
LibHP20b: A Fully Functional Library for
HP20b Calculator Development

JeanHeyd Meneide

March 2012

Abstract

Embedded development is an intricate problem in which one must at-
tempt to create a fully functional machine in as little space (volatile and
stored memory) and consume as little time (fast algorithms) as possible,
while also with as little developmental feedback (obscure / scarce / cryptic
debugging) as possible. Adding calculator development as the goal of an
embedded project sprinkles another layer of challenge; tiny programming
routines that need to be memory efficient and fast must also be accurate to
the degree of representation allowed by the calculator. I present LIBHP20b,
a library for the HP20b Calculator with modular pieces that can be used
in other high-precision calculators for embedded development. It features
common functions for accessing every part of the liquid crystal display
(LCD) and keyboard, a variable-precision floating-point number sub-library
that is accurate to any degree of compile-time specified digits (currently pre-
set to 12), and a few well-organized structures and functions for the HP20b
itself (LCD Alignment, 6 x 43 Matrix access, keyboard state storage, and
more).

1 Introduction
Designed by Hewlett Packard with extra functionalities such as interest/year, per-
mutation, and more [2], the HP20b (or just 20b) is a rather powerful but small
calculator. However, the calculator’s firmware was deep-shredded by Professor
Stephen A. Edwards and TA Yoonji Shin, leaving it a completely blank JTaggable
Development Platform.

The task was to rebuild basic calculator functions and allow you - the reader
- to be able to pick up the calculator and perform basic arithmetic (+, -, ×, ÷)

1

in Reverse Polish Notation (RPN) [5]. The User Guide 2 will walk you through
using the reprogrammed SEGMENT 7 (S7) and Matrix LCD Display.

2 User Guide
The HP20b Calculator works in a permanent RPNmode. This means that you enter
a series of numbers first, before pressing an operation key (+, -, ×, ÷) to perform
an operation.
In order to start the 20b, turn the calculator on. The first number in any RPN

calculation is special: it begins the RPN chaining mode. As you enter numbers,
the LCD Matrix display will show the count of Numbers currently registered in
your RPN chain. When it is 0 (while the RPN chain is still beginning), you will
be unable to perform operations until you press the input button, and commit the
current number you are editing to the stack. You are still able to perform in-place
operations, however, such as 1

x
or x2. Pressing an in-place operation will modify

the number currently displayed on your screen.
When you are ready to begin doing operations, hit [INPUT]. This will start your
RPN chain, storing the number you were working on previously at the back of a
chain of numbers. You can now perform any operation you would like. Pressing
an operation will perform that operation and commit it to the number underneath
the one you are editing. If you would like to reset the whole chain and clear all
numbers, simply press [Shift][Reset]. Here are some example sequence of
commands from the beginning of the RPN chain:

(Example 1 - adding 0 to the chain)
13 [INPUT] [+]

Result: 13
(Example 2 - multiplying 0 into the chain)

13 [INPUT] [×]

Result: 0
Both of these examples show that when you increment your RPN chain, you

get a fresh, blank 0 to work with. Pressing the operation key directly after per-
forming an operation will perform an operation with the last number you entered
and zero. If you try the following:

(Example 3 - Dividing by Zero)
13 [INPUT] [÷]

Result: ERROR

2

Figure 1: The HP20b Calculator

The calculator will throw a division by zero error, and reset your RPN chain’s
current and last number to 0 before decreasing the RPN chain’s size by one. This
will put you back to the number that was divided into by 0. You can then start
typing out numbers on the stack once more. The calculator will throw errors for
Overflow and Underflow as well, so be careful of multiply two really huge num-
bers or dividing a really small number by a really huge number.
That covers all you will need to know about the 20b. You can make bigger RPN

chains for more complex calculations:

(Example 4 - Averaging a list of numbers)
20 [INPUT] 25 [INPUT] 30 [INPUT] 25 [+][+][+] 4 [÷]

Result: 25

3 Social Implications
The 20b is lightweight and performs perfectly-accurate variable precision arith-
metic on the go, making it ideal for quick calculations, especially on-the-go calcu-
lations. Because the Atmel processor consumes so little power, the calculator can
actually run for an average of 9 months, making it ideal for usage in a semester of
school, especially in places where power is scarce.

