LAME: Linear Algebra Made Easy

David Golub
Carmine Elvezio
Ariel Deitcher
Muhammad Ali Akbar

December 20, 2010

1 Project Proposal

We propose to develop a language with built-in support for linear algebra and
matrix operations. The language will provide functionality similar to MATLAB
from The MathWorks, Inc. However, the syntax will be similar to C, C++, or
Java.

Our language will provide four primitive data types, scalar, matrix, string,
and Boolean. These data types will do as their names suggest. A scalar will hold
a double-precision floating point number. A matrix will store a two-dimensional
array of double-precision floating point values. Matrices will be declared using
commas to separate columns and semicolons to separate rows. For example, the
code

- {

)

matrix

> B >

A
> 2,
5
8

~N D
O O W

B B

};
will correspond to the matrix

1
A=13
7

oo Ut N
O S W

in the standard notation from linear algebra. Individual elements of a matrix
variable will be able to be access and modified using the syntax A[i, j] for
the element in the ith row and the jth column. Keywords will be provided to
obtain the dimensions of a matrix.

Operators will be provided for addition, subtraction, multiplication, division,
and exponentiation. The operators will be interpreted appropriately for various



combinations of operand types, as long as they are mathematically meaningful.
Combinations of operand types that are not mathematically meaningful, such
as division of two matrices, will yield a compiler error. When matrix operations
are performed, a check will be done at runtime to ensure that the dimensions
are compatible. If the check fails, a runtime error will be thrown.

The language will follow the imperative paradigm and will provide constructs
for variable assignment, decisions, loops, and basic I/O. Programs will be trans-
lated to an intermediate code and then to C++ code using a custom library.
The C++ code can then be compiled to native code.

2 Tutorial

This is a beginner’s tutorial to LAME. LAME is a C-like programming language
for linear algebra. It allows a mathematician to implement algorithms involving
matrix operations with a very short learning curve.

This tutorial is divided in to three parts. First, we describe the steps involved
in compiling and running a simple “Hello, World!” program. Then, we describe
how to perform basic matrix operations. Finally, we explain the construction of
a program that implements the algorithm to solve a system of linear equations.

2.1 Getting Started
We start by writing a very basic program that prints “Hello, World!”

2.1.1 “Hello, World!” Program

Type the following program in a file names hello.lam.

print "Hello, World!";

The print keyword takes a string as an argument and prints that string to the
output console. Each statement in LAME ends with a semicolon.

2.1.2 Compiling and Running the Program

You should have a C+4 compiler on your machine. The lame.exe executable,
the compiler.bat script, the lame.h and matrix.h header files should be
present in the working directory for the compilation.

Windows: First, we give instructions for a Windows machine with Visual
C++. First set up the environment by running vcvars32.bat file from Visual
Studio’s common folder in the installation path. Alternatively, you can use
the Visual Studio Command Prompt which automatically sets the environment
variables for the compiler.

Now run the following commands to compile and run the program:



> lame.exe < hello.lam > program.cpp
> cl.exe /EHsc program.cpp
> program.exe

Alternatively, you can use the provided batch script by using following com-
mand:

> compiler.bat hello.lam
> program.exe

Linux: Run the following commands to compile and run the program:

# ./lame < hello.lam > program.cpp
# g++ program.cpp -0 program
# ./program

If running the program prints “Hello, World!” on a separate line on the screen,
and you are ready to go to next part of the tutorial.

2.2 Basic Matrix Operations

Let’s write a program that declares a matrix with initial values and prints the
matrix:

matrix A = { 1, 2; 3, 4 };
print "A = \n" + A;

Let’s declare another matrix B and add it to the matrix A:

matrix B = { 4, 3; 2, 1 };
matrix C = A + B;
print "A + B = \n" + C;

Subtraction and multiplication of matrices are done in similar manner. Let’s
multiply the matrix by a scalar value:

matrix D = 2 * A;
print "2 * A = \n" + D;

Let’s change the value of an element in A and print the value of an element in
B:

Afo, 1] = 20;
print "B[1, 1] = " + B[1, 1];



The following if statement prints “True” and the while loop prints all elements
of matrix A:

if (AL0, 0] == 1) {
print "True";
} else {
print "False";
}
scalar i = 0;
scalar j = 0;
while(i < 2) {
while(j < 2) {
print A[i, jl + "\n";
j=3+1

2.3 Case Study: Solving Linear System of Equations

Let us implement an algorithm using LAME to solve a system of simultaneous
linear equations. The equations are

3x1+x9 =3

and
91’1 + 41’2 = 6.

We use the following algorithm to solve this problem:
31
=[5 4]

at

X:|:x1:|:A_1B

Z2
1 1 A —A
A71 — 7Ad A —_ 1,1 0,1
|A‘ J( ) A().’()Al’l —A()$1A1’0 |: _Al,() A(),O
This algorithm has been implemented in LAME as follows:
matrix A = { 3, 1; 9, 4 };
matrix B = { 3; 6 };
matrix X;

print "\nSolving system of simultaneous linear equations:\n";



print A[0,0] + " x1 + " + A[O,1] + " x2

n + B [O] + Il\nll ;

print A[1,0] + " x1 + " + A[1,1] + " x2 = " + B[1] + "\n";
print "\nA = \n" + A + "\n";
print "\nB = \n" + B + "\n";
scalar det_of_A = A[0,0]*A[1,1] - A[0,1]*A[1,0];
print "\nDeterminant(A) = " + det_of_A + "\n";
if(det_of_A '= 0) {

matrix inv_of_A;

inv_of_A [0,0] = A[1,1];

inv_of_A [0,1] = -1%A[0,1];

inv_of_A [1,0] = -1*A[1,0];

inv_of _A [1,1] = A[0,0];

inv_of_A = inv_of_A / det_of_A;

X = inv_of_A * B;

print
print
print
print
print
} else {
print

}

"\nInverse(A) = \n" + inv_of_A + "\n";
"X = Inverse(A) * B =\n" + X + "\n";
"Solution:\n";

"1 =" 4 X[O] + u\nn;

"2 = " + X[1] + u\nn;

"A is singular and its inverse doesn’t exist.\n";

The program prints out the following output:

Solving system of simultaneous linear equations:
3x1+1x2=23
9x1 +4x2=26

A

O w
ol

w

Determinant(A) = 3

Inverse(A) =
1.33333 -0.333333

-31

X = Inverse(A) * B =

2
-3



Solution:
x1 = 2
x2 = -3

3 Language Reference Manual

3.1 Definition of a Program

A program is a sequence of variable declarations and statements.

3.2 Variable Declarations

3.2.1 Data Types

The following data types represent the complete listing of primitives available
to a programmer of LAME.

e Scalar: This is the equivalent of a double precision floating point number
in most languages. The value is 64 bit and signed. The range is as given
by the IEEE floating point standard.

e Matrix: Matrices in LAME are represented as dynamically sized 2-
dimensional arrays.

Elements of the matrices can be composed of either scalar values or
of other matrices.

Matrix size is denoted using the following notation:
x identifier [m, n]
* The m value corresponds to the height of the matrix and the n
value corresponds to the width.

Random access of matrix elements is handled using the following
notation:
x identifier [z, y]
* The x value represents the row and y value represents the col-
umn.

Each dimension of the array uses zero-based indexing and indices
must be positive.

Matrix literals are created by enclosing rows in curly braces.

* Elements are separated by commas, whereas rows are separated
by a semicolon. There is no semicolon needed for the final ele-
ment of the matrix.

* Every row of the matrix literal must contain the same number
of elements (corresponding to the width of the matrix).



x Whitespace is not considered in the usage of matrix literals.

— Vectors are represented in LAME by creating a single dimensional
matrix (a column vector using dimensions n x 1).

— It is possible to determine the size of a dimension of a matrix using
the size_dimension keyword.

% There are two variants of the keyword:

- size_rows matrizname, returns the number of rows of ma-
trixname

- size_cols matrizname, returns the number of columns of
matrixname

e Boolean: Accepts values of true and false which can be used with logical
operators. Scalars cannot be implicitly converted to booleans.

e String: String values are collections of ASCII characters enclosed in dou-
ble quotes.

— Literals can be concatenated to other literals.

— When attempting to print values of other data types, implicit con-
version to string type occurs.

3.2.2 Identifiers

e Identifiers must begin with a letter (uppercase or lowercase), and may
contain letters, digits, and underscores.

3.2.3 Scope

e Variables have global scope.

e Variables declared can be reassigned but their memory allocation will
remain throughout the duration of the program.

3.2.4 Variable Declaration

Declaration of variables follow this general format:
e Without initialization
— datatype identifier;
e With initialization
— datatype identifier = expression;
e Type-specific initialization format:

— Scalar:



*x scalar name 9.8165;
— Matrix:
* matrix name = {1, 2, 3; 4, 5, 6; 7, 8, 9};
- Setting initial values is optional. If not initialized, the matrix
is created as a zero matrix of size 1 x 1.

* This corresponds to a 3 X 3 matrix.

* Row elements are separated by a comma, whereas column ele-
ments are separated by a semicolon.

— Boolean:

* boolean name = true;
* Initial values must be either true or false.

— String:

* string name = "hello";

3.3 Statements

3.3.1 Assignment Statements

Assignment statements in LAME are of the form
lvalue = expression;

The expression is evaluated and the lvalue is set to equal its value. The lvalue
may be either a variable or a matrix/vector element access.
Example:

y=(x+5)*x7;
Al1, 5] = 8;

3.3.2 Redimensioning of Matrices
The dim statement allows for the redimensioning of matrices. It is of the form
dim matrizname [rows, cols];

where both rows and cols must be integers greater than 0, or an exception is
raised.

In the event that either rows or cols is less than the current respective
sizes of the rows and/or columns, the matrix is truncated accordingly. In the
event that either rows or cols is greater than the current respective sizes of
the rows and/or columns, the appropriate number of rows and/or columns are
appended to the matrix, with each newly appended entry initialized to O.

Example:

dim A[3, 2];



3.3.3 If Statements
The if statement is of the form
if(condition) statement

where the statement following the if is only executed if the condition evaluates
to true. Otherwise execution continues following the statement block.

The else statement, which cannot be used unless it immediately follows an
if statement section, is of the form

else statement

where the statement block following the else is only executed if the preceding
if evaluates to false.
Example:

if(A < B)
print A;
else
print B;

3.3.4 While Loops
The while statement is an iterative loop of the form
while(condition) statement

where the expression must evaluate to a boolean true or false. If the expression
is true, the statement is executed. The expression is then re-evaluted, and the
statement is executed so long as the condition is true.

Example:

while(A[1] < B[1])
A[1] = A[1] + 1;

3.3.5 Block Statements

A block statements is a list of statements enclosed in curly braces. It is generally
used to create an if statement or while loop with multiple statements that are
executed conditionally or repeatedly.

