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1 Abstract

This paper documents the parallel functional programming implementation of Okapi BM25 in
Haskell. We showcase both the accuracy of our program with respect to the high-ranking results

returned, as well as performance improvements when the program is run under multiple cores.

2 Introduction

We are interested in the mechanics of ranking functions used by search engines that estimate
documents’ relevance for a given query. In natural language processing and information
retrieval, we have learned about tf-idf, which is a popular weighting scheme for ranking and
scoring documents used by search engines. With inspiration taken from a similar effort made by
two students in Professor Edward’s 2020 class, who parallelized the search ranking function tf-
idf (Ye et al., 2020), we explore the intricacies of an even stronger ranking function, Okapi
BM25, and apply it to a parallel setting. In the following sections, we give a brief overview of
the search ranking function Okapi BM25, followed by our parallelized implementation, detailed
by the chunking methods and results on multi-core tests. We also compare our program results

with a benchmark on various examples to demonstrate the correctness of our implementation.

3 Okapi BM25: A Search Engine Ranking Function

In Okapi BM25, we can roughly divide its work into two stages. The first (preprocessing) stage

consists



of building indices for the documents at hand, in which we record the occurrences of words both
inter-document and intra-document. The second stage copes with scoring each document with
respect to an input query. We apply the ranking function to each document, and output the top
matched documents as our result.

We will count the number of occurrences of each word in the documents (term frequency) and
how many documents include that word (document frequency). With the term frequency and

document frequency calculated, the BM25 score of a document D can be determined..

The following formula produces the score of a document D for a given query Q.
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, where f is the term frequency of the word in document D. In addition, k; and b are empirically

chosen hyperparameters.

In the formula above, note that IDF stands for “inverse document frequency”. IDF diminishes
the weight of terms that occur very frequently in the document set and increases the weight of
terms that occur rarely. For instance, IDF can lessen the importance of the stop-words such as
“the”, “this”, and “that”. Without such offset from inverse document frequency, term frequency
might over-emphasize the importance of these insignificant stop words and disrupt the balance

of the score calculations.
4 Comprehensive Walkthrough of the program

4.1 Preprocessing the dataset

All the experimentations run on our program are done on a public stories archive (Archive
Textfiles, n.d.). The dataset comprises 424 documents, including contemporary poems, Aesop’s

Fables, and several collections of Sherlock Holmes” adventures by Sir Arthur Conan Doyle.

In the preprocessing phase, each sentence is split into words, and each word is represented as a
token. To ensure correctness and robustness, we cleaned up the dataset by converting characters
to lowercase in each story and removing all irrelevant punctuations. This allows the later

tokenization (splitting by whitespace) to be done efficiently, without having to worry that words



followed by a comma or period would be treated as a different token. Similarly, we also tokenize

and normalize the input query similarly, as follows:

-- Return a list of normalized tokens
tokenizeAndNormalize :: String -> [String]

tokenizeAndNormalize query = map sanitizeWord (words query)

where sanitizeWord word = map toLower (filter isLetter word)

4.2 Building Individual Term Frequency Hashmaps

We build a term frequency hashmap (i.e. tfMap) for each document. Each hashmap consists of
the number of occurrences that a word appears in a specific document and is stored at the
document level as a field of the Document data structure. The size (i.e. number of unique keys)
of the hashmap would be the number of the unique vocabularies in the document. We can
subsequently derive the variable termSet from the keys of the hashmap, once its construction is

complete. The implementation can be shown as follows:

readDocument :: String -> String -> Document

readDocument title' text' = Document title'’
text'
tfMap

(Map.keysSet tfMap)
(sum (Map.elems tfMap))
where tfMap = buildTFMap text'

buildTFMap :: String -> Map.Map String Int
buildTFMap docText =

Map.fromListWith (+) [ (word, 1) | word <- tokenizeAndNormalize docText ]

4.3 Obtaining A Global Document Frequency Hashmap

After we preprocess every document to a cleaner format, we build a global document frequency
hashmap for the program, where keys are each unique word across the entire archive, and the
values are the number of documents that contain the word. Unlike the term frequency hashmap
which is calculated with respect to each document, and stored at the document level, the
document frequency hashmap (i.e. dfMap) is a global variable that stores each word that occurs
in the entire corpus along with their document frequency, i.e. the number of documents that the

word appears in.



