
Kristy Choi, eyc2120
Raymond Xu, rx2125

Benjamin Low, bkl2115
Dennis Wei, dw2654

Kevin Lin, kl2806

Pseudo: Algorithm Design and Implementation Language

Introduction
We will implement a high-level pseudocode-style programming language for designing and
implementing algorithms. Traditional high-level programming languages such as Java and C++
are often unnecessarily verbose for algorithmic definition. Our language will use Pythonic
syntax, type inference, and keywords to maximize human readability and ease of algorithmic
prototyping.

Our language will be perfect for rapidly prototyping algorithms, verifying the behavior of
algorithms on given inputs, and for educational purposes, as the syntax is inspired by the
easily-readable pseudocode from CLRS, the classic textbook for algorithmic analysis. Our
language will follow an imperative programming paradigm, as the pseudocode from CLRS
explicitly avoids objects and member functions. Our language will have automatic memory
management and compile to LLVM.

Features
Type inference
One key feature of our language is type-inference. The compiler will automatically infer the
types of variables at compile-time, eliminating the need to explicitly declare the types of function
parameters and local variables. As such, programmers can simply define a function with
parameters ​(A, i, j)​, and as conventional pseudocode suggests, these will be correctly
labelled as a list and two integers. We will accomplish this using the Hindley-Milner type
inference algorithm in combination with a standardized notation for common data structures.

Keywords
Powerful keywords are another key element of our language. Common helper functions such as
“swap” and “union” will act as keywords for convenience and reduce the cognitive burden of
having to implement helper functions later. As a starting point, we will implement keywords that
are most frequently used in the algorithms provided by CLRS. In addition, we will implement an
“assert” as a keyword that takes a boolean value that returns error if false, allowing programmers
to test and verify their assumptions about their programs

Example syntax:
A = [5, 6, 8, 7, 9]
swap 2, 3 in A

Automatic variable initialization
Variables do not have to be explicitly initialized, or even explicitly defined. During
compile-time, we will be identify all variables and their corresponding types. These variables
will be automatically initialized to predictable default values. For example, one can define a for
loop that goes from 0 to 10 without explicitly declaring the index variable and its type.

Graph algorithms/library
Our language will support implementation of common graph algorithms such as BFS and DFS,
as well as sorting algorithms. An example of a default implementation of sorting in ​Pseudo
would be the Quicksort algorithm. At compile time, the compiler will infer what properties
graphs and nodes have (such as augmented values) and allocate memory accordingly.

Syntax
The syntax of our language resembles a fusion of Python and pseudocode, allowing
programmers to express and experiment with algorithmic ideas concisely. We will use
Python-style indentation to denote control flow, without use of braces.

Variables are typically named using lowercase letters exclusively (i.e. ​i, j, k, sum,
count​). Data structures typically are named a single capital letter (i.e. ​A, B, S, T​).
Functions must be named in all capital letters (​MERGE, BFS, etc.) and include the ​def
keyword prefacing the name. With the exception of functions, these naming patterns are
recommended conventions in the language - they are encouraged, but by no means enforced.

Data Types
Our language will support basic types as well as types that come up frequently in common
algorithms. Primitive types include int, float, boolean and strings. More advanced data types
include Nodes, Edges, Lists, Sets, Maps, and Graphs.

Lists serve as multi-purpose data structures. A list functions as an array, list, stack, and queue,
and supports common idiomatic operations for each of them, such as ​append()​, ​push()​, and
pop()​.

Example Program
def BFS-CONNECTIVITY(G, s, t)

for each u in s.adj

Q.push(u)
while Q is not empty

v = Q.pop()
if v is t

return true
visited.append(v)
for each u in v.adj

if u not in visited
Q.push(u)

return false

def MAIN()

a.adj = [b, c]
b.adj = [a, d]
c.adj = [a, b]
d.adj = [b]
G = [a, b, c, d]
print BFS-CONNECTIVITY(G, a, d)

$ pseudo bfs.sd
$./bfs
>> true

Team Roles

Kristy Choi - Manager
Raymond Xu - Language Guru
Benjamin Low - System Architect
Dennis Wei - System Architect
Kevin Lin - Tester

