PLT Project Proposal

Group Members

Siddhi Mittal

Sahil Yakhmi

Damien Fenske-Corbiere
Dan Aprahamian

Description

We plan to implement a MATLAB-like language for numerical computation. This
language will allow functions to be entered as literals. Our language will have the
following types - Scalar, String, nD-Array, Matrix (derived from nD-Array) and
Mathematical Function(mfunc). It will contain loops and conditionals. It will not
have a boolean type - 0 equals false and everything else is true. Integration will be
limited to single variable functions only. The derivative with respect to a particular
variable of a multi-variable function can also be calculated at some value of that
variable.

Problem our language can solve/ how it can be used

This language would have the capability to -

o Evaluate mathematical expressions.

Manipulate mathematical functions (add, subtract, multiply, divide, integrate,
differentiate).

Graph mathematical functions.

Matrix operations on numbers.

Solve linear systems of multi variable equations.

Some examples of its syntax and an explanation of what it does

* Every statement in our language ends with a semi-colon.
nX = 2;

* You cannot declare a scalar without simultaneously assigning it. To declare
and assign a scalar variable, place the variable name on the left side of a
single equals sign, and a literal on the right side.
nX = 2;

* You declare a function literal with the following mapping notation. This
syntax allows us to easily distinguish between scalar and function
parameters or array elements.
fFuncl = (x) ->x+1;

Interesting and representative program in our language.

/* Basic Assignment and computation on scalars and mfuncs */

nX = 2;
nY = 3;
fFuncl = (x) ->x+1;

fFunc2 = (x) -> 2x - 3;
fSum = (x,y) ->x +y;

nZ = nX + nY;

nZ = fSum(nX, nY);

nZ = fFunc1(nX);

nZ = fFunc2(nX + nY);
fTwoFunc= fFunc1l + fFunc2;

/* Creates scalar nX and assigns it the value 2 */
/* Creates scalar nY and assigns it the value 3 */
/* Creates function fFuncl. fFunc 1 takes one
variable x, and returns the scalar value =x + 1 */
/* Assigns function (x) -> 2x - 3 to fFunc2*/

/* Assigns function f(x, y)= x + y to new variable
fSum*/

/* nZ now equals 5*/
/* nZ now equals 5*/
/* nZ now equals 3*/
/* nZ now equals 7*/
/* fTwoFunc now equals (x) -> (x + 1) + (2x -

3)*/

/* Examples of Boolean Logic and Control Flow*/

bX=1;
*/

bY =0;
*/

bZ =1;
*/
bResult;

fCondl = (x,y,z) -> (X+y) *z;

fCond2 = (x,y) ->x>y;

if fCond1(bX, bY, bZ):

bResult = 1;
else:
bResult = 0;

if fCond2(nX, nY):
bResult = 1;
else:
bResult = 0;

/* scalar bX is now equal to 1 (effective to true)
/* scalar bY is now equal to 0 (effective to false)
/* scalar bZ is now equal to 1 (effective to true)

/* empty variable bResult */

/* Assigns function f(x, y, z) = (x + y) * z to new
variable fCond1. This can be used both for
regular numeric computation and for boolean
algebra*/

/* Assigns function f(x, y) =x > y to new
variable fCond1. Returns 1 if true, O if false. This
is to be used for boolean algebra */

/*if bZ AND (bX or bY)*/

/*ifnX>nY/

while fCond2(nX, nY):
nY++;

/* while nX > nY */
/* increment nY by 1 */

/* Examples of arrays and matrices */

aArrl = [5];

aArr2 ={1, 2, 3, 4};
aaArrX = [5, 4];

aaArrXX =[5, 4];
aaArrY = [4, 2];

aaArrX[0][1] = 2;
aaArrX[0] = aArr2;
aaArrX[-][1] = aArrl;

/* Assign other values here*/
aaArrZ = aaArrX + aaArrXX;

aaArrZ = aaArrX * aaArrXX;

aaArrZ = aaArrX # aaArry;

/* Creates array of length 5. All values are
initially set to 0*/

/* Creates length 4 array with values 1, 2, 3, 4*/
/* Creates two dimensional 5x4 array. This
qualifies as a matrix*/

/* Creates two dimensional 4x2 array. This
qualifies as a matrix*/

/* Assigns a value to one of the array elements /*
/* Assigns an entire row of values */

/* Assigns an entire column of values */

/* Performs element-wise addition on the

two matrices and returns new matrix*/

/* Performs element-wise multiplication on the
two matrices and returns new matrix*/

/* Does matrix multiplication and returns new
matrix*/