Example:
if(x >=5) {

y=x+7;

z=3%*y;



3.3.6 Basic I/O

Printing to standard out is done using the print keyword, followed by the
expression to print.
Example:

print A;

3.4 Expressions
3.4.1 Literals

There are four types of literals in LAME: scalar literals, matrix literals, string
literals, and Boolean literals. A scalar literal takes the form of a nonempty se-
quence of digits, optionally followed by a decimal point and a second nonempty
sequence of digits, optionally followed by the letter E in either capital or lower-
case and a nonempty sequence of digits indicating an exponent. If it is present,
the sequence of digits indicating the exponent may be preceded by a minus sign
to indicate that the exponent is negative. The following are examples of scalar
literals:

5

7.3
Te-5
1.1e7

Matrix literals are composed of a sequence of rows separated by semicolons
and enclosed in curly braces. Each row consists of a sequence of scalar literals
separated by commas. All of the rows in a matrix literal must have the same
number of scalar literals in them. The following are examples of matrix literals:

{
1,

>

0,

B >

> )

O = O
= O O

B

{1.5, 0.5; 0.5, 1.5 }

A string literal is composed of a quotation mark, followed by a possibly
empty sequence of string characters and/or escape sequences, followed by an-
other quotation mark. A string character is any character except a quotation
mark, backslash, or newline. An escape sequence is a backslash followed by
either a quotation mark, a backslash, the lowercase letter N, or the lowercase
letter T. These escape sequences denote the presence of a quotation mark, back-
slash, newline, or tab, respectively, in the string. The following are examples of
string literals:

10



"Hello, World!"

"Say, \"Hello!\""

"First line\nSecond line"
"C:\\FOLDER\\FILENAME.EXT"

There are only two possible Boolean literal values, which are denoted by the
keywords true and false.

3.4.2 Unary Arithmetic Operators

Two unary arithmetic operators are provided: negation and transposition. Nega-
tion is a prefix operator indicated by a minus sign and has the standard math-
ematical meaning. It is valid on scalars and matrices. Attempting to negate a
string value will yield a compiler error. Transposition is a postfix operator indi-
cated by an apostrophe. It is valid on matrices and scalars. On matrices, it has
the standard mathematical meaning. On scalars, it has no effect. Transposing
a scalar yields that same scalar. Attempting to transpose a string will yield a
compiler error.

3.4.3 Binary Arithmetic Operators

LAME provides five binary arithmetic operators: addition, subtraction, mul-
tiplication, division, and exponentiation. These operators are denoted by the
plus sign, minus sign, asterisk, slash, and caret, respectively. All five operators
are infix operators and can be applied to scalars and have the standard math-
ematical meaning. Addition, subtraction, and multiplication can be applied
to pairs of matrices and have the standard mathematical meaning. A runtime
check will be performed to ensure that the two matrices are of sizes such that
the operations can actually be performed. Multiplication can be applied to a
matrix and a scalar and has the standard mathematical meaning. Division can
be applied to a matrix and a scalar and has the effect of multiplying the matrix
by the reciprocal of the scalar. The matrix must be the first operand and the
scalar must be the second. Exponentiation can be applied to a matrix and a
scalar and has the effect of multiplying the matrix by itself a number of times
given by the scalar. The matrix must be the first operand and the scalar must
be the second. A runtime check will be performed to ensure that the matrix
is square. The addition operator can be applied to strings and in this context
represents string concatenation. All other combinations of operand data types
will yield a compiler error.

3.4.4 Relational Operators

LAME provides six relational operators: less than, greater than, less than or
equal to, greater than or equal to, equal to, and not equal to. These operators
are denoted by <, > <=, >= == and !=, respectively. The last two of these
operators are valid on all data types. The first four are valid on scalars and

11



strings only. Attempting to use them on matrices or Boolean values will yield a
compiler error. All six relational operators produce a Boolean value indicating
whether the corresponding relation holds.

3.4.5 Logical Operators

LAME provides three logical operators: logical and, logical or, and logical not.
These operators are denoted by &&, ||, and !, respectively. The first two are
binary operators that take a pair of Boolean values and produce a Boolean value
giving the result of the logical operation. Logical not is a unary prefix operator
that takes a single Boolean value and produces a Boolean value giving its logical
negation. All three logical operators will yield a compiler error if they are used
on scalars, matrices, or strings.

3.4.6 Operator Precedence

The operator precedence and associativity for LAME is as given in the fol-
lowing table. Operators of the highest precedence are at the top of the table.

Operators Associativity
Transposition Not applicable
Negation Not applicable
Logical not Not applicable
Exponentiation Left-associative
Multiplication, division Left-associative
Addition, subtraction Left-associative
Less than, greater than, less than or equal to, greater than or equal to Left-associative
Equal to, not equal to Non-associative
Logical and Left-associative
Logical or Left-associative

3.4.7 Matrix Element Access

The syntax of a matrix element access is as follows:

Ali,j]

This represents the matrix element A;; where A is the name of the matrix, ¢ is
the row number and j is the column number.
The behavior of the matrix element access is as follows:

e For the first row, ¢ = 0; for second row, ¢ = 1; and so on. Similarly, for
first column, j = 0; for second column, j = 1; and so on. Formally, the
element access requires two scalars from set of natural numbers (including
zero) i.e. 4,5 € No ={0,1,2,...}.

e The matrix element access A[i,j] can be an lvalue. For example,

12



Ali, 3] = 2;

assigns numeric value 2 to the matrix element A,;;;

e The matrix element access A[i, j] returns the numeric value of the matrix
element A;;. For example,

B[i,j] = A[i,3] + 2;

adds 2 to the numeric value of A;; and assigns it to the matrix element
Bij'

3.4.8 Vector Element Access

There is no vector type in LAME. However, the programmer is allowed to per-
form vector element access on a matrix. The syntax of a vector element access
is as follows:

VI[il
This represents the element V; o where V' is the name of the matrix, ¢ is the row

number. The behavior of the Vector element access is as follows:

e For first element, i = 0; for second element, ¢ = 1; and so on. Formally, the
vector element access requires a scalar literal from set of natural numbers
(including zero), i.e. i € Ng ={0,1,2,...}.

e The vector element access V[i] can be an Ivalue. For example,

V[i] = 2;

assigns numeric value 2 to the element V; o;

e The vector element access V[i] returns the numeric value of the element
Vio. For example,

X[i] = V[i] + 2;

adds 2 to the numeric value of element V; o and assigns it to the vector
element X o;

13



3.4.9 Implicit Casting

In LAME, implicit casting is supported for the print statement and the string
concatenation operator. Although the print command is for the string data
type, the user can call the print command on scalars and matrices. Similarly,
string concatenation operator (4) when applied to ‘a string and a scalar’ or ‘a
string and a matrix’ results in implicit casting of the scalar or matrix to string
literal before actual concatenation is done. Implicit conversion to string data
type takes place as specified below:

Scalar Literal to String Literal

A scalar literal is converted to a string literal in the standard sense. As an
example, consider the statements

print 5;
x = 102;
print x;
print "Value of x is " + x;

The constant scalar value 5 is converted to string literal "5", while the third
statement results in implicit casting of 102 to string "102". In the fourth
statement, scalar x is implicitly casted to string literal "102", then concatenated
with the other string literal and then passed to print command. As a result, the
print keyword sees this string literal as its operand: "Value of x is 102".

Matrix Literal to String Literal

When a matrix is passed to the print command or a string concatenation oper-
ator along-with a string literal as the other operand, it is implicitly casted to a
string literal with a specified format that is specified in the rules below.

e Matrix Elements: The matrix elements are all scalar and follow the
rules specified in the previous paragraph about implicit casting from scalar
literals to string literals.

e Rows: When the matrix is converted to a string literal, each row is
separated by a newline (\n) character.

e Columns: When the matrix is converted to a string literal, each row is
separated by a tab (\t) character.

As an example of implicit conversion from matrix to string literal,

A={1,0,0;0,1,0;0,0, 1}
print A;
print "A =\n" + A

14



is converted to string literal

"1\t0\t0\n0\t1\t0\n0O\tO\t1\n"

and printed as

1 0 0
0 1 0
0 0 1

in first print statement, and printed as

A =

1 0 0
0 1 0
0 1

in second print statement.

3.5 Keyword List
The following are keywords in LAME and therefore cannot be used as identifiers:

boolean
else
false

if

matrix
print
scalar
size_cols
size_rows
string
true
while

4 Project Plan

4.1 Planning Process

By setting internal deadlines and ensuring biweekly meetings and close contact,
we hope to finish the project by the last day of classes, so as to begin documen-
tation during reading week. Each team member will have their responsibilities
clearly defined so that development can be easily divided among team members.
This will also allow for maximum independence whlile still ensuring cohesion.

15



4.2 Style Guide

All indentation of OCaml code was done using spaces. The let statement was
formatted such that the section following the in keyword was indented four
spaces. For example:

let varl = expril
and var2 = expr2
in

expr3

The match statement was formatted such that the first case is indented four
spaces and the subsequent cases are each indented two spaces such that the
case expressions are aligned. The arrows should all be aligned one space beyond
the longest case expression. For example:

match m with
Casel x -> exprl
| Case2 (x, y) -> expr2

The if statement was formatted such that the then- and else-clauses are each
indented four spaces:

if condition then
expril

else
expr2

Expressions were formatted such that binary operators are surrounded by a
single space on each side. Single spaces were used to separate functions from
their arguments and arguments from each other. For example:

fx (y+ 1) + 10

4.3 Project Timeline

Milestone Estimated Date
Language Whitepaper and Core Features Defined 09-07-2010
Begin LRM 10-01-2010
Finish LRM 11-01-2010
Fully Outline Grammar 11-01-2010
Complete Parser 11-10-2010
Outline iILAME (LAME intermediate code) 11-15-2010
Finish Intermediate Code 12-01-2010
Finish Code Generation 12-10-2010
Begin Final Testing 12-14-2010
Complete Project Deliverables 12-20-2010

16



4.4 Roles and Responsibilities

The fundamental delineations of responsibilities among team members are as fol-

Name Responsibility

David Golub Semantic Checking and Intermediate Code Generation
lows: Carmine Elvezio Parser Implementation/Unit and Final Testing

Muhammad Akbar | C++ Code Generation/C++ Linear Algebra Library

Ariel Deitcher Planning/Documentation/Final Presentation

4.5 Development Environment

The following development environments will be used:
e OCaml
e Visual C++
e Microsoft Windows SDK
The following languages will be used:
e OCaml
o C++
e iLAME (LAME intermediate code)

4.6 Project Log

Milestone Date
Begun LRM 10-08-2010
Grammar Finished 10-29-2010
LRM Finished 11-02-2010
Outlined iLAME 11-17-2010
Finished Semantic Checking 11-27-2010
Finished iLAME Generation 12-14-2010
Begin Regression Testing 12-15-2010
Created Makefile 12-15-2010
C++ Code Generation Completed 12-16-2010
Final Presentation 12-21-2010

17



5 Architectural Design

LAME Source Code

Scanmer
{Lamescan)

Parser
{Lamepar)

Abstract syntax tree

Semantic checker
and translator
|Semantic)

Intermediate code

C#+ code generator
[Gencpp)




The LAME compiler is divided into four main modules, as shown in the diagram
above. Each of these modules is described in one of the following sections.

5.1 Scannar

The scanner, implemented in lamescan.mll and the source files generated from
it, divides a LAME program into tokens. This module was implemented collec-
tively during a group meeting.

