
EqualsEquals Language Reference
Manual

name email role UNI
Nam Nhat Hoang nam.hoang@columbia.edu System Architect nnh2110
Tianci Zhong tz2278@columbia.edu Manager tz2278
Ruicong Xie rx2119@columbia.edu Manager rx2119
Lanting He lh2756@barnard.edu Tester lh2756
Jonathan Zacsh jz2648@columbia.edu Language Guru jz2648

Introduction
Motivation
Overview

Definition of a Program
"Context"s & find Blocks

Design Implementation
Tokens: Expressions' Lexemes
Reserved Keywords
Declarations

Statements
Expression Statement
Combining Statements
Conditional Statement
While Statement
Break Statement
Continue Statement
Context statement
With Statement
Find Statement

Built-ins
print()
range()

Expression Precedence & Meaning
Sample program

Example of equations' find Use-cases
Example of a multi-line equation to find gcd of a and b

Introduction
EqualsEquals - "eqeq" for short - is a language designed for simple equation
evaluation. EqualsEquals helps express mathematical equation in ASCII (though
UTF-8 string literals are allowed) without straying too far from whiteboard-style
notation. Users do not need to be overly careful to perfectly reduce formulas behind.
Leaving unknowns for later is possible, without encapsulating equations' unknowns as
function parameters. EqualsEquals takes multiple equations as input and can evaluate
the value of a certain variables of the equations when the values of other variables are
given.

Motivation
Reducing mathematical formulas can be really painful and tedious. We want to
simplify the process of evaluating equations. With our language we take a step to help
users leave their formula in a similar format to what they'd normally have on paper.

Overview
Valid source programs will compile down to C.

Definition of a Program

The simplest - though contrived - valid program is:

find { printf("Hello, all %.0f readers!\n", 21 * 2); }

Which prints the following to standard out: Hello, all 42 readers!

Formally, a valid program is a series of:

one or more find blocks.
zero or more "context" blocks (aside from the automatic, global context)

"Context"s & find Blocks

While both types of blocks of code are simply curly brace enclosed listings of
sequential statements, contexts and find blocks differ in their use:

contexts are expected to layout and define equations for use later. Thus they're
allowed semantic gaps in their equations; eg: missing solutions.
find blocks on the other hand are expected to be the resolution to "find" missing
said pieces, or simply apply completed solutions to new inputs.

https://www.bell-labs.com/usr/dmr/www/cman.pdf

It follows then that find expressions apply to contexts. Where a context might be
shared for re-use, find expressions are designed to make local use of equations in a
given context.

Though the above "Hello World" example executes a find on the global context, users
will generally define contexts manually. For example a "Euclid" context, where gcd
might be defined:

Euclid = { gcd = /*... defined here ...*/; }
Euclid:find gcd {
 a = 20; b = 10; print("%.0f\n", gcd);
}

Design Implementation
Within contexts and find blocks, valid statements look like many C-style languages,
where expressions are semi-colon (;) separated, may be have sub-expressions using
parenthesis ((,)) and the lexemes of an expression may be made up of:

1. variables to which floating-point numbers are assigned
vectors, like variables, but have square brackets ([]) after their identifier
is indeed a vector of numbers, eg: myVector[]

2. arithmetic expressions: addition, subtraction, multiplication, division,
exponents

3. comments characters ignored by the compiler
4. white-space to arbitrary length (eg: a = 3 is the same as a = 3)
5. string literals used for printing
6. equality operations in if/else expressions (which evaluate to 1 or 0 if both

operators are equal)

Tokens: Expressions' Lexemes

Below is the syntax of each type of expression. For the semantic description of each,
refer to the "Declarations" section, below.

1. Floating point numbers, including integers:

eg: 123, 1.34e-4, 0.23, .13, 0e1.