The programmatic implementation is shown as follows:

-- Get the document count (DF) for each word
getAllDF :: [Document] -> Map.Map String Int
getAllDF docs = Map.fromListWith
(+)
[ tup | doc <- docs, tup <- zip (Set.tolList (termSet doc)) [1 :: Int, 1 ..] ]

4.4 Obtaining the top K stories

To obtain the top K stories, we build a min heap with size K. We loop over all documents and
push a document into the min Heap at a time. As soon as the size of min heap exceeds K, we
immediately pop the minimum one out from the heap. The size of the heap can be guaranteed
to be at most K, so the operation of popping an element from the heap takes O(log K) and
results in the overall time complexity to be O(N log K). Since the K is empirically much smaller

than N, our algorithm will perform significantly better than naive sorting.

topKDocuments
:: Int -> [(Double, Document)] -> Heap.MinPrioHeap Double Document
topKkDocuments _ [] = Heap.fromList [] :: Heap.MinPrioHeap Double Document
topKDocuments topK (sd : sds) = maybePop
(Heap.insert sd (topKDocuments topK sds)) where
maybePop
:: Heap.MinPrioHeap Double Document -> Heap.MinPrioHeap Double Document

maybePop minHeap | Heap.size minHeap > topK = Heap.drop 1 minHeap

| otherwise minHeap

5 Parallelization

The following graph shows the architecture of our algorithm. The thick green arrows represent
the implementation of parallelization. There are two flow/stages in the graph, which represent
the data pipeline to process the BM25 model. Initially, we have a single text file containing each
archived story’s relative path and their title, separated by a comma with one such instance on
each line. We process the text file as a list of “(path, title)” pairs and further read each separate

file into a data structure named Document. The Document data structure contains five fields,



namely the document title, the entire text string of the document, a term frequency hashmap,
an unordered set of all vocabularies of the document, and the document length. Once we have a
list of such documents, we can compute various utility global variables such as the Document
Frequency Hashmap and the average document length.

The second stage demonstrates how our search engine can be used. The program takes in a
tokenized query as the input. With the pre-calculated model parameters, we use the
aforementioned formula to compute the score. In the end, we loop over the list and maintain a
heap with size k. Each time we will push a (document, score) pair into the heap. Once the heap
size exceeds K, we pop the top out from the heap. The construction and balance of the heap
have a time complexity of O(N log K), where N is the total number of documents, and K is the

number of top results we are interested in.
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The runOkapiBM25 function in our main.hs file takes advantage of parallelization when
calculating the average document length and obtaining the global document frequency hashmap
after each document is read and parsed into Document objects. The following code snippet

shows the parallelization implemented with rseq and rpar:

let (avgDocLen, dfMap) = runkEval $ do
avgDoclLen' «<-
rpar $ (sum [ docLen doc | doc <- documents ]) “div® corpusSize
dfMap' <- rpar $ getAllDF documents
<- rseq avgDocLen'

<- rseq dfMap'

return (avgDocLen', dfMap')

5.2 Chunking with parListChunks

We adopt the chunking strategy to ensure that each CPU has an even workload. To be specific,
we use the built-in parListChunks that allows us to sequentially apply a strategy to chunks of a
list in parallel. The following code splits a Haskell list into chunks of length chunks, and
processes the list using the function getbocwithscore. To balance the load, threads fetch work
from a work queue (a sparkpool) (Stewart, 2016). Hence, the allocation to each thread is

dynamically determined at runtime.

scoreAllDocs
o Int
-> String
-> [Document]
-> Map.Map String Int
-> Int
-> Int
-> Double
-> Double
-> [(Double, Document)]
scoreAllDocs chunks query docs dfMap corpusSize avgDoclLen k b =
map
(\doc -> Data.Tuple.swap
(getDocWithScore (tokenizeAndNormalize query)
doc
dfMap

corpusSize



)

docs

“using” parListChunk chunks rseq

avgDoclLen
k
b

5.3 Multi-core Tests

To evaluate the effectiveness of parallelism, we perform experiments on 1, 2, and 6 cores, with

four different queries. The four queries are: “Sherlock Holmes”, “ Not quite so lazy, the second

little pig went in search of planks of seasoned wood”, “ Outside, Weaver asked. The rain had

almost stopped, but we stayed under the awning in case the acid content in the remaining drizzle

was dangerously high. The closed door behind us cut off Pete's threats and curses.”, and “An

enemy at its gate is less formidable, for he is known and carries his banners openly.”.

