Altera’s Avalon Communication Fabric

Stephen A. Edwards
Columbia University

Spring 2016



Altera’s Avalon Bus

Something like “PCl on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Ethernet
PHY
Chip

Avalon-MM System

Processor
32-hit
Avalon-MM
Master Port

A

Ethernet MAC

32-hit
Avalon-MM
Master Port

Custom Logic

64-hit
Avalon-MM
Master Port

System Interconnect Fabric

32-hit
Avalon-MM
Slave Port

SDRAM
Controller

16-hit
Avalon-MM
Slave Port

64-hit
Avalon-MM
Slave Part

A

8-hit 16-bit

SDRAM RS-232
Avalon-MM Avalon-MM Memory
Tristate Tristate Chip
Slave Port Slave Port
Flash SRAM
Memory Memory
Chip Chip

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc.
E.g., the Nios Il processor

Slaves: Respond to requests from masters, can generate
return data. E.g., a video controller

Most peripherals are slaves.
Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral

Avalon-MM
Interface

(Avalon-MM

Slave Port)

Avalon-MM Peripheral

writedata[15..0]

write

Y
w)

chipselect

clk

'— CLK_EN

pio_out[15..0]

Basically, “latch when I'm selected and written to.”

Application-
Specific
Interface



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

reTTHTTT

readdata[15:0]

irq

clk

reset
chipselect
address[4:0]
read

write

byteenable[1:0]
writedata[15:0]

=
_)

Avalon



Avalon Slave Signals

clk Master clock

reset Reset signal to peripheral

chipselect Asserted when bus accesses peripheral
address|..] Word address (data-width specific)

read Asserted during peripheral—bus transfer
write Asserted during bus—peripheral transfer
writedatal..] Data from bus to peripheral
byteenablel..] Indicates active bytes in a transfer
readdatal..] Data from peripheral to bus

irq peripheral—processor interrupt request

All are optional, as are many others for, e.g., flow-control
and burst transfers.



In SystemVerilog

module myslave(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,

input logic [2:0] address);




Basic Slave Read Transfer

clk
address
read
chipselect

readdata

/l_

Ll
L1

- .

Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational



Slave Read Transfer w/ 1 Wait State

clk
address
read
chipselect

readdata

[ —

e

Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals

alsis



Basic Async. Slave Write Transfer

clk !
address / _
write \_l__
chipselect \_l__

WACCEIER S S S —

Bus cycle starts on rising clock edge
Data available by next rising edge

Peripheral may be synchronous, but must be fast



Basic Async. Slave Write w/ 1 Wait State

[

clk

address

e

write

chipselect

mHH .

writedata _ ‘

Bus cycle starts on rising clock edge
Peripheral latches data two cycles later

For slower peripherals



The VGA_LED Emulator Peripheral

module VGA_LED(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,

input logic [2:0] address,
output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS,
output logic VGA_BLANK_n, VGA_SYNC_n);
logic [7:0] hex0, hexl, hex2, hex3,

hex4, hex5, hex6, hex7;

VGA_LED_Emulator led_emulator(.clk50(clk), .=x);




The VGA_LED Emulator Peripheral

always_ff @(posedge clk)
if (reset) begin
hex0 <= 8’b01100110; // 4
hexl <= 8’b01111111; // 8
hex2 <= 8’b01100110; // 4
hex3 <= 8’b10111111; // 0
hex4 <= 8’b00111000; // L
hex5 <= 8’b01110111; // A
hex6 <= 8’b01111100; // b
hex7 <= 8’b01001111; // 3
end else if (chipselect && write)
case (address)
3’h0 : hex0 <= writedata;
3’hl : hexl <= writedata;
3’h2 : hex2 <= writedata;
3’h3 : hex3 <= writedata;
3’h4 : hex4 <= writedata;
3’h5 : hex5 <= writedata;
3’h6 : hex6 <= writedata;
3’h7 : hex7 <= writedata;
endcase

endmodule