3

4 The Platform
I first learned about hacking the HP20b (see Figure 1) from the HP20b repurpos-
ing project website [1]. From here, I learned about the JTaggable Development
Interface and was further directed to read about the Atmel AT91SAM7L128, the
LCD, and the keyboard.

4.1 The Processor

The 20b is little more than a keyboard and LCD, having an Atmel AT91SAM7L128
(SAM7L) processor. The name was birthed from it being a part of Atmel’s AT91-
SAM series of chips, which are all built around an ARM processor core (“AT”
is for Atmel; “SAM” is “smart ARM core”). The 7L series of microcontrollers
are designed for low power (hence the L), and the final 128 is a reminder that it
includes 128K of flash program memory.

The processor natively supports the following C programming language intrin-
sic types: char (8 bits, 1 byte), short (16 bits, 2 bytes), and int (32 bits, 4 bytes).
It supports IEEE-754-compatible Single Precision floating point arithmetic (float
(32 bits, 4 bytes)) and IEEE-754-compatible Double Precision floating point arith-
metic (double (64 bits, 8 bytes)). These last two data types, however, are lossy
binary representations of human-readable-standard base−10, meaning that for the
precise decimal calculations needed for a calculator, I would need to "roll my
own" arbitrary-precision decimal digit library suitable for variable precision digit
arithmetic (see 6.1).

Figure 2 shows a block diagram of the SAM7L chip. It looks complicated,
but is essentially a single standard processor surrounded by memory and a wide
variety of peripherals, most of which remained unused for LIBHP20b. The system
controller, through software, controls the clock and power supply of each periph-
eral which can save energy by deactivating unneeded peripherals (be wary: not
turning on a peripheral can result in the LCD being blank despite software display
data to it or the keyboard becoming unresponsive even though written software
routines are working properly).

4

TDI
TDO
TMS
TCK

NRST

FIQ

IRQ0-IRQ1

PCK0-PCK2

PMC

Peripheral Bridge

Peripheral Data
Controller

AIC

PLL
SRAM

2 Kbytes(Back-up)
4 Kbytes (Core)

ARM7TDMI
Processor

ICEJTAG
SCAN

JTAGSEL

PIOA (26 IOs)

Timer Counter

NPCS0
NPCS1
NPCS2
NPCS3
MISO
MOSI
SPCK

Flash
64/128 Kbytes

DRXD
DTXD

TCLK0
TCLK1
TCLK2
TIOA0
TIOB0

TIOA1
TIOB1

TIOA2
TIOB2

Memory Controller

Abort
Status

Address
Decoder

Misalignment
Detection

P
IO

P
IO

APB

Embedded
Flash

Controller

AD0
AD1
AD2
AD3

ADTRG

11 Channels

PDC

PDC

SPI

PDC

ADC

ADVREF

TC0

TC1

TC2

TWD
TWCK

TWI

XIN
XOUT

VDDIO1

PWMC

PWM0
PWM1
PWM2
PWM3

1.8 V
Voltage

Regulator
GND

VDDOUT

VDDCORE

VDDIO1

VDDCORE

Fast Flash
Programming

Interface

ERASE

PGMD0-PGMD15
PGMNCMD
PGMEN0-PGMEN2

PGMRDY
PGMNVALID
PGMNOE
PGMCK
PGMM0-PGMM3

VDDIO2

TST

DBGU
PDC

PDC

P
IO

PIT

WDT

System Controller

VDDIO1

SAM-BA

ROM (12 Kbytes)
NRSTB

FWUP

PIOB (24 IOs)

LCD Controller

SEG00-SEG39
COM0-COM9

PIOC (30 IOs)

32k RCOSC

Supply
ControllerPOR

OSC

BOD

2 MHz RCOSC

VDDIO1

RTC

USART0

RXD0
TXD0
SCK0
RTS0
CTS0

PDC

PDC

USART1

RXD1
TXD1
SCK1
RTS1
CTS1
DCD1
DSR1
DTR1

RI1

PDC

PDC

P
IO

PDC

PDC

VDDLCD

CAPP1
CAPM1

CAPP2
CAPM2

CLKIN

PLLRC

VDD3V6

LCD
Voltage

Regulator VDDIO2

Charge
Pump

VDDINLCD

Figure 2: A block diagram of the AT91SAM7L microcontroller that is at the heart
of the LIBHP20bhp

