
Grape.grp
Timmy Wu, Nick Krasnoff, Edward Yoo, James Kolsby

Timeline Milestones Time

LRM, Scanner done, elementary Parser 10/15

Parser, AST, SAST, “Hello World” * 11/18

Semantically checked types (edges, nodes) 11/25

Edge, Node, List typing in codegen.ml* 12/2

Graph type in codegen.ml 12/10

Writing C library, Linking C library * 12/11

List indexing, Dot notation, Overloading functions* 12/12

Design Philosophy
- Our Goals

Execute graph algorithms

- Why Grape

The primary motivation behind Grape is to enable the parsing and
manipulation of graphs using simple syntax and inline initialization

C Graph vs Grape Graph

A simple program that creates a graph with an Edge
and two Nodes and gets the value of the neighbor of
one of the Nodes
The Grape program is much simpler and more
intuitive

Types
Edge: directed edges, can hold any data type

Node: Hold any data type, can have multiple edges outgoing to multiple nodes

List: Typed list, can hold any data type

Graph: Holds node and edge that respectively hold their own data.

List Manipulation
- Indexing
- Nested list with reference types

fun Int main() {
 String hi = "hi";
 print(hi[0]);

 List<List<Int> > a = [
 [1,2,3,4,5],
 [1,2,3,4,5],
 [1,2,300,4,5],
 [1,2,3,4,5]];

 print(a[2][2]);

 List<List<Node<Int> > > b = [
 ['1','2','3','4','5'],
 ['1','2','3','4','5'],
 ['1','2','313','4','5'],
 ['1','2','3','4','5']];

 print(b[2][2].val);

 return 0;
}Nested List (with Int and Node):

Graph types

fun Int main() {

 Graph<Int, Int> a;

 a = <<'3' -3- '4'>>;

 return 0;

}

fun Int main() {
 Node<Int> a;
 a = '3';
 return 0;
}

fun Int main() {
 Edge<Int> a = <<-3->>;

 return 0;
}

Node:

Edge:

DEMO: Simulating a DFA

