Heterochronous Dataflow in Ptolemy II

Brian K. Vogel
UC Berkeley

4-th Biennial Ptolemy Miniconference
March 22-23, 2001, Berkeley, CA

Motivation for composing SDF with FSMs

Clean signal

Noisy signal

Time index x10

Time index x10
Example 1: homogeneous SDF + FSM

Example 2: non-homogeneous SDF + FSM
Applications of heterochronous dataflow (HDF)

- HDF can represent a class of dataflow models that are more general than cyclo-static dataflow (CSDF), but less general than dynamic dataflow (DDF).
- HDF fits elegantly into the *charts formalism (A. Girault, B. Lee, and E. A. Lee ‘99)
 - *charts specifies a semantics for hierarchically composing FSMs with various concurrent models of computation
 - HDF with FSMs in *charts is a natural generalization of SDF with FSMs in *charts
 - Useful for representing applications with both control flow and data flow
- HDF can provide an elegant representation for a class of models that contain actors that do not need to be invoked at certain points during the model execution.
Properties of HDF

- HDF is a generalization of synchronous dataflow (SDF), and of CSDF
- HDF has a finite state space and retains the desirable decidability properties of SDF
 - Deadlock is decidable
 - Bounded memory channels
 - Static scheduling is possible
- The number of states can be exponential in the number of actors, so static scheduling may not always be practical

HDF semantics

- An HDF actor has a finite number of combinations of port rates
 - A particular combination of ports rates is called a type signature
- An HDF actor has an initial type signature when execution starts
- Can solve the balance equations => find an iteration
- The type signatures are only allowed to change after the last firing of an actor in an iteration
HDF semantics

- Since there are a finite number of type signatures, the set of possible schedules is finite and can be computed at compile-time
 - Deadlock is decidable
 - Bounded channels are decidable
- Unlike CSDF, the order in which the schedules is used is not cyclic

HDF semantics

- It is often useful to use an FSM to control when a type signature change may occur
- An interaction semantics for HDF with hierarchical FSMs is specified in *charts (A. Girault, B. Lee, and E. A. Lee ‘99)
- *charts is a family of MOCs that specifies an operational semantics for hierarchical FSMs composed with multiple concurrency models
*charts semantics of HDF with FSM

- In *charts, an HDF actor can refine to an FSM
 - The current state of the FSM determines the type signature
 - The type signature may change when a state transition occurs
 - A state is allowed to refine to an SDF graph, an HDF graph, or another FSM
- Arbitrary nesting is allowed in the hierarchy, but the top level must be an HDF graph

HDF example

```
A  (2)     B  (4,3)     C
(5,2) (1)
```

```
A  (2)     B  (4,3)     C
(5,2) (1)
```

```
A  (2)     B  (4,3)     C
(5,2) (1)
```

```
A  (2)     B  (4,3)     C
(5,2) (1)
```
Zero-rate ports in HDF

- Some models may contain actors that do not need to be invoked at certain points in the execution.
- HDF can elegantly represent a class of models with this property by making use of zero-rate ports.

Zero-rate ports example

```
A  \( (1) \)  \( (0,1,1) \)  \( (1,1,0) \)  \( (1) \)  C
\[
B
\[
C
```

```
A  \( (0) \)  \( (1) \)  \( (1) \)  \( (0) \)
```

```
B  \( (1) \)  \( (1) \)  \( (1) \)
```

```
C  \( (1) \)  \( (1) \)
```

```
SDF
```

```
HDF
```

```
FSM
```

```
SDF
```
Ptolemy II Implementation

- An experimental HDF domain has been implemented in Ptolemy II
- Makes use of the existing SDF and FSM domains
- Supports hierarchical heterogeneity by supporting models that hierarchically compose HDF/SDF and FSM subsystems according to the *charts semantics
- HDF models can be constructed visually using the Vergil graph editor

HDF domain features

- Schedules are computed dynamically and cached
- Actors with zero-rate ports are supported
- The *charts SDF with FSM semantics are supported, since this is a special case of HDF with FSM
- Arbitrary levels of nesting in the hierarchy are supported with the constraint that the top level be HDF or SDF
Future work

- Port the HDF implementation to a revised version of the FSM domain, which is under development.
- Consider adding parameterized synchronous dataflow (PSDF) (S. Bhattacharyya ‘2000) features to the HDF domain:
 - PSDF actors externally have HDF dataflow semantics.
 - It may be interesting to extend the HDF domain to support PSDF parameter flow.
 - It may be interesting to consider combining *charts HDF/FSMs with PSDF.