
Functional Fibonacci to a Fast FPGA

Stephen A. Edwards∗

Columbia University, Department of Computer Science
Technical Report CUCS-010-12

June 2012

Abstract

Through a series of mechanical transformation, I show how a three-line re-
cursive Haskell function (Fibonacci) can be translated into a hardware description
language—VHDL—for efficient execution on an FPGA. The goal of this report
is to lay the groundwork for a compiler that will perform these transformations
automatically, hence the development is deliberately pedantic.

1 Transforming fib into simple tail recursion

We begin by importing some types and a test generation library:1

import Data.Int ( Int8 , Int32 )
import Test .QuickCheck

Below is our starting point: a naı̈ve, recursive algorithm to compute Fibonacci
numbers coded in Haskell. This is a terribly inefficient way to compute these numbers
(an O(2n) algorithm instead of O(n)), but we will use it to illustrate our implementation
strategy for recursive functions. We restrict the domains of the argument and result to
simplify the hardware and illustrate how to mix different types of integers.

fib :: Int8 → Int32
fib 1 = 1
fib 2 = 1
fib n = fib (n−1) + fib (n−2)

We will build exactly one instance of a circuit for computing the fib function, so
the two recursive calls may not be performed in parallel. Instead, we will schedule one
before the other, followed by the addition of their results.

To express this sequencing, we transform the code to continuation-passing style [1].
To each function, this adds a continuation argument k: a function to which the result
will be passed as an argument. The result of each function call is passed to a continua-
tion that represents the rest of the computation in which the function call appeared.

fibc 1 k = k 1
fibc 2 k = k 1
fibc n k = fibc (n−1)

( λ n1 → fibc (n−2)
( λ n2 → k (n1 + n2)))

fib ’ n = fibc n ( λ x → x)

∗Much of this work arose from discussions with Jared Pochtar, Satnam Singh, and Simon Peyton Jones.
1This report is written a in a “Literate Programming” style. All the Haskell and VHDL code fragments

have been extracted directly from this document into source files and run through their respective compilers
for verification.

1



Next, we name the three lambda terms and perform lambda-lifting to capture all
free variables as arguments to these newly created function. For example, in the lambda
term

( λ n1 → fibc (n−2) ( λ n2 → k (n1 + n2))) ,

n and k appear free, so when we transform it into fibd2, n and k become arguments in
addition to the continuation-passed argument n1.

fibd0 n = fibd1 n fibd4
fibd1 1 k = k 1
fibd1 2 k = k 1
fibd1 n k = fibd1 (n−1) (fibd2 n k)
fibd2 n k n1 = fibd1 (n−2) (fibd3 n1 k)
fibd3 n1 k n2 = k (n1 + n2)
fibd4 x = x

fib ’’ n = fibd0 n

We also added a wrapper function, fibd0, to restrict all continuation-related oper-
ations to the fibd functions. While not strictly necessary, this will later simplify the
circuitry responsible for managing continuations.

In this example, continuations are constructed in one of three ways:

1. as just fibd4 in fibd0;

2. as ( fibd2 n k) in fibd1, where n is an integer related to depth of recursion and k
is a continuation; and

3. as ( fibd3 n1 k) in fibd2, where n1 is an integer related to a partial result and k
is a continuation.

This immediately suggests they can be encoded as a recursive type: this is the role
of the Cont type in the code below.

We need one final type to de-functionalize [2] this code: something that distin-
guishes among the two remaining functions that do not appear as continuations; fib0,
which does not take a continuation argument, and fib1, which does; and the calls to a
continuation. This is the role of the Call type in the code below.

We are finally in a simple form: a single function that either transforms its argu-
ments with simple arithmetic and calls itself tail-recursively or simply returns part of
its argument. The Cont type encodes continuations in the form of a stack; the Call type
effectively merges multiple functions into a single one.

data Cont = Fib2 Int8 Cont
| Fib3 Int32 Cont
| Fib4

data Call = Fib0 Int8
| Fib1 Int8 Cont
| Cont Cont Int32

fibp (Fib0 n) = fibp (Fib1 n Fib4)
fibp (Fib1 1 k) = fibp (Cont k 1)
fibp (Fib1 2 k) = fibp (Cont k 1)
fibp (Fib1 n k) = fibp (Fib1 (n−1) (Fib2 n k))
fibp (Cont (Fib2 n k) n1) = fibp (Fib1 (n−2) (Fib3 n1 k))
fibp (Cont (Fib3 n1 k) n2) = fibp (Cont k (n1 + n2))

