RetroCraft - A design language for retro platformers

Project Proposal

Fernando Luo (fb12108)

Papoj Thamjaroenporn (pt2277)
Lucy He (1h2574)

Kevin Lin (k12495)




1. Introduction

Since the creation of platform games in the 1980s, video gamers have witnessed the
growth and evolution of 2D platformers. The genre persists today with various legacies
of games such as Super Mario Bros and Donkey Kong. However, gamers and hobbyists
rarely have the chance to design their own levels, let alone the intricate game
mechanics. We are going to implement a language that provides users with the building
blocks to conveniently and creatively design their own game level for a platform game.
RetroCraft defines an intuitive syntax that will allow the programmer to express the
boundaries of a level, gameplay mechanics, and events. The language will execute user
specified events including collisions, transitions, and movements. RetroCraft offers a
default collision detection engine for appropriate element interactions; which users can
choose to overload and impose their own events. Finally, map transitions and basic
movements can expressed easily with RetroCraft.

2. Objective

Making even a basic game from scratch requires a significant time investment from the
programmer to set up the essential data structures and objects. Our language aims to
significantly reduce this overhead by providing the programmer with basic tools to
create maps, design characters, and define events within the application. After
specifying these base elements, our tool will render the game in a window, following the
user specified rules of behavior for those objects. While limited to the creation of
platformer style games such as Super Mario Bros. the user can quickly generate
playable content and focus more of his or her time on evaluating game concepts and
playability.

Using the data structures we have defined, a programmer will first establish a gridded
canvas or a map on which the level elements will be placed. The user will then be able to
explicitly place EnvObjects, Characters, and ActObjects at specific coordinates
on the grid. With the attributes and event triggers built into those objects, the
programmer will be able to control how they interact and change each other’s states,
creating a unique gameplay experience.

The ideal output of our language would be something similar to the privately developed
game, “I Want To Be the Guy” which can be found at
http://kayin.pyoko.org/iwbtg/fag.php. The screenshot below encapsulates the
essential nature we want games developed in our language to have.




vavvvvvvvvvvvv

A AAAAAAAAA A

In addition, our language would be very friendly to beginner programmers eager to
break into the game design industry. The relative simplicity of our language would
significantly reduce the programming learning curve for students trying to express their
game ideas.

3. Program

As an example, our language allows users to generate an arbitrary game level of Super
Mario. Our features include the capability of designing the terrain and environment of
the scene, defining the responsive events when the player (i.e., Mario) collides with
scene items or application-controlled characters (i.e., Koopa), as well as arbitrary
responsive actions to various items in the game.

One simple level would involve the player traversing predefined platforms from top to
bottom. Each section of the map will have obstacles including, but not limited to, enemy
characters, spikes, and even moving objects. Programmable gravity and character speed
will determine the game flow. Furthermore, user can expand the capability of speed and
gravity to incorporate advanced game mechanics such as wind (horizontal force), ice
terrain (high terminal velocity), and even mud (slower character speed).

Upon reaching a certain point in the map, the player will be presented with a map
transition or a sequence of events that signals completion of a level. It is also interesting
to note that the gameplay will be dictated by various events dependent on an internal
timer.




4. Syntax

4.1 Primitive Data types

boolean|TRUE, FALSE, 0, 1

int .-1,0,1,..

float floating-point numbers, such as 3.14127

string |“Hello World”

« )

char C

4.2 Basic Data types

Point

Stores two attributes specifying X, y components of the point

Vector

Stores two attributes specifying X, y components of the vector

Image

Contains binary data of the input image

Map

A square grid that serves as the organizational base for the Player,

EnvObjects and ActObjects.

Attributes

gravity: Vector  Determines how quickly (and in which direction) the
player or objects accelerate when unrestricted

map: Array Array A dimension x dimension grid of all the objects.

Object

dimension: int  The height and width of the grid

background: A background image
Image
music: string Path to music file to play in the background

Object

The superclass of Player, EnvObject, ActObject. Will be useful for
collision detection and polymorphism.

Player

The user controlled character which travels through the map.

Attributes

states: Array string  All possible states for the player (e.g. super speed
or injured)

currPosition: Point  Player’s current position

playerlmgs: Arraylmages of the character at different states

Image

currState: int Player’s current state, as an index of the array of
states

currVelocity: Vector Player’s current velocity
termVelocity: Vector The maximum velocity the character can achieve
livesLeft: int Number of lives the player has left

