SSOL Language Reference Manual

Madeleine Tipp Jeevan Farias Daniel Mesko
mrt2148 jtf2126 dpm2153
Manager Language Guru System Architect

October 15, 2018

Contents
1 Lexical Conventions
1.1 Identifiers e e
1.2 Keywords L e e
1.3 Literals s
1.4 Comment e
1.5 Punctuator e
1.6 Whitespace e e
2 Types
2.1 Primitives e
2.2 Complex Types o o o vt e
2.2.1 Point e e
2.2.2 CUIVE e
2.2.3 Canvas e
2.3 AITAYS
3 Syntax
3.1 Type Specifiers e e e e e
3.1.1 Primitives e e e
3.1.2 Complex Types o o o e e
3.2 ATTAYS . . . L e e
3.2.1 Declaration
3.2.2 ACCeSSING
3.3 0perators e e e
3.3.1 Arithmetic e e
3.3.2 Comparison e e e
3.3.3 Logical e e
3.3.4 Assignment
3.3.5 Canvas e
3.4 Statements e e
3.4. 1 Sequencing e e
3.4.2 Control Flow e
3.4.3 LoODS . . oo e
3.5 Functions
3.5.1 Declaration e e
3.5.2 Function Calls e e e
4 Execution
4.1 SCOPE . o v
4.2 main()o

5 Standard Library Functions 7

5.1 draw() . . .o 7

5.2 printf() ..o 7
6 Sample Code 7
Introduction

SSOL is a programming language that allows users to create shapes algorithmically and render them in an
SVG file. It features two built-in shape objects, Point and Curve, which can be used as building blocks to
define more complex polygons or curved figures. The shapes are then added to a user-defined Canvas object,
which abstractly represents the plane on which the shapes are to be drawn. The Canvas object can then be
passed into the built-in draw() function to be rendered and stored as an SVG file. Without using draw(),
SSOL functions as a minimal, general purpose programming language similar to C.

1 Lexical Conventions

1.1 Identifiers

Identifiers consist of one of more characters where the leading character is a uppercase or lowercase letter
followed by a sequence uppercase/lowercase letters, digits and possibly underscores. Identifiers are primarily
used in variable declaration.

1.2 Keywords

Keyword Definition
if initiates a typical if-else control flow statement
else
while initiates a while loop
for initiates a for loop
break ends a loop
continue skips an interation of a loop
return returns the accompanying value (must be of the appropriate return type)
void used to identify a function that does not return a value
int type identifier for int
float type identifier for float
bool type identifier for bool
char type identifier for char
String type identifier for String
Point type identifier for Point
Curve type identifier for Curve
Canvas type identifier for Canvas
true literal Boolean value
false literal Boolean value

1.3 Literals

Type Definition
Int A sequence of one or more digits representing an un-named(not associated with
any identifier) integer, with the leading digit being non-zero (i.e. [1-9][0-9]*)

bl

Float A sequence of digits seperated by a ’.
number (i.e. [0-9]*.[0- 9][0- 9]*)

representing an un-named float-point
Char A single character enclosed by single quotation marks representing an un-names
character. (i.e. ‘")

String A sequence of characters enclosed by a pair of double quotation marks repre-
senting an un-named string. (i.e. ~ “*” §)

Bool 8-bit boolean variable, either true or false

1.4 Comment

SSOL supports single line and multi-line comments. Single line comments are initiated by two “/” characters.
(i.e. //), and are terminated by a newline character. Multi-line comments are initiated by the character
sequence ’/* and terminated by the character sequence "*/*.

// This is a single line comment

/* This is a
multi-line comment */

1.5 Punctuator

A punctuator is a symbol that has semantic significance but does not specify an operation to be performed.
The punctuators [], (), and {} must occur in pairs, possibly separated by expressions, declarations, or
statements. The semi-colon (;) is used to denote the end of every statement or expression. SSOL includes
the following punctuators: [](),;

SSOL uses the semi-colon for sequencing and denoting the end of an operation. Terminate every statement
with a semicolon ().

1.6 Whitespace
Whitespace (space, tabs, and newlines) is ignored in SSOL.

2 Types
2.1 Primitives
Type Definition
int 4 byte signed integer
float 8 byte floating-point decimal number
bool 1 byte Boolean value
char 1 byte ASCII character
String array of ASCII characters

2.2 Complex Types

The following built-in complex data types are represented as objects with member fields and are instantiated
using their associated constructors. The individual fields of the objects can be accessed and modified with .
notation, ex: object.field

2.2.1 Point

A Point object contains two fields: an xz and a y coordinate value, both of type float.
A Point object is instantiated using its sole constructor:

Point(double x, double y)

2.2.2 Curve

A curve object represents a Bezier curve, defined by two endpoints and two control points. Curves are
instantiated using the following two constructors:

Curve(Point a, Point b)
Curve(Point a, Point b, Point c1, Point c2)

The first constructor creates a straight line defined by endpoints a and b. The second constructor creates a
curve defined by endpoints ¢ and b and control points ¢l and c2.

2.2.3 Canvas

A canvas object represents a two-dimensional coordinate plane to which Point and Curve objects are added.
These graphical elements are added using the | operator. Canvas objects are outputted to files via the draw
library function.

A canvas object is instantiated using either of the following two constructors:

Canvas ()
Canvas(int x, int y)

The first constructor creates a Canvas object with default dimensions of 1000 x 1000.
This second constructor creates a Canvas object with the dimensions specified by the values for and y.

2.3 Arrays

Arrays are a built-in data structure consisting of sequential elements of a single type. See section 3.2 for
usage.