2



fibp (Cont (Fib4) x) = x

fib ’’’ n = fibp (Fib0 n)

Finally, we add a few simple QuickCheck tests that verify that the four versions
produce identical results on small integers.

prop fib01equal :: Int → Property
prop fib01equal n = n > 0 && n < 15 =⇒fib (fromIntegral n) == fib ’ n

prop fib12equal :: Int → Property
prop fib12equal n = n > 0 && n < 15 =⇒fib ’ n == fib ’’ n

prop fib23equal :: Int → Property
prop fib23equal n = n > 0 && n < 15 =⇒fib ’’ n == fib ’’’ (fromIntegral n)

main = do
quickCheck prop fib01equal
quickCheck prop fib12equal
quickCheck prop fib23equal

2 Coding fib in VHDL

2.1 Types package

First, we’ll define a package of VHDL types and functions that represent and manip-
ulate the types in the Haskell program. The main challenge here is that VHDL does
not support “union” types, so we write explicit constructor and accessor functions for
them.

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;

package fib package is

The layout and definition of eight- and thirty-two-bit integers are straightforward.
We adopt a little-endian style.

Int8
7 0

Int32
31 0

We define both a VHDL constant and type for each:

constant INT8 W : integer := 8;
subtype int8 t is unsigned(INT8 W−1 downto 0);
constant INT32 W : integer := 32;
subtype int32 t is unsigned(INT32 W−1 downto 0);

The Cont type is more complicated since it is a union and will be stored in memory.
A fundamental trick here is that the Cont pointer fields appear in the same position
in both the Fib2 and Fib3 types, making them easy to reconstitute from the address
in which the data is stored in memory. This works because the continuations follow
a stack discipline and therefore can have a simple memory management scheme—a
classical stack pointer.

3



“Fib2”Int8Cont
0293439

“Fib3”Int32Cont

“Fib4”

We begin by defining constants and a type for the tag field.

constant CONT TAG W : integer := 2;
subtype cont tag t is unsigned(CONT TAG W − 1 downto 0);
constant FIB2 TAG : cont tag t := ”00”;
constant FIB3 TAG : cont tag t := ”01”;
constant FIB4 TAG : cont tag t := ”10”;

Now, constants and a type for the pointer type:

constant CONT PTR W : integer := 6;
subtype cont ptr t is unsigned(CONT PTR W − 1 downto 0);

Next, a constant and type for the type itself.

constant CONT W : integer := CONT TAG W + INT32 W + CONT PTR W;
subtype cont t is unsigned(CONT W − 1 downto 0);

We are not going to store the continuation pointers in memory (they are redundant
since the type follows a stack discipline), so we will define yet another constant and
type for the data we’ll put in memory and a type for the memory itself.

constant CONT IN MEM W : integer := CONT TAG W + INT32 w;
subtype cont in mem t is unsigned(CONT IN MEM W − 1 downto 0);
constant CONT MEM SIZE : integer := 2 ∗∗ CONT PTR W;
type cont mem t is array(0 to CONT MEM SIZE − 1) of cont in mem t;

The Call type is never stored in a memory, so its layout is a little more mechanical.

“Fib0”Int8
02791539

“Fib1”Int8Cont

“Cont”ContInt32

Here are the constants and type for Call:

constant CALL TAG W : integer := 2;
subtype call tag t is unsigned(CALL TAG W − 1 downto 0);
constant FIB0 TAG : call tag t := ”00”;
constant FIB1 TAG : call tag t := ”01”;
constant CONT TAG : call tag t := ”10”;

constant CALL W : integer := CALL TAG W + INT32 W + CONT PTR W;
subtype call t is unsigned(CALL W − 1 downto 0);

This completes the type definitions in the package.
Now, we define functions for constructing and accessing fields in these types. First,

we define functions for the Call type. The first three are type constructors, the “is”
functions test the tag field, and the remainder access (numbered) fields in the types.

4



function Fib0(n : int8 t ) return call t ;
function Fib1(n : int8 t ; k : cont ptr t ) return call t ;
function Cont(k : cont ptr t ; n : int32 t ) return call t ;

function is Fib0 (a : call t ) return boolean;
function Fib0 1 (a : call t ) return int8 t ;

function is Fib1 (a : call t ) return boolean;
function Fib1 1 (a : call t ) return int8 t ;
function Fib1 2 (a : call t ) return cont ptr t ;

function is Cont (a : call t ) return boolean;
function Cont 1 (a : call t ) return cont ptr t ;
function Cont 2 (a : call t ) return int32 t ;

Now, functions for the Cont type. One anomaly is the definition for the Fib4 con-
structor: Since VHDL does not support zero-argument functions, it is defined as a
constant.