5.2 Parser

The parser, implemented in lamepar .mly and the source files generated from it,
takes the sequence of tokens generated by the scanner and produces an abstract
syntax tree from it. The format of the abstract syntax tree is given by the data
structures in ast.mli. The original grammar was written collectively during a
group meeting. The semantic actions to produce the abstract syntax tree were
written by Carmine Elvezio.

5.3 Intermediate Code Generator

The intermediate code generator, implemented in semantic.ml, performs se-
mantic checks on the abstract syntax tree to detect errors such as references to
undeclared variables and type mismatches. It then produces an intermediate
representation of the program, following the data structure given in icode.mli,
that is guaranteed to be correct. The intermediate code is a register-based
language that allows for a potentially infinite number of registers that will be
mapped into variables in the generated C++ code. This module was written
by David Golub.

5.4 C++ Code Generator

The C++ code generator takes as input the intermediate code and produces
a semantically equivalent C++ program. FEach intermediate instruction cor-
responds to a single line of C+4 code. The C++ program uses the custom
libraries defined in matrix.h and lame.h. The C++ code generator and asso-
ciated libraries were written by Muhammad Ali Akbar.

6 Testing

6.1 Goals

The testing procedure for the development of LAME was planned out at the
beginning to coincide with each development milestone. It was out intention
to structure the testing protocol in a way that each developer would be able
to internalize the exact testing method whenever unit testing was needed. At
each milestone, testing was to be done on each component to ensure proper

19



function. At each phase of development, it was expected that tests in previous
milestones would need to have been completed successfully and that new tests
would incorporates elements tested in previous tests.

6.2 Hypothesis

By testing each unit using small examples as development progresses, integration
and final unit testing can be completed with minimal issue.

6.3 Methods
6.3.1 Integration/Regression Testing

As each piece of code is integrated, regression testing is performed to guarantee
that that the compiler can proceed successfully to the level of the integrated
component. This would integrate all components that need to enter the OCaml
compiler (AST, parser, intermediate code generator), and the C++ compiler.

6.3.2 Final Testing

At this point, full testing is performed of implemented assets of the language
and development environment. This includes preparation of the environment
on end-user machines and runtime/output analysis of complex examples.

6.4 Tools

The OCaml and C++ compilers were used to check for errors in the compilation
of a program. However, as simple examples could be used to completely check
our language, results were examined by hand.

6.5 Implementation
6.5.1 Integration/Regression Testing

As each portion of code, written by a different member, was integrated, different
test applications were used to observe the output of the compiler as it operated.
Minimal changes were necessary as few errors were encountered. The grammar
was fully tested to ensure the appropriate intermediate code was created. Ad-
ditionally, the scanner and parser were tested to ensure only correct abstract
syntax trees were passed to the intermediate code generator.

6.5.2 Final Testing

At the last stage, we tested by attempting to write full programs that would
combine different aspects of the language in a single runtime. The tests were
run by different members in order to ensure the environments portability. There
was full agreement in the team as to the expected performance and output and
that was achieved. Automation procedures were used to check the full suite

20



of test applications. The automation was handled by a makefile and strict file
location requirements.

6.6 Testing Responsibilities

The initial testing plan was designed by the entire team during the project
planning session held at the beginning of the project. The ocamlyacc output
was tested by all members of the team. The AST, parser, and scanner code
set were tested by David Golub and Carmine Elvezio. The intermediate code
generator was tested by David Golub. The C++ code generator was tested by
Muhammad Ali Akbar and Carmine Elvezio. The integration testing was led by
David Golub with assistance by Carmine Elvezio and Muhammad Ali Akbar.
The final testing was handled by all members of the team with test applications
submitted throughout the last phase.

6.7 Automation, Test Suites, and Test Cases

Automation was handled using a makefile that ran the test suite that had been
prepared. The test cases were chosen in order to test specific aspects of the
grammar in simple cases where errors can be clearly determined and easily
solved. Larger test cases, such as tutorial.lam, were used in order to test
algorithm implementations in our language. The test cases were collected in
a single folder that represented the suite and the makefile ran the automated
testing procedure. Output can be checked against the check directory using a
utility such as windiff.

7 Lessons Learned

7.1 David

After writing the rough draft of our language reference manual, I realized that
we should have established style guidelines for our written documents. This
would have saved a great deal of time on editing. Also, I realized that the
number of temporary variables generated could have been reduced by having
the intermediate code generator produce either a temporary or a constant for
an expression instead of a temporary for every expression.

7.2 Carmine

Defining a formal set of interface guidelines is very important and we should
have prepared a document at the start. Additionally, a written version of our
project plan should have been prepared in order to allow for greater organi-
zation; however, the verbal agreement between members did prove more than
sufficient to allow for timely completion of the assignment.

21



7.3 Ariel
The following are my takeaways from this project:

e The huge importance of interfaces. Nothing is worse than working on
something and then hearing your teamate say “But that’s not what I was
expecting!” This extends to agreeing on style guides, so that documents
can be done once, and only once.

e Which naturally leads to the importance of clear division of labor. In
particular each person should focus their efforts on their strengths and
what they bring to the project

e Of course, none of this is possible without constant communication, espe-
cially in-person (rather than phone or even Skype) meetings.

Conclusion: Leave your ego at the door, be flexible with your personal views
and communicate!

7.4 Akbar

e It would have been beneficial to have formally defined a set of interface
functions before starting implementation. I had to take intermediate code
as input and generate C++ code. I expected an intermediate code in the
form of a text string as input. The intermediate code was being gener-
ated as a data type, which really simplified the processing, but it would
have saved time spent on alternate implementation if I had confirmed my
assumption earlier.

e When something can go wrong, it will go wrong. So keep pushing your
changes to repository periodically

Appendix: Source Code

ast.mli

type row = float list
type matrix = row list

type lvalue =
Ident of string
| VAccess of string * expr
| MAccess of string * expr * expr

and expr =

NumLit of float
| MatLit of matrix

22



StrLit of string
BoolLit of bool
LValue of lvalue

Plus of expr * expr
Minus of expr * expr
Times of expr * expr
Divide of expr * expr
Power of expr * expr
Eq of expr * expr

Neq of expr * expr

Lt of expr * expr
Gt of expr * expr
Le of expr * expr
Ge of expr * expr
Not of expr

And of expr * expr
Or of expr * expr
Trans of expr
SizeRows of expr
SizeCols of expr

type datatype =
Scalar
| String
| Matrix
| Boolean

type stmt =
Assign of lvalue * expr
| If of expr * stmt
| IfElse of expr * stmt * stmt
| While of expr * stmt
| Print of expr
| Dim of string * expr * expr
| Decl of datatype * string
| DeclInit of datatype * string * expr
| StmtList of stmt list

type prgm = stmt list

gencpp.ml

open Icode
open Vars

23



let gencpp_init =
"#include <iostream>\n#include \"lame.h\"\n\nusing namespace std;\n\nint main(void)\n{\1

let gencpp_end =
"\treturn 0;\n}\n"

let string_of_bool bv =
match bv with
true -> "TRUE"
| false -> "FALSE"

let gencpp_scalval sv vt =
match sv with
SLit n -> string_of_float n
| SVar n -> get_variable_name n vt

let gencpp_boolval bv vt =
match bv with
BLit n -> string_of_bool n
| BVar n -> get_variable_name n vt

let gencpp i vt =
match i with

SCAL (1hs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_scalval rhs vt
in

name ~ " =" ~ cppexp ~ ";\n"
| BOOL (1lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_boolval rhs vt
in
name ~ " =" ~ cppexp ~ ";\n"
| STR (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = rhs
in
name ~ " =" ° cppexp ~ ";\n"

| ADD (1lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt

and cppexpl = gencpp_scalval rhsl vt

and cppexp2 = gencpp_scalval rhs2 vt

in

name ~n = n = CppeXpl ~n + n -~ cppexp2 -~ ll;\nll

| SUB (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt

and cppexpl = gencpp_scalval rhsl vt

and cppexp2 = gencpp_scalval rhs2 vt

in

name no=n cppexpl ~n _n
| MUL (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt

cppexp2 ~ ";\n"

24



and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in

name ~ " =" ~ cppexpl = " * " ~ cppexp2 ~ ";\n"

DIV (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in

name ~ " =" ~ cppexpl ~ " / " ~ cppexp2 ~ ";\n"
POW (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt

in

name = pow(" ~ cppexpl ~ ", ~ cppexp2 = ");\n"
MADD (1lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in

name ~ " =" ° cppexpl = " + " ~ cppexp2 ~ ";\n"
MSUB (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in
name ~n = n =~ CppeXpl ~n _ n =~ Cppexp2 -~ ll;\nll
MMUL (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in
name ~ " =" ~ cppexpl = " * " ~ cppexp2 ~ ";\n"
SMUL (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
"LAMEScalarMul(" ~ name ~ ", " ~ cppexpl =~ ", " ° cppe
MPOW (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
"LAMEMatPow(" ~ name ~ ", " ~ cppexpl "~ ", " = cppexp:
INIT (_) -> "\n"
SET (lhs, rhsl, rhs2, rhs3) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
and cppexp3 = gencpp_scalval rhs3 vt
in

"LAMESetElem(" ~ name ~ ", " ~ cppexpl = ", " ~ cppex]

25



GET

(1hs,

rhs1l, rhs2,

TRAN (1lhs, rhs)

DIM (lhs, rhsl, rhs2)

PRINT (1hs)

SINI
SCPY

SFRE

SCAT

SCMP

SFSC

SFMA

(D)
(1hs,

)

(1hs,

(1hs,

(1hs,

(1hs,

rhs)
rhs1l, rhs2)
rhsl, rhs2)
rhs)
rhs)

SLT (1lhs, rhsil, rhs2)

rhs3) -> let name = get_variable_name lhs vt

26

and
and
and
in

let
and
in

let
and
and
in

let
in

let
and
in

let
and
and
in

let
and
and
in

let
and
in

let
and
in

let
and
and
in

cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt
cppexp3 = get_variable_name rhs3 vt

"LAMEGetElem(" ~ cppexp3 =~ ", " " name ~ ", " ~ cppex]
name = get_variable_name lhs vt
cppexp = get_variable_name rhs vt

"LAMEMatTrans(" ~ name ~ ", " ~ cppexp ~ ");\n"
name = get_variable_name lhs vt
cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt

"LAMEMatDim(" ~ name ~ ", " ~ cppexpl ~ ", " ~ cppexp:
name = get_variable_name lhs vt

"LAMEPrint (" ~ name ~ ");\n"

"\n"

name = get_variable_name lhs vt
cppexp = get_variable_name rhs vt
name ~n = n -~ Cppexp -~ ll;\nll

n\nu

name = get_variable_name lhs vt
cppexpl = get_variable_name rhsl vt
cppexp2 = get_variable_name rhs2 vt

"LAMEStrConcat (" ~ name ~ ", " ~ cppexpl ~ ", " " cpp¢
name = get_variable_name lhs vt

cppexpl = get_variable_name rhsl vt

cppexp2 = get_variable_name rhs2 vt

"LAMEStrCmp(" ~ name ~ ", " ~ cppexpl = ", " ~ cppexp:
name = get_variable_name lhs vt
cppexp = gencpp_scalval rhs vt

