
 raft
2D Gaming Language

The Team
Member Main Responsibility

Martin
Fagerhus

Code Generation

Roy Prigat Compiler Front End

Abhijeet
Mehrotra

C - Implementation, SDL

Daniel Tal Semantic Checking

Motivation and
Goals

● Why is it so difficult to create games in
languages such as C or Java?
○ Worry about game loop
○ Difficulty in defining binding events to

specific elements.
○ Tedious

Why Us? ● We allow a user to build a 2D game
with ease of just worrying about
adding user defined elements,
events, and a world

● This is all done with much less code
and makes it more straight forward
for the programmer to develop a
game

● We include in-built language
components to make game building
easy to do/understand

Program Structure

● Designed for ease of use and
straightforward semantics.

● A world is the only required
component.

● If an element is defined, it is
required to add its properties as
well(color,size).

<global variables>

<global functions>

<event definitions>
<Event>

<condition>
<action>

<element definitions>
<element>

<properties> - required

<world definition> - required
<world>

<properties> - required
<local variables>
<statements block>

Types

● Color and size are properties of
world and element components.

● Color is a string literal which
corresponds to hex codes.

● Size is a pair type which defines
the pixel size of an element/world.

int a = 3;

bool b = true;

float f = 3.4;

string s = “hello”;

pair p = (50,70);

Events

● Define game “rules”

● Condition defines the expression

that triggers the event when true.

● Action defines how the event

reacts with the element it binds to.

event move_down(player) {

condition = key_press(“DOWN”);

action {

Player1.pos.x = 400;

}

}

Elements

● Properties

○ Size of type Pair

○ Color (a hex string)

○ Direction (Integer) - optional

○ Speed (Integer) - optional

element player {

size = (50,50);

color = “f44141”;

direction = 90;

speed = 1;

}

World

● Properties - required

○ Size of type Pair

○ Color (a hex string)

● Adding new elements to the game

environment

● Adding event to the event loop,

where each event is bound to a

selected element.

world {
properties {

size = (500,200);
color = “42f4eb”;

}
element player = new player(20,20);
add_event(move_up);

}

Control Flow
if (true){

x = 5;
} else {
 x = 3;
}

int x = 0;
while(x == 0){

add_event(move_up);
x = x +1;

}

int x = 0;
for(x , x <= 10, x++){

add_event(move_down);
}

If/else

While
loops

For
loops

Sample Program

● A game with one player which can
move up on pressing “UP” arrow
key

Runtime ● Based on SDL

● Infinite loop

● Has functions to:

○ Render elements

○ Help determine collisions

○ Trigger callback functions

 Architecture

Testing

● An automated testing script runs over all
test files and produces a testall.log.

● The log file includes the output of all
tests.

● Fail tests output exceptions as defined in
the semantics checker, these are printed
out in the log file.

● Success tests simply produce an
executable program which is later
manually tested.

Automated Tests

● Declarations

● Statements

● Functions

● Expressions

● Semantics

Manual Tests

● Colors and size

● Elements

● Event actions

Demo