Described by the regular expression flt here:

let pos = ['1' - '9'] in
let dig = '0' | pos in
let exp = ('e' | 'E') ('-' | '+')? pos+ in
let fra = '.' dig+ exp? in
let num = pos dig* in

let flt = num | ((num | 0)? fra) | (num exp)

2. Variable Assignment: numbers stored with user-defined names:

eg: weight = 100 /*grams*/

Described by the regular expression var here:

let aph = ['a'-'z'] | ['A'-'Z'] in

let var = aph+ ('_' | ['0'-'9'])*

3. Contexts: blocks of symbols:

eg: Euclid: {/* any number of lines of EqualsEquals here */}

Building on variables' definition, the regular expression can be described by ctx
here:

let ctx = ['A'-'Z'] var*

4. Strings: mostly used for printing results:

eg: printf("result of my maths: %.0f\n", gcd)

String literals can be described by the regular expression str here:

let chr = \x(0...9|A...F|a...f)(0...9|A...F|a...f) in
let spc = \(\n| \t| \b| \r| ' ')
let num = ['0' - '9'] in
let aph = ['a' - 'z'] | ['A' - 'Z'] in

let str = (aph | num | chr | spc)*

Reserved Keywords

Following are reserved keywords, and have special meaning in the language. See
"Statements" and "Declarations" sections elsewhere for each of their meanings.

if
elif
else
find
print

Declarations

1. A list of declarator are separated by comma. Formatted as below:

Declarator-list:
declarator, declarator, ...

For example:

a = 2, b = 3;
a = b, b = a % b;

2. Variable:

To declare a variable, only name of the variable is needed. The data types of the
variables are inheritable.

Possible inherited data types:

Double
String

3. Vector:

V[]
V[constant-expression]
V = {a, b, c, ...}

In the first case, the expression will declare an array with length 1 and
initialized with zero, as [0]. In the second case, the expression will declare an
array with length that evaluated result of the constant expression and initialized
with zeros, as [0, 0, ... , 0]. The constant expression need to be evaluated to
an integer. Such a declarator makes the contained identifier have type vector.
The declarator V[i] yields a 1-dimensional array with rank i of objects of type
double. To declare a vector of vectors, the notation would be like V[i][j]. In the
third case, the expression will declare an array with length, the number of
elements inside the "{}". It will initialize the array with the elements in the "
{}". The elements have to be either Double or String and could not be fixed of
both.

4. Multi-line equation: declaration of multi-line equation has the format:

equation_name = {
 // some operations
 var; // a variable, indicating equation_name's value
}

The equation_name has the type Double, where var indicates the name of variable
expression holding the desired value. The equation will be passed by value. The
multi-line equations, like regular equations, can only express one value (or a
vector of values).

For example:

gcd = {
 if (0 == b) {
 a; // solution is a
 } elif (a == 0) {
 b; // solution is b
 }

 if (a > b) {
 a = b, b = a % b;
 // note: multiple assignments on single line
 } else {
 a = b % a, b = a;
 }
 gcd; // solution is gcd w/the current a and b
}

This example results in an expression gcd - similar to a C-style function - that
can be referred to later, given the necessary inputs a and b (in eqeq's case, the
right "context").

5. Equations:

variable = variable (value assigned?)
variable = some arithmetic expression
variable = { /*some multi-line equation that evaluates to a number*/ }

Only variable will be allowed on the left side of the equal sign. The expression
on the right side can be a declared variable, an arithmetic expression that
evaluates to a number, or a multi-line equation enclosed in curly-braces (see
"Multi-line equation" above).

For example:

a = 3; b = a; // b == 3
a = 3; b = a * 2 + 1; // b == 7
a = 3; b = 6; c = gcd; // c == 3

For analysis of equation arithmetic, see "Expression Precedence & Meaning",
below.

6. Scopes (access to variables):

VAR = EXPR

Scope_name {
 list of equations

 // VAR = EXPR // overwrites global `VAR`
}

Scope_name: find VAR [with VAR_B in range()]*] {
 /** code here has access to `Scope_name`'s equations */
}

Here, Scope_name is like an object of equations. Equations are put inside the
bracket follow Scope_name.

Any variable declared outside of a Scope_name is a global variable that can be
accessed from anywhere within the program. If a variable declared in some
Scope_name has the same name as some global variable, it will overwrite the
value within the Scope_name. After getting out of the Scope_name, the variable will
restore its value.

Scope_name: find VAR [...] is the evaluation part. A with clause is optional. See
"With Statement" section below. find will evaluate the variable following it
using the equations inside the Scope_name block. Once a Scope_name is defined,
multiple find are allowed to use the equations inside it.

Statements

Expression Statement

Expression statements are statement that includes an expression and a semicolon at the
end:

expression ;

Combining Statements

A statement can be the multiple of other statements. { and } are used to group multiple
statements as one statement. So the form of compound statements is:

{ statement+ }

, which means that a compound statement has an opening curly bracket, one or more
statements, and a closing curly bracket.