"LAMEStrFromScalar(" ~ name ~ ", " ~ cppexp ~ ");\n"
name = get_variable_name lhs vt
cppexp = get_variable_name rhs vt

"LAMEStrFromMat (" ~ name ~ ", " ~ cppexp = ");\n"
name = get_variable_name lhs vt
cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt



SLE (1hs, rhsi1, rhs2) ->
SGT (1lhs, rhsil, rhs2) ->
SGE (1hs, rhsil, rhs2) ->
SEQ (1lhs, rhsil, rhs2) ->
SNE (1hs, rhsil, rhs2) ->

SMEQ (1lhs, rhsl, rhs2) —>

SMNE (1hs, rhsi, rhs2) ->

OR (1lhs, rhsil, rhs2) ->

AND (1lhs, rhsl, rhs2)

27

let
and
and
in

let
and
and
in

let
and
and
in

let
and
and
in

let
and
and
in

let
and
and
in

let
and
and
in

let
and
and
in

-> let name =

and
and
in

name ~ " = (" ~ cppexpl ~
name = get_variable_name lhs vt
cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt

name ~ " = (u -~ cppexpl ~nog=n
name = get_variable_name lhs vt

cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt
name ~n — (u -~ cppexpl ~ oy oo~

name = get_variable_name lhs vt
cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt

name ~ " = (u -~ cppexpl ~nos=
name = get_variable_name lhs vt

cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt
name =~ " = (u -~ cppexpl AN —=n

name = get_variable_name lhs vt
cppexpl = gencpp_scalval rhsl vt
cppexp2 = gencpp_scalval rhs2 vt

name ~ " = (" ~ cppexpl
name = get_variable_name lhs vt

cppexpl = get_variable_name rhsl
cppexp2 = get_variable_name rhs2

name "= (" ° cppexpl ~
name = get_variable_name lhs vt

cppexpl = get_variable_name rhsl
cppexp2 = get_variable_name rhs2

name "= (" ° cppexpl ~
name = get_variable_name lhs vt
cppexpl = gencpp_boolval rhsl vt
cppexp2 = gencpp_boolval rhs2 vt
name ~ " = (" ~ cppexpl ~
get_variable_name lhs vt
cppexpl = gencpp_boolval rhsl vt
cppexp2 = gencpp_boolval rhs2 vt

n < n -~

cppexp2 ~ ");\n"
~ cppexp2 ~ ");\n"
cppexp2 ~ ");\n"
~ cppexp2 ~ ");\n"
" cppexp2 ~ ");\n"
cppexp2 = ");\n"
vt
vt
" cppexp2 ~ ");\n"
vt
vt
cppexp2 ~ ");\n"
cppexp2 ~ ");\n"



name ~ " = (" ~ cppexpl = " && " ~ cppexp2 ~ ");\n"

| NOT (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_boolval rhs vt
in
name -~ " = ! (" ~ cppexp = ");\n"
| BRAF (1lhs, rhs) -> let cppexp = gencpp_boolval lhs vt
and name = get_variable_name rhs vt
in
"if (1 (" " cppexp T~ ")) goto " " name ~ ";\n"
| JMP (1hs) -> let name = get_variable_name lhs vt
in
"goto " ~ name ~ ";\n"
| LABL (1lhs) -> let name = get_variable_name lhs vt
in
name ~ ":\n"
| ROWS (1lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEMatRows (" ~ name ~ ", " ~ cppexp ~ ");\n"
| COLS (1lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEMatCols(" ~ name ~ ", " = cppexp ~ ");\n"

| RDIM (lhs, rows, cols) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rows vt
and cppexp2 = gencpp_scalval cols vt

in
"LAMEMatDim(" ~ name ~", " ~ cppexpl ~ ", " ~ cppexp2
let rec gencpp_prog_rec iprog vt =
match iprog with
i is -> "\t" ~ (gencpp i vt) ~ (gencpp_prog_rec is vt)

l [] _> nn

let gencpp_prog iprog vt =
gencpp_init ~ (gencpp_vartable vt) ~ (gencpp_prog_rec iprog vt) ~ gencpp_end

28



D:\classes\coms4115\project\ast.mli

type row = float list
type matrix = row list

type lvalue =
Ident of string
| VAccess of string * expr
| MAccess of string * expr * expr

and expr =
NumLit of float
| MatLit of matrix
| StrLit of string
| BoolLit of bool
| Lvalue of 1lvalue
| Plus of expr * expr
| Minus of expr * expr
| Times of expr * expr
| Divide of expr * expr
| Power of expr * expr
| Eq of expr * expr
| Neg of expr * expr
| Lt of expr * expr
| Gt of expr * expr
| Le of expr * expr
| Ge of expr * expr
| Not of expr
| And of expr * expr
| or of expr * expr
| Trans of expr
| SizeRows of expr
| SizeCols of expr

type datatype =
Scalar
| string
| Matrix
| Boolean

type stmt =
Assign of lvalue * expr

| If of expr * stmt

| IfElse of expr * stmt * stmt

| While of expr * stmt

| Print of expr

| Dim of string * expr * expr

| Decl of datatype * string
| DeclInit of datatype * string * expr
| stmtList of stmt list

type prgm = stmt list



D:\classes\coms4115\project\gencpp.ml

(* Muhammad Ali Akbar *)

open Icode
open Vars

let gencpp_init =
"#include <iostream>\n#include \"lame.h\"\n\nusing namespace std;\n\nint main(void)\n{\n"

let gencpp_end =
"\treturn 0;\n}\n"

let string_of_bool bv =
match bv with
true -> "TRUE"
| false -> "FALSE"

let gencpp_scalval sv vt =
match sv with
SLit n -> string_of_float n
| svar n -> get_variable_name n vt

let gencpp_boolval bv vt =
match bv with
BLit n -> string_of _bool n
| Bvar n -> get_variable_name n vt

let gencpp i vt =
match i with

SCAL (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_scalval rhs vt
in

name ~ " = " ~ cppexp * ";\n"
| BOoOL (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_boolval rhs vt
in
name ~ " = " ~ cppexp * ";\n"
| STR (1hs, rhs) -> let name = get_variable_name lhs vt
and cppexp = rhs
in
name ~ " = " ~ cppexp * ";\n"

| ADD (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " =" ~ cppexpl * " + " ~ cppexp2 ~ ";\n"
| suB (1hs, rhsi, rhs2) -> let name = get _variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = " ~ cppexpl ~ " - " A cppexp2 ~ ";\n"
| MUL (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 gencpp_scalval rhs2 vt
in

name ~ " = " ~ cppexpl ~ " * " A cppexp2 ~ ";\n"
| DIV (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = " ~ cppexpl ~ " / " ~ cppexp2 ~ ";\n"
| POW (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = pow(" ~ cppexpl ~ ", " ~ cppexp2 * ");\n"
| MADD (1lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt



D:\classes\coms4115\project\gencpp.ml

and cppexpl
and cppexp2
in

get_variable_name rhsl vt
get_variable_name rhs2 vt

name ~ " =" ~ cppexpl ~ " + " ~ cppexp2 ~ ";\n"
| MSUB (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in
name ~ " =" ~ cppexpl ~ " - " ~ cppexp2 ~ ";\n"
| MMUL (1hs, rhsl, rhs2) -> let name = get _variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in
name ~ " = " ~ cppexpl ~ " * " A cppexp2 ~ ";\n"
| sMUL (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 gencpp_scalval rhs2 vt
in

"LAMEScalarMul(" ~ name ~ ", " ~ cppexpl ~ ", " ~ cppexp2 ~ ");\n"
| MPOW (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
"LAMEMatPow(" ~ name ~ ", " ~ cppexpl A~ ", " ~ cppexp2 * ");\n"
| INIT () -> "\n"
| SET (lhs, rhsl, rhs2, rhs3) -> let name = get _variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
and cppexp3 gencpp_scalval rhs3 vt
in

"LAMESetElem(" ~ name ~ ", " ~ cppexpl ~ ", " ~ cppexp2 ~ ", " A
cppexp3 ~ ");\n"
| GET (lhs, rhsl, rhs2, rhs3) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
and cppexp3 = get_variable_name rhs3 vt
in

"LAMEGetElem(" ~ cppexp3 ~ ", " ~ name ~ ", " ~ cppexpl ~ ", " A
cppexp2 ~ ");\n"
| TRAN (1lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEMatTrans(" ~ name ~ ", " ~ cppexp * ");\n"
| DIM (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt

in
"LAMEMatDim(" ~ name ~ ", " ~ cppexpl A~ ", " ~ cppexp2 * ");\n"
| PRINT (1hs) -> let name = get_variable_name lhs vt
in
"LAMEPrint(" ~ name ~ ");\n"
| SINI () -> "\n"
| scpy (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
name ~ " = " ~ cppexp * ";\n"
| SFRE () -> "\n"

| SCAT (1lhs, rhsl, rhs2) -> let name = get _variable_name lhs vt

and cppexpl = get_variable_name rhsl vt

and cppexp2 = get_variable_name rhs2 vt

in

"LAMEStrConcat(" ~ name ~ ", " ~ cppexpl ~ ", " ~ cppexp2 ~ ");\n"

| scMP (1lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt

and cppexpl = get_variable_name rhsl vt

and cppexp2 = get_variable_name rhs2 vt

in



D:\classes\coms4115\project\gencpp.ml

"LAMEStrCmp(" ~ name ~ ", " ~ cppexpl ~ ", " ~ cppexp2 * ");\n
| SFSC (1hs, rhs) -> let name = get_variable name lhs vt
and cppexp = gencpp_scalval rhs vt
in
"LAMEStrFromScalar(" ~ name ~ ", " ~ cppexp * ");\n"
| SFMA (1hs, rhs) -> let name = get_variable _name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEStrFromMat(" ~ name ~ ", " ~ cppexp * ");\n"
| SLT (1hs, rhsl, rhs2) -> let name = get _variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name A~ " = (" ~ cppexpl ~ " < " ~ cppexp2 ~ ");\n"
| SLE (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = (" ~ cppexpl A " <= " ~ cppexp2 * ");\n"
| SGT (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = (" ~ cppexpl ~ " > " 2~ cppexp2 * ");\n"
| SGE (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in
name ~ " = (" ~ cppexpl A " >= "
| SEQ (1hs, rhsl, rhs2) -> let name = get _variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in

~ cppexp2 ~ ");\n"

name ~ " = (" ~ cppexpl " ==
| SNE (1hs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rhsl vt
and cppexp2 = gencpp_scalval rhs2 vt
in

~ cppexp2 ~ ");\n"

name ~ " = (" ~ cppexpl ~ " I=
| SMEQ (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in

~ cppexp2 ~ ");\n"

name ~ " = (" ~ cppexpl ~ " ==
| SMNE (lhs, rhsl, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = get_variable_name rhsl vt
and cppexp2 = get_variable_name rhs2 vt
in

