A Ptolemy II Implementation of the TRANSCEND system for Model Based Fault Detection and Isolation in Continuous Dynamic Systems

Eric-J. Manders
Vanderbilt University
Department of Electrical Engineering and Computer Science

Ptolemy Mini-Conference, Berkeley, California, 22-23 March 2001

© 2001 Vanderbilt University.

Outline

- Introduction: What, Why, and So What
- TRANSCEND: Framework for Model Based Fault Detection and Isolation
- Implementation in Ptolemy II
- Example: Multi-tank Fluid System
- Summary and plans for further work
Introduction

- **What**: Computational framework for Model Based FDI
- **Why**: Complex computational issues
 - Multiple concurrent tasks: signal processing, diagnosis algorithms, visualization
 - Online FDI subject to real-time requirements
- **So What**: Long term goal: integrate FDI as embedded system application for “smart physical systems”

Model Based Fault Detection and Isolation

- FDI with functional models
 - Exploit analytical redundancy in a system model
 - Require estimate of nominal behavior
 - Deviation from nominal behavior triggers FDI

- Many Approaches

<table>
<thead>
<tr>
<th></th>
<th>CT</th>
<th>D(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative</td>
<td>State/Parameter Estimation</td>
<td>Constraint analysis (AI)</td>
</tr>
<tr>
<td>Qualitative</td>
<td>TRANSCEND</td>
<td>Discrete Event Approaches</td>
</tr>
</tbody>
</table>
Model Based Fault Detection and Isolation (2)

- Arguments for the qualitative approach
 - Model accuracy (structural + parameter estimation)
 - Computational problems in numerical solution methods
 (e.g. convergence)

- Problems with traditional AI modeling approaches: under-constrained models lead to many spurious hypotheses

TRANSCEND: transient based diagnosis

- Abrupt faults in continuous dynamic systems
 - Abrupt faults introduce Transients
 - Fault isolation is based on transient analysis

- Description of transient dynamics:
 qualitative magnitude and derivative values (-,0,+)

- Incremental analysis of transient behavior

- Topological Models based on physical principles:
 graph representation provides direct parameter to measurement relations
TRANSCEND: modeling for FDI

\[
f = \frac{p}{R} \quad \dot{p} = \frac{1}{C}(f_{in} - f)
\]

TRANSCEND: system architecture

- Key properties
 - Robust methods for signal to symbol transformation
 - Hypothesis generation: graph algorithms
 - Hypothesis refinement: qualitative fault observers
Top level actor

- Input: read residual data from file in off-line use
- Output: display active hypotheses as formatted text

Signal-to-Symbol transformation

- Derivative estimates computed with FIR filters
- Transient state controls hypothesis refinement
Qualitative Fault Detection and Isolation

Intermezzo: Python - One page Summary

- Python Language Features:
 - Byte-Code Compiled/Interpreted
 - Interactive
 - Object Oriented
 - Dynamic Semantics
 - Supports Modules and Packages

- Rapid Application Development support through:
 - High level data structures and operations Python source looks like “executable pseudo code”
 - Strong embedding/extending capabilities
Actor with Embedded Python components

- How it works
 - Create Python class derived from \texttt{java.lang.object}
 - Compile to Java byte-code with \texttt{jythonc}
 - Instantiate class as if native Java object
 - Application loads \texttt{jpython} package:
 Java implementation of the Python Virtual Machine

- Cool: Prototype Java components with RAD tool
- Catch: Performance hit over native Java

EXAMPLE: FDI of a multi-tank fluid system
EXAMPLE: FDI of a multi-tank fluid system (2)

Output of the Fault Isolation Process for fault $C2$—

> step 0

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>f3</th>
<th>e7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C2^-$</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>$C1^-$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$Rb2^+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R12^-$</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>$Rb1^+$</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

> step 1

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>f3</th>
<th>e7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C2^-$</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Active Hypotheses:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>f3</th>
<th>e7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C2^-$</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>$C1^-$</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>$Rb2^+$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$R12^-$</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>$Rb1^+$</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Summary and plans for further work

- Current implementation allowed us to make TRANSCEND suitable for stream based processing.
- Gaining insight in concurrency issues for Model Based FDI systems
- Future plans:
 - Integrate simulator for Bond Graph models (in progress):
 - Migrate towards discrete time dataflow
 - Construct online FDI system for the physical three-tank system testbed in our lab
Final Notes

Please visit the
Modeling and Analysis of Complex Systems group
online at:
http://macs.vuse.vanderbilt.edu

This project supported by:
Agilent Laboratories
NASA Intelligent Systems program
DARPA Software-Enabled Control program