5

4.2 The LCD Display

The LCD of the 20b contains 15 S7 digit displays and two negative signs (3 smaller
ones for exponential digits and 12 for the regular digits, and one minus sign for
each digit group). There are also an amalgamation of indicators for battery life,
memory storage, notations, statuses and input states.
It is important to note here that while Figure 3 shows comma-display capabilities,
the calculators we had were not equipped with commas. In either case, LIBHP20b
is programmed to handle them if you happen to have a 20b with the newer LCD

model while also being compatible with the older model used for development
and quality control of the HP20b.

Figure 3: The LIBHP20bhp LCD Screen. It has a 43 x 6 pixel display matrix,
various display indicators

4.3 The Keyboard

The 20b’s keyboard is a simple cross-wiring of switches and leads see Figure 4.
Columns are inputs on the Input/Output (IO) pins, which can be programmed to
be at high voltage (1 or true in C terminology) or low voltage (0 or false). Rows
(including the special the [ON/CE] switch/row combination) are outputs, which
take on the voltage set by the columns which connect to them. When the switch
of a specific column/row cross-wiring is pressed, that row’s lead is connected to
the column (which is set to 0 during the read), shorting that specific row to 0. One
must check for false in order to see if a certain key is down or not. This same
logic apples to the [ON/CE] key, except it has its own IO pin connected directly
to ground, meaning one must simply check the single ’row’ for a short.

6

Figure 4: The HP20b Keyboard wiring schematic. Notice that [ON/CE] is on its
own output rail to ground (0 volts).

Power is saved when the calculator powers down; rather than have [ON/CE] part
of the power grid and thus force 12+ peripherals to be constantly drawing power, a
single peripheral (arbitrarily determined by the original calculator chip engineers
to be I/O pin 10, see Figure 4) only needs to test if it has been shorted or not.
Only one single peripheral draws power, alongside the required power to keep the
programs and memory alive in storage with the Atmel AT91SAM7L128 in low
power mode.

5 Software Architecture
There are three Subsystems to LIBHP20b. Two correspond to core mechanical fea-
tures of the 20b which are the LCD subsystem and the Keyboard subsystem. The
final subsystem is the Watchdog subsystem, which is linked to the internal timer
which will universally set a low power state, or even power down the machine
after a certain time has passed.
Following an SDL-style system [3], initializing subsystems to use LIBHP20b is as
simple as calling the HP20b_Init function The C language does not have classes,
so functions and structures are named after their functionality and the services
they provide. All functions dependent on the LCD subsystem will have LCD in
their names, while all functions dependent on the Key subsystem will have Key

7

or Keyboard in their names. There are no functions associated with the watchdog.
The source code is available at

6 Software Details
Some of the following sections will not have their full source code posted, due to
the sheer size of the solutions. You can access the full source code - with hotkey-
linked and GUI-friendly build interfaces, debug projects, and more - for both the
calculator and various operating systems (see 9). Included in LIBHP20b.tar.gz
are regular desktop-PC project files for Visual Studio (Windows), XCode (Mac
OSX), and Eclipse (Windows, Mac OSX, Linux). The projects have been tested
and compile on all three platforms (Linux was tested VIA Fedora 16, KDE), with
OpenOCD and a specific embedded compiler (Linaro GCC (Windows and Linux)
or CodeSourcery Lite (Mac OSX)).

6.1 Variable Precision Arithmetic Library

The Variable Precision Arithmetic Library included with LIBHP20b is a sturdy
implementation of binary-coded decimal, with two tightly-packed Nybbles (see
Figure 5) compressed into a single byte (4 bits per decimal digit). This was due to
three distinct reasons:

• 64-bit Integers (long or long long data types in C) are not fully supported,
and crashes the firmware of the calculator upon performing basic arithmetic
(pointer arithmetic and some bitwise arithmetic is allowed).

• An unsigned 32-bit integer with another integer to specify a base-10 expo-
nent and a sign bit can only cover up to ten decimal places (maximum of
4,294,967,296). This is less than the HP20b’s LCD can handle.