~ cppexp2 ~ ");\n"

name ~ " = (" ~ cppexpl A " I= " ~ cppexp2 ~ ");\n"
| OR (1hs, rhsi, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_boolval rhsl vt
and cppexp2 = gencpp_boolval rhs2 vt
in
name ~ " = (" ~ cppexpl ~ " || " ~ cppexp2 * ");\n"
| AND (1hs, rhsi, rhs2) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_boolval rhsl vt
and cppexp2 = gencpp_boolval rhs2 vt

in
name ~ " = (" ~ cppexpl ~ " & & " ~ cppexp2 ~ ");\n"
| NOT (1hs, rhs) -> let name = get_variable_name lhs vt
and cppexp = gencpp_boolval rhs vt
in
name ~ " = I(" ~ cppexp * ");\n"
| BRAF (lhs, rhs) -> let cppexp = gencpp_boolval lhs vt

and name = get_variable_name rhs vt



D:\classes\coms4115\project\gencpp.ml

in
"iF(I(" N cppexp A ")) goto " ~ name ~ ";\n"
| IMP (1hs) -> let name = get_variable _name lhs vt
in
"goto " " name "~ ";\n"
| LABL (1lhs) -> let name = get_variable _name lhs vt
in
name ~ ":\n"
| ROWS (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEMatRows (" ~ name ~ ", " ~ cppexp * ");\n"
| coLs (lhs, rhs) -> let name = get_variable_name lhs vt
and cppexp = get_variable_name rhs vt
in
"LAMEMatCols(" ~ name ~ ", " ~ cppexp * ");\n"
| RDIM (lhs, rows, cols) -> let name = get_variable_name lhs vt
and cppexpl = gencpp_scalval rows vt
and cppexp2 = gencpp_scalval cols vt
in

"LAMEMatDim(" ~ name 7", " ~ cppexpl ~ ", " ~ cppexp2 * ");\n

let rec gencpp_prog_rec iprog vt =
match iprog with
i is -> "\t" ~ (gencpp i vt) ”~ (gencpp_prog_rec is vt)

| 1 >

let gencpp_prog iprog vt =
gencpp_init ~ (gencpp_vartable vt) ~ (gencpp_prog_rec iprog vt) ” gencpp_end



D:\classes\coms4115\project\gencpp.mli

(* Muhammad Ali Akbar *)

open Icode
open Vars

val gencpp_prog : iprog -> vartable -> string



D:\classes\coms4115\project\icode.mli

type scalval =

SVar of int
SLit of float

type boolval =

BVar of int
BLit of bool

type intinst =

SCAL of int * scalval
BOOL of int * boolval

STR of int * string

ADD of int * scalval * scalval
SUB of int * scalval * scalval
MUL of int * scalval * scalval
DIV of int * scalval * scalval
POW of int * scalval * scalval
MADD of int * int * int

MSUB of int * int * int

MMUL of int * int * int

SMUL of int * int * scalval
MPOW of int * int * scalval
INIT of int

SET of int * scalval * scalval
GET of int * scalval * scalval
TRAN of int * int

DIM of int * scalval * scalval
PRINT of int

SINI of int

SCPY of int * int

SFRE of int

SCAT of int * int * int

SCMP of int * int * int

SFSC of int * scalval

SFMA of int * int

SLT of int * scalval * scalval
SLE of int * scalval * scalval
SGT of int * scalval * scalval
SGE of int * scalval * scalval
SEQ of int * scalval * scalval
SNE of int * scalval * scalval

SMEQ of int * int * int

SMNE of int * int * int

OR of int * boolval * boolval
AND of int * boolval * boolval
NOT of int * boolval

BRAF of boolval * int

JMP of int

LABL of int

ROWS of int * int

COLS of int * int

RDIM of int * scalval * scalval

type iprog = intinst list

* scalval
* int



D:\classes\coms4115\project\labels.ml

(* David Golub *)
type labels = { mutable next : int }

let new_labels () = { next = 0 }
let add_label 1s =
let labno = 1s.next
in ls.next <- labno + 1;
labno
let get_label name n =
" label" ~ string_of _int n



D:\classes\coms4115\project\labels.mli

(* David Golub *)

open Ast

type labels

val new_labels : unit -> labels

val add_label : labels -> int
val get_label name : int -> string



D:\classes\coms4115\project\lame.h

/* Muhammad Ali Akbar */

#ifndef LAME_H
#tdefine LAME_H

#tinclude "matrix.h"

inline void LAMEStrFromScalar(String &s, Scalar x)

{
ostringstream strs;
strs<<x;
s = strs.str();
}
inline void LAMEStrFromMat(String &s, Matrix &m)
{
s = m.toString();
}
inline void LAMEMatAdd(Matrix &m, Matrix &ml, Matrix &m2)
{
m=ml + m2;
}
inline void LAMEMatSub(Matrix &m, Matrix &ml, Matrix &m2)
{
m=ml - m2;
}
inline void LAMEMatMul(Matrix &m, Matrix &ml, Matrix &m2)
{
m=ml * m2;
}

inline void LAMEScalarMul(Matrix &m, Matrix &ml, Scalar s2)
{

m=ml* s2;

}
inline void LAMEMatPow(Matrix &m, Matrix &ml, Scalar s2)
{
m = ml.power(s2);
)

inline void LAMESetElem(Matrix &m, unsigned int i, unsigned int j, Scalar s)

{
}

m.setElement(i,j,s);

inline void LAMEGetElem(Scalar &s, Matrix &m, unsigned int i, unsigned int j)

{
s=m.getElement(i,j);

}
inline void LAMEMatTrans(Matrix &ml, Matrix &m2)
{
ml=m2.transpose();
}

inline void LAMEMatDim(Matrix &m, unsigned int i, unsigned int j)

{
}

inline void LAMEMatRows(Scalar &s, Matrix &m)
{

m.reDim(i,j);



D:\classes\coms4115\project\lame.h

s=m.getNumRows();

}

inline void LAMEMatCols(Scalar &s, Matrix &m)

{
s=m.getNumCols();

}

inline void LAMEMatEqual(Boolean b, Matrix &ml, Matrix &m2)
b=(ml==m2);

}

inline void LAMEMatNotEqual(Boolean b, Matrix &ml, Matrix &m2)
b=!(ml==m2);

}

inline void LAMEPrint(String s)

{
cout<<s;

}

inline void LAMEStrCopy(String &s1, String s2)

{
sl = s2;

}

inline void LAMEStrConcat(String &s, String &s1, String &s2)
{

}

inline void LAMEStrCmp(Boolean &b, String &s1, String &s2)
{

s = sl + s2;

b = (sl==s2);
}
inline void LAMEStrFree(String &s)
{
}
inline void LAMEStrInit(String &s)
{
s = ",
}
inline void LAMEMatInit(Matrix &m)
{
}

#endif //LAME_H



D:\classes\coms4115\project\lame.ml

open Gencpp
open Labels
open Semantic
open Vars

let _ =

let lexbuf = Lexing.from_channel stdin

in let program = Lamepar.prgm Lamescan.token lexbuf
in let vt = new_vartable ()

in let 1ls = new_labels ()

in let intcode = check_prgm program vt 1s

in let cppcode = gencpp_prog intcode vt

in print_endline cppcode



D:\classes\coms4115\project\lamepar.mly

%{
(* Carmine Elvezio *)
open Ast

%}

%token PLUS MINUS TIMES DIVIDE POWER COMMA SEMICOLON
%token LBRACE RBRACE LPAREN RPAREN LBRACK RBRACK
%token ASSIGN EQ NE LT LE GT GE NOT OR AND TRANS
%token IF ELSE WHILE PRINT TRUE FALSE

%token STRING SCALAR MATRIX BOOLEAN

%token SIZE_ROWS SIZE_COLS DIM

%token EOF

%token <string> IDENT

%token <string> STRLIT

%token <float> NUM

%nonassoc NOELSE
%nonassoc ELSE

%nonassoc NOSEMI
%nonassoc SEMICOLON

%nonassoc NOCOMMA
%nonassoc COMMA

%left OR

%left AND
%nonassoc EQ NE
%left LT LE GT GE
%left PLUS MINUS
%left TIMES DIVIDE
%left POWER
%nonassoc NOT
%nonassoc UMINUS
%nonassoc TRANS
%nonassoc SIZE_ROWS SIZE_COLS

%start prgm

%type <float list> row
%type <row list> matrix
%type <lvalue> lvalue
%type <expr> expr

%type <datatype> datatype
%type <stmt> stmt

%type <stmt list> stmtlist
%type <Ast.stmt list> prgm

%%

row:
NUM COMMA row {$1 :: $3}
| NUM %prec NOCOMMA {[$1]}
matrix:
row SEMICOLON matrix {$1 :: $3}
| row %prec NOSEMI {[$1]1}
lvalue:
IDENT {Ident($1)}
| IDENT LBRACK expr RBRACK {VAccess($1, $3)}
| IDENT LBRACK expr COMMA expr RBRACK {MAccess($1, $3, $5)}
expr:
NUM {NumLit($1)}
| STRLIT {StrLit($1)}

| TRUE {BoolLit(true)}



D:\classes\coms4115\project\lamepar.mly

| FALSE {BoolLit(false)}
| lvalue {Lvalue($1)}
| expr PLUS expr {Plus($1, $3)}
| expr MINUS expr {Minus($1, $3)}
| expr TIMES expr {Times($1, $3)}
| expr DIVIDE expr {Divide($1, $3)}
| expr POWER expr {Power($1, $3)}
| MINUS expr %prec UMINUS {Times(NumLit(-1.0), $2)}
| expr EQ expr {Eq(%$1, $3)}
| expr NE expr {Neq($1, $3)}
| expr LT expr {Lt($1, $3)}
| expr GT expr {Gt($1, $3)}
| expr LE expr {Le(%$1, $3)}
| expr GE expr {Ge(%1, $3)}
| NOT expr {Not($2)}
| expr AND expr {And($1, $3)}
| expr OR expr {or(%$1, $3)}
| expr TRANS {Trans($1)}
| LPAREN expr RPAREN {$2}
| LBRACE matrix RBRACE {MatLit($2)}
| SIZE_ROWS expr {SizeRows($2)}
| SIZE_coLS expr {SizeCols($2)}
datatype:
SCALAR {Scalar}
| STRING {String}
| MATRIX {Matrix}
| BOOLEAN {Boolean}
stmt:
lvalue ASSIGN expr SEMICOLON {Assign($1, $3)}
| IF LPAREN expr RPAREN stmt %prec NOELSE {If($3, $5) }
| IF LPAREN expr RPAREN stmt ELSE stmt {IfElse($3, $5, $7)}
| WHILE LPAREN expr RPAREN stmt {While($3, $5)}
| PRINT expr SEMICOLON {Print($2)}
| DIM IDENT LBRACK expr COMMA expr RBRACK SEMICOLON {Dim($2, $4, $6)}
| datatype IDENT SEMICOLON {Decl($1, $2)}
| datatype IDENT ASSIGN expr SEMICOLON {DeclInit($1, $2, $4)}
| LBRACE stmtlist RBRACE {StmtList($2)}
stmtlist:
stmt stmtlist {$1 :: $2}
| stmt {[$1]}
prgm:
stmt EOF {[$11}

| stmt prgm {$1 :: $2}



D:\classes\coms4115\project\lamescan.mll 1

{ open Lamepar }

rule token =
parse [' " "\t' '\r'" "\n'] { token lexbuf }

| eof { EOF }
| "+ { PLUS }
| - { MINUS }
| { TIMES }
| /! { DIVIDE }
| A { POWER }
| ", { COMMA }
| "5 { SEMICOLON }
| { { LBRACE }
| "} { RBRACE }
| ¢ { LPAREN }
| ") { RPAREN }
| ' { LBRACK }
| 1 { RBRACK }
| "== {EQ1}
| 1= { NE }
| "< { LT }
| "<=" { LE }
| > { GT }
| ">= { GE }
| "1 { NOT }
[l {OrR}
| "&&" { AND }
[ "\ { TRANS }
| =" { ASSIGN }
| "dim" { DIM }
| "if" { IF }
| "else" { ELSE }
| "while" { WHILE }
| "print" { PRINT }
| "true" { TRUE }
| "false" { FALSE }
| "scalar" { SCALAR }
| "string" { STRING }
| "matrix" { MATRIX }
| "boolean" { BOOLEAN }
| "size cols" { SIZE_coLS }
| "size_rows" { SIZE_ROWS }
| ['A*-'z" 'a'-'z" '"_"]['A'-'Z' 'a'-'z' '@'-'9' '_']* as id { IDENT(id) }
|
I