The table and the graphs below showcase the decrease in runtime while more cores are used to

run the program. This phenomenon holds true for all 4 example queries that we input to the

program. This proves the improvement in efficiency of our parallelized code.

asked. The rain had
almost stopped, but
we stayed under the
awning in case the
acid content in the
remaining drizzle was
dangerously high.
The closed door

Test Case \ No. Core |1 2 6
Sherlock Holmes 3.36 2.54 2.167
Not quite so lazy, the | 3.31 2.75 2.07
second little pig went

in search of planks of

seasoned wood

Outside, Weaver 3.49 2.69 2.09
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With respect to the speedup over single cores, we take the inverse of the runtime of multi-cores

by single-core-runtime, and calculate the fraction of improvement as follows:
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5.4 Threadscope Event Log

In the following event log, we use two cores as an example to showcase the parallelism of our

algorithm implementation. When running the code on six cores, we notice that despite our

parallel implementation, the program does not take full advantage of all cores. We suspect that

this is because 424 documents are not a sufficient size of dataset to push the program to the

limit. In other words, the Okapi scores can be efficiently calculated with two or three cores. This

is also acknowledged in the final section “Conclusions & Future Steps” as a potential

improvement to be made in the long run.
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6 Comparison with Benchmark: rank_ bm25

In this section, we compare our search ranking implementation with the Python package
rank bm25 (Brown, 2019) as our benchmark to prove the correctness of our program. One may
notice slight differences between the results, specifically in order. This is due to the differences

in handling negative IDF scores, and the hyperparameters k£ and b in the Okapi BM25 formula.

In rank_bm25, the package author calculates the inverse document frequency for a query term
¢; with the following formula:

— n(q.;) +0.5

IDF(g:) = ln(Nn(Qi +0.5) )

This results in a high chance of getting a negative value for the IDF score. The package author
handles it by changing every negative IDF score to the average inverse document frequency
multiplied by a hyperparameter “epsilon”. This method inevitably loses information, since we
will no longer be able to compare documents with various negative values — they will all end up

with the same adjusted average.

In our Haskell implementation, we handled negative IDF scores more robustly by adopting the

following formula:

N —n(g) + 0.5

IDF(g;) = In( @ 1 05)

+1)
This results in mostly positive IDF scores, and we can still rank the documents whose inverse
document frequency would have been negative in rank bm?25. This preserves the relativity of

suboptimal documents and maintains the robustness of the algorithm.

Our first example consists of the search query “Sherlock Holmes”. The top 10 story titles

returned by our parallel Haskell program are as follows:

"The Holmes List: A List of Books That Reference or Discuss Sherlock Holmes',
"The Adventure of the Bruce-Partington Plans’,

"The Adventure of the Siz Napoleons”,

"The Story of the Five Orange Pips’,

"The Adventure of the Missing Three-Quarter (A story)’,



"The Hound of the Baskeruvilles”,

"The Adventure of the Empty House",
"The Adventure of the Three Gables”,
"The Adventure of Black Peter’,

"The Adventure of the Golden Pince-Nez"

On the other hand, the top 10 story titles returned by the rank bm25 benchmark is as follows:

"The Holmes List: A List of Books That Reference or Discuss Sherlock Holmes"
"The Hound of the Baskervilles, by Sir Arthur Conan Doyle"

"The Adventure of the Bruce-Partington Plans”

"The Adventure of the Siz Napoleons”

"The Story of the Five Orange Pips"

"The Adventure of the Missing Three-Quarter (A story)’

"The Adventure of the Empty House"

"The Adventure of Wisteria Lodge"

"The Adventure of the Golden Pince-Nez"

"The Adventure of Black Peter"

In our second example, we experimented with a longer search query: “Not quite so lazy, the
second little pig went in search of planks of seasoned wood”. The top 10 story titles returned by

our parallel Haskell program are as follows:

"The Story of the 3 Little Pigs"

"Aesop's Fables Translated by George Fyler Townsend"