• The high precision required for a calculator’s division would immediately
exceed a 32-bit integers attempts at simulating a base-10 number.

• Error handling for Division by Zero, Overflow, and Underflow are not present
within the numeric framework of any built-in data type without reading
volatile processor register data.

While this wastes about 1
6

of the possible states represented by 4 bits, it has
its advantages in being immediately human-readable and easily translated to and
from character strings. Furthermore, multiplication and division by 10 - common
operations used by humans - are quick, effortless shifts. It becomes even easier to

8

1 typedef union {

2 byte All;

3 struct {

4 byte Low:4;

5 byte High :4;

6 };

7 } Nybble;

8

9 typedef union {

10 Nybble Cells [7];

11 struct {

12 union {

13 Nybble Mantissa [6];

14 struct {

15 Nybble MantissaLowest;

16 Nybble MantissaPad [4];

17 Nybble MantissaHighest;

18 };

19 };

20 union {

21 Nybble Info;

22 struct {

23 byte Exponent :4;

24 byte Sign :4;

25 };

26 };

27 };

28 } Number;

Figure 5: The declaration for a single Nybble and a sample declaration of the
Number type. A Nybble occupies a single byte (8 bits), and a number occupies a
total of 7 bits, 1 less than the size of a long long in C. Because it is essentially an
array of type unsigned char, the compiler will automatically use memcpy to copy
instances of one number to another. LIBHP20b includes 3 memcpy implementations
for various speeds of copying - see Core.h for details.

9

align two decimal numbers (e.g., 13.1 and 0.54) by simply performing the afore-
mentioned shifts.
Complications arise, however, to make this solution work quickly and well with
a system based on binary operations. Most hardware - including the Atmel pro-
cessors - are not prepared to access bits out of an 8-bit aligned boundary, slowing
down operations as native pointer arithmetic must be regulated by at least two
other bit-masking and bit-shifting variables. Addition and Subtraction with any-
thing other than positive numbers results in having to carefully pad numbers using
Nines- and Tens-Complement algorithms, with rigorous signs checking and re-
complementing if intermediate results meet certain criterion. Multiplication and
division are implemented in accurate, but slow long-hand multiplication and long,
decimal-padded division. Furthermore, in order to account for results which may
exceed Number’s current maximum digit count, a second format HighNumber with
its own routines - which contains about twice as many digits to account for over-
flow and underflow of answers using the original Number format - is utilized.
Because the sign bit is 4 bits, three of those bits can be immediately used to signal
overflow, underflow, and division by zero, making checks for irregular conditions
from mathematical operations easy.
6.2 Lab 1: Displaying a Number

Taking a basic integer and turning it into a string is a simple task that is used
often. The first draft of code put the number’s characters directly to the S7 LCD,
but this style inhibited flexibility. Figure 6 turns what would be a main routine
into a rather generic ToString function, allowing the caller to put the results into
a char buffer rather than directly to the LCD, achieving portability. All ToString
and FromString functions are defined in Standard.h and Standard.c. see Figure 6
shows integral string creation, but within Standard.c lies functions for unsigned

integer, float, Decimal, and Number as well. However, Decimal is an obsolete
version of Number and is marked for removal from the library completely; it is
only present for educational value.
Furthermore, LIBHP20b features Matrix display capabilities. Various functions
are defined for printing strings, integers, and numbers to the Matrix Display; all of
these are derived from a single function: HP20b_LCDMatrixGraphic. You can paint
arbitrary pictures (of relatively poor resolution) or use the simple text version of
this function to write words to the Matrix Display (see Figure 7).
6.3 Lab 2: Scanning the Keyboard

Keyboard scanning was finished rather quickly, having taken a lesson from how
an Xbox 360 Controller stores and retrieves its button and controller values [6].

10

1 int IntToString (int value , char* out) {

2 int i = 0, j = 0;

3 char* p = out;

4 if (value == 0) {

5 *p++ = ’0’;

6 *p = ’\0’;

7 return 1;

8 }

9 else if (value < 0) {

10 value = -value;

11 *p++ = ’-’;

12 ++i, ++j;

13 }

14 for (; value != 0; ++i) {

15 *p++ = (value % 10) + 48;

16 value /= 10;

17 }

18 // XOR Swapping Algorithm

19 for (--i; j < i; ++j, --i) {

20 out[i] ^= out[j];

21 out[j] ^= out[i];

22 out[i] ^= out[j];

23 }

24 *p = 0;

25 return i + j + (out[0] == ’-’ ? 0 : 1);

26 }

Figure 6: A general purpose Integer-To-String algorithm for use with the vari-
ous printing functions. Used for LAB 1. Features XOR swapping to align digits
correctly, avoid the extra function call, and to save on processor memory usage.