['e'-"9"]+ ('."' [‘5‘-‘9‘]+)? (['e" "E'T ['-" "+']2 ['@'-"9"]+)? as num { NUM(float_of_string num) }
I

S U AR AR AT L WA ] N L M\ | M\ * 't as st { STRLIT(str) }



D:\classes\coms4115\project\makefile

.SUFFIXES : .ml .cmo .mli .cmi

CMOS = \
labels.cmo \
vars.cmo \
gencpp.cmo \
semantic.cmo \
lamescan.cmo \
lamepar.cmo \
lame.cmo

CMIS = \
ast.cmi \
labels.cmi \
vars.cmi \
icode.cmi \
gencpp.cmi \
semantic.cmi \
lamepar.cmi

all : lame.exe

.ml.cmo :
ocamlc -c $<

.mli.cmi :
ocamlc -c $<

lamepar.mli : lamepar.mly
ocamlyacc lamepar.mly

lamescan.ml : lamescan.mll
ocamllex lamescan.mll

lame.exe : $(CMIS) $(CMOS)
ocamlc -o lame.exe $(CMOS)



D:\classes\coms4115\project\makefile.gcc

CMOS

labels.cmo vars.cmo gencpp.cmo semantic.cmo lamescan.cmo lamepar.cmo lame.cmo

CMIS = ast.cmi labels.cmi vars.cmi icode.cmi gencpp.cmi semantic.cmi lamepar.cmi

lame : $(CMIS) $(CMOS)
ocamlc -o lame $(CMOS)

%.cmo : %.ml
ocamlc -c $<

%.cmi : %.mli
ocamlc -c $<

lamepar.mli : lamepar.mly
ocamlyacc lamepar.mly

lamescan.ml : lamescan.mll
ocamllex lamescan.mll

lamepar.cmo : lamepar.ml



D:\classes\coms4115\project\matrix.h

/* Muhammad Ali Akbar */

#ifndef MATRIX_H
#define MATRIX_H

#tinclude <iostream>
#include <vector>
#include <cmath>
#include <cstring>
#tinclude <sstream>
#include <assert.h>
using namespace std;

typedef double Scalar;
typedef bool Boolean;
typedef string String;

class Matrix
{
vector< vector <double> > v;
public:
Matrix(unsigned int r=1, unsigned int c=1)
{
assert(r>0);
assert(c>0);

for(unsigned int i=0; i<r; i++)

{
v.push_back(vector<double>());
for(unsigned int j=0; j<c; j++)
{
v[i].push_back(9);
}
}
}
Matrix(const Matrix &x)
v.clear();
for(unsigned int i=0; i<x.v.size(); i++)
{

v.push_back(vector<double>());
for(unsigned int j=0; j<x.v[i].size(); j++)

{
}

v[i].push_back(x.v[i][j]);

}
}
void reDim(unsigned int i, unsigned int j)

{

unsigned int nRows
unsigned int nCols

getNumRows () ;
getNumCols();

for(unsigned int indi=i; indi<nRows; indi++)

{
v.pop_back();
}
for(unsigned int indj=j; indj<nCols; indj++)
{
for(unsigned int indi=0; indi<i; indi++)
v[indi].pop_back();
}
}

nRows = getNumRows();



D:\classes\coms4115\project\matrix.h

nCols = getNumCols();

if(i<nRows && j<nCols)
{

}

return;

for(unsigned int indi=0; indi<i; indi++)

if(indi>=nRows)

{
}

for(unsigned int indj=0; indj<j; indj++)

v.push_back(vector<double>());

if(indi>=nRows)

{

}
else if(indj>=nCols)

v[indi].push_back(9);

v[indi].push_back(9);

}

}

Matrix transpose()

{
unsigned int nRows
unsigned int nCols

getNumRows () ;
getNumCols();

Matrix m(nCols,nRows);

for(unsigned int i=0; i<m.v.size(); i++)
{

for(unsigned int j=0; j<m.v[i].size(); j++)
m.v[il[31=v[J1[i];

}

return m;

¥

Matrix power(unsigned int x)

{
if(getNumRows() != getNumCols()) {
printf("Runtime error: Matrix power requires a square matrix!\n");
exit(0);
}

Matrix m(getNumRows(), getNumCols());
for(unsigned int i=0; i<getNumRows(); i++)

{
}

for(unsigned int i=1; i<=x; i++)

{
}

return m;

m.setElement(i, i, 1.9);

m = m * *this;

}

void setElement(unsigned int i, unsigned int j, Scalar x)

{

//assert(icv.size());
//assert(j<v[i].size());

if(i>=v.size())



D:\classes\coms4115\project\matrix.h

{

reDim(i+1,getNumCols());
}
if(j>=v[i].size())
{

reDim(getNumRows(),j+1);
}
v[i][j]=x;

Scalar getElement(unsigned int i, unsigned int j)

{

if(i>=v.size() || j>=v[i].size())

printf("Runtime error: Index out of bounds!\n");

exit(0);
}
return v[i][j];
}
unsigned int getNumRows ()
{
return v.size();
}
String toString()
{
ostringstream strs;
for(unsigned int i=0; i<v.size(); i++)
{
for(unsigned int j=0; j<v[i].size(); j++)
{
strs<<v[i][jI<<"\t";
}
strs<<"\n";
}
return strs.str();
}
unsigned int getNumCols()
{
return v[0].size();
}
bool operator == (Matrix& m)
{
unsigned int nRows = getNumRows();
unsigned int nCols = getNumCols();

assert(nRows==m.getNumRows());
assert(nCols==m.getNumCols());

bool isEqual = true;
for(unsigned int i=0; i<m.v.size(); i++)
{
for(unsigned int j=0; j<m.v[i].size(); j++)
if(v[i][3]!=m.v[1i][3])
{
iskqual = false;
break;
}
}
if(!isEqual)

break;



D:\classes\coms4115\project\matrix.h

¥

return iskEqual;

}
const Matrix& operator = (const Matrix &x)
{
v.clear();
for(unsigned int i=0; i<x.v.size(); i++)
{
v.push_back(vector<double>());
for(unsigned int j=0; j<x.v[i].size(); j++)
{
v[i].push_back(x.v[i][j]);
}
}
return *this;
}

friend ostream& operator << (ostream& os, const Matrix& m);
friend Matrix operator + (Matrix& ml, Matrix& m2);

friend Matrix operator - (Matrix& ml, Matrix& m2);

friend Matrix operator * (Matrix& ml, Matrix& m2);

friend Matrix operator * (Matrix& ml, Scalar& s2);

friend Matrix operator - (Matrix& ml);

3

ostream& operator << (ostream& os, const Matrix& m)

{

for(unsigned int i=0; i<m.v.size(); i++)

{

for(unsigned int j=0; j<m.v[i].size(); j++)

{
}

0s<<"\n";

os<<m.v[i][j]<<"\t";

}

return os;

}

Matrix operator + (Matrix& ml, Matrix& m2)

{

unsigned int nRows = ml.getNumRows();
unsigned int nCols = ml.getNumCols();

assert(nRows==m2.getNumRows());
assert(nCols==m2.getNumCols());

Matrix m(nRows,nCols);
for(unsigned int i=0; i<m.v.size(); i++)

{

for(unsigned int j=0; j<m.v[i].size(); j++)
m.v[i][j]=ml.v[i][j]+m2.v[i][3];

}

return m;

}

Matrix operator - (Matrix& ml, Matrix& m2)

{

unsigned int nRows
unsigned int nCols

ml.getNumRows();
ml.getNumCols();

assert(nRows==m2.getNumRows());
assert(nCols==m2.getNumCols());

Matrix m(nRows,nCols);
for(unsigned int i=0; i<m.v.size(); i++)



D:\classes\coms4115\project\semantic.ml

(* David Golub *)

open Ast
open Icode
open Labels
open Vars

exception InvalidMatrix
exception TypeMismatch
exception WrongDataType

let rec check_cols row temp i j =
match row with
hd :: tl -> let sets = check_cols tl1 temp i (j + 1)
in
SET (temp, SLit (float_of_int i),
SLit (float_of_int j), SLit hd) :: sets
| 11 -> [1

let rec check_rows m temp i =
match m with
hd :: tl -> let colsl = List.length hd
and (cols2, sets2) = check_rows tl temp (i + 1)

in
if colsl = cols2 || cols2 = @ then
let setsl = check_cols hd temp i @
in
(colsl, (setsl @ sets2))
else
raise InvalidMatrix
| 11 -> (e, [

let check_matrix m vt =
let temp = add_temp Matrix vt
in
let (_, sets) = check_rows m temp ©
in
let instrs = [INIT temp] @ sets
in (temp, instrs)

let rec check_expr e vt =
match e with
NumLit n -> let temp = add_temp Scalar vt
in
let instrs = [SCAL (temp, SLit n)]
in (Scalar, temp, instrs)

| MatLit m -> let (temp, instrs) = check_matrix m vt
in (Matrix, temp, instrs)

| strLit s -> let temp = add_temp String vt
in

let instrs = [SINI temp;
STR (temp, s)]
in (String, temp, instrs)
| BoolLit b -> let temp = add_temp Boolean vt
in
let instrs = [BOOL (temp, BLit b)]
in (Boolean, temp, instrs)
| Lvalue 1v -> check_lvalue 1lv vt
| Plus (e1, e2) -> let (typl, templ, instrsil) check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typl = Scalar && typ2 = Scalar then
let temp = add_temp Scalar vt
in
let instrs = instrsl @ instrs2 @
[ADD (temp, SVar templ, SVar temp2)]



