Scala——: an LIVM-targeted Scala compiler

Da Liu, UNI: d12997

Contents
1 Background 1
2 Introduction 1
3 Project Design 1
4 Language Prototype Features 2
4.1 Language Features e 2
4.2 Code Example e 3
4.2.1 General Demonstration with Pattern Matching 3
4.2.2 Conditionals L e 3
423 Looping 3
4.2.4 Input and Output L 4
4.2.5 Strings 4
4.2.6 Functions L 4
4.27 Tuples L e 5
4.2.8 Higher Order Functions)
4.3 Language Reserved Words L L e 6
5 Reference 7
5.1 Scala programming language L Lo L e 7
5.2 Scala programming language developmento 7
5.3 Compile Scala to LLVM o . e 7
5.4 Benchmarking L e 8

1 Background

Scala is heavily used in daily production among various industries. Being as a general purpose pro-
gramming language, it is influenced by many ancestors including, Erlang, Haskell, Java, Lisp, OCaml,
Scheme, and Smalltalk. Scala has many attractive features, such as cross-platform taking advantage
of JVM; as well as with higher level abstraction agnostic to the developer providing immutability with
persistent data structures, pattern matching, type inference, higher order functions, lazy evaluation and
many other functional programming features. . Scala is truly good at breaking down complex large scale
projects into manageable small solutions that work together in a functional fashion.

LLVM as a very powerful compiler infrastructure providing many advantages in compiler optimization
and interfacing with many languages to ease the compiler backend writing magnificently.

2 Introduction

Scala—— is a prototype towards to be a full-fledged production-ready functional programming language
with full support of current version of Scala. It will have fast startup time and potentially be able
to leverage LLVM optimization/analyse. The prototype compiler will translate source code with a
subset of Scala syntax to LLVM IR, The intermediate representation from frontend of the compiler
will be implemented in OCaml, machine code from LLVM eventually running on all LLVM-supported
architectures.

The ”frontend” means the beginning part of the compiler, which consists of lexical analyzer, tokenizer,
abstract syntax tree generator, semantic checker, the end product (intermediate representation) of this
compiler frontend will be the input of the subsequent ”backend” compiler, LLVM language binding will
be used to create this part. So taking advantage of LLVM, the final output from this compiler will be low
level machine code-generated executables; i.e., writing clean and concise, easy to maintain Scala code
with functional programming features, while achieving performance approaching to assembly languages.

1of 8

3 Project Design

e Compiler

— LLVM-IR
— Support x86 and ARM

— Support a subset of Scala features!
e Benchmarking

— Testing code

* Basic algorithms written in Scala, or the targeting Scala-like language
* Algorithm testing code counterpart in OCaml and/or other programming languages
— Testing compiler For comparison purposes, to see the differences between the project and
existing compilers and interpreters
% target compiler (LLVM)
* gee/g++
Sun Java Development Kit (JDK)
x Perl
* Python

*

— Benchmark utilities

4 Language Prototype Features

The LLVM-Scala—— Prototype will be a succinct, statically typed, functional programming, JVM-free
language with relatively sophisticated type system.

The Prototype will share the same file suffix .scala as the Scala programming language. Only a small
subset of Scala features will be supported in this Prototype, which were documented in this Proposal; all
others that were not mentioned in this Proposal will not be supported or be supported in a very limited
way. From the language processing mode point of view, only compilation will be supported in the
Prototype; there will be no support for REPL or scripting. Object-oriented feature will be omitted. For
instance, there will be no trait, or class. Another example was supporting import in a limited way, in
that only supported library or Prototype-compatible code would be allowed to imported into a Prototype
code and there is no definition of package. Further more, there will be no support for named arguments,
variable number of arguments, companion objects, object comparison, nested functions, nested classes,
Actors, file I/0, or exception handling, The undecidable supporting features will be documented in future
report when necessary, for instance, the range difference between the Prototype and Scala for Int values.

4.1 Language Features

Typically, the supported features include the following:
e Comment: //, and /* */
e Semicolon
e import
e Literals

— Boolean: true, and false
— Int

Character

— String

e List

1Details mentioned in the section of Language Prototype Features

20f 8

e Tuple
e Mathematical operation

- +7 -, %, /7 %
— Shorthand notations: + =, —+, x =, / =, % =

— Basic functions: min, max, abs, ceil, floor, round, pow, log, loglO, sqrt
e Conditionals:

— Conditional operators: ==, | =, <, <=, >, >=
— Logical operators: &&, ||, !
— if, else

— Loop: for-loop, to, until, while-loop, do-while-loop
e Pattern matching
e Input/output: string interpolation, readLine, print, println, printf
e Variable definition and type inference
e Method declaration and definition
e Higher order functions

e class, extends, override

4.2 Code Example
4.2.1 General Demonstration with Pattern Matching

The Prototype language will be a subset of the native Scala, hence the compatible code is essentially
Scala with confined features.