11

1 void HP20b_LCDMatrixGraphic(ullong* graphic) {

2 uint c = 0;

3 int j = 0, i = 0;

4 ullong* lcdmemory = (ullong *) AT91C_SLCDC_MEM;

5 // Initial Horizontal memory

6 lcdmemory [6] = (lcdmemory [6] & ~0 x7fffffffc0LL) |

7 ((graphic [0] << 6) & 0x7fffffffc0LL);

8 lcdmemory [7] = (lcdmemory [7] & ~0 x7fffffffc0LL) |

9 ((graphic [1] << 6) & 0x7fffffffc0LL);

10 lcdmemory [8] = (lcdmemory [8] & ~0 x7fffffffc0LL) |

11 ((graphic [2] << 6) & 0x7fffffffc0LL);

12 lcdmemory [9] = (lcdmemory [9] & ~0 x7fffffffc0LL) |

13 ((graphic [3] << 6) & 0x7fffffffc0LL);

14 lcdmemory [0] = (lcdmemory [0] & ~0 x7fffffffc0LL) |

15 ((graphic [4] << 6) & 0x7fffffffc0LL);

16 lcdmemory [1] = (lcdmemory [1] & ~0 x7fffffffc0LL) |

17 ((graphic [5] << 6) & 0x7fffffffc0LL);

18 for (j = 9; j >= 0; j--) {

19 c = 0;

20 for (i = 0; i < 6; i++) {

21 c = (c << 1);

22 if ((graphic[i] & (LL << (j + 33))) != 0) c++;

23 }

24 // We condemn all bits in lsb position < 5 before we

25 // take the original graphical data (stored in c) and

26 // bitwise OR it to get our final register data.

27 lcdmemory [(int)MatrixVerticalShift[j]] =

28 (lcdmemory [(int)MatrixVerticalShift[j]] & ~(0 x3fLL)) |

29 (ullong)c;

30 }

31 }

Figure 7: The matrix display function for reading bits from a 64-bit graphical
array. The array passed in is 6 unsigned long long’s wide, where the 43 least
significant bits of each unsigned long long represents a pixel on the screen.

12

1 void HP20b_KeyboardUpdate () {

2 int col = 0, row = 0;

3 for (col = 0 ; col < HP20B_KEYBOARD_NUMCOLUMNS; col++) {

4 HP20b_KeyboardColumnLow(col);

5 for (row = 0 ; row < HP20B_KEYBOARD_NUMROWS; row++) {

6 if (HP20b_KeyboardRowRead(row) == 0) {

7 // If it wasn’t already down ,

8 // The key is "Pressed" (State: Fresh Down)

9 if ((HP20b_KeyboardKeys[col][row] & 0x1) == 0)

10 HP20b_KeyboardKeys[col][row] |= 0x2;

11 else

12 HP20b_KeyboardKeys[col][row] &= ~(0x2);

13 // Turn off the Release Bit

14 HP20b_KeyboardKeys[col][row] &= ~(0x4);

15 // Turn on the Down Bit (State: Down)

16 HP20b_KeyboardKeys[col][row] |= 0x1;

17 }

18 else {

19 // If already down ,

20 // The key is "Released" (State: Fresh Up)

21 if ((HP20b_KeyboardKeys[col][row] & 0x1) != 0)

22 HP20b_KeyboardKeys[col][row] |= 0x4;

23 else

24 HP20b_KeyboardKeys[col][row] &= ~(0x4);

25 // Turn off the Pressed Bit

26 HP20b_KeyboardKeys[col][row] &= ~(0x2);

27 // Turn off the Down Bit (State: Up)

28 HP20b_KeyboardKeys[col][row] &= ~(0x1);

29 }

30 }

31 HP20b_KeyboardColumnHigh(col);

32 }

33 if (HP20b_KeyboardRowRead (6) == 0) { /* For ON / CE */ }

34 }

Figure 8: The code for scanning the keyboard. Note that there is a separate Row-
Read for the ON/CE button.