D:\classes\coms4115\project\semantic.ml

in (Scalar, temp, instrs)
else if typl = String && typ2 = String then
let temp = add_temp String vt
in
let instrs = instrsl @ instrs2 @
[SCAT (temp, templ, temp2)]
in (String, temp, instrs)
else if typl = Matrix && typ2 = Matrix then
let temp = add_temp Matrix vt
in
let instrs = instrsl @ instrs2 @
[INIT temp;
MADD (temp, templ, temp2)]
in (Matrix, temp, instrs)
else if typl = Boolean && typ2 = Boolean then
raise WrongDataType
else if typl = String && typ2 = Scalar then
let temp2prime = add_temp String vt
and temp = add_temp String vt
in
let instrs = instrsl @ instrs2 @
[SINI temp2prime;
SFSC (temp2prime, SVar temp2);
SINI temp;
SCAT (temp, templ, temp2prime)]
in (String, temp, instrs)
else if typl = Scalar && typ2 = String then
let templprime = add_temp String vt
and temp = add_temp String vt
in
let instrs = instrsl @ instrs2 @
[SINI templprime;
SFSC (templprime, SVar templ);
SINI temp;
SCAT (temp, templprime, temp2)]
in (String, temp, instrs)
else if typl = String && typ2 = Matrix then
let temp2prime = add_temp String vt
and temp = add_temp String vt
in
let instrs = instrsl @ instrs2 @
[SINI temp2prime;
SFMA (temp2prime, temp2);
SINI temp;
SCAT (temp, templ, temp2prime)]
in (String, temp, instrs)
else if typl = Matrix && typ2 = String then
let templprime = add_temp String vt
and temp = add_temp String vt
in
let instrs = instrsl @ instrs2 @
[SINI templprime;
SFMA (templprime, templ);
SINI temp;
SCAT (temp, templprime, temp2)]
in (String, temp, instrs)
else
raise TypeMismatch
| Minus (e1, e2) -»> let (typl, templ, instrsi) check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typl <> typ2 then
raise TypeMismatch
else if typl = Scalar then
let temp = add_temp Scalar vt
in



D:\classes\coms4115\project\semantic.ml

let instrs = instrsl @ instrs2 @
[SUB (temp, SVar templ, SVar temp2)]
in (Scalar, temp, instrs)
else if typl = Matrix then
let temp = add_temp Matrix vt

in
let instrs = instrsl @ instrs2 @
[INIT temp;
MSUB (temp, templ, temp2)]
in (Matrix, temp, instrs)
else

raise WrongDataType
| Times (el, e2) -> let (typl, templ, instrsl) check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typl = Scalar && typ2 = Scalar then
let temp = add_temp Scalar vt
in

let instrs = instrsl @ instrs2 @
[MUL (temp, SVar templ, SVar temp2)]
in (Scalar, temp, instrs)
else if typl = Matrix && typ2 = Matrix then
let temp = add_temp Matrix vt
in
let instrs = instrsl @ instrs2 @
[INIT temp;
MMUL (temp, templ, temp2)]
in (Matrix, temp, instrs)
else if typl = Scalar && typ2 = Matrix then
let temp = add_temp Matrix vt
in
let instrs = instrsl @ instrs2 @
[INIT temp;
SMUL (temp, temp2, SVar templ)]
in (Matrix, temp, instrs)
else if typl = Matrix && typ2 = Scalar then
let temp = add_temp Matrix vt

in
let instrs = instrsl @ instrs2 @
[INIT temp;
SMUL (temp, templ, SVar temp2)]
in (Matrix, temp, instrs)
else

raise WrongDataType
| Divide (el, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typl = Scalar && typ2 = Scalar then
let temp = add_temp Scalar vt
in
let instrs = instrsl @ instrs2 @
[DIV (temp, SVar templ, SVar temp2)]
in (Scalar, temp, instrs)
else if typl = Matrix && typ2 = Scalar then
let temp = add_temp Matrix vt
and temp2prime = add_temp Scalar vt
in
let instrs = instrsl @ instrs2 @
[DIV (temp2prime, SLit 1.0, SvVar temp2);
INIT temp;
SMUL (temp, templ, SVar temp2prime)]
in (Matrix, temp, instrs)
else
raise WrongDataType
| Power (el, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt



D:\classes\coms4115\project\semantic.ml

in
if typl = Scalar && typ2 = Scalar then
let temp = add_temp Scalar vt
in
let instrs = instrsl @ instrs2 @
[POW (temp, SVar templ, SVar temp2)]
in (Scalar, temp, instrs)
else if typl = Matrix && typ2 = Scalar then
let temp = add_temp Matrix vt
in
let instrs = instrsl @ instrs2 @
[INIT temp;
MPOW (temp, templ, SVar temp2)]
in (Matrix, temp, instrs)
else
raise WrongDataType
| Eq (e1, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typl = Matrix && typ2 = Matrix then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SMEQ (temp, templ, temp2)]
in (Boolean, temp, instrs)
else if typl = String && typ2 = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SEQ (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typl = typ2 then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SEQ (temp, SVar templ, SVar temp2)]
in (Boolean, temp, instrs)

else
raise TypeMismatch
| Neg (el, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt

in
if typl = Matrix && typ2 = Matrix then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SMNE (temp, templ, temp2)]
in (Boolean, temp, instrs)
else if typl = String && typ2 = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SNE (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typl = typ2 then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SNE (temp, SVar templ, SVar temp2)]
in (Boolean, temp, instrs)
else
raise TypeMismatch



D:\classes\coms4115\project\semantic.ml

| Lt (e1, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in

if typl <> typ2 then
raise TypeMismatch
else if typl = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SLT (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typ2 = Scalar then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SLT (temp, Svar templ, SVar temp2)]
in (Boolean, temp, instrs)

else
raise WrongDataType
| Gt (e1, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt

in
if typl <> typ2 then
raise TypeMismatch
else if typl = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SGT (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typl = Scalar then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SGT (temp, SvVar templ, SVar temp2)]
in (Boolean, temp, instrs)

else
raise WrongDataType
| Le (e1, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt

in
if typl <> typ2 then
raise TypeMismatch
else if typl = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SLE (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typl = Scalar then
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SLE (temp, SVar templ, SVar temp2)]
in (Boolean, temp, instrs)
else
raise WrongDataType
| Ge (e1, e2) -> let (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in



D:\classes\coms4115\project\semantic.ml

| Not e

| And (el, e2)

| or (e1, e2)

| Trans e

| SizeRows e

-> let
in

-> let
and
in

-> let
and
in

-> let
in

-> let
in

if typl <> typ2 then
raise TypeMismatch
else if typl = String then
let cmp_temp = add_temp Scalar vt
and temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[SCMP (cmp_temp, templ, temp2);
SGE (temp, SVar cmp_temp, SLit 0.0)]
in (Boolean, temp, instrs)
else if typl = Scalar then
let temp = add_temp Boolean vt

in
let instrs = instrsl @ instrs2 @
[SGE (temp, SVar templ, SVar temp2)]
in (Boolean, temp, instrs)
else

raise WrongDataType
(typl, templ, instrsl) = check_expr e vt

if typl <> Boolean then
raise WrongDataType
else
let temp = add_temp Boolean vt
in
let instrs = instrsl @ [NOT (temp, BVar templ)]
in (Boolean, temp, instrs)
(typl, templ, instrsl) = check_expr el vt
(typ2, temp2, instrs2) = check_expr e2 vt

if typl <> Boolean || typ2 <> Boolean then
raise WrongDataType
else
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[AND (temp, BVar templ, BVar temp2)]
in (Boolean, temp, instrs)
(typl, templ, instrsl) = check_expr el vt
(typ2, temp2, instrs2) = check_expr e2 vt

if typl <> Boolean || typ2 <> Boolean then
raise WrongDataType
else
let temp = add_temp Boolean vt
in
let instrs = instrsl @ instrs2 @
[OR (temp, BVar templ, BVar temp2)]
in (Boolean, temp, instrs)
(typl, templ, instrsl) = check_expr e vt

if typl = Matrix then
let temp = add_temp Matrix vt
in
let instrs = instrsl @
[INIT temp;
TRAN (temp, templ)]
in (Matrix, temp, instrs)
else if typl = Scalar then
(Scalar, templ, instrsl)
else
raise WrongDataType
(typl, templ, instrsl) = check_expr e vt

if typl <> Matrix then
raise WrongDataType



D:\classes\coms4115\project\semantic.ml

else
let temp = add_temp Scalar vt
in
let instrs = instrsl @
[ROWS (temp, templ)]
in (Scalar, temp, instrs)
| SizeCols e -> let (typl, templ, instrsl) = check_expr e vt

in
if typl <> Matrix then
raise WrongDataType

else
let temp = add_temp Scalar vt
in
let instrs = instrsl @
[cOoLS (temp, templ)]
in (Scalar, temp, instrs)
and check_lvalue 1lv vt =
match 1lv with
Ident name -> let n = find_variable name vt
in

let typ = get_variable_type n vt
in (typ, n, [])
| MAccess (name, el, e2) -> let n = find_variable name vt

in
let typ@ = get_variable_type n vt
and (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typ@ <> Matrix || typl <> Scalar || typ2 <> Scalar then
raise WrongDataType
else
let temp = add_temp Scalar vt
in
let instrs = instrsl @ instrs2 @
[GET (n, Svar templ, SVar temp2, temp)]
in (Scalar, temp, instrs)
| VAccess (name, e) -> let n = find_variable name vt
in
let typ® = get_variable_type n vt
and (typl, templ, instrsl) = check_expr e vt
in
if typ@ <> Matrix || typl <> Scalar then
raise WrongDataType
else
let temp = add_temp Scalar vt
in
let instrs = instrsl @
[GET (n, SVar templ, SLit 0.0, temp)]
in (Scalar, temp, instrs)
let gen_init n typ =
if typ = Matrix then
[INIT n]
else if typ = String then
[SINI n]
else
[]
let rec check_stmt s vt 1s =
match s with
Assign (Ident name, e) -> let (typr, tempr, instrsr) = check_expr e vt
and n = find_variable name vt
in

let typ = get_variable_type n vt
in



D:\classes\coms4115\project\semantic.ml 8

if typ <> typr then
raise TypeMismatch
else if typ = Scalar then
instrsr @ [SCAL (n, SVar tempr)]
else if typ = Boolean then
instrsr @ [BOOL (n, BVar tempr)]
else if typ = String then
instrsr @ [SCPY (n, tempr)]
else if typ = Matrix then
instrsr @ [SMUL (n, tempr, SLit 1.0)]
else
raise WrongDataType (* should never happen *)
| Assign (MAccess (name, el, e2), e) -> let (typr, tempr, instrsr) = check_expr e vt
and n = find_variable name vt
in
let typ® = get_variable_type n vt
and (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typ@ <> Matrix || typl <> Scalar || typ2 <> Scalarw
|| typr <> Scalar then
raise WrongDataType
else
let instrs = instrsl @ instrs2 @ instrsr @
[SET (n, SVar templ, SVar temp2, SVar tempr)]

in instrs
| Assign (VAccess (name, el), e) -> let (typr, tempr, instrsr) = check_expr e vt
and n = find_variable name vt
in
let typ@ = get_variable_type n vt
and (typl, templ, instrsl) = check_expr el vt
in
if type@ <> Matrix || typl <> Scalar || typr <> Scalar ¥
then
raise WrongDataType
else
let instrs = instrsl @ instrsr @
[SET (n, Svar templ, SLit @.0, SVar tempr)]
in instrs
| If (e, s1) -> let (typc, tempc, instrsc) = check_expr e vt
in
if typc <> Boolean then
raise WrongDataType
else
let instrst = check_stmt s1 vt 1s
and labend = add_label 1s
in
instrsc @
[BRAF (BVar tempc, labend)] @
instrst @
[LABL labend]
| IfElse (e, s1, s2) -> let (typc, tempc, instrsc) = check_expr e vt
in

if typc <> Boolean then
raise WrongDataType
else
let instrst = check_stmt s1 vt 1s
and instrse = check_stmt s2 vt 1s
and labelse = add_label 1s
and labend = add_label 1s
in
instrsc @
[BRAF (BVar tempc, labelse)] @
instrst @
[IMP labend;
LABL labelse] @



