
	

iCalendar	
 Language	
 Reference	
 Manual	

	

	

	

	

	

	

	

1.	
 Lexical	
 Conventions	
 ...	
 2	

1.1	
 Notation	
 ...	
 2	

1.2	
 Comments	
 ...	
 2	

1.3	
 Identifiers	
 ...	
 2	

1.4	
 Keywords	
 ..	
 3	

1.5	
 Constants	
 ...	
 3	

2	
 Types	
 ...	
 4	

3	
 Expressions	
 ..	
 4	

3.1	
 Operators	
 and	
 Punctuations	
 ...	
 5	

3.2	
 Primary	
 Expressions	
 ..	
 6	

3.3	
 Arithmetic	
 operators	
 ...	
 6	

3.4	
 Comparative	
 operators	
 ...	
 6	

3.5	
 Logical	
 operators	
 ...	
 6	

3.6	
 Assignment	
 operators	
 ...	
 6	

3.7	
 List	
 operations	
 ..	
 6	

3.8	
 Dot	
 operators	
 ..	
 7	

4	
 Statement	
 ..	
 7	

4.1	
 Expressions	
 ..	
 7	

4.2	
 Return	
 Statements	
 ..	
 7	

4.3	
 Returnvoid	
 Statements	
 ...	
 7	

4.4	
 If	
 Statements	
 ..	
 8	

4.5	
 For	
 Statements	
 ...	
 8	

4.6	
 While	
 Statements	
 ..	
 8	

4.7	
 Variable	
 Declaration	
 Statements	
 ..	
 8	

4.8	
 Empty	
 Statements	
 ...	
 8	

5	
 Grammar	
 ..	
 9	

5.1	
 Program	
 Definition	
 ...	
 9	

5.2	
 Event	
 Definition	
 ...	
 9	

5.3	
 Declarations	
 ...	
 9	

	

	

	

	

	

	

	

	

	

	

	
 2	

1. Lexical Conventions

In iCalendar there are several classes of tokens could be supported. Token types are
identifiers, keywords, literals, strings and operators. As in C language, whitespace
characters are ignored except insofar as they serve to delineate other tokens in the
input stream. If the input stream has been parsed into tokens up to a given character,
the next token is taken to include the longest string of characters which could possibly
constitute a token.

1.1 Notation

 Through the document, nonterminals are in italics and terminals are bold
format. Regular expression-like constructs are used to simplify grammar presentation.
l r* means the pattern r may appear zero or more

time. r+ means the r may appear one or more
times.

l r? means r may appear zero or once.
l r1 | r2 denotes an option between two patterns.
l r1 r2 denotes an option between two patterns, r1 r2 denotes r1 followed by r2.

1.2 Comments

In iCalendar, we use # to mark comments which means a line of comments should
be started with the character # and ends with another character #. However, in
iCalendar only one-line comments could be supported, that means if the length of
comments exceeds one line, remember to put # at the beginning of each line.

Accept:
#This is a comment#
#This is another#
 #line of comment#
Not accept:
#This is another
 line of comment#

1.3 Identifiers

 An identifier consists of a letter or an underscore followed by other letters, digits
and underscores. Identifiers are case sensitive, so “left” and “Left” are different
identifiers. The length of an identifier is not limited.

Accept: _; _a; a11; b; b12; C23fjdla;
Not accept: 123; 12abc;
In iCalendar global and local variables are both supported. A variable defined

inside a block is local, and cannot be called outside the block. For example:
 int Add(int a, int b)
 {

Int c = 0;
return a+b+c;

 }

	
 3	

 int b = c; #This is illegal

1.4 Keywords

 In iCalendar, the words listed below are reserved as keywords. Users are not
allowed to define their own identifiers.
 Reserved identifiers in iCalender:

int float string bool
true false if else
while for Event Calendar
return void main
size print

1.5 Constants

In iCalender, several kinds of constants including integer constants, float constants,
string constants and boolean constants are supported.

Integer constants
Integer constants should be decimal and consists of a sequence of numbers without

a decimal point. All integers should be unsigned.
Accept: 45, 0
Not accept: -1, +12, 1.5
Float constants

 A floating-point constant consists of a sequence of numbers and a decimal
point. Before the decimal point is the integer part and the decimal part is after the
point. The integer part could be omit. Examples of valid and invalid cases are listed:
Accept: 0.5; .234; 10.55
Not accept: 1 1.; .; 1.1.1; 2..5
 String constants
 String constants are demarcated by double quote characters, for instance
“iCalendar”.
Escape characters are supported.

Character Name Escape Sequence
Newline \n
Horizontal tab \t
Backslash \\

	
 4	

Boolean constants
Boolean constants consist of the keywords true and false. For example: bool b = true

2 Types

In iCalendar, seven fundamental types of objects are supported, but no type
conversion is allowed. The fundamental type of objects are a following:
l int
l float
l string
l bool
l Event
l User defined Event structure
l Calendar

Integer type
In iCalendar the only supported integer type is int which can store 32-bits worth of

data. This data type is signed.
Float type
In iCalendar the only supported double type is double which can store 64-bits worth

of data. Tis data type is signed.
String type
In iCalendar we provide string type, which means a string of unlimited length could

be supported. However, the length may be limited because of the amount of computer
resources.

