Trix Project Proposal:
Matrix Manipulation Language

Andrew S. Hunter
July 29, 2015

1 Introduction

Trix is a Matlab-like language offering the mathematical tools to perform advanced
computations. Scalar, vector and matrix calculations can be performed. A special
feature of Trix is the ability to handle complex numbers. All of the standard
arithmetic scalar operators are available, as well as many of the commonly used
vector and matrix operators. Like the C programming language Trix has if-else
decisions, while loops and for loops. It also uses functions, which behave similarly
to those in Fortran and C.

2 Language Description

Trix is an imperative language used to perform numeric computations. It is a
strongly typed language with types determined at compile time. It uses many of the
traditional arithmetic and conditional operators as defined in the following sections.
Along with the traditional operators, there are several pre-defined operations that
execute commonly used algorithms. Like many languages, symbolic expressions can
be used to represent the primitive types. The four primitive types are integers,
single precision floating-point real numbers, single precision floating-point complex
numbers and booleans. There is one derived type, the vector/matrix, which is a
rectangular array with a minimum of one row and one column of the indicated
primitive type. Types may be established with or without variable initialization.

2.1 Comments
The comment syntax is similar to that used in Matlab, however a comment requires

two percent (%%) symbols at the start and finish of a comment, to distinguish from
the single percent operator discussed later.

%% This 1s a comment %%
2.2 Types and Declarations

The primitive types are integers, single precision floating-point real numbers, single
precision floating-point complex numbers and booleans.

int Integer number

float Single precision floating-point real number
bool True, false, 0 or 1
cmplx Single precision floating-point complex number

There is one derived type, the vector/matrix.
vm_type A derived type that is a rectangular array of the primitive type,

where white space indicates a new column and the semicolon
indicates a new row.

Trix is a strongly typed declarative language. Types may be declared with or without
variable initialization.

int a = 1;
float b = 2.0;
bool ¢ = true;
cmplx d = (1.5,
= [

Following the matrix variable with an open bracket and the row number, column
number or the row-column pair can return matrix rows, matrix columns and
elements, respectively.

%% Return 4th row of matrix A %%

$% Return 1lst column of matrix D %%
% Return 2nd row 3rd column %%

2.3 Operators

Traditional arithmetic operators. Any time the following operators are performed
with a scalar and a vector or matrix, the operation is applied to every element.

= Assignment

A Exponentiation

* Multiplication

/ Division

+ Addition

- Subtraction

% Remainder after division
++ Increment by 1

-- Decrement by 1

Relational operators. Relational operators applied to vectors and matrices of the
same dimension return an Boolean vector or matrix of the same size.

== Equality test

I= Inequality test

> Greater than test

< Less than test
>= Greater than or equal test
<= Less than or equal test

Vector and matrix operators.
X Vector or matrix multiplication
+ Vector or matrix addition
.- Vector or matrix subtraction

2.4 Functions

Functions in Trix behave similarly to functions in Fortran or the C language, they
receive one or more arguments and return one of the primitive or derived types. In
Trix a function must return at least one value. Like the primitive types, the
arguments and return value of a function must be declared. There is also a library of
functions built into the language, described below. The function names contained in
the built in library are reserved keywords and cannot be used as variable names.

Example function.

vm int VI = [1 2 3];
vm int V2 = [4 ; 5 ; 6];
int vector multiply (vm int a, vm int Db) {
int ¢ = a[l,1] * b[l,11;
int b = all,2] * b[2,1];
int d = all,3] * b[3,11;
int e = c+b+d;

return e;

%

% returns 32 %%

Mathematical functions. Any time the following functions are applied to a vector
or a matrix, the operation is element-wise.

sin () Sine

cos () Cosine

tan () Tangent

asin () Arcsine

acos () Arccosine

atan () Arctangent

abs () Absolute value or magnitude of a complex number
log () Natural log

1ogl0 () Base 10 logarithm

conj ()

Complex conjugate

Vector and matrix functions. The following functions cannot be applied to integer,

float or boolean types.

Inv () Inverse of a matrix

det () Determinant of a matrix

tran () Transpose of a matrix

kron (a,b) Kronecker tensor product of matrices aand b
esum () Sum of all elements in a matrix or vector
eprod () Product of all elements in a matrix or vector
mag () Magnitude of a vector

Vector and matrix construction.

zeros (n, m)
ones
eye (n,m)

(n,m)

Defines an n x m matrix of zeros
Defines an n x m matrix of ones
Defines an n x m matrix with ones in the main diagonal and

zeros elsewhere

2.5 If-else Decision

The if-else structure is the same as C. To avoid ambiguity Trix requires parenthesis
at all times. Braces help to improve clarity and reduce bugs in heavily nested code.
The basic syntax structure is as follows.

if (expression) (
statement

)

elseif (expression) (
statement

)

else (expression) (

statement

2.6 While Loops

The while loop in Trix is the same as C. Like the if-else, it requires parenthesis. The
basic syntax structure is as follows.

while (expression) (

statement

2.7 Forloops

The for loop in Trix is the same as C. Like the while and if-else, parethesis are
required. The basic syntax structure is as follows.

for (expr;expr;expr) (
statement

