .eeuiieuiieiiiieiieeitteite et eeteeeteettesteesteeeeseesseessbeesseeenseeseesnseenseesnseesssesnseesseeans
ATTTRMELIC EXPIESSIONS. ..cciuiiiiiiieiiiiieciie ettt see et e et e e eeessaeeeeaeeesaeesssaeesnseeesnseeensnes
Relational EXPreSSIONS.cc.eeriiiiiiiniiieiieiiie et eeiie ettt ettt ettt e et e sbeeesbeesseesabeesseeenseenseesnseans
EQUality EXPIrESSIONS. ..cccuiiiiiiiieiiieiiieeeiieetee ettt e e et e e st eesaeeestaeeesaaeeesseesnsaeesnseeennseeensseennnns
LOZICAl EXPIESSIONS.ccutieiiiiiiieiieeiiteitie ettt et et te st et e st e et e sateesseessbeenseessaeenseessneenseenssesnseans
STALEIMIEIIES. ...ttt ettt e et e ettt e st et e e ittt e bt e e e bt e e e bt e e sbteesabeeesaneeenanee
EXPIession StAtCIMENT.cc.uieiuiiiiieiiieeie ettt ettt et e eee et e st e e bt e sat e et essaeenbeesaaeenseessaesnseenseeenne
ComPOUNA STALEINENL.ecciiieiiieeeieeeeieeerieeertee et e e eireeeteeesbeeesbaeesaeeessseeessseeesseesnsseesnsseesnnns

ConditioNal StATEIMENT........cooiiiiiiiiiiiiei et e e e e e e e e e e e e e s e sesraabeeeeeeeesssasarareeeeess
FOT LOOP StatemENt........eeiiiiiiiiiieiiiie ettt ettt e et eeiteesaaeesaaeees
While LOOP StatCMENL.......cccviiiiiiieeiii ettt ettt e et e e tte e st e e e teeessraeesssaeessseeessseeessseeansseennns
Return StateIMCNT.......ccvvviiiiiiiic i eeee e e e e e e e e e eesatraaeeeeeeeeeenaareees
Prompt STALEMENL.......ccoiiiiieieiiie ettt e e e e et e e e s tae e e e enaaeeeeentaeeeennnraeeeennees
PN A AN F21 (e 18153 4 | SO TR
(O oS TTeIN] 72 114530 4 <) 4 | SRRSO PR
FUNCtioNn DEfINITIONS.cooiiiiiieeiiiie ettt eee e eeee e e eeae e e e eeaaeeeeeesaaeeeeeeaaeeeeensreeeesenareeeeennes
BaSIC FUNCHIONS.ciiiiiiiiiiiiiiieee ettt e e e e e ettt e e e e e e es bt aeeeeeesssssasaraeeeeeeeessnnanes
QUESHION FUNCHOMNS.ooiiiiiiiiiiciie ettt et e et e et e et e e et e e s aeeeeaseeesaseeenaseeeenseeenns
BUIt-10 FUNCHIOMNS ...ttt e et e e e e s e e et ae e e e e e e s senanrraneeas

Introduction

The Examination Generation Grading Language (EGGL) seeks to provide a simple language
with built-in grading and question sequencing mechanisms that can easily facilitate the creation
and scoring of computerized exams and assignments. Such a language would be beneficial to
the teaching community in that it would allow instructors to quickly write an interactive exam that
can be scored instantly.

Lexical Convention

Comments

EGGL supports single line comments. The sequence of /* indicates the start of a comment and
a subsequent */ indicates the end of the comment. Anything within the bounds of the comment
declaration will not be processed by the compiler.

Example: /* This is a comment */

Identifiers

An identifier is the name of a variable, constant, or a function declared in EGGL. A variable
name can only consist of alphanumeric characters and must begin with a letter. The use of
symbols and special characters are not permitted.