function Fib2(n : int8 t ; k : cont ptr t ) return cont t ;
function Fib3(n : int32 t ; k : cont ptr t ) return cont t ;
constant Fib4 : cont t :=

”XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” &
FIB4 TAG;

function is fib2 (a : cont t ) return boolean;
function Fib2 1 (a : cont t ) return int8 t ;
function Fib2 2 (a : cont t ) return cont ptr t ;

function is Fib3 (a : cont t ) return boolean;
function Fib3 1 (a : cont t ) return int32 t ;
function Fib3 2 (a : cont t ) return cont ptr t ;

function is Fib4 (a : cont t ) return boolean;

end fib package ;

Now we define all these functions. The code is tedious but straightforward—just
the sort of thing you’d want a compiler to generate. Each follows directly from the
bit-wise layout of the types shown earlier. Again, we begin with the functions related
to the Call type.

package body fib package is
function Fib0(n : int8 t ) return call t is begin

return ”XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX” & −− 30 X’s
n & FIB0 TAG; end Fib0;

function Fib1(n : int8 t ; k : cont ptr t ) return call t is begin
return ”XXXXXXXXXXXXXXXXXXXXXXXX” & −− 24 X’s

k & n & FIB1 TAG; end Fib1;
function Cont(k : cont ptr t ; n : int32 t ) return call t is begin

return n & k & CONT TAG; end Cont;
function is Fib0 (a : call t ) return boolean is begin

return a(CALL TAG W − 1 downto 0) = FIB0 TAG; end is Fib0;
function Fib0 1(a : call t ) return int8 t is begin

return a(INT8 W − 1 + CALL TAG W downto CALL TAG W); end Fib0 1;

5



function is Fib1 (a : call t ) return boolean is begin
return a(CALL TAG W − 1 downto 0) = FIB1 TAG; end is Fib1;

function Fib1 1(a : call t ) return int8 t is begin
return a(INT8 W − 1 + CALL TAG W downto CALL TAG W); end Fib1 1;

function Fib1 2(a : call t ) return cont ptr t is begin
return a(CONT PTR W − 1 + CALL TAG W + INT8 W downto

CALL TAG W + INT8 W); end Fib1 2;
function is Cont (a : call t ) return boolean is begin

return a(CALL TAG W − 1 downto 0) = CONT TAG; end is cont;
function Cont 1(a : call t ) return cont ptr t is begin

return a(CONT PTR W − 1 + CALL TAG W downto
CALL TAG W); end Cont 1;

function Cont 2(a : call t ) return int32 t is begin
return a(INT32 W − 1 + CALL TAG W + CONT PTR W downto

CALL TAG W + CONT PTR W); end Cont 2;

Now, the functions for the Cont type. One trick here is that the functions that return
the Cont field in a Fib3 actually calls the function for accessing the field in a Fib2. This
is part of the trickery enabling Cont objects to be stored as a simple stack in memory.

function Fib2(n : int8 t ; k : cont ptr t ) return cont t is begin
return k & ”XXXXXXXXXXXXXXXXXXXXXXXX” & −− 24 X’s

n & FIB2 TAG; end Fib2;
function Fib3(n : int32 t ; k : cont ptr t ) return cont t is begin

return k & n & FIB3 TAG; end Fib3;
function is fib2 (a : cont t ) return boolean is begin

return a(CONT TAG W − 1 downto 0) = FIB2 TAG; end is Fib2;
function Fib2 1 (a : cont t ) return int8 t is begin

return a(INT8 W − 1 + CONT TAG W downto CONT TAG W); end Fib2 1;
function Fib2 2 (a : cont t ) return cont ptr t is begin

return a(CONT PTR W − 1 + CONT TAG W + INT32 W downto
CONT TAG W + INT32 W); end Fib2 2;

function is Fib3 (a : cont t ) return boolean is begin
return a(CONT TAG W − 1 downto 0) = FIB3 TAG; end is Fib3;

function Fib3 1 (a : cont t ) return int32 t is begin
return a(INT32 W − 1 + CONT TAG W downto CONT TAG W); end Fib3 1;

function Fib3 2 (a : cont t ) return cont ptr t is begin
return Fib2 2(a ); end Fib3 2;

function is Fib4 (a : cont t ) return boolean is begin
return a(CONT TAG W − 1 downto 0) = FIB4 TAG; end is Fib4;

end fib package ;

6



2.2 The Fibp Block

Next, we will define an entity/architecture pair for the core fibp block, which contains
combinational logic that performs the pattern matching and generates the argument for
the tail call and the Cont type’s constructor. The entity definition is straightforward
because we defined types in fib package.