Listing 1: Hello World!
object HelloWorld {

def main(args: Array[String]) {
println (” Hello, world!”);

}

HelloWorld . main (args)

Listing 2: Functional programming paradigm
// Pattern matching, anonymous functions, partition, tuple decomposition
def quickSort(a: List[Double]): List[Double] = a match {
case Nil => Nil
case X :: XS =
val (lt, gt) = xs.partition(. < x)
quickSort (1t) 4+ List (x) ++ quickSort(gt)
}
println (quickSort (List (2,3,1,3.1,3,3.1415926,14,3.1415)))

4.2.2 Conditionals

Listing 3: If-Else statement

if ((age >= 5) & (age <= 6)) {
println (”Go to Kindergarten”)

} else if ((age > 6) && (age <= 7)) {
println (?Go to Grade 17)

} else {
println (”Go to Grade ” + (age — 5))
}

30f 8

4.2.3 Looping

The following looping example shows the basic supported feature in the Prototype language.

Listing 4: Looping
var i = 0;
while (i <= 5) {
println (i)
i4+=1

}

do {
println (i)
i4=1

} while (i <= 9)

for (i <= 1 to 10) {
println (i)
}

However, the for-looping will not support the following semicolon-separated conditional:

Listing 5: NO support
for (i <= 1 to 5; j <— 6 to 10) {
println(7i: 7 + 1)
println("j: 7 + j)

Listing 6: until keywords in looping
val randLetters = ”ABCDEFGHIJKLMNOPQRSTUVWXYZ”
for (i <— 0 until randLetters.length) {
println (randLetters (i))

Listing 7: Iterate through a List
val aList = List(1,2,3,4,5)
for (i <— aList) {
println (” List iitem ” + i)

4.2.4 Input and Output

Listing 8: STDOUT with string interpolation

val name = " Derek”

val age = 39

val weight = 175.5

println (s” Hello $name”)

println (f”1 am ${age + 1} and weight $weight%.2{")

The following printf example showed limited support of native Scala:

Listing 9: STDOUT with string interpolation

printf("%d %s %f %c”, 1, ”string”, 3.1, ’c¢’) // Supported
printf(”’%5d’\n” ,5) // Right justify , NOT supported
printf("’%—5dHi’\n” ,5) // Left justify , NOT supported

printf(”’%05d\n”, 5) // Zero fill , NOT supported

printf(”’%.5f’\n”, 3.14) // Five decimal minimum & maximum, NOT supported
printf(”’%—5s’\n”, ?Hi”) // Left justify String, NOT supported

40f 8

4.2.5 Strings
Listing 10: Available methods in String object

var randString = 7”1 saw a dragon fly by”
println (” String: ” 4+ randString)

println (”3rd index value: ” 4 randString(3))

println (” String length: ” 4+ randString.length ())

println (” Concatenate: ” 4+ randString.concat(” and explode”))

println (” Compare strings for equality; are strings equal ” 4+ 7”1 saw a dragon”.equals(ra:
println (” Get index of a match; dragon starts at index: 7, randString.indexOf(” dragon”))

”

println (” Dragon at: + twoDragonString .indexOf(” dragon”))
// Convert a string into an array
val randArray = randString.toArray
for (v <— randArray)
println (v)

4.2.6 Functions

The function definition takes the following format:

Listing 11: Function definition

def funcName (paraml: dataType, param2: dataType) : returnType = {
function body
return valueToReturn

}

// Give parameters default values

def getSum (numl: Int = 1, num2: Int = 2) : Int = {
return numl + num?2

}

println (” Default sum: ” 4 getSum ())
println(?5 + 4 =7 + getSum (5, 4))

// Recursion function
def factorial (num : BigInt) : Biglnt = {
if (num = 1)
1
else
num * factorial (num — 1)

}

println (” Factorial 20: ” 4+ factorial (20))
Named arguments and variable number of arguments are not supported.