Constants

Constants are immutable assignments in EGGL. They are declared with the keyword const
before the variable assignment.
Example: const int CONSTANT = 10;

Reserved Keywords

The following keywords are reserved and could not be used for variable or function names:
e const
print
prompt
choices
answer
double
if
else
for
while
return
func

Separators

There are two separators in the EGGL language, they are commas (,) and semi-colons (;). A
comma is used for declaring a sequence of items such as in an array. Semi-colons are used to
indicate the end of a statement.

White-spaces

White-spaces such as tabs, carriage returns, and new lines are ignored during compilation.
Spaces are used to identify keywords and variable declarations.

Types
The following data types are supported by EGGL:

boolean

The boolean data type is used for declaring a boolean value which can either be true or false.
e Declaration Example: boolean x = true;

int
The int data type is used for declaring a 32-bit signed integer.
e Declaration Example: int x = 9;

float

The float data type is used for declaring a 32-bit floating point.
e Declaration Example: int x = 5.5;

array

The array data type is used for creating an array of n-elements whose size must be defined at
declaration. It supports the insertion of elements at an n-index.
Declaration Example: array x = array(2); // empty array

e Alternative Declaration Example: array x = [1, 2, 3]
e Insertion Example: x[0] = 2;
e Retrieval Example: int yv = x[0];

map

The map data type is used for creating a key-value pair map. It supports the insertion of values
with unique keys into a map.

e Declaration Example: map x = map () ;

e Insertion Example: x (“keyl”) = 10;

e Retrieval Example: int v = x (“key2”) ;

Operators

Unary Operators
e ‘I negative
e ‘I not

Arithmetic Operators
‘+’: addition

‘-’ subtraction

“*’ multiplication

‘/’: division

Relational Operators

e ‘<:lessthan

e ‘<=’ |ess than or equal to

e >: greater than

e ‘=>': greater than or equal to
Equality Operators

e ‘==":equalto

e ‘I=": not equal

Logical Operators

e ‘&&’:and
e f||:or
Expressions

All expressions group left to right.

Primary Expressions

Primary expressions can be an identifier or constant.

Unary Expressions

unary expression - unary operator expression
The only valid unary_operators are -’ and I'. ‘-’ is valid when expression is a float or int. ‘I’ is
only valid when the expression is a boolean.

Arithmetic Expressions

arithmetic expression - expression + expression

| expression - expression
| expression * expression
| expression / expression
An arithmetic expression is only valid when expression evaluates to a float or int.

Relational Expressions

relational expression - expression < expression
| expression <= expression
| expression > expression
| expression => expression
The evaluation of the operators ‘<’, ‘<=’, *>’ and ‘=>’ returns true or false. A
relational expression is only valid when expression evaluates to an int, float, or string
and are of the same type on both sides of the operator.

Equality Expressions
equality expression — expression == expression
| expression != expression
The evaluation of the relational operators ‘=="and ‘!=" returns true or false. An
equality expression is only valid when expression evaluates to an int, float, string, or
boolean and are of the same type on both sides of the operator.

Logical Expressions

logical term - relational expression | equality expression
logical expression — logical term && logical term
| logical term || logical term
The evaluation of the logical operators ‘&&’ and ‘||’ returns true or false based on AND/OR truth
table logic.

Statements

Expression Statement

expression;
The most common and basic statement is an expression statement.

Compound Statement
{

statement
Sstatement
}
A compound statement is a list of statements to be evaluated.

Conditional Statement

if (expression) statement else statement
if (expression) statement elseif (expression) statement
A conditional statement is used to evaluate if-else logic control logic.

For Loop Statement

for (expression-1; expression-2; expression-3)

statement
The for-loop statement is used to run a statement until a condition is no longer met.
expression-1 is the initial condition, expression-2 is the condition in which to continue,
expression-3 is the mutation of the initial condition to a new value.

While Loop Statement

while (expression)

statement
The while-loop statement is used to run a statement until the expression is no longer met.
The expression should only evaluate to true or false.

Return Statement

return (expression) ;
The return statement is the value that is returned from a function. expression must match the
data type that the function is declared to return.