13

1 typedef enum HP20bKey {

2 N, IYR , PV, PMT , FV, Amort ,

3 CshFl , IRR , NPV , Bond , Percent , RCL ,

4 Input , OpenParen , CloseParen , Negation , Backspace , BR5C2 ,

5 Up, N7, N8, N9, Divide , BR5C3 ,

6 Down , N4, N5, N6, Multiply , BR5C4 ,

7 Shift , N1, N2, N3, Minus , BR5C5 ,

8 OnClearSurrogate , BR1C6 , N0, DecimalPoint , Equals , Plus ,

9

10 OnClear ,

11

12 xPYR , IConv , Beg , PYR , End , Depr ,

13 Data , Stats , BrkEv , Date , PercentCalc , STO ,

14 Memory , Mode , ShiftedBR2C2 , EEX , Reset , ShiftedBR5C2 ,

15 INS , SIN , COS , TAN , Math , ShiftedBR5C3 ,

16 DEL , LN, eToThex , xSquared , Squareroot , ShiftedBR5C4 ,

17 UnShift , Random , Factorial , yToThex , Inversex , ShiftedBR5C5 ,

18 OffSurrogate , ShiftedBR1C6 , nPr , nCr , ANS , Round ,

19

20 Off

21

22 } HP20bKeys;

Figure 9: The various key constants representing the shifted and unshifted keys of
the 20b.

14

While a state-saving system in order to do Key-Down, -Release, -Held, and -Up
testing would have been a bit more robust, that would rely too heavily on an update
function being called with determined regular frequency. Instead, I stored the indi-
vidual key’s statuses in 4 bits of an array that corresponded to each key. The whole
array is then updated all at once, when the user calls the HP20b_KeyboardUpdate

function (see Figure 6.3). After this, the user can then call HP20b_Key..., where
"..." can be any state of Down, Up, Released, or Held. You can also append the
word Live before the state to form a function that gets the precise current state of a
certain key (e.g. HP20b_KeyLiveDown(Backspace)), rather than the last value stored
from the Update function. There are constants which make it easy to access keys
by name within code rather than by a number; for key constants defined in the
code, see Figure 6.3.

Understanding how ON/CE button worked allowed me to use it as the clear but-
ton. The internal tracking of the first pressed key from function int HP20b_FirstKey

and the uniqueness test specifically for whether or not it was not just the same key
pressed twice from bool HP20b_FirstKeyIsUnique) allowed the LCD to be updated
only for a unique first key. Once the key was pressed, it was displayed to the
Matrix Display to ensure that the function HP20b_KeyCode produced the correct
keycode; all keys, including ON/CE and shifted keys, displayed their correct key-
codes.

6.4 Lab 3: Entering and Displaying Numbers

Entering and displaying numbers came naturally to the structures I already de-
veloped to encapsulate the whole calculator since Section 6.2. Figure 6.4 shows
the HP20b_Calculator struct, of which the bottommost part is the basis of enter-
ing and displaying numbers. To add a digit, I call NumSAddDigit. To remove a
digit, I employ NumSRightDigitShift. NumSAddDigit shifts all the digits to the
right by 1 half-byte (4 bits) before adding in a digit at the lowest position (the
Number.MantissaLowest.Low variable). A nonzero digit in Number.MantissaHighest.High
prevents a digit from being added. This ensures it can only be filled to a max of
12 digits. Negating Number is achieved by calling NumNegate. Clearing the number
is simply setting it to zero with NumZero.
The key system built for keyboard scanning (Section see Section 6.3) was natu-
ral to a looping pattern that waited for input and dispatched an operation based
on that input. Getting a specific key code is determined by a switch function,
HP20b_KeyCode, which can also handle shifted keys as well. This allows for shift-
specific buttons like +/- to be distinct from its non-shifted counterpart, allowing

15

1 #define NUMBERSTACKMAX 25

2 #define S7Size 15

3 #define MatrixSize 20

4

5 struct HP20b_Calculator {

6 uint CPUSpeed;