Listing 12: NO support
println ("5 + 4 = ” 4+ getSum(num2 = 5, numl = 3))

def getSum2(args: Intx) : Int = {
var sum : Int = 0
for (num <— args) {
sum —+= num
}

sum

}
println (” getSum2: ” + getSum2(1,2,3,4))

4.2.7 Tuples

50f 8

Listing 13: Supported Tuple operations

// Tuples can hold values of many types, but they are immutable
var tupleMarge = (103, ”"Marge Simpson”, 10.25)

printf(”%s owes us $%.2f\n”, tupleMarge._2, tupleMarge._3)

// Iterate through a tuple

tupleMarge. productlterator.foreach{i => println (i)}

// Convert Tuple to String

println (tupleMarge. toString ())

4.2.8 Higher Order Functions

Listing 14: Example of supported higher order functions

// Functions can be passed like any other variable
// -7 is required after the function to state the meant function
val loglOFunc = logl0 _
println (”Logl0 is: ” 4 logl0Func(1000))
// Apply a function to all items of a list with map
List (1000.0, 10000.0).map(logl0Func). foreach(println)
// Use an anonymous function with map; receives an Int x and multiplies everyone by 50
List (1,2,3).map((x : Int) => x * 50).foreach(println) // i.e.,
List (1,2,3).map(- % 50).foreach(printin)
// Filter passes only those values that meet a condition
List (1,2,3,4).filter (- % 2 = 0).foreach(println)
// Pass different functions to a function
def times3 (num : Int) = num * 3
def times4 (num : Int) = num x 4
// Define the function parameter type and return type
def multlt(func : (Int) => Double, num : Int) = {
func (num)
}

printf(”3 x 100 = %.1f\n”, multlt(times3, 100))
printf(”4 % 100 = %.1f\n”, multlt(times4, 100))

Closure will not be supported. For instance, the following code will not work in the Prototype:

Listing 15: NO support for closure

val divisorVal =5
val divisor5 = (num : Double) => num / divisorVal
println ("5 / 5 =" 4+ divisor5(5.0))

4.3 Language Reserved Words

case starts for matched expression

class starts a class declaration

def starts a method declaration

do starts a do-while loop

else starts else clause for an if clause in case the evaluation of if expression is false
extends indicates inheritance via parent class extension to derive child class(es)
false boolean value

for starts for loop

if starts if expression

import import members into current scope

match starts pattern matching expression

6 of 8

new creates a new instance of a class

null represents a null value

object instantiated class object

override indicates an update for a definition of original member of class
return indicates termination from a function call and pass the value on to call stack, if there is any
super refers an object’s parent

this represents object itself

to used in loop comprehensions

true boolean value

type starts a type declaration

val represents read-only value variable

var represents modifiable variable

until used in loop comprehensions

while starts a while loop or while block of a do-while loop

yield generate results from a loop

_ represents function literal

: separator between identifier and type annotation

= assignment

<- generator expression in comprehensions

=> geparator between argument list and function body in function literals
; optional separator between expression and statement

, separator between expression or literals

I logical negation

& logical AND

| logical OR

&& conditional AND

|| conditional OR

<=, >, >=, != comparison

(,),{,} scope confinement symbols for expressions, statements, function blocks; or position access for
List, Array etc

//, /*, */ comments

5 Reference

5.1 Scala programming language
1. Martin Odersky, The Scala Language Specification, Programming Methods Laboratory, 2014
2. http://www.scala-lang.org/files/archive/spec/2.11/
3. http://docs.scala-lang.org/cheatsheets/

7of 8

5.2

1.
2.

Scala programming language development
https://wiki.scala-lang.org/display /SIW /Compiler+Walk-Through
http://www.scala-lang.org/old /node/215.html
http://www.scala-lang.org/contribute/hacker-guide.html

https://github.com/lampepfl /dotty.git

Compile Scala to LLVM

1. http://vmkit.llvm.org/

. https://github.com/scala-native/scala-native

https://github.com/greedy /scala

https://code.google.com/archive/p/slem/

Benchmarking

. http://benchmarksgame.alioth.debian.org/

8 of 8

	Background
	Introduction
	Project Design
	Language Prototype Features
	Language Features
	Code Example
	General Demonstration with Pattern Matching
	Conditionals
	Looping
	Input and Output
	Strings
	Functions
	Tuples
	Higher Order Functions

	Language Reserved Words

	Reference
	Scala programming language
	Scala programming language development
	Compile Scala to LLVM
	Benchmarking