3 Syntax

3.1 Type Specifiers

SSOL is a language with explicit typing. All variables and functions must be declared with a type specifier,
which tells compiler which operations are valid for the former and what to expect the latter to return. In
SSOL declaration and assignment must happen in separate statements.

3.1.1 Primitives

int x;

X = 3;

String myString;
myString = "hello";
bool b;

b = true;

3.1.2 Complex Types

//Canvas can be instantiated with default size or with a user specified size
Canvas canl; canl = Canvas();
Canvas can2; can2 = Canvas(100,100);

Point pt; pt = Point(10,20);

//Create a straight line by declaring a Curve with only 2 arguments
Curve crvl; crvl = Curve((10,20),(100,200));

//Create a bezier curve by declaring a Curve using 4 arguments
//Here we demonstrate that Curve will except
Curve crv2; crv2 = Curve(pt, (40,40), (100,100), (120,140));

3.2 Arrays
Arrays in SSOL are instantiated with a fixed size and can only hold a single type, which can be either
primitive or complex. Array.length returns the length of the array.
3.2.1 Declaration
int arr[5];
arr = [1,2,3,4,5];
3.2.2 Accessing

Use brackets and an index to retrieve a value from an array. The specified index must be within the bound
of the array. The variable returned by the array access operation must match the variable that its value is
assigned to.

int i; i = intArr[0];

Point p; p = Point(intArr[0], intArr[1]);
3.3 Operators
3.3.1 Arithmetic

Addition (4), subtraction (-), multiplication (*), division (/), and modulo (%) are standard arithmetic
operators in SSOL which comply with order of operations. Increment (++) and decrement (-) are also
valid operators. These are all valid operations for both int and float, but cannot be used on int and float
together.

3.3.2 Comparison

Comparison in SSOL is done via ==, |=, <,>,<=, and >=. Only matching types can be compared. These
operators return a Boolean value of true or false

3.3.3 Logical
SSOL can perform logical operations of Boolean values with && (AND), || (OR), and ! (NOT).

bool bl; bl = true && true;
bool b2; b2 = false || false;

3.3.4 Assignment

The assignment statement is of the form <identifier> = expression, where <identifier> has been
previously declared.

3.3.5 Canvas

The Canvas object of SSOL has a set of unique operators for sequencing and addition to a the canvas.

| Use pipe to sequence Point and Curve objects
| = | Use pipend to add an object or sequence of objects to the canvas

Ex.

canvas |= crvl | crv2 | crv3d | crv4;

3.4 Statements
3.4.1 Sequencing

Consecutive statements are sequenced using the ; operator.

3.4.2 Control Flow

SSOL supports the standard if. . .else format of conditional statements. if requires a Boolean statement
to be evaluated.

int i = 3;
if (i>4){
print("i > 4");
} else {
if (i<3){
print("i < 3");
}
else{
print("i == 4");
}

3.4.3 Loops

SSOL supports for loops and while loops. For loops are an iterative construct that requires a starting index
variable, a bounding condition, and an operation to be performed at the end of each iteration.
A while loop requires a Boolean expression to be evaluated every time the loop is executed.

int i;
for(i = 0; i<arr.length; i++){
<loop-body>

}

int j; j = 0;

while(j<10){
j*=1;

}

3.5 Functions
3.5.1 Declaration

Functions are declared as follows:

<function-return-type> <function-name>([argl], [arg2],...)
{

<function-body>

[return <some-value>]

3

If the function has non-void return type, then it must return some value of that type at the end of the
function, or at the end of any potential path of execution within the function, if there are conditional
statements/loops. This is achieved using the keyword return.

3.5.2 Function Calls

Functions are called as follows:
<function-name>([argl], [arg2],...)

If a function returns a value, that value can be assigned to a variable, assuming the variable has been
previously declared, as in

<identifier> = <function-name>([argl], [arg2],...)

4 Execution

4.1 Scope

Variables persist only within the block of code in which they are declared. A block of code is enclosed by
curly braces ({ ... }).

Variables that are declared outside of any code block are considered global and are visible to all functions
within a program.

4.2 main()

Every valid SSOL program needs at least one function called main(). This is the routine that will be executed
at runtime, so program trajectory must start from here. Within main(), other user-defined functions may
be called. The return type of main() is void.

5 Standard Library Functions
5.1 draw()

draw() is the crux of the SSOL language. This method takes a single canvas object and a file name as a
string as arguments. draw() can be called as many times as the programmer desires, but there will be a 1:1
correlation between function calls and .SVG files written (if draw is called with the same filename twice, the
file will be overwritten).

5.2 printf()

print f() is a formatted string printing function. %s for string, %i for int, %f for float, %c for char, %b for
bool.

6 Sample Code

void main(){

int 1; 1
int w; w

1000;
1000;

Canvas can; can = Canvas(l,w);

//Create 4 straight lines that form a square

Curve top; top = Curve(Point(wx.1,1%.1),Point(w*.9,1%.1));
Curve right; right = Curve(Point(w*.9,1%.1),Point(w*.9,1%.9));
Curve bottom; bottom = Curve(Point(w*.9,1*.1),Point(wx.9,1%.1));
Curve left; left = Curve(Point(w*x.9,1%.1),Point(w*x.1,1*.1));

//Create a circle inside the square using 2 bezier curves
Curve semiTop; semiTop = Curve(Point(w*.25,1%.5), Point(w*.25, 1%.25),

Point (w*.75,1%.5), Point(w*.75,1%.25);
Curve semiBottom; semiBottom = Curve(Point (w*.25,1*.5), Point(w*x.25, 1*.75),
Point (w*.75,1*.5), Point(wx.75,1%.75);