Bool type
In iCalendar bool type is supported. Bool type could only take a value of either true

or false. However, bool type is very useful and helpful.
Event type
Event type is to enable users to define their own event structure.
User Defined Event Structure
User could define their own event model to use for recording events. For example,

Use use Event type to define:
Event myOwnEvent

{ int time;
string description;
int priority;}“.

 Calendar type
Calendar is like a list to contain events.

3 Expressions

In iCalendar, expressions consist of operators and their operands. In this section,
definition for each operator is given. To avoid ambiguity, precedence rules of the
operators in iCalendar are also defined in this section.

	
 5	

3.1 Operators and Punctuations

Operator Description

+ - * / plus/minus/multiple/divide
 > = != <

>= <=

greater than/equal/not equal/less than/greater than/less than

&& || ! logical and/logical or/logical not
. dot

, comma(separate expressions)
; end of expression
() [] separators

Tokens Operators Class Associativity
* / Multiplicative Binary L
+ - Additive Binary L
< <= => > Relational comparisons Binary L
== != Equality comparisons Binary L
&& Logical AND Binary L
|| Logical OR Binary L
! Logical NOT Unary R
= Assignment Binary R
, Comma Binary L
. Dot Binary L

; end of expression Unary L
() [] separators Unary L

	
 6	

3.2 Primary Expressions

 Identifiers, constants, strings. The type of the expressions depends on identifier,
constant or string.

3.3 Arithmetic operators

 In iCalendar, arithmetic operators are +, -, * and / . + means addition, - means
subtraction, * means multiplication and / means division. All of them are binary and
left associative. It requires that their operands must be of the same primitive types,
and the result will be of the same type.

3.4 Comparative operators

 In iCalendar, comparative operators are > (greater than), < (less than), >=
(greater than or equal to), <= (less than or equal to), ! = (not equal) and == (equal).
All of them are binary operators and left-associative. It requires that their operands
must be of the same primitive types . The return value is a boolean value indicates the
predicate.

3.5 Logical operators

 Logical operators in iCalendar include && (logical and), || (logical or) and !
(logical not). && and || are binary operators and left-associative. They take two
operands of type boolean, and return a boolean value. ! is unary and appears on the
left side of the operand. They type of the operand must be of type boolean and the
return type is also a boolean value.

3.6 Assignment operators

 iCalendar's assignment operator is =. It's a binary operator and right-associative.
The left operand must be a legal left value, and the right operand must be an
expression. When an assignment is taken, the value of the expression on the right is
assigned to the left value, and the new value of the left value is returned.

3.7 List operations

 In iCalendar, users could store their event objects to a calendar.
A calendar is like a list data type. And to visit the element in calendar, use index
(e.g. calendar[0]).

	
 7	

3.8 Dot operators

 User defined event model might have many attributes (like time, event
description, location, event priority). These values can be visited by using dot “.”.
For example, we have an object: myEven e = [“final exame”,”Dec-10”]. The time
can be visited by e.time where “time” is an attribute of myEven type defined by
users.

4 Statement

 Statements in iCalendar contain expressions, return statement, return void
statement, conditional statement, loop statement, variable declarations, empty
statement, etc.
Statement ->
 Block*

| Expr*
 | Return*
 | ReturnVoid*
 | If statement*
 | For statement*
 | While statement*
 | Vardecl*
 | Empty*

4.1 Expressions

An expression statement is composed of primary statements with a semicolon at the
end of the line. It is used for binary operations.

4.2 Return Statements

A compute function returns a value to the caller through return statements.

Return Statement -> return Expression SEMICOLON

4.3 Returnvoid Statements

This function returns a void value to the caller through return statements.

Returnvoid Statement -> return void SEMICOLON

	
 8	

4.4 If Statements

iCalendar supports two kinds of if-else statemens:

If Statement ->
If (Boolean conditions) Statement
|If (Boolean condition) Statement else Statement

4.5 For Statements

In iCalendar, users could use For statement.

For Statement -> for (Expr SEMICOLON Expr SEMICOLON Expr) Statement
SEMICOLON

4.6 While Statements

C programmers are often tolarate with for statement, as they have to type in verbose statement.
While, in iCalendar, to avoid verbose, we just use while as the loop statement.
While Statement -> while (condition) Statement

4.7 Variable Declaration Statements

In iCalendar, if a line contains just a semicolon, that means a null statement and has
no meaning.

Variable Declaration -> datatype (Identifier (Assign Expr)? COMMA)*Identifier
(Assign Expr)? SEMICOLON

4.8 Empty Statements

In iCalendar, if a line contains just a semicolon, that means a null statement and has
no meaning.

	
 9	

5 Grammar

5.1 Program Definition

A program in the iCalendar language consists of a sequence of Event definition
structures, variable declarations and functions executing in order.

Program -> Even_Definition_list * Declaration_list * Function_list*

5.2 Event Definition

Users could define their own event that consists of a sequence of type name and
variable declarations executing in order.

Event -> Typename_string*Declaration_list*

5.3 Declarations

All variables must be declared before they can be used. However, variable
declarations can be made at any point in a program. Variables become usable after the
end of the semi-colon of the statement in which it contained.
In iCalendar, declarations consist of variable declarations and function declarations.

Declaration -> Variable Declaration*

|Function Declaration

	
 10	

Calendar Language supports functions. Function Declaration is definte below:

Function Declaration -> returnType Identifier ((datatype variable)*

|(datatype variable COMMA)+ datatype variable) Block
For example:

fun int Add (int a, int b)
{

return a+b;
}

	