Prompt Statement

prompt (expression) ;
A prompt statement is required for question-functions and can only be declared once inside a
function. The expression must be a string data type in the form of a text question.

Answer Statement

answer (expression) ;
An answer statement is required for question-functions and can only be declared once inside a
function.

Choice Statement

choice (expression) ;

A choice statement is optional for question-functions. It provides a discrete set of choices that
can be selected to match the answer of a question-function. The expression must be an array of
the same data type.

Function Definitions

Basic Functions

return-data-type - int
| float
| boolean
| string
| map
| array
| void
func return-data-type function-name(param-1, ...)
{
statement*
}
A basic function definition is composed of a return-data-type (the data type to be returned),
the function-name (name of the function), and the parameters to be passed into the function.
Inside the function body can be any number of statements. The last statement that must be
called is a return-statement if the return-data-type is any value other than void.

Question Functions

weight-expression — integer
diffulty-expression — [1-10]
appearance — asc | desc | rand
func question @weight=weight-expression?
[@difficulty=difficulty-expression|@appearance=appearance-
expression]? function-name(...)
{

statement*

prompt-statement

statement*

choice-statement?

statement*

answer—-statement
}
A question function definition has the keyword question immediately after the keyword func. The
weight and difficulty attributes following the function are used for grade and question
sequencing respectively.

@weight=weight-expression is an optional field that is used for weighting questions when
EGGL grades the questions at the end of a completed exam during run-time. weight-

expression can only be an integer value between 1-10. If weight-expression is constant
across all questions, all of the questions will be equally weighted. Additionally, if @weight is not
present, the question will be assigned a weight of 1 by default. The grade calculation that occurs
at the end of the exam’s run-time is the sum of the weights of the questions that are correct
divided by the total weight of all the questions.

@difficulty=difficulty-expression is an optional field that is used for easily creating
adaptive exams. difficulty-expression must be an integer value between 1-10. If at least
one question function in the program has this attribute then all question functions in the program
must have this attribute.

@appearance=appearance-expression is an optional field that is used for determining the
order in which questions will appear to the tester. asc displays question declarations from the
bottom of the file to the top, desc displays the questions declaration in the file from the top to
the bottom, and rand displays questions in a random order. If Rappearance is not defined,
the default sort order is desc.

A question function must have a prompt-statement and an answer-statement. It can optionally
have a choice-statement and any number of statements in between.

Built-in Functions

There are several built-in functions in EGGL library as defined below:
e size(expression): used to find the size of an array, expression should of type array.
e print(expression): prints text to standard out, expression should be of type string.

Scope

EGGL uses static scoping and has its scopes separated by blocks which are encapsulated by
curly braces { ... }.

Example

File: BasicExam.eggl
const string YES = “yes”;

A\ ”

const string NO = “no”;

/* custom function declaration */

func array yesNoChoices () {
return([YES, NO]);

}

/* question definition */
func question questionl () {

prompt (“Is the sky blue?”);
choices (@yesNoChoices);
answer (“yes”);

func question question2() {
prompt (“Who is the largest car maker?”);
answer (“Toyota”);

Sample output:

Is the sky blue?
yes

no

Who is the largest car maker?

1

a

b

> a
2

> Honda
5

% of questions answered correctly.

10

	Introduction
	Lexical Convention
	Comments
	Identifiers
	Constants
	Reserved Keywords
	Separators
	White-spaces

	Types
	boolean
	int
	float
	array
	map

	Operators
	Unary Operators
	Arithmetic Operators
	Relational Operators
	Equality Operators
	Logical Operators

	Expressions
	Primary Expressions
	Unary Expressions
	Arithmetic Expressions
	Relational Expressions
	Equality Expressions
	Logical Expressions

	Statements
	Expression Statement
	Compound Statement
	Conditional Statement
	For Loop Statement
	While Loop Statement
	Return Statement
	Prompt Statement
	Answer Statement
	Choice Statement

	Function Definitions
	Basic Functions
	Question Functions
	Built-in Functions

	Scope
	Example