While the argument to the fibp function is a single Call object, the function often
needs to examine the Cont object embedded in it. Later, we will arrange this to be
delivered through the arg cont argument.

Control of the Cont constructor circuit is the main interesting thing going on here.
In rules where a new Cont object is created, i.e., where Fib2, Fib3, or Fib4 appears
in a function definition, cont go is asserted to create a new Cont object. The Cont
constructor returns a pointer to this new object through cont ptr, so this is a tricky
combinational path: within a single cycle, cont go is sent to the constructor, which
computes the new address and returns it to be used by the Call constructors.

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;
use work.fib package . all ;

entity fibp is
port (

go : in std logic ;
arg : in call t ;
arg cont : in cont t ; −− Cont inside the Call , if applicable
ready : out std logic ;
result : out int32 t ;
tail go : out std logic ; −− Indicates a tail call
tail arg : out call t ; −− Argument to tail call

cont go : out std logic ; −− Cont constructor
cont arg : out cont t ; −− Argument to Cont constructor
cont ptr : in cont ptr t −− Pointer to newly constructed Cont

);
end entity ;

Now for the architecture, which is a single combinational process. By design,
this is a largely mechanical rewriting of the pattern matching and constructor rules of
the final Haskell code. One thing that was lost is the names bound to fields in the
pattern matching. Instead, each is expressed explicitly using one of the many accessor
functions.

7



architecture rtl of fibp is

begin
fibp : process (go, arg , arg cont , cont ptr )
begin

ready <= ’0’; result <= (others => ’X’);
tail go <= ’0’; tail arg <= (others => ’X’);
cont go <= ’0’; cont arg <= (others => ’X’);

if go = ’1’ then

−− fibp (Fib0 n) = fibp (Fib1 n Fib4)
if is Fib0 (arg) then

cont go <= ’1’; cont arg <= Fib4;
tail go <= ’1’; tail arg <= Fib1(Fib0 1(arg ), cont ptr );

−− fibp (Fib1 1 k) = fibp (Cont k 1)
elsif is Fib1 (arg) and Fib1 1(arg) = to unsigned (1, INT8 W) then

tail go <= ’1’;
tail arg <= Cont(Fib1 2(arg ), to unsigned (1, INT32 W));

−− fibp (Fib1 2 k) = fibp (Cont k 1)
elsif is Fib1 (arg) and Fib1 1(arg) = to unsigned (2, INT8 W) then

tail go <= ’1’;
tail arg <= Cont(Fib1 2(arg ), to unsigned (1, INT32 W));

−− fibp (Fib1 n k) = fibp (Fib1 (n−1) (Fib2 n k ))
elsif is Fib1 (arg) then

cont go <= ’1’; cont arg <= Fib2( Fib1 1(arg ), Fib1 2(arg ));
tail go <= ’1’; tail arg <= Fib1(Fib1 1(arg) − 1, cont ptr );

−− fibp (Cont (Fib2 n k) n1) = fibp (Fib1 (n−2) (Fib3 n1 k))
elsif is Cont (arg) and is Fib2 ( arg cont ) then

cont go <= ’1’; cont arg <= Fib3( Cont 2(arg ), Fib2 2( arg cont ));
tail go <= ’1’; tail arg <= Fib1( Fib2 1( arg cont ) − 2, cont ptr );

−− fibp (Cont (Fib3 n1 k) n2) = fibp (Cont k (n1 + n2))
elsif is Cont (arg) and is Fib3 ( arg cont ) then

tail go <= ’1’;
tail arg <= Cont(Fib3 2(arg cont ), Fib3 1( arg cont ) + Cont 2(arg ));

−− fibp (Cont (Fib4) x) = x
elsif is Cont (arg) and is Fib4 ( arg cont ) then

ready <= ’1’; result <= Cont 2(arg);
end if ;

end if ;
end process ;

end architecture ;

8



2.3 The Cont Ctrl Block

This is essentially a memory controller for the Cont type: a stack. It’s complicated by
the need to produce the current “top of stack” by default, something needed by the fibp
block when it invokes a continuation.