"The Seven Voyages of Sinbad the Sailor'

"Interview with the Radar Ranger: A Work of Fiction by D. Railleur”

"Aesop's Fables (84 of Them) from The PaperLess Readers Club"

"Gulliver's Travels, by Johnathan Swift (1726)"

"The Heart of Darkness by Joseph Conrad”

"The Vigilante"

"Complete Transcription of Douglas Adams' Life, the Universe and Everything"
"Complete Transcription of Douglas Adams' Restaurant at the End of the Universe"

Similarly, the top 10 story titles returned by the rank bm25 benchmark is as follows:

"The Story of the 3 Little Pigs’,



"The Seven Voyages of Sinbad the Sailor’,

"Aesop's Fables (84 of Them) from The PaperLess Readers Club’,
"Aesop's Fables Translated by George Fyler Townsend',

"The Diary of the Swarves”,

"The Story of Pinocchio’,

"Once Upon a Mattress’,

"Book 'Em Issue #3 (1995)",

"The Musgrave Ritual (Story)’,

"A List of Father Good Stories"

7 Conclusion & Further Steps

This report focuses on the parallel implementation of Okapi BM25 in Haskell. The first two
sections introduce our motivation and background of choosing this topic as our project. In
section 3, we give a brief overview of the Okapi BM25 formula, as well as the intuition between
choices of components in the algorithm. Section 4 provides a walkthrough of the algorithm
implementation, starting from normalizing and tokenizing the dataset, to constructing term
frequency and document frequency hashmaps, to finally using a min heap to obtain the top
results as our program output.

In Section 5, we dive deeper into the parallelization implementation of our program. We start
by explaining the motivation behind using rseq and rpar, and later move on to discuss chunking
with parListChunks. In addition, we demonstrate the improvements in runtime in section
“Multi-core Tests” with two plots showing the decrease in runtime when we increase the
number of cores for our program. Finally, we show the threadscope event log to highlight the
parallelization on an instance of two cores.

In Section 6, we compare our Haskell program with the public Python package rank bm25, to
ensure the correctness of our document rankings when run on a similar dataset. Despite the
slight differences in implementation, we exhibit the correctness of our code both quantitatively

and qualitatively through four example queries of different lengths.

Future works include pushing the limit of our implementation and running the program on a
much larger dataset to see more drastic improvements of the parallelization. We plan to

empirically quadruple the total runtime of a query to roughly 10 seconds.
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Appendix I: Program Listing

OKapiBM25__util.hs

{-# LANGUAGE DeriveGeneric #-}
module OkapiBM25 utils where

import Control.Parallel.Strategies

import Data.Char

import qualified Data.Heap as Heap
import qualified Data.Map.Strict as Map
import Data.Maybe

import qualified Data.Set as Set
import Data.Tuple

import GHC.Generics ( Generic )

-- termFrequency: frequency of a word in this document

-- termSet: all the words in this Document (i.e. all keys of the termFrequency map)
data Document = Document

{ title :: String

, text :: String

, termFrequency :: Map.Map String Int

, termSet 11 Set.Set String
, doclLen o Int
}

deriving Generic

scoreAllDocs
o Int
-> String
-> [Document]
-> Map.Map String Int
-> Int
-> Int
-> Double

-> Double



-> [(Double, Document)]
scoreAllDocs chunks query docs dfMap corpusSize avgDoclLen k b =
map
(\doc -> Data.Tuple.swap
(getDocWithScore (tokenizeAndNormalize query)

doc
dfMap
corpusSize
avgDoclLen
k
b

)

docs

“using” parlListChunk chunks rseq

getDocWithScore
[String]
-> Document
-> Map.Map String Int
-> Int
-> Int
-> Double
-> Double
-> (Document, Double)
getDocWithScore query doc dfMap corpusSize avgDoclLen k b =
(doc, sum [ individualScore q | q <- query ]) where
individualScore :: String -> Double
individualScore queryWord =
calcIDF queryWord
* fromIntegral (calcTF queryWord)
* (k + 1.9)
/ ( fromIntegral (calcTF queryWord)
+ k
* (1.0 - b + b * fromIntegral corpusSize / fromIntegral avgDoclen)
)
calcTF :: String -> Int
calcTF queryWord = fromMaybe © (Map.lookup queryWord (termFrequency doc))
calcIDF :: String -> Double
calcIDF queryWord
| Map.member queryWord dfMap = 1ln (fromIntegral corpusSize + 1)



