Project PixMix

September 26, 2017
Programming Languages and Translators
Stephen Edwards

Team Members

Name Uni Role
Alexandra Taylor at3022 Tester
Christina Charles cdc2192 Language Guru
Edvard Eriksson ehe2107 Manager

Nathan Burgess nab2180 System Architect

Objective

To create a language to allow images to be easily generated and manipulated
programmatically.

Introduction

Currently, there are few, if any, languages designed specifically around the generation and
manipulation of image data. This role is primarily left up to image editing software that an artist
or designer must use.

Enter Pixel

Pixel is a simple, python-like programming language designed for efficient, programmatic
generation and manipulation of images. The idea is to lower the user’s reliance on libraries by
offering useful built-in data types and functions specific to image manipulation. These features
will hopefully serve as intuitive building blocks that can be combined to create programs in an
easier way than through the use of libraries. Pixel does not allow for image-processing only
image generation and manipulation it eliminates many layers of processing and strives for
readability, simplicity and speed. This narrow scope is useful to artists and designers who do
not utilize image-processing functionality.

Pixel uses static typing and includes area-specific data types such as Image, Pixel and Color. It
will also contain predefined common color keywords. This way a pixel can be assigned “blue”
without having to type it out in hex. The keyword var can be used a la C# in loops to allow for
optional implicit typing.

Overview of Notable Design Decisions (to laugh at and criticize)

- High-level image manipulation/generation language

- Python-like syntax

- Statically typed

- Built in data-types specific to image manipulation

- Built in functions specific to image manipulation

- Color keywords within a Color data type (red, blue, green, yellow, etc)

Data Types

Standard

Type Description Initialization

Int Basic 4-byte integer Int varName = 0

Float Standard single-precision Float varName = 1
32-bit IEEE 754 value Float varName = 1.2

Float varName = .2

Bool Basic 1-bit boolean Bool varName = true
true, false, 0, or 1 Bool varName = 0

Char Basic 1-byte character from Char varName = ‘c’
standard ASCII character set. | Char[] varName = “Hello”

Array A standard array Array varName = [1, 2, 3]
implementation Array varName = []

Unique to Pixel

color. Various color names
will be predefined in the Color
namespace.

Image The data type to hold all Image im =
image data together in one Image.load(“filename.bmp”)
variable.

Pixel A representation of a single Pixel pi = Color.lightblue
pixel in an image.

Color A representation of an RGBA | Color red = [255, 0, 0, 1]

Color blue = [0, 255, 0]

Control Flow

Control is managed by indentation, following a Python-like approach.

Conditionals
if

elif

else

switch

Loops

Loop over components of an object (ex: Images iterate by Pixels)
for var 1 in Image:

Loop over a range
for var 1 in 2 to 10:

Loop until a condition becomes false
while var 1 < 10 or var x > 3:

Empty values

null
undefined
NaN

0

Empty string
Empty char *

Logical operators

and
or

not
|

=
>

<

Arithmetic operators

+

++

/

%

+=

/=

Comments

// Line
/** Block

Boolean variables

true
false

Example Programs

Sample program 1: Hello World

// prints greeting according to time of day
Char[] out = “Good”

if Time.now < Time.get(1200):

€€ 12

out += “ morning

elif Time.now < Time.get(“5 PM”):
out += “afternoon!”

else

1%

out += “evening

Console.log(out) // Print the contents of “out” to stdout

Sample Program 2: Blacken any pixels that are “too” red, blur the
image, then save as a new file

// Load an image from disk
Image img = Image.load(“sample.bmp™)

// Loop over every Pixel in the Image
for var p in img:
// If red channel is more than 100, remove red
if p.red > 100:
p.red =0

img.gaussianBlur(3) // Blur the image
img.saveAs(“sample-redMute-Blur.bmp”) // Save to a new file

Sample Program 3: Fibonacci

fun int fib(int 1):
if 1 ==
return 0
if 1 ==
return 1

Console.read(int 1) // Prompt user for input
Console.log(fib(i - 1) + fib(i - 2)) // Print result to stdout

Sample Program 4: Compositing Images

Corner

o
Py

Base

D30

EREE BHITER \O%z

MORE

Image base = Image.load(“base.bmp™)
Image corner = Image.load(“corner.bmp™)
Image frame = Image.load(“frame.bmp”)

base.width / frame.width
base.height / frame.height

Int frameRepX
Int frameRepY

for var 1 in frameRepX:
base.place(frame, 0, 1)
base.place(frame, base.height, 1)

frame.rotate(90)

for var 1 in frameRepY:
base.place(frame, 1, 0)
base.place(frame, i, base.width)

base.place(corner, 0, 0)

corner.rotate(90)

base.place(corner, base.width, 0)
corner.rotate(90)

base.place(corner, base.width, base.height)
corner.rotate(90)

base.place(corner, 0, base.height)

base.saveAs(“SAEFramed.bmp”)

Result, SAEFramed.bmp

| kal

B OBESER Oz