Functions




onKeyPressed(char c) Given the keyboard input, update the
player’s position

onUpdate() For each time step, update the attributes of
the player based on the given environment,
such as gravity

onCollision(Object input,Specifies action when the player collides

string contact) with object input, given the contact direction

EnvObject Environmental object. Environmental objects are arranged in the map
grid to define the valid, navigable space for the Character and ActObjects.
All environmental objects are static, have only one state, and cannot
affect the state of other objects.
Attributes
envimage: Image The image for the object
Examples: unbreakable walls, static platforms, hills
ActObject Active object. Active objects are those that has more than one state, or
can change the state of other objects. They are also arranged in the map
grid, but can be mobile.
Attributes
actObjStates: static Array  All possible states for the object
string
currPosition: Point Object’s current position
currState: int Object’s current state, as an index of the
array of states
currVelocity: Vector Object’s current velocity
objlmgs: Array Image Images of the object at different states
Functions
onKeyPressed(char c) Given the keyboard input, update the object’s
position
onUpdate() For each time step, update the attributes of
the ActObject based on the given
environment, such as gravity
onCollision(Object input,Specifies action when this ActObject collides
string contact) with object input, given the contact direction
Examples: script controlled characters (‘enemies’), static objects that
change the state of anything else, traps, spikes.
EventManager|lterates through all the objects at each time step and calls the onUpdate,

onKeyPressed, and onCollision functions of the objects when
appropriate.

onUpdate and onKeyPressed will be called for every active object and
the player, whereas onCollision will be called for all objects.




4.3 Operators

Arithmetic |+, -, *, /, %
Assignment|=

Boolean ==, >=, <=, >, <
Unary Y, o=, ++, —-

5. Code Examples
Our syntax takes on the following general format. Objects are initialized by specifying:

[variable name]: [object type] {
[attribute name]: [object type] ...
}
Attributes of an object can take on values of other objects, primitives or functions. The
syntax of functions follow a java-like example. This may change as we develop our
project concept further.

/*

Generate a simple mario game with one interactive enemy turtle, with
one very simple rule: if the player touches the turtle, the turtle
dies.

*/
playerImgs: Array Image [
Image {
src: string “Mario.jpg”
}
]
turtleImgs: Array Image [
Image {
src: string “Turtle.jpg”
}
]
/~k

Define a turtle enemy
Returns an ActObject

*/

turtlel: ActObject

{

name:

by

currPosition:

b
currVelocity: Vector {
x: int 2,
y: int O

string “Turtle”
dimension: Object
width: int 10,

height: int

x: int 5,
y: int 500

{

10

Point {




}y
visible: bool 0,
image: Image turtleImgs[0],

states: Array string [
string “turtleAlive”,
string “turtleDead”

I

currState: int O,

/* functions calls by event manager */
onUpdate: void function () {
currPosition.x += currVelocity.x;
currPosition.y += currVelocity.y;

onKeyPress: null, /* do nothing */
onCollision: void function (Object input, string contact) {

if (states[currState] == “turtleAlive” &&
typeOf (input) == Player) {
currState = 0;
visible = 0;

/~k
Define Map. The map contains not only the background, but also all the
objects (Player, EnvObject, and ActObject) in the scene. The inclusion
of scene objects is done in the main method.
*/
gameMap: Map {

height: int 1000,

width: int 1000,

background: Image {

src: string “Sky.jpg”
}

/~k
Create the ground platform composed of a simple rectangle block of size
1000 x 500. The block is placed at a location specified by
currentPosition, started from the bottom-left corner.
*/
groundPlatform: EnvObject {
currentPosition: Object {
x: int O,
y: int O
}y
height: int 500,
width: int 1000,
visible: int 1,
image: Image {




src: string “RockBlock.jpg”

/~k
Define playable character attributes
*/
player: Player {
name: string “Mario”
dimension: Object {
width: int 10,
height: int 10
}y
currPosition: Point {
x: int 200,
y: int 500
}y
currVelocity: Vector {
x: int 2,
y: int O
}y

visible: bool 1,

states: Array string [
string “marioAlive”,
string “marioFainted”

I

currState: int O,

jumpHeight: int 10,
image: Image playerImgs[0],

onUpdate: null, /* movement will be controlled by keypress */
onKeyPress: void function (string keyinput) {
/* Move the player in the direction specified by the

keyinput
while increasing the velocity until the terminal velocity
is
reached */
if (keyinput == “L”) {
currPosition.x -= currVelocity.x;
if (currVelocity.x > -10) {
currVelocity.x—--;
}
}
else if (keyinput == “R”) {

currPosition.x += currVelocity.x;
if (currVelocity.x < 10) {
currVelocity.x++;




/~k

by

/* In this example the player can move only left or right. So the
player cannot jump. Furthermore, the collision with enemy turtle
will have no effect on the player. Therefore, the method is
defined as null.

*/

onCollision: null

main function

*/
main:

{

int function ()

insertObject (gameMap, groundPlatform)
insertObject (gameMap, turtlel);
insertObject (gameMap, player);

/~k

Final call to play the game. The system runs in an infinite loop
triggered by each tick of a timer (internally employed in OCaml) .
The loop contacts event manager to respond to keyboard input,
detect collisions, and update the corresponding objects.

*/

play (gameMap) ;