Conditional Statement

Statements that are used in conditional statements:

// if_statement
if (expression) statement

// elif_statement
elif (expression) statement

// else_statement
else statement

Conditional statements have the following form:

if_statement elif_statement* else_statement?

, which means that it contains a required if_statement, any number of elif_statement,
and an optional else_statement.

While Statement

While statements have the form:

while (expression) statement

The sub-statement is executed repeatedly so long as the value of the expression
remains non-zero.

Break Statement

The statement

break ;

causes termination of the smallest enclosing while, or with statement.

Continue Statement

The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while
or with statement; that is to the end of the loop. More precisely, in each of the
statements.

Context statement

A context statement include a context name and a compound statement:

context_name compound_statement

To access a context, we use a statement with the following form:

context_name: statement

The sub-statement will be evaluated in the context given by context_name.

Examples:

mycontext {
 x = 5;
}

print(x); // throw an exception because x in not defined
mycontext: find x {
 print(x); // prints 5
}

With Statement

With statements have the form

with [variable in expression,]+ compound_statement

, which means that with takes one or more expressions, and a compound sub-
statement.

If the expressions have type double, then with will evaluate the expression and
execute the compound sub-statement:

with x in 5 {
 print(x);
} // 5

with x in 5, y in 6 {
 print(x + y);
} // 11

If the expressions have type vectors, we will execute the compound sub-statement
with all the combinations of values available. Basically, it mirrors multiple for loop in
Python:

// with vector assignment (causing equivalence of `for` loop in other languages)
with x in {1, 2, 3} {
 print(x);
} // print 1, 2, 3 on 3 separate lines

with x in {1, 2}, y in {4, 6} {
 print(x, y);
} // print 5, 7, 6, 8 on 4 separate lines

Find Statement

Find statements start with keyword find and an expression, followed by a sub-
statement:

find expression statement

In a find statement, the last statement should be evaluated with access to previously
declared expressions.

Examples of find statements:

// a simple example
velocity = length + 1;

find velocity {
 length = 5;
 print(velocity);
} // print 6

// this block is the same as the one above
find velocity with length in 5 {
 print(velocity);
} // print 6

pendulum:find vector with length in range(0, 5) {
 print(velocity);
} // print 1 to 6

Built-ins

print()

print() is built-in function that mirrors the C printf() API. print()'s arguments
include a string, and optional expressions:

print(a_string_with_formatters [, expressions]*)

print() prints the formatted string to the screen.

Users can format strings in print() with %f and %s formatter (and but not %d, since eqeq
only uses float). For example,

print("words here %f.0 and %f here\n", 4, myvar);
// words here 4 and 3.14159 here

range()

range() mimics Python's range() function. It takes an optional expression start, an
expression stop, and an optional expression step. It returns a vector from stat to
stop - 1, with distance step between each member of the vector:

range([start,] stop [,step]);

For examples,

range(3); // same as writing: {0, 1, 2}
range(2, 5); // same as writing: {2, 3, 4}
range(2, 8, 3); // same as writing: {2, 5, 8}

Expression Precedence & Meaning

Here various expressions' meanings are described, generally shown as expr, in the
order of their precedence.

'(' expr ')': for sub-expressions. For example, expr of 4 + 5 here:

b * (4 + 5); // `expr` should be considered first
b * 9; // same as above; note absence of parenthesis

id '[' expr? ']': for vector access.

-expr: negative. The result is the negative of the expression. Note, the type of
the expression must be double.

!expr: logical negation.

The result of the logical negation operator ! is 1 if the value of expr is 0. If the
value of expr is anything other than 0, then !expr results in 0.

left_expr ^ right_expr: exponentiation. Mathematically raises left_expr to the
power, right_expr. Note: uses underlying C standard library's corresponding
power API, eg: double pow (double base, double power).

expr * expr, expr / expr The binary operator * / indicates multiplication and
division operation. If both operands are double, the result is double.

expr % expr The binary % operator yields the remainder from the division of the
first expression by the second. Both operands are double, and only integer
portion of the double will be used for modular operation, and the result is a
double with fraction equals to zero. eg:

12.0 % 7.0 = 5.0;
12.3 % 7.5 = 5.0;

expr + expr, expr - expr The result is the sum or different of the expressions.
Both are double, the result is double.