7 /* Union booleans for initialized system */

8 union {

9 byte Status;

10 union { struct {

11 bool Entering :1;

12 bool Postfix :1;

13 bool AfterNum :1;

14 bool Shifted :1;

15 byte DelayedOperation :4;

16 };};

17 };

18 /* Union booleans for aligntment , etc. */

19 int ResultStackIndex;

20 int OpStackIndex;

21 union {

22 char Op;

23 char OpStack[NUMBERSTACKMAX];

24 };

25 union {

26 Number Result;

27 Number ResultStack[NUMBERSTACKMAX];

28 };

29 char S7[S7Size];

30 char Matrix[MatrixSize];

31 } HP20b;

Figure 10: The pertinent pieces of the HP20b structure. The heavy use of unions
allows minimal storage with the most amount of information possible. Occupies
256 bytes total.

16

the code to properly utilize NumNegate in response to the keyboard. The follow-
ing code snippet also toggles the NumSAddDigit function to increment the exponent
value as well, completing the solution.

1 if (!HP20b.AfterNum) {

2 HP20b_LCDMatrix("Decimal!"); HP20b.AfterNum = true;

3 }

4 else {

5 HP20b_LCDMatrix("Meow.");

6 }

6.5 Lab 4: An RPN Calculator

The RPN calculator was built as a finite state-machine, similar to the way OpenGL

works [4]. The structure HP20b_Calculator contains all of the variables that com-
prise of the 20b (see Figure 6.4). Both operations and numbers are stored on a
stack, allowing for each stack to be consolidated as the user enters data. The term
stack here, in C code just means a Number array that is accessed by an index which
is constantly kept at its uppermost used value.
As in Section 6.4, the number is changed based on the key pressed, and also
includes support for 1

x
and x2. These were implemented by using the base func-

tionality of the Variable Precision Arithmetic (see Section 6.1) library. Calling
NumMultiplyInto with all three arguments as the same number (e.g. NumMultiplyInto(HP20b_CurrentNum(),
HP20b_CurrentNum(), HP20b_CurrentNum())) results in the same as performing the
squaring operation.
To ensure that the stack would not perform operations without first having a single
number occupying the bottom of the stack, a simple check on the HP20b.ResultStackIndex
to be > 0 for operation keycodes (+, - , ÷, ×) is performed. The HP20b.ResultStackIndex
will only be increased by the Input keycode (’\r’), and can be decreased by
performing an operation twice without entering a new number or pressing Input

again.
The ability to view a Number that’s just below the editable one on the stack is en-
abled by simply looking into the HP20b.ResultStack at the index of HP20b.ResultStackIndex
- 1, with an appropriate check to see if the stack index is above 0.

7 Lessons Learned
I learned that embedded development is possibly the most painful development
process a computer scientist can undergo. The fierce competition for efficiency,
space, speed, and robustness is an interesting tango of ridiculous computer sci-
ence tricks/faux pas (and (un)thankfully there are plenty of those in C), algorithm

17

meddling and crazy bit twiddling.
It is of great importance in embedded development to know how to "roll one’s
own"; there are no offered libraries; on the off chance a library is there, it will
most definitely crash ineffectually against the snobbishly specific demands of a
single embedded platform.

8 Criticism of the JOY of Engineering Lab
The technology and materials were fine, despite one or two calculators running
out of power and leaving me to blindly debug for many hours, while another cal-
culator’s JTAG interface seemed to have died after a single flash command. The
other more indepth criticism of the course lies in its inability to provide Computer
Scientists or Computer Engineers the chance to tackle something outside of em-
bedded calculator development.
The major problem with the cookie-cutter labs is that they can quite easily trounce
the creative ideas of limitless possibility, which is a concept the lectures propose
over and over again. While seeing humble and amazing individuals enunciate
their passions and guest speakers come to visit with all sorts of drives and unique
talents, my skybound imagination was riveted to the floor with a predetermined
project. Creating LIBHP20b - even with all its extended functionality - still holds
the glaring problem of not raising the bar.
Cryptic assembly errors and embedded compilers inserting references to non-
existent functions is not engaging; it is an exercise in tedium. There were no
interesting data structures (beyond a simple stack) necessary; creating a variable
precision library due to long long did not teach much of anything.
To new computer scientists, this will probably make for tough/gritty work. In fact,
many individuals will choose the cookie-cutter lab because they have not found
their own passion, actually find this development engaging or just do not want to
have to chose. But to anyone not in the above category, it just becomes a missed
opportunity to spend this time on a project that could have been more engaging
to their passion and curiosities, as well as increase the challenge. While there is
a certain amount of pride in getting an embedded platform to behave as specified,
there are things just as (and if I may challenge that even further, perhaps MORE)
fun and challenging than developing an HP20b calculator.

