System Behaviour Analysis with UML and Ptolemy

4th Biennial Ptolemy Miniconference
22-23 March 2001

Xavier Warzee, Jean-Charles Causse
Thales Optronique
and
Dominique Marcadet,
Julien Raimbault, Mickaël Levier, Supelec

Scope and goals

- Complex System analysis and design
 - Requirements hard to capture:
 - more and more missions assigned to systems (complex supervision),
 - more and more behavioral requirements,
 - more and more capabilities to support (heterogeneous systems).
 - Models used to capture requirements!
 - Current practices:
 - UML used to capture requirements,
 - DOORS/Telelogic used for tracability between requirements and models.
 - How to describe unambiguously operational scenarios?
 - How to check dynamic properties such as Concurrency?
- How to check early the correctness and the completeness of these models?
System requirements specification with UML

Capture missions of the system

Static models:
- definition of scenarios with the following types of entity:
 - external actors,
 - system capabilities (e.g. target detection),
 - functions (e.g. target tracking, range computing),
 - components (e.g. laser, camera, sensors, boards).

Dynamic models:
- Use Cases
 - interactions between the system and external actors.
- Message Sequence Charts, Activity Charts
 - interaction between entities of the system.
- StateCharts
 - States and modes.
Executable UML specifications

- Gap between the static and dynamic models:
 - how to check consistency and completeness?
 - First answer with Rhapsody from Ilogix:
 - Animation of UML models,
 - Limitations:
 - background in software and Object-Oriented technologies needed!
 - Only one type of semantics for animation (StateCharts).

- Esterel Studio
 - powerful solution for reactive systems,
 - formal verification of the control part based on the Esterel language,
 - Limitations:
 - Only one type of semantics (the Synchronous hypothesis).

From UML to Ptolemy II

- Use of Ptolemy II to execute UML models
 - UML
 - MSCs to describe scenarios,
 - stereotypes to capture capabilities, functions,
 - statecharts to capture modes and states.
 - Generation of MoML files from the UML models
 - use of Rose/Rational
 - plug-in developed to parse the UML models,
 - generation of XML files,
 - launch of Ptolemy II to execute the models (now Ptolemy II models),
 - (optional) addition of blocks to generate inputs, and display outputs,
 - (optional) addition of other models if not done in UML,
 - Continuous Time models to simulate physical values evolving during simulations.
Rose Add-in: SDF and DE domains

- Use of UML with specific rules
 - Choice of Class Diagram
 - UML Classes as Ptolemy actors
 - One UML class stereotype for each Ptolemy class
 - UML class attributes describe Ptolemy actor properties
 - UML associations as Ptolemy Links
 - UML association roles describe Ptolemy actor ports and port properties
- Creation of a user interface
 - Inserting actors into the diagram
 - Hierarchical organization of the actors
 - Modification
 - Definition
 - Deletion

- Code generation
 - Diagram parsing
 - Parameters management
 - Choice of a domain director (SDF, DE)
 - Model or class
 - XML code overview
 - Exporting XML code to a file
Rose Add-in: SDF and DE domains

- Interaction with Ptolemy II
 - Importing XML file in Vergil
 - (optional) Modifications through Vergil interface
 - Simulation

Rose Add-in: FSM domain

- Mapping between UML StateCharts and FSM domain
 - Under Construction
 - Whereas DE and SDF domains needed rules to be described in UML, a simple Mapping is possible between UML StateCharts and Ptolemy Finite State Machines
Rose Add-in: Goals

- Mapping between actions' meaning in StateCharts and FSM actions
- Management of hierarchical graphs using several domains (SDF, DE and FSM)

UML and Ptolemy II: perspectives

- Integration of other Ptolemy II domains
- XSLT to convert from XMI to MoML
- XSLT to convert from MoML to XMI
 - => From Ptolemy II to UML.
- Use of RoseRT instead of Rose?
 - Mapping of UML-RT capsules and ports to Ptolemy II actors and ports.