Photoshop--

Language Reference Manual

Programming Languages & Translators
Columbia University, Fall 2014
Professor Edwards

Gilbert Feig (grf2108)
David Figueroa (df2442)
Alana Ramijit (amr2235)

Table of Contents

1. Lexical Conventions

11. Tokens

1.2. Comments

1.3. Identifiers

1.4. Keywords

1.5. Constants
2. Syntax

2.1. Basic Types
3. Expressions

3.1. Operators

3.2. Function Declarations and Calls
4, Declarations
Statements and Execution
6. Scope

i

Language Reference Manual

1. Lexical Conventions
1.1.Tokens
There are three main categories of tokens not mentioned in the other lexical
conventions: whitespace, block separators, and semicolons. Whitespace
includes the tab, newline, and space characters. Block separators are the {' and
‘Y symbols that enclose the component statements of a block. Semicolons
indicate the end of an expression, and also indicate that the expression is a
statement.
Whitespace is used to separate tokens which can be identifiers, keywords,
constants, operators, and comments.
1.2.Comments
Comments are strings that are ignored by the compiler. Indicate the start with a
single ‘~’ character. Comments may be several lines in length, and are
terminated by another single ‘~’ character.
1.3.ldentifiers
Identifiers are a series of letters and/or digits, always beginning with a letter. The
maximum length is 20 characters.
1.4.Keywords
Keywords are reserved for special use cases, and may not be used as identifiers
or anything else unintended. These consist of:
at green rect
block if red
blue int right
bool left run
down loop true
ellipse main up
else move
false put
1.5.Constants
The only constants supported are base decimal integer constants. All integers are
signed and may be stored in variables of type int only.
2. Syntax

1.1.Basic Types
There are four fundamental types: bool, int, rect,and ellipse.
The bool type may only take values true and false.
The int type may take any signed integer value.
The rect and ellipse types have the following properties:

3. Expressions

o

o

o

x - the x coordinate of the top left corner of the containing frame (defaults
to 0)

y - the y coordinate of the top left corner of the containing frame (defaults
to 0)

width - the width of the shape

height - the height of the shape

color - the color of the shape

1.1.Operators

Multiplicative Operators
The multiplicative operators are * and / and group from left-to-right.
multiplicative-expression:

multiplicative-expression * int

multiplicative-expression / int
The operands of * and / must be of type int.
The * operator denotes multiplication and returns a product of the
operands as an int.
The / operator denotes division. If the divisor does not equally divide the
dividend, then the integer quotient is returned.
Additive Operators
The additive operators are + and - and group from left-to-right.
additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression - multiplicative-expression
The + operator denotes addition and returns the sum of the operands.
The - operator denotes subtraction and returns the difference of the
operands.
Relational Operators
The relational operators <, <=, >, >= evaluate to either true or false and
group left-to-right such that x>y>z is parsed as (x>y) >z.
relational-expression:

additive-expression

relational-expression < additive-expression

relational-expression <= additive-expression

relational-expression > additive-expression

relational-expression >= additive-expression
The operators < (less), <= (less or equal), > (greater), and >= (greater or
equal) return true if the relation is true and false otherwise. The return type
is of type bool.
Equality Operators
The equality operators == and != evaluate to either true or false
equality-expression:

relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
The operators == (equal) and != (not equal) return true if the equality
comparison is true and false otherwise. The return type is of type bool.
v. Animation Operator
The animation operators move (1left, right, up, and down) and put at
modify the x or y position of objects.
animation-expression:
move identifier left additive-expression
move identifier right additive-expression
move identifier up additive-expression
move identifier down additive-expression
put identifier at additive-expression additive-expression
The animation operators change the location of objects. The move
operator changes the x position of an object with the keywords 1eft and
right and changes the y position of an object with the keywords up and
down. The put operator changes both the x and y position of an object to
the position x,y after at.
1.2.Function Calls
A function is called by calling run followed by the name of the function.
ex. run myFunction; ~function named myFunction is being called~
4. Declarations
Declarations of an identifier can be associated with one of the four basic types or a
function. All declarations may be accompanied by an a definition of an initial value; if no
initial value is provided, a default value will be provided. All variables and functions must
be declared before they are referenced.
1.1.Declarations of int and bool
Identifiers of type int are declared as int <identifier> with an optional assignment to
a constant integer value. bools are declared in the same manner but are
optionally assigned to either false, true, or the value of some boolean expression.
If the optional assignment is neglected, the default constant for an int is 0 and the
default value for a bool is false.
ex: int x = 10; ~declares an int of value 10~
bool isBool; ~declares a boolean with an initial value of false.
1.2.Declarations of shape objects
Shape objects such as rect and ellipse are declared in a similar format of <type>
<identifier>. They may optionally be assigned, in order, a height, a width, and a
color. If the optional assignment is neglected, the default values are 10, 10 and
blue. These properties are separated by white space:
rect r1 = 10 15 green; ~ declares a green rectangle of height 10, width 15~

1.3.Declarations of functions are specified by the keyword “block” followed by an
identifier and curly braces containing the group of statements associated with that
block. Statements are discussed in section 5.1 of this reference manual.

5. Statements and Execution
1.1.Statements and Expressions
An expression is a syntactically valid variable declaration, boolean or relational
evaluation, arithmetic expression, function call, or animator operation on a shape
as discussed in section 3.

A statement is any expression that is terminated with a semi-colon. Expressions
such as variable declarations, function calls, and animator operations must
always end with a semi-colon and are always statements. Relational evaluations,
or arithmetic expressions may evaluated as part of a declaration or as a condition
within an if block. if, block, and loop, are all followed by braces that must group
together a set of statements.

1.2.Execution
Execution begins at the top of the main block. The main block may also include
the special loop block. All statements within the loop block will be executed
continuously at a rate of 60 frames per second, enabling animation simulation.

All variables and blocks must be declared before they are referenced in a
non-declarative statement following it in the execution path.
6. Scope
Any variable declared within a block, understood to mean a group of statements between
braces, is only visible within those braces. If a block is nested within another block, and a
variable is declared with the same name in the inner block as a variable in the outer
block, then the inner block copy takes precedence and the outer block copy is rendered
invisible.

Global variables are visible within any block but must be declared at the beginning of the
file before any block declarations.