D:\classes\coms4115\project\semantic.ml

instrse @
[LABL labend]
| While (e, s1) -> let (typc, tempc, instrsc) = check_expr e vt
in
if typc <> Boolean then
raise WrongDataType
else
let instrsb = check_stmt s1 vt 1s
and labcheck = add_label 1s
and labend = add_label 1s
in
[LABL labcheck] @
instrsc @
[BRAF (BVar tempc, labend)] @
instrsb @
[IMP labcheck;
LABL labend]
| Print e -> let (typo, tempd, instrs@) = check_expr e vt
in
if typ@ = String then
instrs@ @ [PRINT temp@]
else if typ@ = Scalar then
let temp = add_temp String vt
in
instrse @
[SINI temp;
SFSC (temp, SvVar tempo);
PRINT temp]
else if typ® = Matrix then
let temp = add_temp String vt
in
instrse @
[SINI temp;
SFMA (temp, temp®@);
PRINT temp]
else
raise WrongDataType
| Dim (name, el, e2) -> let n = find_variable name vt
in let typ® = get_variable_type n vt
and (typl, templ, instrsl) = check_expr el vt
and (typ2, temp2, instrs2) = check_expr e2 vt
in
if typ@ <> Matrix || typl <> Scalar || typ2 <> Scalar then
raise WrongDataType
else
instrsl @ instrs2 @
[RDIM (n, SVar templ, SVar temp2)]
| Decl (t, name) -> let n = add_variable name t vt
in
gen_init n t
| DeclInit (t, name, e) -> let n = add_variable name t vt
and (typl, templ, instrsl) = check_expr e vt
in
if t <> typl then
raise TypeMismatch
else if t = String then
instrsl @ [SINI n; SCPY (n, templ)]
else if t = Matrix then
instrsl @ [INIT n; SMUL (n, templ, SLit 1.90)]
else if t = Scalar then
instrsl @ [SCAL (n, SVar templ)]
else if t = Boolean then
instrsl @ [BOOL (n, BVar templ)]
else
raise WrongDataType (* should never happen *)
| stmtList slist -> check_prgm slist vt 1s



D:\classes\coms4115\project\semantic.ml

and check_prgm slist vt 1s =
let helper s = check_stmt s vt 1s
and concat_lists 11 12 = 11 @ 12
in let list_of_lists = List.map helper slist
in List.fold_left concat_lists [] list_of_lists

10



D:\classes\coms4115\project\semantic.mli

(* David Golub *)

open Ast
open Icode
open Labels
open Vars

exception InvalidMatrix
exception TypeMismatch
exception WrongDataType

val check_matrix : matrix -> vartable -> (int * iprog)

val check_expr : expr -> vartable -> (datatype * int * iprog)

val check_lvalue : lvalue -> vartable -> (datatype * int * iprog)
val check_stmt : stmt -> vartable -> labels -> iprog

val check_prgm : prgm -> vartable -> labels -> iprog



D:\classes\coms4115\project\vars.ml

(* David Golub *)
open Ast

type variable = { name : string; typ : datatype }
type vartable = { mutable table : variable array; mutable next : int }

exception VariableNotFound of string
exception DuplicateDefinition of string

let new_vartable () = { table = [| |]; next = @ }
let check_variable name vt =
let rec helper n =
if n < vt.next then
if vt.table.(n).name = name then
true
else
helper (n + 1)
else
false
in helper ©
let add_variable name typ vt =
if check_variable name vt then
raise (DuplicateDefinition name)
else
let varno = vt.next
in vt.table <- Array.append vt.table [| { name = name; typ = typ } |];
vt.next <- varno + 1;
varno
let add_temp typ vt =
let name = "_temp" ~ string_of_int vt.next
in add_variable name typ vt
let find_variable name vt =
let rec helper n =
if n < vt.next then
if vt.table.(n).name = name then
n
else
helper (n + 1)
else
raise (VariableNotFound name)
in helper ©
let get_variable_name n vt
vt.table.(n).name
let get_variable_type n vt
vt.table.(n).typ
let gencpp_datatype typ =
match typ with
Scalar -> "Scalar"
| Matrix -> "Matrix"
| string -> "String"
| Boolean -> "Boolean"
let gencpp_vartable vt =
let rec helper n =
if n < @ then

else
"\t" ~ (gencpp_datatype vt.table.(n).typ) ~ " " ~ vt.table.(n).name ~ ";\n" ~ (helper (n - 1))
in
helper (vt.next - 1)



D:\classes\coms4115\project\vars.mli

(* David Golub *)
open Ast
type vartable

exception VariableNotFound of string
exception DuplicateDefinition of string

val new_vartable : unit -> vartable

val check_variable : string -> vartable -> bool

val add_variable : string -> datatype -> vartable -> int
val add_temp : datatype -> vartable -> int

val find_variable : string -> vartable -> int

val get_variable_name : int -> vartable -> string

val get_variable_type : int -> vartable -> datatype

val gencpp_vartable : vartable -> string



D:\classes\coms4115\project\tests\addmat.lam

matrix A = { 1, 0; 0, 1 };
matrix B = { @, 1; 1, @ };
print A + B;



D:\classes\coms4115\project\tests\badpow.lam

matrix A = {1, 2, 3; 4, 5, 6 };
print A ~ 2;



D:\classes\coms4115\project\tests\colbound.lam

matrix A = { @, 9; 0, 0 };
print Ale, 2];



D:\classes\coms4115\project\tests\elemacc.lam

matrix A = { 1, 2; 3, 4 };
print A[0, 1];

print "\n";

A[1, 1] = 5;

print A;



D:\classes\coms4115\project\tests\hello.lam

print "Hello World!\n";
print "Hello Hello World!\n";



D:\classes\coms4115\project\tests\ifelse.lam

scalar x = 1;

if(x < 5) {

print "x < 5\n";
} else {

print "Something else\n";
}
if(x >= 5) {

print "Something else\n";
} else {

print "x < 5\n";

}



D:\classes\coms4115\project\tests\iftest.lam

scalar x = 1;
if(x < 5) {

print "x < 5";
}



D:\classes\coms4115\project\tests\makefile

DEPTH

TESTS = \
hello \
addmat \
submat \
scalmul \
mulmat \
elemacc \
vectacc \
iftest \
ifelse \
matsize \
matpow \
badpow \
rowbound \
colbound \
redim \
trans \
tutorial \
vel

all : $(TESTS)

$(TESTS) :
$(DEPTH)\1lame < $@.lam > $@.cpp
cl -nologo -EHsc -I$(DEPTH) $@.cpp
$@ > output\$@.out



D:\classes\coms4115\project\tests\makefile

DEPTH

TESTS = \
hello \
addmat \
submat \
scalmul \
mulmat \
elemacc \
vectacc \
iftest \
ifelse \
matsize \
matpow \
badpow \
rowbound \
colbound \
redim \
trans \
tutorial

all : $(TESTS)

$(TESTS) :
$(DEPTH)\1lame < $@.lam > $@.cpp
cl -nologo -EHsc -I$(DEPTH) $@.cpp
$@ > output\$@.out



D:\classes\coms4115\project\tests\matpow.lam

matrix A = { 1, 2; 3, 4 };
print A ~ 2;



D:\classes\coms4115\project\tests\matsize.lam

matrix A = {1, 2, 3; 4, 5, 6 };
print size_rows A + "\n";
print size_cols A + "\n";



D:\classes\coms4115\project\tests\mulmat.lam

matrix A = { @, 1; 1, @ };
matrix B = { 1, 1; 1, 1 };
print A * B;



D:\classes\coms4115\project\tests\printmat.lam

matrix A = { 1, 0; 0, 1 };
print A;



D:\classes\coms4115\project\tests\redim.lam

matrix A = {

1, 2, 35
4, 5, 6;
7, 8, 9
¥
dim A[2, 2];
print A;

dim A[3, 37;
print A;



D:\classes\coms4115\project\tests\rowbound.lam

matrix A = { @, 9; 0, 0 };
print A[2, @];



D:\classes\coms4115\project\tests\scalmul.lam

matrix A = {1, 0; 0, 1 };
print A * 2;



D:\classes\coms4115\project\tests\trans.lam

matrix A = { 1, 2; 3, 4 };
print A';



D:\classes\coms4115\project\tests\tutorial.lam

matrix A = { 3, 1; 9, 4 };
matrix B = { 3; 6 };
matrix X;

print "\nSolving system of simultaneous linear equations:\n\n";
print A[0,0] + " x1 + " + A[0,1] + " x2 = " + B[@] + "\n";
print A[1,0] + " x1 + " + A[1,1] + " x2 = " + B[1] + "\n";

\n”
\n"

print "\nA

A+ "\n";
print "\nB B

+ n\nu;

scalar det_of A = A[0,0]*A[1,1] - A[0,1]*A[1,0];
print "\nDeterminant(A) = " + det_of_A + "\n";
if(det_of A != 0) {

matrix inv_of_A;

inv_of_A [0,0] = A[1,1];
inv_of_A [0,1] = -1*A[@,1];
inv_of_A [1,0] = -1*A[1,0];
inv_of A [1,1] = A[0,0];
inv_of_A = inv_of_A / det_of_A;
X = inv_of_A * B;

print "\nInverse(A) = \n" + inv_of_A + "\n";
print "X = Inverse(A) * B = \n" + X + "\n";
print "Solution:\n";

print "x1 = " + X[@] + "\n";
print "x2 =" + X[1] + "\n";
} else {

print "A is a singular matrix and its inverse does not exist. So,

solution not found.\n";



D:\classes\coms4115\project\tests\vectacc.lam

matrix A = { 1; 2; 3; 4; 5; 6; 7; 8; 9 };
scalar i = 9;
while(i < 6) {

print A[i];

print "\n";

i=1+1;



D:\classes\coms4115\project\tests\vel.lam

matrix vt = { 50, 0; 0, 50 };
matrix a = { @, 9; 0, 9.8 };

matrix vf = {0, 0; 0, 0};
scalar t = 9;

while(t < 100)
{

vf = vt + (1/2) * -1 * a * t * t;
t=1t+ 1;

print t + ": " + vf[1,1] + "\n";