equality/inequality:

expr > expr, expr >= expr, expr < expr, expr <= expr The operators < (less
than), > (greater than), <= (less than or equal to) and >= (greater than or
equal to) all yield 0 if the specified relation is false and 1 if it is true.
Operand conversion is exactly the same as for the + operator.

expr != expr, expr == expr: The != (not equal to) and the == (equal to)
operators are exactly analogous to the relational operators except for their
lower precedence. (Thus a < b == c < d is 1 whenever a < b and c < d
have the same truth-value).

expr || expr The || operator returns 1 if either of its operands is non-zero, and 0
otherwise. It guarantees left-to-right evaluation; moreover, the second operand
is not evaluated if the value of the first operand is non-zero.

expr && expr The && operator returns 1 if both of its operands is non-zero, and 0
if either is 0. It guarantees left-to-right evaluation; moreover, the second

operand is not evaluated if the value of the first operand is 0.

left_expr = right_expr: assignment. the left_expr must be a single variable
expression. The result of this operation is that left_expr holds the value of
right_expr going forward. If right_expr contains unknown variables, the
left_expr will not be solvable until a find block expresses a solution in terms of
left_expr and provides any missing variables from the right_expr.

expression , expression A pair of expressions separated by a comma is
evaluated left-to-right and the value of the left expression is discarded. The type
and value of the result are the type and value of the right operand.

Sample program
Below are example programs in EqualsEquals.

Example of equations' find Use-cases

sum = 0 // initialize a number called sum
pendulum {
 /**
 * Spell out equation for our compiler:
 * m * g * h = m * v^2 / 2
 */
 m = 10;
 theta = pi / 2;
 g = 9.8;
 h = l - l * cos(theta); // cosine, being a built-in
 v = (2 * g * h) ^ (1 / 2); // square root
 // note: relying on existing libraries for cos
}

// evaluate v in pendulum's equations given that g = 9.8 and l in range(20)
pendulum: find v with l in range(0, 20) {
 // Our compiler now has solutions to: m, g, l (and indirectly h), so v can
 // be solved:

 print("velocity: %d", v);

 // v is automatically evaluated when it's referred to
}

// evaluate v in pendulum's equations given that g in range(4, 15) and l = 10
// take the average of values of v
pendulum: find v with g in range(4, 15), m = 100 {
 l = 10;

 sum += v;
 // scope of sum: global (b/c it's not in the scope of pendulum but would be
 // overwritten by pendulum)
}

average = sum / (15 - 4);

pendulum: find v with v in range(20) {
 // throw a compiler error because can't find v with v's value
}

// Example: tries l = 10, v = 20 in context of pendulum, to see its equations
// are still true. If equations are inconsistent, the program will throw an
// exception.
pendulum: find v {
 l = 10; // by now, v will be calculated
 print(v == 20); // print 1
 v = 20; // throws an error
}

Example of a multi-line equation to find gcd of a and b

myGCD {
 gcd = {
 if (0 == b) {
 a; // solution is a
 } elif (a == 0) {
 b; // solution is b
 }

 if (a > b) {
 a = b, b = a % b;
 // note: multiple assignments on single line
 } else {
 a = b % a, b = a;
 }
 gcd; // solution is gcd w/the current a and b
 }
}

// evaluate gcd of 10 and 20
myGCD: find gcd {
 a = 10;
 b = 20;

 print("gcd of %d and %d is %d", a, b, gcd);
}
/* END: Example of a multi-line equations to find gcd of a and b */

/* This works too. In this case, gcd is not in any special scope */
gcd = {
 ... // same as the above example
}

// evaluate gcd of 10 and 20
find gcd {
 a = 10;
 b = 20;
 print("gcd of %d and %d is %d", a, b, gcd);
}
/* END: Example of a multi-line equations to find gcd of a and b */

	EqualsEquals Language Reference Manual
	Introduction
	Motivation
	Overview
	Definition of a Program
	"Context"s & find Blocks

	Design Implementation
	Tokens: Expressions' Lexemes
	Reserved Keywords
	Declarations
	Statements
	Expression Statement
	Combining Statements
	Conditional Statement
	While Statement
	Break Statement
	Continue Statement
	Context statement
	With Statement
	Find Statement

	Built-ins
	print()
	range()

	Expression Precedence & Meaning

	Sample program
	Example of equations' find Use-cases
	Example of a multi-line equation to find gcd of a and b