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;
use work.fib package . all ;

entity cont ctrl is
port (

clk : in std logic ;
go : in std logic ;
arg : in cont t ;
result : out cont ptr t ;
call : in call t ;
current : out cont t

);
end entity ;

We need a few internal signals: the stack pointer (i.e., the memory address to be
read/written), a write signal, data to be written, and finally the array representing the
local stack memory itself.

architecture rtl of cont ctrl is

signal ptr : cont ptr t ;
signal wr : std logic ;
signal write data : cont in mem t;
signal mem : cont mem t;

begin

9



The first part of the architecture is the combinational process that controls the op-
eration of the memory. There are two cases: when go is asserted, a new Cont object is
created and written into memory; otherwise, the “top-of-stack” is read, using the Cont
field in the call argument as the address. Note that this code assumes the Cont fields
are in the same place in both Fib2 and Fib3 objects.

Although it may appear ptr and result could be merged, splitting them avoids a
(false) combinational cycle involving the fibp block.

control : process (go, arg , call )
begin

wr <= ’0’;
ptr <= (others => ’X’);
write data <= (others => ’X’);
result <= (others => ’X’);

if go = ’1’ then
wr <= ’1’;
write data <= arg(CONT IN MEM W − 1 downto 0);
if is Fib4 (arg) then

ptr <= to unsigned(0, CONT PTR W);
result <= to unsigned(0, CONT PTR W);

elsif is Fib3 (arg) or is Fib2 (arg) then
ptr <= Fib3 2(arg) + 1;
result <= Fib3 2(arg) + 1;

end if ;

elsif is Fib1 ( call ) then
ptr <= Fib1 2(call );

elsif is Cont ( call ) then
ptr <= Cont 1(call );

end if ;
end process ;

The last part of the architecture is the process describing the memory in which
the Cont objects are placed. It is deliberately simple so that the synthesis tools will
correctly infer RAM from it. In particular, it is a one-cycle RAM with write-through.
The one bit of magic is that the Cont field of both Fib2 and Fib3 are in the same place
and reconstituted from the address being read or written.

ram : process ( clk )
begin

if rising edge (clk ) then

if wr = ’1’ then
mem(to integer( ptr )) <= write data ;

end if ;

current (CONT IN MEM W − 1 downto 0) <= mem(to integer(ptr));
current (CONT PTR W − 1 + CONT IN MEM W downto

CONT IN MEM W) <= ptr − 1;
end if ;

end process ;

end architecture ;

10



2.4 The top level

fibp

go

arg

arg cont
cont ptr

go
arg

ready
result

go
arg

tail
{

cont
{

cont ctrl

call
go

arg

current
result

ready
result

go

Fib0 nn

Int8
Int32
Call

Cont
Cont ptr

This is nearly a direct translation of the block diagram. The interface is, by design,
boilerplate.

library ieee ;
use ieee . std logic 1164 . all ;
use ieee . numeric std . all ;
use work.fib package . all ;

entity fib is
port (

clk : in std logic ;
go : in std logic ;
arg : in int8 t ;
ready : out std logic ;
result : out int32 t

);
end entity ;

The internal signals are controls for fibp, its tail recursion, and the Cont memory
controller.

architecture rtl of fib is
signal fibp go : std logic ;
signal fibp arg : call t ;
signal fibp arg cont : cont t ;
signal tail go : std logic ;
signal tail arg : call t ;
signal cont go : std logic ;
signal cont arg : cont t ;
signal cont ptr : cont ptr t ;

11



The body consists of instances of the fibp and cont ctrl blocks defined earlier. Note
that only the latter has a clock input.

begin
fibp : entity work.fibp port map (

go => fibp go,
arg => fibp arg ,
arg cont => fibp arg cont ,
ready => ready,
result => result ,
tail go => tail go ,
tail arg => tail arg ,

cont go => cont go,
cont arg => cont arg ,
cont ptr => cont ptr

);

cont ctrl : entity work. cont ctrl port map (
clk => clk,
go => cont go,
arg => cont arg ,
result => cont ptr ,
call => tail arg ,
current => fibp arg cont

);

Finally, we need a sequential process that either starts or tail-recurses fibp. Im-
plicit here is a primitive arbiter: tail recursion takes precedence over go, which the
environment shouldn’t generate while the system is computing anyway.

control : process ( clk )
begin

if rising edge (clk ) then
if tail go = ’1’ then

fibp go <= ’1’; fibp arg <= tail arg ;
elsif go = ’1’ then

fibp go <= ’1’; fibp arg <= Fib0(arg);
else

fibp go <= ’0’;
fibp arg <= (others => ’X’);

end if ;
end if ;

end process ;

end architecture ;

References

[1] Andrew Appel. Compiling with Continuations. Cambridge University Press, 1992.

[2] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the ACM Annual Conference, pages 717–740, 1972.
Reprinted in Higher-Order and Symbolic Computation 11(4):363–397 Dec. 1998.

12


