
Progr

P
A De

Chun-

Hui-H

Shuwe

Wenx

9/28/2

ramming

Pa
esign Lan

-Kang Che

Hsiang Kuo

ei Cao (sc

xin Zhu (w

2011

g Languag

 a
nguage fo

en (cc3260

o (hk2604

3331)

wz2203)

ges and T

am
or PAC-M

0)

4)

Translato

ml
MAN

ors, Fall 22011

1. Introduction
PAC-MAN is an arcade game immensely popular since its original release and is

considered as an icon of 1980’s popular culture. It has made a great impact on a

generation of people and is still appealing to the public for today. However, the

game scenes of each stage, the size of the map, wining condition and the number

of ghosts, etc in PAC-MAN are all pre-designed and players are unable to create or

change them. It could be a great fun if the players can design a PAC-MAN based

on their own favorite. Our project is to develop PaCaml, a PAC-MAN game

design language, which enables users to create their favorite scenes and design

whatever they like to make PAC-MAN more interesting.

2. Language Description

(1) General Description and Game Architecture

The language PaCaml (PAC-MAN + Ocaml) is developed using Ocaml

language. It is text-based and java like but has its own primitives. The

language has a ‘main’ function like C and each statement ends with a

semicolon. The basic idea and rules in PAC-MAN will not be changed.

However, the language allows users to design mazes, number and distribution

of eating-dots, number and speed of the ghosts, location of the power pellets,

figure of each character, etc. Users can also design the condition of scoring

and set the winning condition using the language.

Features users can create or modify using PaCaml:

a. Stages: number of stages, name of each stage

b. Mazes: size of maze, type of barriers, arrangement of barriers

c. Eating-dots: number, distribution, scoring

d. Ghosts: number, name, speed when chasing, speed when escaping, scoring

if eaten, character

e. Power pellets: number, arrangement, function

f. PAC-MAN: speed, character

g. Wining condition: score required for each stage, conditions

h. Rewarding of life: condition for life rewarding

Graphics user interface may be implemented in either PaCaml or the

presentation of the final demo, depending on the progress of our project.

The design of PAC-MAN is based on grid, which stands for maze in the game

representation. The size of the grid will be pre-defined by users. All objects

like barriers, eating-dots, power pellets, and starting point of PAC-MAN will

be placed in grid.

(2) Syntax:

We decide to build PaCaml a Java-like language. When we say Java-like, we

mean to imitate Java in both object-oriented design and syntax. Similar to it in

a great many programming languages, a semicolon indicates termination of a

command while a pair of round brackets helps to locate the arguments.

Compiler of PaCaml takes in commands in sequence, and interprets them in

form of expression and argument. A mechanism is provided to recognize

comments which are delimited by /* … */ in an ungreedy manner, and avoid

overwriting reserved words.

(3) Data Types

So far as we have considered the details of PaCaml, we have designed the

basic data types and operations, as discussed below

Game-specific structures are defined on the base of data types stated below.

Basic Data Type Example Values Derived Data Type Example Values

bool TRUE, FALSE

int -1, 0, 1, vector (2, 4)

char ' c ' string " char "

array (1, 2, 3)

(' c ', ' h', ' a ', ' r ')

 Data Type Definition

(4) Operators

(5) Pre-defined Functions:

Basic Function Arguments Explanations

setMap Map map Initiate the map

setLevel String level Set the level of the game. Types of

Level could be either easy or hard.

setPlayer Player player

int x

int y

Initiate the player

useEnemy Enemy enemy Add enemies to the map.

Map Store player, enemies, and items.

Player Store location and color.

Enemy Store location and color.

Item Store type, duration

Barrier Store color

Point Store two integers: x and y

Basic Operator Precedence

unary !

additive + -

multiplicative * /

postfix ++ --

relational > < >= <=

equality == !=

logical && ||

assignment += -=

Point p

addItem Item item

Point p

Add an item to a specific location

of the map.

addBarrier Barrier barrier

Point p

Add a barrier to a specific location

of the map.

getMapWidth Return the width of the map

getMapHeight Return the height of the map

getMapItem Point p Return a item on a specific

location. If there is no item, return

null.

MapAvailable Point p

RandomAvailable Return one available point

3. Sample Code

The following sample code initiates the map, creates a player and barriers, and
then put them into the map.

int width, height;
point p(3,4);
width = 10; height = 5;
map m(width, height); // it will generate a randomly item
setMap(m);
Barrier b(blue);
if (MapAvailable(p))

addBarrier(b,p);
Player pac(yellow);
while(!MapAvailable(p)) {
 if (p.x + 1 < getMapWidth())
 p.x++;
 else
 p.x = 0;
 if (p.y + 1 < getMapHeight())
 p.y++;
 else

p = RandomAvailable();
}
addPlayer(pac, p);