- 1n (fromIntegral (fromMaybe © (Map.lookup queryWord dfMap)) + 0.5)
| otherwise = 1n (fromIntegral corpusSize * 2)

where 1n = logBase (exp 1)

readDocument :: String -> String -> Document

readDocument title' text' = Document title’
text'
tfMap

(Map.keysSet tfMap)
(sum (Map.elems tfMap))
where tfMap = buildTFMap text'

-- Get the document count (DF) for each word
getAllDF :: [Document] -> Map.Map String Int
getAl1DF docs = Map.fromListWith
(+)
[ tup | doc <- docs, tup <- zip (Set.tolList (termSet doc)) [1 :: Int, 1 ..] ]

topKkDocuments
: Int -> [(Double, Document)] -> Heap.MinPrioHeap Double Document
topkDocuments _ [] = Heap.fromList [] :: Heap.MinPrioHeap Double Document
topKDocuments topK (sd : sds) = maybePop
(Heap.insert sd (topKDocuments topK sds)) where
maybePop
:: Heap.MinPrioHeap Double Document -> Heap.MinPrioHeap Double Document
maybePop minHeap | Heap.size minHeap > topK = Heap.drop 1 minHeap

| otherwise

minHeap

buildTFMap :: String -> Map.Map String Int
buildTFMap textString =
Map.fromListWith (+) [ (word, 1) | word <- tokenizeAndNormalize textString ]

-- Return a list of normalized tokens
tokenizeAndNormalize :: String -> [String]
tokenizeAndNormalize query = map sanitizeWord (words query)

where sanitizeWord word = map toLower (filter isLetter word)



main.hs

import Control.Monad.Reader

import Control.Parallel.Strategies

import Data.Char

import qualified Data.Heap as Heap

import Data.Time

import OkapiBM25_utils

import Prelude

import System.Environment ( getArgs
, getProgName
)

import System.Exit ( die )

main :: I0 ()
main = do
(file, query, topK, chunks) <- getArgs >>= checkArgs
output <- runOkapiBM25 file
(filterLetters query)
(read topK :: Int)
(read chunks :: Int)
mapM_ print output
where
checkArgs [file, query, topK, chunks] = return (file, query, topK, chunks)

checkArgs _ do

progName <- getProgName
die

$ "Usage: ./"

++ progName

++ " <filename> <query> <K (no. of top documents)> <no. of chunks>"

filterLetters = filter (\c -> islLetter c || isSpace c || c == "\'")

runOkapiBM25 :: String -> String -> Int -> Int -> I0 [(String, Double)]
runOkapiBM25 file query topK chunks = do
documents' <- getAllDocuments file chunks

documents <- sequence documents'



let corpusSize = length documents -- N
let (avgDocLen, dfMap) = runkEval $ do
avgDoclLen' <-
rpar $ (sum [ docLen doc | doc <- documents ]) “div’ corpusSize
dfMap' <- rpar $ getAllDF documents
<- rseq avgDocLen'

<- rseq dfMap'

return (avgDocLen', dfMap')

let (k, b) = (1.2, 0.75)
startTime <- documents “seq” getCurrentTime
let scoredDocs =

scoreAllDocs chunks query documents dfMap corpusSize avgDoclen k b
let result = parseOutput (Heap.toAscList (topKDocuments topK scoredDocs))
endTime <- result “seq  getCurrentTime
print $ diffUTCTime endTime startTime

return result

getAllDocuments :: String -> Int -> IO [IO Document]
getAllDocuments file chunks = do
fileText <- readFile file -- titles.txt
let documents =
[ fmap (\(text', title'') -> readDocument title'' text')
(readFile path >>= return . \fileTxt -> (fileTxt, title'))
| line <- lines fileText
, let (path, title') = splitAtFirst ',' line
]
“using® parlListChunk chunks rseq
return documents

where splitAtFirst x = fmap (drop 1) . break (x ==

parseOutput :: [(Double, Document)] -> [(String, Double)]

parseOutput inputs = reverse [ (title doc, score) | (score, doc) <- inputs ]