For example, building up a Computer Graphics / Ray Tracing engine is titil-
lating pixelated arrays of fun (see Figure 11). Developing a video game engine
from scratch would probably make my day as a computer science student (see Fig-
ure 12). Extending my lexical analyser for OpenGL Shading Language code to

18

Figure 11: C++ raytracer; an alternative project. Computes material and shading,
along with reflections, for several entities. Developed with SDL and OpenGL.

Figure 12: Perpixel collision detection in a SHOOTEMUP game project, retaining
high frames despite using matrices/matrix multiplications and large color maps
for the collisions of hundreds (or thousands of entities). Built out of C# and XNA.

19

Figure 13: A lexical tokenizer for GLSL that takes non-native defines and key-
words and parses them, producing GLSL-compatible output code and providing
run-time Interleaved Graphics Data type-safety. Developed in C++.

do vertex-data-matching based on interleaved array data as a project would be an
excellent exercise for the data structures I have created (see Figure 13). These are
only a few small examples on the grand scheme of embedded and non-embedded
development; the opportunity not to pick any number of these known projects -
or forage into more challenging, more dangerous unknown territory - makes this
seem like an opportunity missed to explore true engineering JOY.

9 Source Code
As stated in Section 6, you can find the source code and an amalgamation of infor-
mation and build project systems at http://dl.dropbox.com/u/17632594/LibHP20b.
tar.gz. The Linux and Max OSX Makefile may require personal tweaking, espe-
cially for the XCode project (Mac OSX does not have any concept of the PATH
variable, nor does it use the PATH variable when initializing an external build sys-
tem).

20

http://dl.dropbox.com/u/17632594/LibHP20b.tar.gz
http://dl.dropbox.com/u/17632594/LibHP20b.tar.gz

References
[1] Hp-20b repurposing project. Online http://www.wiki4hp.com/doku.php?id=

20b:repurposing_project.

[2] Hp-20b business consultant financial calculator manual. Online
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_

Online_Manual.pdf.

[3] Sam Latinga. Simple directmedia layer. Online http://www.libsdl.org/

intro.en/toc.html.

[4] Opengl superbible. Onlinehttp://opengl.czweb.org/ch14/457-462.html.

[5] Reverse polish notation and hp. Online http://h20331.www2.hp.com/hpsub/

us/en/rpn-calculator.html.

[6] Xbox 360 controller input with xinput. Online http://www.codeproject.com/

Articles/26949/Xbox-360-Controller-Input-in-C-with-XInput.

21

http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://www.wiki4hp.com/doku.php?id=20b:repurposing_project
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf
http://h10010.www1.hp.com/wwpc/pscmisc/vac/us/product_pdfs/HP_20b_Online_Manual.pdf
http://www.libsdl.org/intro.en/toc.html
http://www.libsdl.org/intro.en/toc.html
http://opengl.czweb.org/ch14/457-462.html
http://h20331.www2.hp.com/hpsub/us/en/rpn-calculator.html
http://h20331.www2.hp.com/hpsub/us/en/rpn-calculator.html
http://www.codeproject.com/Articles/26949/Xbox-360-Controller-Input-in-C-with-XInput
http://www.codeproject.com/Articles/26949/Xbox-360-Controller-Input-in-C-with-XInput

	Introduction
	User Guide
	Social Implications
	The Platform
	The Processor
	The LCD Display
	The Keyboard

	Software Architecture
	Software Details
	Variable Precision Arithmetic Library
	Lab 1: Displaying a Number
	Lab 2: Scanning the Keyboard
	Lab 3: Entering and Displaying Numbers
	Lab 4: An RPN Calculator

	Lessons Learned
	Criticism of the JOY of Engineering Lab
	Source Code

